5. Weitere wichtige Funktionsklassen

Größe: px
Ab Seite anzeigen:

Download "5. Weitere wichtige Funktionsklassen"

Transkript

1 57 Mathematik für Biologen, Biotechnologen und Biochemiker 5 Weitere wichtige Funktionsklassen 5 Potenzfunktionen und doppelt-logarithmisches Papier Die Funktionen der Form f() = a b (mit reellen Zahlen a, b) nennt man Potenzfunktionen, sie sind auf {r R r } definiert (Sollte b eine natürliche Zahl sein, also b {,,, }, so ist b auch für negative Zahlen definiert; sonst aber nicht!) Hier einige Graphen, dabei ist jeweils a = Links oben die Funktionen b mit b =,,, (hier ist also b ), rechts oben b mit b =, (hier ist also < b ), Entsprechend folgen dann links unten die Funktionen b mit b =,, 5,, (hier ist also b < ), und rechts unten b mit b =,, 5 (hier ist also b ) b < b b <,,5 b 5 Wie man den Bildern ansieht, gibt es die folgenden wesentlich verschiedene Verhaltensweisen: Ist b > (die beiden oberen Bilder), so ist die Funktion f() = b monoton wachsend Für b < (die beiden unteren Bilder) ist die Funktion f() = b monoton fallend Bei den unteren Bildern kann man das Verhalten für verschiedene Werte von b gar nicht so einfach unterschieden (die Graphen links und rechts ähneln sich sehr) Bei den oberen Bildern dagegen unterschieden sich die linken Graphen gravierend von den rechten: Es gibt den Spezialfall b =, der sowohl links als auch rechts eingezeichnet ist; in diesem Fall ist der Graph eine Gerade Ist b > (die anderen Graphen im linken oberen Bild), so ist der Graph links-gekrümmt; ist < b < (rechtes oberes Bild), so ist der Graph rechts-gekrümmt

2 Leitfaden 58 Die Bedeutung einiger Potenzfunktionen Wichtig sind als allererstes die beiden Funktionen und, da sie das Anwachsen der Oberfläche bzw des Volumens eines Körpers bei maßstäblicher Vergrößerung beschreiben Zum Beispiel bei Kugeln: Der Radius der Kugel K sei doppelt so groß wie der der Kugel K Dann ist die Oberfläche von K viermal so groß wie die von K, und das Volumen von K ist achtmal so groß wie das von K Entsprechendes gilt ganz allgemein für beliebige Körper Würde ein Mensch maßstäblich um % wachsen, so nähme sein Hüftumfang ebenfalls um % zu, seine Hautoberfläche um %, sein Volumen und damit auch sein Gewicht um % (denn es ist (, ) =, und (, ) =, ) Das Verhältnis Volumen:Oberfläche spielt eine wichtige Rolle bei vielen Lebensfunktionen Zur graphischen Darstellung einer Potenzfunktion f() = a b (mit a > ) arbeitet man meist mit doppel-logarithmischem Papier Aus folgt f() = a b log f() = log a + b log, wir sehen also, daß der Logarithmus log f() linear vom Logarithmus log abhängt (die entsprechende lineare Funktion lautet z c+bz, mit c = log a; dabei ist natürlich z = log ) Auch umgekehrt gilt: Ist eine Funktion f() gegeben, deren Graph auf doppelt-logarithmischen Papier eine Gerade ist, so ist f() im wesentlichen eine Potenzfunktion der Form f() = a b mit a >

3 59 Mathematik für Biologen, Biotechnologen und Biochemiker Hier drei Potenzfunktionen, nämlich 5 und darunter die entsprechenden Geraden, die sich auf doppelt-logarithmischem Papier ergeben Lesehilfe für die doppel-logarithmischen Darstellungen: Um den Koeffizienten a zu bestimmen, suche man die vertikale Gerade mit z =, also mit = Im ersten Bild schneidet sie den Graphen an der Stelle ( 5); es ist also a = 5 Im mittleren Bild schneidet die vertikale Gerade = den Graph im Punkt ( ), also ist a = ; im rechten Bild erhält man entsprechend a = Entsprechend bestimmt man in den drei unteren Bildern jeweils die Steigung b der Geraden Natürlich kann man die entsprechenden Informationen auch an den ursprünglichen Graphen ablesen, die Bedeutung der doppelt-logarithmischen Darstellung liegt nicht darin, daß man die Parameter einfacher bestimmen kann, sondern daß man durch die Linearität des Graphen überhaupt feststellt, daß die gegebene Funktion eine Potenzfunktion ist!

4 Leitfaden 6 5 Weber-Fechner-Gesetz und Stevens sche Potenzfunktionen Ernst Heinrich Weber ( ) untersuchte um 85 die menschliche Reaktion auf äußere phsikalische Reize Zum Beispiel gab er Versuchspersonen Gegenstände mit ähnlichem Gewicht in die Hand und ließ prüfen, bei welcher Gewichtsdifferenz ein Unterschied festgestellt wird Es stellt sich heraus: Bei Gewichten g und,5 g wird üblicherweise kein Unterschied empfunden, bei Gewichten g und g dagegen schon; die Gewichtsdifferenz muß hier mindestens g betragen, um erkannt zu werden Betrachtet man nun die Gewichte 4 g und 4 g (hier also auch Gewichtsdifferenz g), so wird kein Unterschied empfunden, bei Gewichten 4 g und 4 g dagegen schon; hier muß die Gewichtsdifferenz g betragen, um wahrgenommen zu werden Beim Ausgangsgewicht 8 g muß die Gewichtsdifferenz sogar 4 g betragen, um wahrgenommen zu werden, usw Allgemein gilt: nicht die Gewichtsdifferenz ist entscheidend, sondern der jeweilige Prozentsatz: 5 % Gewichts-Abweichung sind wahrnehmbar, kleinere Abweichungen dagegen nicht Das Weber sche Gesetz lautet: Für jede Art von Sinneswahrnehmung eines äußeren Reizes gibt es eine Konstante q, so daß eine Erhöhung der phsikalischen Stärke des Reizes r erst ab einer Erhöhung um mindestens qr wahrgenommen wird Außerdem gibt es eine Mindestgröße r des Reizes, ab der überhaupt der Reiz wahrgenommen wird, man nennt dies die Wahrnehmungsschwelle Gustav Theodor Fechner (8-887) hat vorgeschlagen, aufbauend auf dem Weber schen Gesetz, den subjektiven Sinnesempfindungen eine quantitative Skala zuzuordnen: Man beginnt mit der Wahrnehmungsschwelle r und bildet eine Skala der Reize, die gerade noch als verschieden wahrgenommen werden; diese Skala ist von der Form r, ( + q)r, ( + q) r, ( + q) r, Nummeriert man diese Reize durch, so erhält man eine Skala der Reizstufen; die Zuordnung, die jedem Reiz seine Reizstufe zuordnet, ist dann die Umkehrfunktion von n ( + q) n r, also eine Funktion der Form ( ) g(r) = A logr + B, hier ist r der (phsikalisch gemessene) äußere Reiz, und A und B sind geeignete Konstanten Die Formel ( ) heißt Weber-Fechner-Formel Beweis: Die Formel r = (+q) n r beschreibt den (phsikalisch gemessenen) äußeren Reiz in Abhängigkeit von der Reizstufe Wir wollen dies nach n auflösen, um die Reizstufe n = n(r) als Funktion des gemessenen äußeren Reizes zu geschreiben Logarithmieren liefert also log r = n log( + q) + log r, n log( + q) = log r log r Wir teilen durch log( + q) und erhalten: n = log(+q) log r log r log(+q) mit A = log(+q) und B = log r log(+q) geschrieben) = A log r + B, (statt n = n(r) haben wir oben g(r)

5 6 Mathematik für Biologen, Biotechnologen und Biochemiker Die Weber-Fechner-Formel kann folgendermaßen gelesen werden: Die Stärke der Sinnesempfindung ist eine lineare Funktion vom Logarithmus der Stärke des phsikalischen Reizes Warnung Hier wird die Stärke der Sinnesempfindung als quantitative Größe definiert; dies ist durchaus eine willkürliche Setzung Kann eine Sinnesempfindung nicht objektiv gemessen werden, so liefert die Weber-Fechner-Formel sicher einen nützlichen Weg zu einer ersten Skalierung der Empfindung Manchmal gibt es aber Modellbildungen, die zu anderen (und besseren) Skalierungen führen; darüber wird noch zu reden sein Beispiel : Lautstärke Die phsikalische Intensität r = I eines Tons wird in Watt/m gemessen (also als Energie, die pro Zeiteinheit durch eine Flächeneinheit hindurchtritt) Die üblicherweise verwendete Definition der Lautstärke in Abhängigkeit von I ist L(I) = logi + [db] (als Einheit wird db = Dezibel verwendet, benannt nach AGBell, der von 847 bis 9 lebte); man nennt L(I) den Lautstärke-Pegel zur Intensität I Dabei ist r = I = Watt/m, dies ist die Intensität eines Tons, der vom Menschen gerade noch wahrgenommen wird, also eben die Wahrnehmungsschwelle (Dies alles hängt aber eigentlich auch noch von der Tonhöhe ab; betrachtet werden dabei Töne der Frequenz Hz) Hier der Graph der Zuordnung L(I), mit logarithmischer horizontaler Achse: L [db] I [W/m ] Hörbarkeitsgrenze Gespräche Orchester Donner

6 Leitfaden 6 Beispiel : Dosis-Antwort-Beziehung Es wird davon ausgegegangen, daß das Weber sche Gesetz nicht nur für Sinneswahrnehmungen, sondern auch für andere Körperreaktionen auf äußere Reize gilt Wird einem Lebewesen eine bestimmte Dosis eines chemischen Präparats gegeben (Medikament, Gift, Vitamin, Hormon, etc), so hängt die Reaktion nicht linear von der Höhe der Dosis ab: Erhöht man zb eine Dosis von mg auf 5 mg, so wird der Körper wahrscheinlich verschiedenartig reagieren Erhöht man dagegen eine Dosis von mg auf 5 mg, so wird sich die Reaktion des Körpers kaum ändern Auch hier gilt: Ausschlaggebend ist nicht die Differenz, sondern der prozentuale Zuwachs: Die Reaktion wird üblicherweise linear vom Logarithmus des Dosis abhängen In neuerer Zeit (um 95) hat SSStevens vorgeschlagen, die Stärke von Sinnesempfindungen wirklich eperimentell zu messen: zum Beispiel kann man die Empfindungsintensität durch ein Handdnamometer messen: Je stärker der Reiz, desto größer wird die auf das Dnamometer ausgeübte Kraft sein Die Abhängigkeit dieser (nun phsikalisch gemessenen) Empfindungsintensität E von der (ebenfalls phsikalisch gemessenen) Reizintensität r läßt sich recht gut durch Potenzfunktionen der Form E(r) = k(r r ) b (mit reellen Konstanten k, b) beschreiben; auf doppelt-logarithmischem Papier erhält man Geraden der Form Handkraft [kp] 5 Schmerz Gewicht b= Kälte Geräusch kh Ton weißes Licht relative Reizintensität Wie wir wissen, läßt sich der Eponent b an der jeweiligen Steigung dieser Geraden ablesen und üblicherweise erhält man Eponenten mit, 5 b, 5 (die Graphen sind dem Buch von Reißland entnommen) Zusammenfassung Es gibt manchmal sehr verschiedenartige Versuche, biologische Vorgänge durch mathematische Modelle zu beschreiben Hier sehen wir ein derartiges Beispiel: Einerseits gibt es die logarithmische Skala des Lautstärke-Pegels, andererseits die Stevens sche Potenzfunktion der Lautstärkeempfindung In derartigen Fällen ist es oft gar nicht einfach zu entscheiden, welches Modell besser ist Immerhin ist daran zu erinnern, daß viele biologische Meßwerte mit großen Fehlertoleranzen versehen sind; dies gilt insbesondere für Meßwerte, die Empfindungen betreffen

8-1 Funktionen. 8. Funktionen.

8-1 Funktionen. 8. Funktionen. 8-1 Funktionen 8 Funktionen 81 Funktionen mit ähnlichem Aussehen Beim Studium spezieller Funktionen zeigt sich, dass ganz verschiedenartige Funktionen durchaus ähnliche Verhaltensweisen zeigen können Sucht

Mehr

49 Mathematik für Biologen, Biotechnologen und Biochemiker

49 Mathematik für Biologen, Biotechnologen und Biochemiker 49 Mathematik für Biologen, Biotechnologen und Biochemiker 43 Momentane Wachstumsrate, Zuwachsrate pro Zeiteinheit und die Verdoppelungszeit Jede Exponentialfunktion f(t) = c exp(t) ist durch die beiden

Mehr

Gustav Fechner ( )

Gustav Fechner ( ) Psychophysik Gustav Fechner (1801 1887) religiöser Hintergrund Fechner wollte den Nachweis erbringen, dass Körper und Geist eine Einheit bilden Wollte mathematische Beziehung zwischen subjektiven Empfindungen

Mehr

4.1. Grundlegende Definitionen. Elemente der Analysis I Kapitel 4: Funktionen einer Variablen. 4.2 Graphen von Funktionen

4.1. Grundlegende Definitionen. Elemente der Analysis I Kapitel 4: Funktionen einer Variablen. 4.2 Graphen von Funktionen 4.1. Grundlegende Definitionen Elemente der Analysis I Kapitel 4: Funktionen einer Variablen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 22./29. November 2010 http://www.mathematik.uni-trier.de/

Mehr

6-15 Funktionen ... ... ... ... Orchester

6-15 Funktionen ... ... ... ... Orchester 6-5 Funktionen 66 Beispiele für das Verwenden von Logarithmusfunktionen () Lautstärke Die phsikalische Intensität I eines Geräuschs wird in Watt/m gemessen (also als Energie, die pro Zeiteinheit durch

Mehr

Mathematik 1 für Naturwissenschaften

Mathematik 1 für Naturwissenschaften Hans Walser Mathematik für Naturwissenschaften Modul 0 Einführung Hans Walser: Modul 0, Einführung ii Inhalt Zahlen.... Natürliche Zahlen.... Ganze Zahlen.... Rationale Zahlen.... Reelle Zahlen... Smbole....

Mehr

Exponentialfunktionen. Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik

Exponentialfunktionen. Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik e Exponentialfunktionen Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik Exponentialfunktionen Potenzfunktion: y = x 9 Exponentialfunktion: y = 9 x Die Potenz- und die Exponentialfunktionen

Mehr

Funktionen in der Mathematik

Funktionen in der Mathematik R. Brinkmann http://brinkmann-du.de Seite 05.0.008 Funktionen in der Mathematik Bei der mathematischen Betrachtung natürlicher, technischer oder auch alltäglicher Vorgänge hängt der Wert einer Größe oft

Mehr

5 Kontinuierliches Wachstum

5 Kontinuierliches Wachstum 5 Kontinuierliches Wachstum Kontinuierlich meßbare Größe Wir betrachten nun eine Größe a, die man kontinuierlich messen kann. Den Wert von a zum Zeitpunkt t schreiben wir nun als a(t). Wir können jedem

Mehr

Kapitel 3 EXPONENTIAL- UND LOGARITHMUS-FUNKTION

Kapitel 3 EXPONENTIAL- UND LOGARITHMUS-FUNKTION Kapitel 3 EXPONENTIAL- UND LOGARITHMUS-FUNKTION Fassung vom 3 Dezember 2005 Mathematik für Humanbiologen und Biologen 39 3 Exponentialfunktion 3 Exponentialfunktion Wir betrachten als einführendes Beispiel

Mehr

9 Funktionen und ihre Graphen

9 Funktionen und ihre Graphen 57 9 Funktionen und ihre Graphen Funktionsbegriff Eine Funktion ordnet jedem Element aus einer Menge D f genau ein Element aus einer Menge W f zu. mit = f(), D f Die Menge aller Funktionswerte nennt man

Mehr

y2 keine eindeutige Zuordnung Reelle Funktionen gebrochen rationale Funktionen f(x)=(x²-1) / x³+1

y2 keine eindeutige Zuordnung Reelle Funktionen gebrochen rationale Funktionen f(x)=(x²-1) / x³+1 4 Reelle Funktionen in einer Veränderlichen 4.1 Definition Es seien M 1 und M 2 zwei Mengen reeller Zahlen. Ordnet man jedem Element 1 M 1 durch eine Zuordnungsvorschrift f genau ein Element M 2 zu, so

Mehr

1.2 Einfache Eigenschaften von Funktionen

1.2 Einfache Eigenschaften von Funktionen 1.2 Einfache Eigenschaften von Funktionen 1.2.1 Nullstellen Seien A und B Teilmengen von R und f : A B f : Df Wf eine Funktion. Eine Nullstelle der Funktion f ist ein 2 D f, für das f ( = 0 ist. (Eine

Mehr

Zur Geschichte der Psychophysik Gustav Theodor Fechner

Zur Geschichte der Psychophysik Gustav Theodor Fechner Zur Geschichte der Psychophysik Gustav Theodor Fechner Wiederholung: Kant: Die Möglichkeit der Mathematik beruht auf den a priori gegebenen Anschauungsformen Raum und Zeit Die Psyche ist nur auf die Zeit

Mehr

Einführung. Ablesen von einander zugeordneten Werten

Einführung. Ablesen von einander zugeordneten Werten Einführung Zusammenhänge zwischen Größen wie Temperatur, Geschwindigkeit, Lautstärke, Fahrstrecke, Preis, Einkommen, Steuer etc. werden mit beschrieben. Eine Zuordnung f, die jedem x A genau ein y B zuweist,

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

F u n k t i o n e n Zusammenfassung

F u n k t i o n e n Zusammenfassung F u n k t i o n e n Zusammenfassung Johann Carl Friedrich Gauss (*1777 in Braunschweig, 1855 in Göttingen) war ein deutscher Mathematiker, Astronom und Physiker mit einem breit gefächerten Feld an Interessen.

Mehr

2.4 Exponential - und Logarithmus - Funktionen

2.4 Exponential - und Logarithmus - Funktionen 25.05.20 2.4 Eponential - und Logarithmus - Funktionen Mit Hilfe der Potenz a t definiert man eine weitere Funktionsart, indem man statt der Basis den Eponenten durch die Variable ersetzt: Für a ε R >

Mehr

Quadratische Funktionen

Quadratische Funktionen Quadratische Funktionen 1-E Galileo Galilei und der schiefe Turm von Pisa Galileo Galilei (1564-164) Der berühmte italienische Wissenschaftler Galileo Galilei stellte das korrekte Fallgesetz auf. 1590

Mehr

12. Stetigkeit und Differenzierbarkeit.

12. Stetigkeit und Differenzierbarkeit. 2- Funktionen 2 Stetigkeit und Differenzierbarkeit Wenn man von Analsis spricht, so meint man die Untersuchung von Funktionen in einer oder oder in mehreren Variablen, vor allem denkt man an das Differenzieren

Mehr

Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV.

Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV. LINEARE FUNKTIONEN heißt Anstieg oder Steigung heißt y-achsenabschnitt Graphen linearer Funktionen sind stets Geraden Konstante Funktionen Spezialfall Graphen sind waagerechte Geraden (parallel zur x-achse)

Mehr

Exponentialfunktionen, Eulersche Zahl, Logarithmen

Exponentialfunktionen, Eulersche Zahl, Logarithmen Exponentialfunktionen, Eulersche Zahl, Logarithmen Jörn Loviscach Versionsstand: 22. Oktober 2010, 23:29 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu: http://www.youtube.com/joernloviscach

Mehr

1 Das Problem, welches zum Logarithmus führt

1 Das Problem, welches zum Logarithmus führt 1 Das Problem, welches zum Logarithmus führt Gegeben sei die folgende Gleichung: a = x n Um nun die Basis hier x) auszurechnen, muss man die n-te Wurzel aus a ziehen: a = x n n ) n a = x Soweit sollte

Mehr

R. Brinkmann Seite Anwendungen der Exponentialfunktion

R. Brinkmann  Seite Anwendungen der Exponentialfunktion R. Brinkmann http://brinkmann-du.de Seite 6..2 Aufstellen der Funktionsgleichung : Anwendungen der Eponentialfunktion Coli Bakterien verrichten ihre Arbeit im menschlichen Darm. Sie vermehren sich durch

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius gilt für einen Kreissektor mit Mittelpunktswinkel : Länge des Kreisbogens Fläche des Kreissektors = = 360 360 Das Bogenmaß eines Winkels ist

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius gilt für einen Kreissektor mit Mittelpunktswinkel : Länge des Kreisbogens Fläche des Kreissektors = 2 = 360 360 Das Bogenmaß eines Winkels ist

Mehr

Übungsaufgaben zur Analysis

Übungsaufgaben zur Analysis Serie Übungsaufgaben zur Analysis. Multiplizieren Sie folgende Klammern aus: ( + 3y)( + 4a + 4b) (a b )( + 3y 4) (3 + )(7 + y) + (a + b)(3 + ). Multiplizieren Sie folgende Klammern aus: 6a( 3a + 5b c)

Mehr

Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759.

Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759. (4) Exponential- und Logarithmusfunktionen Satz Für jedes b > 1 gibt es eine eindeutig bestimmte Funktion exp b : R R + mit folgenden Eigenschaften. exp b (r) = b r für alle r Q Die Funktion exp b ist

Mehr

Dierentialrechnung. 1. Tangente. Ableitung. Dierential. Dierentialrechnung. Tangente. Ableitung. Dierential

Dierentialrechnung. 1. Tangente. Ableitung. Dierential. Dierentialrechnung. Tangente. Ableitung. Dierential Dierentialrechnung. Tangente. Ableitung. Dierential Variablen und Funktionen Die Hauptguren dieser Notizen sind Variablen. Eine Variable ist ein oder mehrere Smbole, die nebeneinander stehen, zum Beispiel

Mehr

Folgen und Reihen. Wirtschaftswissenschaftliches Zentrum Universität Basel. Mathematik für Ökonomen 1 Dr. Thomas Zehrt

Folgen und Reihen. Wirtschaftswissenschaftliches Zentrum Universität Basel. Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen Dr. Thomas Zehrt Folgen und Reihen Literatur Referenz: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen, Band, 7. Auflage,

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius Mittelpunktswinkel : Länge des Kreisbogens gilt für einen Kreissektor mit Fläche des Kreissektors Das Bogenmaß eines Winkels ist die Länge des

Mehr

11. Folgen und Reihen.

11. Folgen und Reihen. - Funktionen Folgen und Reihen Folgen Eine Folge reeller Zahlen ist eine Abbildung a: N R Statt a(n) für n N schreibt man meist a n ; es handelt sich also bei einer Folge um die Angabe der Zahlen a, a

Mehr

17 Logarithmus und allgemeine Potenz

17 Logarithmus und allgemeine Potenz 7 Logarithmus und allgemeine Potenz 7. Der natürliche Logarithmus 7.3 Die allgemeine Potenz 7.4 Die Exponentialfunktion zur Basis a 7.5 Die Potenzfunktion zum Exponenten b 7.6 Die Logarithmusfunktion zur

Mehr

3. DER NATÜRLICHE LOGARITHMUS

3. DER NATÜRLICHE LOGARITHMUS 3. DER NATÜRLICHE LOGARITHMUS ln Der natürliche Logarithmus ln(x) betrachtet als Funktion in x, ist die Umkehrfunktion der Exponentialfunktion exp(x). Das bedeutet, für reelle Zahlen a und b gilt b = ln(a)

Mehr

A5 Exponentialfunktion und Logarithmusfunktion

A5 Exponentialfunktion und Logarithmusfunktion A5 Exponentialfunktion und Logarithmusfunktion A5 Exponentialfunktion und Logarithmusfunktion Wachstums- und Zerfallsprozesse. Beispiel: Bakterien können sich sehr schnell vermehren. Eine bestimmte Bakterienart

Mehr

Mathematische Grundlagen der Ökonomie Übungsblatt 8

Mathematische Grundlagen der Ökonomie Übungsblatt 8 Mathematische Grundlagen der Ökonomie Übungsblatt 8 Abgabe Donnerstag 7. Dezember, 0:5 in H 5+7+8 = 20 Punkte Mit Lösungshinweisen zu einigen Aufgaben 29. Das Bisektionsverfahren sucht eine Nullstelle

Mehr

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014 Mathematik für Universität Trier Wintersemester 2013 / 2014 Inhalt der Vorlesung 1. Gleichungen und Summen 2. Grundlagen der Funktionslehre 3. Rechnen mit Funktionen 4. Optimierung von Funktionen 5. Funktionen

Mehr

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg Komplexe Funktionen für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Universität Hamburg SS 2006 Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen

Mehr

1.3 Funktionen einer reellen Veränderlichen und ihre Darstellung im x, y - Koordinatensystem

1.3 Funktionen einer reellen Veränderlichen und ihre Darstellung im x, y - Koordinatensystem .0.0. Funktionen einer reellen Veränderlichen und ihre Darstellung im, - Koordinatensstem Vereinbarungen Wir betrachten vorerst nur noch Funktionen f, deren Definitionsund Wertebereich jeweils R oder ein

Mehr

Parabelfunktion in Mathematik und Physik im Fall des waagrechten

Parabelfunktion in Mathematik und Physik im Fall des waagrechten Parabelfunktion in Mathematik und Physik im Fall des waagrechten Wurfs Unterrichtsvorschlag, benötigtes Material und Arbeitsblätter Von der Physik aus betrachtet.. Einführendes Experiment Die Kinematik

Mehr

Exponentialfunktionen - Eigenschaften und Graphen

Exponentialfunktionen - Eigenschaften und Graphen Exponentialfunktionen - Eigenschaften und Graphen 1 Taschengeld Peter startet in wenigen Tagen zu einer zweiwöchigen Klassenfahrt Seine Eltern möchten ihm nach folgendem Plan Taschengeld mitgeben: Für

Mehr

2. Mathematische Grundlagen

2. Mathematische Grundlagen 2. Mathematische Grundlagen Erforderliche mathematische Hilfsmittel: Summen und Produkte Exponential- und Logarithmusfunktionen 21 2.1 Endliche Summen und Produkte Betrachte n reelle Zahlen a 1, a 2,...,

Mehr

Mathematik I. Vorlesung 7. Folgen in einem angeordneten Körper

Mathematik I. Vorlesung 7. Folgen in einem angeordneten Körper Prof. Dr. H. Brenner Osnabrück WS 009/010 Mathematik I Vorlesung 7 Folgen in einem angeordneten Körper Wir beginnen mit einem motivierenden Beispiel. Beispiel 7.1. Wir wollen die Quadratwurzel einer natürlichen

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine Universität Düsseldorf 13. Oktober 2010 Hinweise Internetseite zur Vorlesung: http://blog.ruediger-braun.net Dort können Sie Materialien

Mehr

Einiges zu den Potenzfunktionen. Exponentialfunktionen

Einiges zu den Potenzfunktionen. Exponentialfunktionen Einiges zu den Potenzfunktionen Es sind zunächst zwei Arten der Potenzfunktionen zu unterscheiden. Erstens die eigentlichen Potenzfunktionen, bei denen die Variable x als Basis von Potenzen vorkommt. Diese

Mehr

$Id: folgen.tex,v /05/31 12:40:06 hk Exp $ an 1 2 n 1 ist gerade, 3a n 1 + 1, a n 1 ist ungerade.

$Id: folgen.tex,v /05/31 12:40:06 hk Exp $ an 1 2 n 1 ist gerade, 3a n 1 + 1, a n 1 ist ungerade. $Id: folgen.tex,v. 202/05/3 2:40:06 hk Exp $ 6 Folgen Am Ende der letzten Sitzung hatten wir Folgen in einer Menge X als Abbildungen a : N X definiert, die dann typischerweise in der Form (a n ) n N, also

Mehr

Folgen und Reihen. Zahlenfolgen , ,

Folgen und Reihen. Zahlenfolgen , , 97 Wegener Math/5_Reihen Mittwoch 04.04.2007 8:38:52 Folgen und Reihen Zahlenfolgen Eine Zahlenfolge a besteht aus Zahlen a,a 2,a 3,a 4,a 5,... Die einzelnen Zahlen einer Folge heißen Glieder oder Terme.

Mehr

10. Klasse: Logarithmusfunktionen sind die Umkehrungen der Exponentialfunktionen. Umkehrungen beschreiben umgekehrte Zuordnungen.

10. Klasse: Logarithmusfunktionen sind die Umkehrungen der Exponentialfunktionen. Umkehrungen beschreiben umgekehrte Zuordnungen. IV Umkehrfunktion Umkehrbarkeit 0. Klasse: Logarithmusfunktionen sind die Umkehrungen der Eponentialfunktionen. Umkehrungen beschreiben umgekehrte Zuordnungen. f f -> 2 2 -> 2 -> - - -> 2 4 -> -> 4 Graphen

Mehr

Urs Wyder, 4057 Basel Funktionen. f x x x x 2

Urs Wyder, 4057 Basel Funktionen. f x x x x 2 Urs Wyder, 4057 Basel Urs.Wyder@edubs.ch Funktionen f 3 ( ) = + f ( ) = sin(4 ) Inhaltsverzeichnis DEFINITION DES FUNKTIONSBEGRIFFS...3. NOTATION...3. STETIGKEIT...3.3 ABSCHNITTSWEISE DEFINIERTE FUNKTIONEN...4

Mehr

Der Logarithmus als Umkehrung der Exponentiation

Der Logarithmus als Umkehrung der Exponentiation Der Logarithmus als Umkehrung der Exponentiation -E -E2 Voraussetzungen Umkehrfunktion: Welche Funktionen haben eine Umkehrfunktion? Warum sind Umkehrfunktionen so wichtig? Exponentialfunktion: Definition

Mehr

Vorkurs Mathematik. Vorlesung 8. Angeordnete Körper

Vorkurs Mathematik. Vorlesung 8. Angeordnete Körper Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Vorkurs Mathematik Vorlesung 8 Angeordnete Körper Definition 8.1. Ein Körper K heißt angeordnet, wenn es eine totale Ordnung auf K gibt, die die beiden Eigenschaften

Mehr

Leitfaden a tx t

Leitfaden a tx t Leitfaden -0.7. Potenz-Reihen. Definition: Es sei (a 0, a, a 2,...) eine Folge reeller Zahlen (wir beginnen hier mit dem Index t 0). Ist x R, so kann man die Folge (a 0, a x, a 2 x 2, a 3 x 3,...) und

Mehr

Repetitionsaufgaben: Lineare Funktionen

Repetitionsaufgaben: Lineare Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Funktionen Zusammengestellt von Irina Bayer-Krakvina, KSR Lernziele: - Wissen, was ein Steigungsdreieck einer Geraden ist und wie die Steigungszahl

Mehr

Exponentialfunktion, Logarithmus

Exponentialfunktion, Logarithmus Exponentialfunktion, Logarithmus. Die Exponentialfunktion zu einer Basis > 0 Bei Exponentialfunktionen ist die Basis konstant und der Exponent variabel... Die Exponentialfunktion zu einer Basis > 0. Sei

Mehr

Exponentialgleichungen und -funktionen

Exponentialgleichungen und -funktionen Eponentialgleichungen und -funktionen Eigenschaften der Eponentialfunktionen 3 C,D Funktionsgraphen zuordnen Ordnen Sie den folgenden Funktionen ihre Graphen zu (einer ist nicht gezeichnet) und erklären

Mehr

Grundwissen. 10. Jahrgangsstufe. Mathematik

Grundwissen. 10. Jahrgangsstufe. Mathematik Grundwissen 10. Jahrgangsstufe Mathematik 1 Kreis und Kugel 1.1 Kreissektor und Bogenmaß Kreis Umfang U = π r=π d Flächeninhalt A=π r Kreissektor mit Mittelpunktswinkel α Bogenlänge b= α π r 360 Flächeninhalt

Mehr

Subjektive Wirkung von Schall

Subjektive Wirkung von Schall Subjektive Wirkung von Schall FHNW HABG CAS Akustik 4h Version: 26. Februar 2009 Inhalt 1 2 3 Funktion des Ohres Subjektives Schallempfinden Objektive Masse (1) 1 Funktion des Ohres [3] Kap. 4.2.1, 4.2.2

Mehr

Mathematik für das Ingenieurstudium

Mathematik für das Ingenieurstudium Mathematik für das Ingenieurstudium von Martin Stämpfle, Jürgen Koch 2., aktual. Aufl. Hanser München 2012 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 446 43232 1 Zu Inhaltsverzeichnis schnell

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

11 Logarithmus und allgemeine Potenzen

11 Logarithmus und allgemeine Potenzen Logarithmus und allgemeine Potenzen Bevor wir uns mit den Eigenschaften von Umkehrfunktionen, und insbesondere mit der Umkehrfunktion der Eponentialfunktion ep : R R + beschäftigen, erinnern wir an den

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 05. Dezember 2012 1 Datenpaare Korrelation 2 Lineare Regression Problemstellung Beispiel Bleibelastung 3 Regression

Mehr

Basistext Funktionen. Eine Funktion f ordnet jedem Element x aus einer Definitionsmenge D f genau ein Wert y zu.

Basistext Funktionen. Eine Funktion f ordnet jedem Element x aus einer Definitionsmenge D f genau ein Wert y zu. Basistext Funktionen Definition Eine Funktion f ordnet jedem Element x aus einer Definitionsmenge D f genau ein Wert y zu. Man schreibt: f: x -> y mit y = f(x) Die Wertemenge einer Funktion f besteht aus

Mehr

Funktionen. 1.1 Wiederholung

Funktionen. 1.1 Wiederholung Technische Zusammenhänge werden meist in Form von Funktionen mathematisch erfasst. Kennt man die Eigenschaften verschiedener Funktionstpen, lässt sich im Anwendungsfall das Arbeiten mit diesen erleichtern.

Mehr

Weitere einfache Eigenschaften elementarer Funktionen

Weitere einfache Eigenschaften elementarer Funktionen Kapitel 6 Weitere einfache Eigenschaften elementarer Funktionen 6.1 Polynome Geg.: Polynom vom Grad n p(x) = a 0 + a 1 x +... + a n 1 x n 1 + a n x n, also mit a n 0. p(x) = x n ( a 0 x + a 1 n x +...

Mehr

Diplom Mathematiker Wolfgang Kinzner. 17. Oktober Technische Universität München. Die abc-formel. W. Kinzner. Problemstellung.

Diplom Mathematiker Wolfgang Kinzner. 17. Oktober Technische Universität München. Die abc-formel. W. Kinzner. Problemstellung. Diplom Mathematiker Wolfgang Kinzner Technische Universität München 17. Oktober 2013 1 / 9 Inhaltsverzeichnis 1 2 / 9 Inhaltsverzeichnis 1 2 2 / 9 Inhaltsverzeichnis 1 2 3 2 / 9 Inhaltsverzeichnis 1 2

Mehr

Funktionen. 1. Einführung René Descartes Cartesius (Frankreich, )

Funktionen. 1. Einführung René Descartes Cartesius (Frankreich, ) Mathematik bla Funktionen 1. Einführung 167 René Descartes Cartesius (Frankreich, 1596-1650)...führt das kartesische Koordinatensystem ein. Er beschreibt einen Punkt als ein Paar von reellen Zahlen und

Mehr

HM I Tutorium 1. Lucas Kunz. 27. Oktober 2016

HM I Tutorium 1. Lucas Kunz. 27. Oktober 2016 HM I Tutorium 1 Lucas Kunz 27. Oktober 2016 Inhaltsverzeichnis 1 Theorie 2 1.1 Logische Verknüpfungen............................ 2 1.2 Quantoren.................................... 3 1.3 Mengen und ihre

Mehr

Inhaltsübersicht. Deltafunktion Gammafunktion Fehlerfunktion. Kapitel 13: Spezielle Funktionen

Inhaltsübersicht. Deltafunktion Gammafunktion Fehlerfunktion. Kapitel 13: Spezielle Funktionen Inhaltsübersicht Kapitel 13: Spezielle Funktionen Deltafunktion Gammafunktion Fehlerfunktion Notizen zur Vorlesung Mathematik für Materialwissenschaftler 2 1 Die Bezeichnung Delta-Funktion ist streng genommen

Mehr

-+ Steigung = m (= 0.5)

-+ Steigung = m (= 0.5) 14. Die Eponential- und die Logarithmusfunktion 14.1 Grundlagen eponentieller Abläufe Die Steigung einer Funktion ist ein Mass für das Fortschreiten eines Prozesses. Bei linearen Funktionen (vgl. Kapitel

Mehr

Explizite Formeln für rekursiv definierte Folgen

Explizite Formeln für rekursiv definierte Folgen Schweizer Mathematik-Olympiade Explizite Formeln für rekursiv definierte Folgen Aktualisiert: 6 Juni 014 In diesem Skript wird erklärt, wie man explizite Formeln für rekursiv definierte Folgen findet Als

Mehr

Serie 8 - Parametrisierte Kurven

Serie 8 - Parametrisierte Kurven Analysis D-BAUG Dr Meike Akveld HS 05 Serie 8 - Parametrisierte Kurven Geben Sie für die folgenden Bewegungen eines Punktes jeweils eine parametrisierte Darstellung I [0, ] R xt, t yt an Lösung a Geradlinige

Mehr

Psychoakustische Phänomene. Proseminar Musikalische Datenbanken Matthias Voh

Psychoakustische Phänomene. Proseminar Musikalische Datenbanken Matthias Voh Psychoakustische Phänomene Proseminar Musikalische Datenbanken Matthias Voh 08.12.2003 Gliederung 1. Psychoakustik 2. Psychoakustische Phänomene 1. Ruhehörschwelle und Hörfläche 2. Wahrnehmung der Tonhöhe

Mehr

3. Lineare Regression.

3. Lineare Regression. - Funktionen Lineare Regression Summen und Mittelwerte Sind,, n reelle Zahlen, so bezeichnen wir mit n i = + + + n i= die Summe dieser Zahlen Die abkürzende Schreibweise mit dem Summenzeichen n i= oder

Mehr

Weitere Beispiele zu harmonischen Schwingungen

Weitere Beispiele zu harmonischen Schwingungen Weitere Beispiele zu harmonischen Schwingungen 1. Schwingung eines Wagens zwischen zwei horizontal gespannten, gleichartigen Federn Beide Federn besitzen die Federhärte D * und werden nur auf Zug belastet;

Mehr

1.1 Direkte Proportionalität

1.1 Direkte Proportionalität Beziehungen zwischen Größen. Direkte Proportionalität Bei einer direkten Proportionalität wird dem doppelten, dreifachen,...wert der einen Größe x der doppelte, dreifache,... Wert der anderen Größe y zugeordnet.

Mehr

5 Grundlagen der Differentialrechnung

5 Grundlagen der Differentialrechnung VWA-Mathematik WS 2003/04 1 5 Grundlagen der Differentialrechnung 5.1 Abbildungen Unter einer Abbildung f, f:d W, y= f( ) von einer Menge D (Definitionsbereich) in eine Menge W (Wertemenge) versteht man

Mehr

Inhaltsverzeichnis. Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden. Mathematischer Vorkurs.

Inhaltsverzeichnis. Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden. Mathematischer Vorkurs. Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Exponentialfunktionen und Logarithmen Inhaltsverzeichnis 1 Einführung 2 2

Mehr

Was ist Lärm? Schall. Ton, Klang und Geräusch

Was ist Lärm? Schall. Ton, Klang und Geräusch Theoretische Grundlagen Was ist Lärm? Um das Phänomen Lärm verstehen zu können und um sich im Dschungel der später verwendeten Fachausdrücke nicht zu verlieren, sollte man über die wesentlichen physikalischen

Mehr

Demo-Text für LN-Funktionen ANALYSIS INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL.

Demo-Text für  LN-Funktionen ANALYSIS INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.  FRIEDRICH W. BUCKEL. ANALYSIS LN-Funktionen Grundlagen Eigenschaften Wissen - Kompakt Datei Nr. 60 Neu geschrieben Stand: 0. Juni 0 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Demo-Tet für 60 Übersicht: Ln-Funktionen

Mehr

Mathe - Lernzettel: Nullstellen, Monotonie und Ableitungen

Mathe - Lernzettel: Nullstellen, Monotonie und Ableitungen Mathe - Lernzettel: Nullstellen, Monotonie und Ableitungen Leun4m 29. April 2015 Version: 0 Ich kann nicht für Richtigkeit garantieren! Inhaltsverzeichnis 1 Themenübersicht 1 2 Funktionen und Graphen 2

Mehr

B] 5 4 = 625 E] 10 5 H] Schreiben Sie die folgenden Zahlen in Zehnerpotenzschreibweise:

B] 5 4 = 625 E] 10 5 H] Schreiben Sie die folgenden Zahlen in Zehnerpotenzschreibweise: Mathematik 3 Potenzen Vorkurs Höhere Fachschulen für Gesundheitsberufe Aufgabe 75 Schreiben Sie die folgenden Zahlen aus: A],6 0 5 B] 5 4 C] 3,782 0 4 = 0,000 06 D] 0 2 = 0,0 G] 5,0 0 9 = 0,000 000 005

Mehr

9. Akustik. I Mechanik. 12. Vorlesung EP. 7. Schwingungen 8. Wellen 9.Akustik

9. Akustik. I Mechanik. 12. Vorlesung EP. 7. Schwingungen 8. Wellen 9.Akustik 12. Vorlesung EP I Mechanik 7. Schwingungen 8. Wellen 9.Akustik Versuche: Stimmgabel und Uhr ohne + mit Resonanzboden Pfeife Schallgeschwindigkeit in Luft Versuch mit Helium Streichinstrument Fourier-Analyse

Mehr

Mathematische und statistische Hilfsmittel für Pharmazeuten

Mathematische und statistische Hilfsmittel für Pharmazeuten Mathematische und statistische Hilfsmittel für Pharmazeuten Dr. Helga Lohöfer Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Fassung vom September 2003 Inhaltsverzeichnis I Elementare

Mehr

Altersgruppe Klasse 5

Altersgruppe Klasse 5 Altersgruppe Klasse 5 In einem Vieleck nennt man die Verbindungsstrecken benachbarter Eckpunkte Seiten, die Verbindungsstrecken nicht benachbarter Eckpunkte Diagonalen. Bestimme die Anzahl der Diagonalen

Mehr

5. DIFFERENZIEREN UND INTEGRIEREN

5. DIFFERENZIEREN UND INTEGRIEREN 5. DIFFERENZIEREN UND INTEGRIEREN 1 Sei f eine auf R oder auf einer Teilmenge B R definierte Funktion: f : B R Die Funktion heißt differenzierbar in x 0 in B, falls sie in diesem Punkt x 0 lokal linear

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Summen, Exponentialfunktion, Ableitung Prof. Dr. Achim Klenke http://www.aklenke.de 2. Vorlesung: 04.11.2011 1/46 Inhalt 1 Summen und Produkte Summenzeichen Produktzeichen

Mehr

Betragsfunktion 6-E1. Vorkurs, Mathematik

Betragsfunktion 6-E1. Vorkurs, Mathematik Betragsfunktion 6-E1 Betragsfunktionen: Aufgabe 6 a) Zeichnen Sie folgende Betragsfunktionen f (x) = x 2, g (x) = x + 1 Bestimmen Sie den Definitionsbereich und den Wertebereich dieser Funktionen. b) Wie

Mehr

DER SCHALL ALS MECHANISCHE WELLE

DER SCHALL ALS MECHANISCHE WELLE DER SCHALL ALS MECHANISCHE WELLE I. Experimentelle Ziele Das Ziel der Experimente ist es, die Untersuchung der wesentlichen Eigenschaften von mechanischen Wellen am Beispiel der Schallwellen zu demonstrieren.

Mehr

Vorkurs Mathematik-Physik, Teil 1 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 1 c 2016 A. Kersch Vorkurs Mathematik-Phsik, Teil c 6 A. Kersch Funktionen. Grundbegriffe Bei fast allen phsikalischen Vorgängen wird eine phsikalische Größe von anderen abhängen. Besipielsweise hängt die Körpergröße vom

Mehr

4.4. Potenzfunktionen

4.4. Potenzfunktionen .. Potenzfunktionen Definition: Eine Funktion der Form f() = c z mit z \{; } heißt Potenzfunktion.... Potenzfunktionen mit positiven Eponenten (Parabeln) Schaubilder und Wertetabelle: = = - - - - - - -

Mehr

Vorkurs Mathematik B

Vorkurs Mathematik B Vorkurs Mathematik B Dr. Thorsten Camps Fakultät für Mathematik TU Dortmund 8. September 2011 Für die Mathematik zentral sind Abbildungen und Funktionen. Häufig wird zwischen beiden Begriffen nicht unterschieden.

Mehr

1. Mathematik-Schularbeit 6. Klasse AHS

1. Mathematik-Schularbeit 6. Klasse AHS . Mathematik-Schularbeit 6. Klasse AHS Arbeitszeit: 50 Minuten Lernstoff: Mathematische Grundkompetenzen: (Un-)Gleichungen und Gleichungssysteme: AG. Einfache Terme und Formeln aufstellen, umformen und

Mehr

Exponentielles Wachstum und Logarithmus

Exponentielles Wachstum und Logarithmus Eigenschaften der Exponentialfunktionen Die Funktion nennt man Exponentialfunktion mit der Basis a. Ist neben der Potenz noch ein Faktor im Funktionsterm vorhanden, spricht man von einer allgemeinen Exponentialfunktion:

Mehr

Reihen/Partialsummenfolgen und vollständige Induktion. Robert Klinzmann

Reihen/Partialsummenfolgen und vollständige Induktion. Robert Klinzmann Reihen/Partialsummenfolgen und vollständige Induktion Robert Klinzmann 3. Mai 00 Reihen / Partialsummen 1 Inhaltsverzeichnis 1 Vorwort Das Prinzip der vollständigen Induktion 3 3 Herleitung der Gauß schen

Mehr

2. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner

2. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner . Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner Arbeitszeit: 50 Minuten Lernstoff: Mathematische Grundkompetenzen: AG1.1 Wissen über die Zahlenmengen,,, verständig einsetzen können

Mehr

SBP Mathe Grundkurs 1 # 0 by Clifford Wolf. SBP Mathe Grundkurs 1

SBP Mathe Grundkurs 1 # 0 by Clifford Wolf. SBP Mathe Grundkurs 1 SBP Mathe Grundkurs 1 # 0 by Clifford Wolf SBP Mathe Grundkurs 1 # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das

Mehr

x A, x / A x ist (nicht) Element von A. A B, A B A ist (nicht) Teilmenge von B. A B, A B A ist (nicht) echte Teilmenge von B.

x A, x / A x ist (nicht) Element von A. A B, A B A ist (nicht) Teilmenge von B. A B, A B A ist (nicht) echte Teilmenge von B. SBP Mathe Grundkurs 1 # 0 by Clifford Wolf # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das Lernen mit Lernkarten

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius Mittelpunktswinkel : Länge des Kreisbogens gilt für einen Kreissektor mit Fläche des Kreissektors Das Bogenmaß eines Winkels ist die Länge des

Mehr

Versuch O02: Fernrohr, Mikroskop und Teleobjektiv

Versuch O02: Fernrohr, Mikroskop und Teleobjektiv Versuch O02: Fernrohr, Mikroskop und Teleobjektiv 5. März 2014 I Lernziele Strahlengang beim Refraktor ( Linsenfernrohr ) Strahlengang beim Mikroskop Strahlengang beim Teleobjektiv sowie Einblick in dessen

Mehr