Wiederholung Quadratische Funktionen (Parabeln)

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Wiederholung Quadratische Funktionen (Parabeln)"

Transkript

1 SEITE 1 VON 7 Wiederholung Quadratische Funktionen (Parabeln) VON HEINZ BÖER 1. Regeln a) Funktionsvorschriften Normalform f(x) = a x² + b x + c Normalparabel: f(x) = x 2 Graf der Normalparabel Die einfachste Form liegt vor, wenn a = 1 und b = c = 0 gilt. Der Graf geht durch (0/0). Vier weitere Punkte erhält man, indem man von (0/0) eine Einheit nach rechts geht und eine nach oben; eine nach links und eine nach oben, zwei nach rechts und 4 nach oben, zwei nach links und 4 nach oben. Die 5 Punkte müssen noch elegant (nicht durch Strecken!) durch eine Kurve verbunden werden. Andere Formen: Die Formvariable a bestimmt die Form der Parabel. a > 0 nach oben geöffnet a < 0 nach unten geöffnet a > 1 schlanker als die Normalparabel a < 1 breiter als die Normalparabel Die Formvariable c gibt den Schnittpunkt mit der y-achse an: S y (0 c). Scheitelpunktform f(x) = a(x - x S )² + y S Scheitelpunkt ist S(x S y S ) Achtung: Es gibt einen Vorzeichenwechsel von x S ist in der Funktionsvorschrift zum Scheitelpunktwert! a hat dieselbe Bedeutung wie bei der Normalform oben. Umrechnung von der Scheitelpunktform in die Normalform: ausmultiplizieren. b) Vom Grafen zur Funktionsvorschrift Ablesen des Scheitelpunktes S(x S y S ); Eintragen der beiden Werte in die Scheitelpunktform. Vom Scheitelpunkt eine Einheit nach rechts gehen und ablesen, wie weit man von dort nach oben oder unten (negatives Vorzeichen) gehen muss, bis man wieder auf den Grafen trifft. Den Wert (mit Vorzeichen) für a in die Scheitelpunktform eintragen. Ergibt sich a = 1, so liegt eine verschobene Normalparabel vor. Ist der Wert für a in der Grafik schlecht ablesbar, dann liest man irgendeinen gut ablesbaren Punkt auf dem Grafen ab (nicht S, da der Punkt oben schon ausgewertet wurde) und setzt den x-wert in die Scheitelpunktform für x ein, den y-wert für f(x). Da x S und y S schon eingetragen waren, erhält man eine Gleichung, in der nur noch a unbekannt ist. Die Gleichung ist zu lösen. Soll die Normalform der Funktionsvorschrift bestimmt werden, so wird ausmultipliziert (s.o. a7).

2 SEITE 2 VON 7 c) Von gegebenen Daten zur Funktionsvorschrift Sind S(x S y S ) und a gegeben, so setzt man die drei Daten in die Scheitelpunktform ein und ist fertig. Falls gewünscht, erhält man die Normalform durch Ausmultiplizieren. Ist S und ein weiterer Punkt gegeben, so setzt man x S und y S ein und geht vor wie in b2. Sind drei Punkte gegeben, so wählt man die Normalform und setzt man den x-wert des ersten Punktes für x ein, den y-wert für f(x). Macht man das für alle drei Punkte, so erhält man drei Gleichungen, die nur noch a, b und c als Variablen enthalten. Das Gleichungssystem muss dann gelöst werden. d) Von der Funktionsvorschrift in Scheitelpunktform zum Grafen Zeichnen Sie den Scheitelpunkt in das Koordinatensystem. Ist a = 1, dann liegt eine verschobene Normalparabel vor. Gehen Sie von S eine Einheit nach rechts und eine nach oben, eine nach links und eine nach oben, zwei nach rechts und vier nach oben, zwei nach links und vier nach oben; genauso wie beim Zeichnen der Normalparabel (s.o. a3), hier starten Sie lediglich bei dem gegebenen Scheitelpunkt S. Ist a = -1, so verfahren Sie ebenso, gehen nur jeweils eine bzw. vier Einheiten nach unten statt oben. Ist a nicht 1 oder -1, so gehen Sie vom Scheitelpunkt S eine Einheit nach rechts und den Wert von a je nach Vorzeichen nach oben oder unten, ebenso eine Einheit nach links; zwei nach rechts und 4a nach oben bzw. unten, ebenso zwei nach links. Verbinden Sie die fünf Punkte elegant durch eine Kurve (keine Strecken zeichnen!). e) Von der Funktionsvorschrift in Normalform zum Grafen Dazu gibt es zwei verschiedene Wege: 1. Erstellen einer kompletten Wertetabelle, Punkte einzeichnen und elegant verbinden (umständlich, anfällig für Rechenfehler und in der Regel nicht zu empfehlen). Zudem wird der Scheitelpunkt evtl. nicht getroffen. 2. Bestimmen charakteristischer Punkte der Parabel, Einzeichnen und elegante Verbindung dieser Punkte zu einer Parabelkurve. Sinnvolle Punkte sind die Nullstellen: durch p-q-formel oder quadratische Ergänzung bestimmen siehe Kapitel Quadratische Gleichungen. der Scheitelpunkt: der x-wert liegt mitten zwischen den beiden Nullstellen (falls vorhanden) bzw. noch leichter: der x-wert des Scheitelpunktes ergibt sich direkt p als xs = aus der p-q-formel bei der Nullstellen-Bestimmung oben (auch 2

3 SEITE 3 VON 7 wenn keine Nullstellen existieren). Den Funktionswert y S des Scheitelpunktes gewinnt man durch Einsetzen y S = f(x S ). der Schnittpunkt mit der y-achse: Ablesen von c in der Funktionsvorschrift. Die vier Punkte müssen dann noch elegant zu einer Kurve verbunden werden. Falls es keine Nullstellen gibt, hat man nur 2 Punkte. Dann sollte man zwei weitere Punkte (wie in einer Wertetabelle) zusätzlich bestimmen, damit man die Kurve elegant hinbekommt. 2. Beispiele a) Funktionsvorschriften f(x) = -2 x² + 4 x + 1: Funktionsvorschrift in Normalform mit a = -2; b = +4; c = +1; Die Parabel ist nach unten geöffnet, da a < 0. Sie ist schlanker als die Normalparabel, da a < -1 bzw. im Betrag a > 1. Sie schneidet bei S y (0 1) die y-achse, da c = 1. f(x) = -2 (x - 1)² + 3; Scheitelpunktform mit S(1 3) Vorzeichenwechsel beim x-wert! Multipliziert man den Funktionsterm rechts aus (binomische Formel II beachten), so ergibt sich die Normalform der Funktionsvorschrift -2 (x - 1)² + 3 = - 2 (x 2 2 x + 1) + 3 = -2 x² + 4 x ; also f(x) = -2 x² + 4 x + 1. b) Vom Grafen zur Funktionsvorschrift Lesen Sie S(3-4) ab und setzen Sie den Punkt in die Scheitelpunktform ein: f(x) = a (x - 3)² - 4. Zeichnen Sie von S eine Einheit nach rechts, gehen Sie von dort 1,5 Einheiten nach oben, dann treffen Sie wieder auf die Parabel, also a = 1,5. Insgesamt f(x) = 1,5 (x - 3)² - 4. Ist Ihnen die Ablesung von a zu unsicher, so notieren Sie einen gut ablesbaren Punkt, etwa (5 2), setzen Sie den x- und y-wert in die Scheitelpunktform von oben ein (5 für x, 2 für f(x)) und berechnen Sie a: 2 = a (5-3)² = = 4 a a = 1,5 Die Normalform erhält man durch Ausmultiplizieren: 1,5 (x² - 6 x + 9) - 4 = 1,5 x² - 9 x + 13,5-4; also f(x) = 1,5 x² - 9 x + 9,5. Zur Kontrolle: Im Grafen ist zu erkennen, dass die Parabel bei c = 9,5 die y-achse schneidet.

4 SEITE 4 VON 7 c) Von gegebenen Daten zur Funktionsvorschrift In dem Brückengrafen soll die Breite w = 80 m betragen und die Höhe h = 20 m. Bei dem eingezeichneten Koordinatensystem liegt der Scheitelpunkt im Ursprung S(0 0). Also gilt: f(x) = a (x - 0)² + 0 = a x². a ist in der Zeichnung nicht ablesbar, indem man eine Einheit nach rechts geht. Aber aus den Daten kann man die Koordinaten des Punktes I (rechts) bestimmen: er liegt den halben w-wert rechts von E, also x = 40, und um die Höhe h tiefer, also y = -20. Die Koordinaten setzt man in die Funktionsgleichung ein: -20 = a 40² -20 = 1600 a a = -0,0125. Insgesamt: f(x) = -0,0125 x². Eine Parabel verläuft durch die Punkte A(0-5), B(2 11), C(-1-7). Setzen Sie die Punktkoordinaten in die Normalform f(x) = a x² + b x + c ein. Sie erhalten 3 Gleichungen A: f(0) = a 0² + b 0+ c = -5; hieraus ergibt sich c = -5. Der nun bekannte c-wert kann in die folgenden 2 Gleichungen eingesetzt werden. B: f(2) = a 2² + b 2-5 = a + 2 b = 16 Das ist Gleichung I. C: f(-1) = a (-1)² + b (-1) - 5 = a - b = -2 Das ist Gleichung II. Aus B und C erhalten Sie zwei Gleichungen mit zwei Variablen. Diese können Sie mit den bekannten Methoden lösen. Hier bietet sich das Additionsverfahren an. I: 4 a + 2 b = 16 + a in I einsetzen: b = 16-8 II 2: 2 a - 2 b = b = 8 : 2 6 a = 12 : 6 b = 4 a = 2 Die berechneten a-, b- und c-werte werden eingesetzt: f(x) = 2 x ² + 4 x - 5.

5 SEITE 5 VON 7 d) Von der Funktionsvorschrift in Scheitelpunktform zum Grafen Soll der Graf zu f(x) = -(x + 2)² + 5 gezeichnet werden, so bestimmen Sie den Scheitelpunkt S(-2 5) aus dem Funktionsterm und zeichnen ihn ein. Da a = -1, gehen Sie von S eine Einheit nach rechts und eine nach unten und machen ein Kreuzchen bei (-1 4), ebenso nach rechts bei (-3 4). Gehen Sie von S zwei nach rechts und vier nach unten, so erhalten Sie (0 1) bzw. links (-4 1). Elegant als Kurve verbunden ergibt sich der linke Graf eine nach unten geöffnete verschobene Normalparabel. Zu f(x) = 0,5 (x - 3)² + 1, ist der Scheitelpunkt S(3 1) einzuzeichnen. Von dort geht man wie bei der Normalparabel eins nach rechts und links, ebenso zwei nach rechts und links. Nur die Werte, die senkrecht zu laufen sind, müssen mit 0,5 multipliziert werden: Also geht man eins nach rechts und 0,5 nach oben, ebenso nach links. Das ergibt die Punkte (4 1,5) und (2 1,5). Geht man zwei nach rechts, muss 0,5 4 = 2 nach oben gegangen werden, entsprechend links. So erhält man (5 3) und (1 3). Die elegante Kurve sollte dann aussehen wie der rechte Graf. e) Von der Funktionsvorschrift in Normalform zum Grafen Zu f(x) = - 0,57 x² + 3 x + 4 ergibt sich die Wertetabelle x f(x) -10,13-4,28 0,43 4 6,43 7,72 7,87 6,88 4,75 1,48-2,93 und der zugehörige Graf rechts. Skizzieren Sie den Grafen zu f(x) = 0,25 x² - 0,75 x ) Berechnung des Schnittpunktes P mit der y-achse f(0) = 0,25 0² - 0, = -1; also P(0/-1) 2) Berechnung der Nullstellen 0,25 x² - 0,75 x - 1 = 0 : 0,25 x² - 3 x - 4 = 0 x 1 = 1,5 + 2, ; x 2 = 1,5-2, x 1 = 4; x 2 = -1 N 1 (4 0) und N 2 (-1 0) Die Nullstellen können auch mit quadratischer Ergänzung bestimmt werden.

6 SEITE 6 VON 7 3) Berechnung des Scheitelpunktes S Wegen der Symmetrie der Parabel liegt der x-wert des Scheitelpunktes x s genau zwischen den Nullstellen. Das ist in der p-q-formel immer der Wert x s = -p/2. Hier ist also x s = 1,5. y s = f(1,5) = 0,25 1,5² - 0,75 1,5-1 = -1,5625-1,6; also S(1,5-1,6). 4) Graf skizzieren Der Graf geht durch die Punkte P(0-1), N 1 (4 0), N 2 (-1 0) und S(1,5-1,6) (siehe oben).

7 SEITE 7 VON 7 3. Übungen Zu a) 1. Beschreiben Sie Scheitelpunkt, Öffnung und Form der Parabel: f 1 (x) = (x - 4)² + 2; f 2 (x) = -2(x + 3)² - 12; f 3 (x) = 0,5 (x + 3,5)² Notieren Sie die drei Funktionsvorschriften aus 1 in der Normalform und geben Sie zusätzlich den Schnittpunkt mit der y-achse an. 3. Zeichnen Sie die Normalparabel und notieren Sie typische Punkte. Zu b) Bestimmen Sie die Funktionsvorschriften für die beiden Parabeln. Ermitteln Sie auch die Normalform der Funktionsvorschrift und prüfen Sie die Schnittpunkte mit der y-achse. Zu c) Bestimmen Sie eine Funktionsvorschrift. 1. Eine Parabel geht durch S(-2/3) und den Punkt P(1/21). 2. Auf einer Parabel liegen die Punkte A(2/-1), B(0/1), C(3/-5). Zu d) Skizzieren Sie die Grafen zu 1. f(x) = (x - 5)² f(x) = - 2,5 (x + 1)² + 5 Zu e) f(x) = 2 x 2-2 x - 4 Bestimmen Sie Nullstellen, Scheitelpunkt und Schnittpunkt mit der y-achse und skizzieren Sie den Grafen.

Quadratische Funktion

Quadratische Funktion Quadratische Funktion sind Funktionen die nur eine Variable enthalten, deren Exponent 2 ist und keine Variable die einen Exponenten enthält, der größer ist als 2. Zum Beispiel die quadratische Funktion

Mehr

7 Aufgaben im Dokument. Aufgabe P5/2010

7 Aufgaben im Dokument. Aufgabe P5/2010 Aufgabe P5/2010 7 Aufgaben im Dokument Die nach unten geöffnete Parabel hat die Gleichung 5. Zeichnen Sie die Parabel in ein Koordinatensystem. Die Gerade hat die Steigung und schneidet die -Achse im Punkt

Mehr

f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5

f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5 11. Lineare Funktionen Übungsaufgaben: 11.1 Zeichne jeweils den Graphen der zugehörigen Geraden a. y = 0,5x 0,25 b. y = 0,1x + 2 c. y = 2x 2 d. 2x + 4y 5 = 0 e. y = x f. y = 0,2x g. y = 1,5x + 5 h. y =

Mehr

QUADRATISCHE FUNKTIONEN (Funktionen des 2 e Grades)

QUADRATISCHE FUNKTIONEN (Funktionen des 2 e Grades) QUADRATISCHE FUNKTIONEN (Funktionen des 2 e Grades) I. Einführung: Allgemeine Funktionsgleichung: y = ax 2 + px + q Aufgabe 2 1 (Westermann EK, S.14) II. Terminologie: a.) Abhängige Variable (erklärte

Mehr

Nullstellen. Somit ergibt sich x = 4 oder x = -4, da das Quadrat beider Zahlen 16 ergibt. Man schreibt

Nullstellen. Somit ergibt sich x = 4 oder x = -4, da das Quadrat beider Zahlen 16 ergibt. Man schreibt Nullstellen Aufgabe 1 Gegeben ist die folgende quadratische Funktion: Bestimme die Nullstellen. f( x) x² 3 x² 3 : x² 16 16 x² 16 Somit ergibt sich x = 4 oder x = -4, da das Quadrat beider Zahlen 16 ergibt.

Mehr

Übungsaufgabe z. Th. lineare Funktionen und Parabeln

Übungsaufgabe z. Th. lineare Funktionen und Parabeln Übungsaufgabe z. Th. lineare Funktionen und Parabeln Gegeben sind die Parabeln: h(x) = 8 x + 3 x - 1 9 und k(x) = - 8 x - 1 1 8 x + 11 a) Bestimmen Sie die Koordinaten der Schnittpunkte A und C der Graphen

Mehr

Graphen quadratischer Funktionen und deren Nullstellen

Graphen quadratischer Funktionen und deren Nullstellen Binomische Formeln Mithilfe der drei binomischen Formeln kann man Funktionen bzw. Gleichungen vereinfachen. 1. Binomische Formel ( Plusformel ) a 2 + 2 a b+ b 2 = (a+ b) 2 Herleitung: (a+ b) 2 = (a+ b)

Mehr

Gleichsetzungsverfahren

Gleichsetzungsverfahren Funktion Eine Funktion ist eine Zuordnung, bei der zu jeder Größe eines ersten Bereichs (Ein gabegröße) genau eine Größe eines zweiten Bereichs (Ausgabegröße) gehört. Eine Funktion wird durch eine Funktionsvorschrift

Mehr

Mathematik Übungsaufgaben zur Vorbereitung auf die 3. Klausur Lösung. 1. Formen Sie die Scheitel(punkt)form der quadratischen Funktion

Mathematik Übungsaufgaben zur Vorbereitung auf die 3. Klausur Lösung. 1. Formen Sie die Scheitel(punkt)form der quadratischen Funktion Datum:.0.0 Thema: Quadratische Funktionen. Formen Sie die Scheitel(punkt)form der quadratischen Funktion f mit f(x) = ( x ) + in die Polynomdarstellung um und bestimmen Sie die Nullstellen und den Schnittpunkt

Mehr

Übungsaufgaben zu quadratischen Gleichungen und Parabeln

Übungsaufgaben zu quadratischen Gleichungen und Parabeln Übungsaufgaben zu quadratischen Gleichungen und Parabeln Binomische Formeln:. binomische Formel: ( a + b) = a + ab + b. binomische Formel:. binomische Formel: ( a b) = a ab + b ( a + b)(a b) = a b Lösungsformel

Mehr

Aufstellen der Funktionsgleichung aus gegebenen Bedingungen

Aufstellen der Funktionsgleichung aus gegebenen Bedingungen R. Brinkmann http://brinkmann-du.de Seite.0.0 Aufstellen der Funktionsgleichung aus gegebenen Bedingungen Drei unterschiedliche Punkte, die alle auf einer Parabel liegen sollen sind gegeben. Daraus soll

Mehr

Bestimme dazu die Nullstellen, Scheitelpunkt und Schnittpunkt mit der y-achse und ergänze evtl. einige Punkte durch eine Wertetabelle.

Bestimme dazu die Nullstellen, Scheitelpunkt und Schnittpunkt mit der y-achse und ergänze evtl. einige Punkte durch eine Wertetabelle. Klasse Art Schwierigkeit Mathematisches Schema Nr. 9 Üben xx Quadratische Funktion 1 Skizziere den Graphen der durch y = 0,5 x 2 + x - 4 gegebenen quadratischen Funktion. Bestimme dazu die Nullstellen,

Mehr

1 Benenne Gemeinsamkeiten und Unterschiede der beiden Graphen und gib die zugehörigen Funktionsgleichungen an.

1 Benenne Gemeinsamkeiten und Unterschiede der beiden Graphen und gib die zugehörigen Funktionsgleichungen an. Teste dich! - (/6) Benenne Gemeinsamkeiten und Unterschiede der beiden Graphen und gib die zugehörigen Funktionsgleichungen an. 0 Cornelsen Verlag, Berlin. Alle Rechte vorbehalten. Gemeinsamkeiten: Beide

Mehr

Parabeln - quadratische Funktionen

Parabeln - quadratische Funktionen Parabeln - quadratische Funktionen Roland Heynkes 9.11.005, Aachen Das Gleichsetzungsverfahren und die davon abgeleiteten Einsetzungs- und Additionsverfahren kennen wir als Methoden zur Lösung linearer

Mehr

1. Gegeben sind die Scheitelpunkte von Parabeln. Gib die Funktionsgleichungen an. a) S(-3/5) b) S(-1/-8) c) S(1/-0,5) d) S(0,5/0,2)

1. Gegeben sind die Scheitelpunkte von Parabeln. Gib die Funktionsgleichungen an. a) S(-3/5) b) S(-1/-8) c) S(1/-0,5) d) S(0,5/0,2) Vermischte Übungen (1) Verschiebung der Normalparabel 1. Gegeben sind die Scheitelpunkte von Parabeln. Gib die Funktionsgleichungen an. a) S(-3/5) b) S(-1/-8) c) S(1/-0,5) d) S(0,5/0,). In der Abbildung

Mehr

PARABELN. 10. Klasse

PARABELN. 10. Klasse PARABELN 0. Klasse Jens Möller Owingen Tel. 0755-9 HUjmoellerowingen@aol.comU INHALTSVERZEICHNIS NORMALPARABEL PARABELN MIT FORMFAKTOR VERSCHIEBUNG IN Y-RICHTUNG VERSCHIEBUNG IN X-RICHTUNG 5 ALLGEMEINE

Mehr

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient.

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient. Seite Definition lineare Funktion Eine Funktion f mit dem Funktionsterm f(x) = m x + b, also der Funktionsgleichung y = m x + b, heißt lineare Funktion. Ihr Graph G f ist eine Gerade mit der Steigung m

Mehr

4.2. Aufgaben zu quadratischen Funktionen

4.2. Aufgaben zu quadratischen Funktionen .. Aufgaben zu quadratischen Funktionen Aufgabe : Stauchung und Streckung der Normalparabel a) Zeichne die Schaubilder der folgenden Funktionen in das Koordinatensstem. b) Vervollständige die darunter

Mehr

Quadratische Funktionen (Parabeln)

Quadratische Funktionen (Parabeln) Quadratische Funktionen (Parabeln) Aufgabe: Gegeben ist die quadratische Funktion = () x. Berechne mit Hilfe einer Wertetabelle die Funktionswerte von bis + im Abstand 0,. Zeichne anschließend die Punkte

Mehr

Quadratische Funktion - Übungen

Quadratische Funktion - Übungen Quadratische Funktion - Übungen 1a) "Verständnisfragen" zu "Scheitel und Allgemeine Form" - mit Tipps. Teilweise: Trotz der Tipps nicht immer einfach! Wir haben die Formeln: Allgemeine Form: y = a x 2

Mehr

Leitprogramm Funktionen

Leitprogramm Funktionen 3. Quadratische Funktionen (Zeit 10 Lektionen) Lernziel: Grundform y = ax + bx + c und Scheitelform y = a(x + m) + n der Funktionsgleichungen quadratischer Funktionen kennen. Bedeutung der Parameter a,

Mehr

Als Untersuchungsbeispiel diene die Funktion: f(x) = x 6x + 5

Als Untersuchungsbeispiel diene die Funktion: f(x) = x 6x + 5 R. Brinkmann http://brinkmann-du.de Seite 07..009 Achsenschnittpunkte quadratischer Funktionen y P y ( 0 y ) s P ( 0) S y s f() P ( 0) s Bei der Betrachtung des Graphen in nebenstehender Abbildung fallen

Mehr

Einführungsphase Mathematik. Thema: Quadratische Funktionen. quadratische Gleichungen

Einführungsphase Mathematik. Thema: Quadratische Funktionen. quadratische Gleichungen Thema: Quadratische Funktionen quadratische Gleichungen Normalform einer linearen Funktion Normalform einer quadratischen Funktion Handelt es sich um quadratische Funktionen??? Ja, denn a = 3, b = 0, c

Mehr

Realschule Schüttorf Arbeitsblatt Mathematik Klasse 10d Dezember 2006 Quadratische Funktionen

Realschule Schüttorf Arbeitsblatt Mathematik Klasse 10d Dezember 2006 Quadratische Funktionen 1.) Entscheide, ohne zu zeichnen, ob die Parabeln - eng/weit, - nach oben/nach unten geöffnet, - nach oben/nach unten verschoben sind. Als Vergleich soll die Normalparabel dienen. a) y = 3 x² - 3 b) y=

Mehr

Mathematisches Thema Quadratische Funktionen 1. Art Anwenden. Klasse 10. Schwierigkeit x. Klasse 10. Mathematisches Thema

Mathematisches Thema Quadratische Funktionen 1. Art Anwenden. Klasse 10. Schwierigkeit x. Klasse 10. Mathematisches Thema Quadratische Funktionen 1 1.) Zeige, dass die Funktion in der Form f() = a 2 + b +c geschrieben werden kann und gebe a, b und c an. a) f() = ( -5) ( +7) b) f() = ( -1) ( +1) c) f() = 3 ( - 4) 2.) Wie heißen

Mehr

Einführung der quadratischen Funktionen

Einführung der quadratischen Funktionen R. Brinkmann http://brinkmann-du.de Seite 08.0.008 Einführung der quadratischen Funktionen Jeder, der sich auf die Führerscheinprüfung vorbereitet sollte wissen, dass sich der Anhalteweg eines bremsenden

Mehr

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel:

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel: 1. Zahlenmengen Wissensgrundlage Aufgabenbeispiele Gib die jeweils kleinstmögliche Zahlenmenge an, welche die Zahl enthält? R Q Q oder All diejenigen Zahlen, die sich nicht mehr durch Brüche darstellen

Mehr

Übungen zu Kurvenscharen

Übungen zu Kurvenscharen Übungen zu Kurvenscharen. Gegeben ist die Geradenschar g t : = (t ) ( t) + 9 (t 9) mit D(g t ) = R, t R. a) Zeichnen Sie die Graphen der Funktionen g und g in ein Koordinatensstem. b) Geben Sie die Schnittpunkte

Mehr

Die quadratische Funktion

Die quadratische Funktion Die quadratische Funktion In einem Labor wird die Bewegung eines Versuchswagen aufgenommen. Es werden dabei die folgenden Messreihen aufgenommen: Messreihe 1 Messreihe 2 Messreihe 3 x in s 0,0 0,5 1,0

Mehr

Vorbereitungsmappe. Grundlagen vor dem Eintritt in die 11. Klasse FOS / 12. Klasse BOS

Vorbereitungsmappe. Grundlagen vor dem Eintritt in die 11. Klasse FOS / 12. Klasse BOS Vorbereitungsmappe Grundlagen vor dem Eintritt in die 11. Klasse FOS / 12. Klasse BOS Liebe Schülerinnen und Schüler, vor dem Eintritt in die 11. Klasse FOS / 12. Klasse BOS stellt sich vor allem im Fach

Mehr

Hausaufgaben und Lösungen

Hausaufgaben und Lösungen Hausaufgaben und Lösungen Die folgenden Seiten sind nicht thematisch, sondern chronologisch geordnet. Die Lösungen der Hausaufgaben werden hier erst nach der Besprechung der Hausaufgaben veröffentlicht.

Mehr

Repetitionsaufgaben: Quadratische Funktionen

Repetitionsaufgaben: Quadratische Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Quadratische Funktionen Zusammengestellt von Felix Huber, KSR Lernziele: - Sie wissen, dass der Graph einer quadratischen Funktion eine Parabel ist

Mehr

Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV.

Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV. LINEARE FUNKTIONEN heißt Anstieg oder Steigung heißt y-achsenabschnitt Graphen linearer Funktionen sind stets Geraden Konstante Funktionen Spezialfall Graphen sind waagerechte Geraden (parallel zur x-achse)

Mehr

2.5 Funktionen 2.Grades (Thema aus dem Bereich Analysis)

2.5 Funktionen 2.Grades (Thema aus dem Bereich Analysis) .5 Funktionen.Grades (Thema aus dem Bereich Analysis) Inhaltsverzeichnis 1 Definition einer Funktion.Grades. Die Verschiebung des Graphen 5.1 Die Verschiebung des Graphen in y-richtung.........................

Mehr

Expertenpuzzle Quadratische Funktionen

Expertenpuzzle Quadratische Funktionen Phase 1 Lösung für die Expertengruppe I Im Folgenden sollen die in IR definierten Funktionen a : x x, b : x x 0,5, c : x x und d: x x 3 untersucht werden. Die Abbildung zeigt den Graphen G a von a, also

Mehr

QUADRATISCHE UND KUBISCHE FUNKTION

QUADRATISCHE UND KUBISCHE FUNKTION QUADRATISCHE UND KUBISCHE FUNKTION Quadratische Funktion 1. Bedeutung der Parameter Als quadratische Funktionen werde alle Funktionen bezeichnet, die die Form y = a*x² + b*x + c aufweisen, also alle, bei

Mehr

Einführung. Ablesen von einander zugeordneten Werten

Einführung. Ablesen von einander zugeordneten Werten Einführung Zusammenhänge zwischen Größen wie Temperatur, Geschwindigkeit, Lautstärke, Fahrstrecke, Preis, Einkommen, Steuer etc. werden mit beschrieben. Eine Zuordnung f, die jedem x A genau ein y B zuweist,

Mehr

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind Vorbereitungsaufgaben Mathematik. Bruchrechnung.. Grundlagen: gebrochene Zahl gemeiner Bruch Zähler Nenner Dezimalbruch Ganze, Zehntel Hundertstel Tausendstel Kürzen: Zähler und Nenner durch dieselbe Zahl

Mehr

Funktionsgleichung in ABC-Form Funktionsgleichung in Scheitelform Funktionsgleichung in Nullstellenform. y 2 x 2x 3 2 ausklammern. Binom.

Funktionsgleichung in ABC-Form Funktionsgleichung in Scheitelform Funktionsgleichung in Nullstellenform. y 2 x 2x 3 2 ausklammern. Binom. Parabel zeichnen Parabel zeichnen Schritt für Schrittanleitungen unter www.fraengg.ch Klasse, GeoGebra) Funktionsgleichung in ABC-Form Funktionsgleichung in Scheitelform Funktionsgleichung in Nullstellenform

Mehr

- G1 - Grundlagen der Mathematik - Bruchrechnen - MSS Böblingen. Einstiegsaufgaben: Merke: a) Addieren von Brüchen. b) Subtrahieren von Brüchen.

- G1 - Grundlagen der Mathematik - Bruchrechnen - MSS Böblingen. Einstiegsaufgaben: Merke: a) Addieren von Brüchen. b) Subtrahieren von Brüchen. MSS Böblingen - Bruchrechnen - - G - Einstiegsaufgaben: a a a) + = 6x 4x a + a b) = 6x x a a c) = 6x 4x a a d) : = 6x 4x e) 7 = Merke: a) Addieren von Brüchen b) Subtrahieren von Brüchen c) Multiplizieren

Mehr

Quadratische Funktionen und Gleichungen Mathematik Jahrgangsstufe 9 (G8) Bergstadt-Gymnasium Lüdenscheid. Friedrich Hattendorf

Quadratische Funktionen und Gleichungen Mathematik Jahrgangsstufe 9 (G8) Bergstadt-Gymnasium Lüdenscheid. Friedrich Hattendorf Mathematik Jahrgangsstufe 9 (G8) Lüdenscheid Friedrich Hattendorf 4. September 2014 Vorbemerkung Die Datei entsteht noch; noch nicht alles ist optimal Hinweis zum Ausdruck: (Fast) Alles sollte noch gut

Mehr

Quadratische Funktionen

Quadratische Funktionen Quadratische Funktionen Das kennen wir bereits aus dem vergangenen Unterricht: Funktionen, deren Graph eine Gerade darstellen, nennen wir lineare Funktionen. Sie haben die allgemeine Form: y = mx + b Detlef

Mehr

Mathematik Einführungsphase. Plenum Lineare Funktionen. Lineare Funktionen. Eine kurze Wiederholung

Mathematik Einführungsphase. Plenum Lineare Funktionen. Lineare Funktionen. Eine kurze Wiederholung Lineare Funktionen Eine kurze Wiederholung Mathematik Einführungsphase Eine lineare Funktion ist zunächst einmal eine Funktion, d.h. eine eindeutige Zuordnung, bei der jedem x-wert aus einem Definitionsbereich

Mehr

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf.

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Arbeitsblätter zur Vergleichsklausur EF Arbeitsblatt I.1 Nullstellen Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Beachte den Satz: Ein Produkt wird null, wenn einer der

Mehr

Funktionsgleichung in ABC-Form Funktionsgleichung in Scheitelform Funktionsgleichung in Nullstellenform. y 2 x 2x 3 2 ausklammern. Binom.

Funktionsgleichung in ABC-Form Funktionsgleichung in Scheitelform Funktionsgleichung in Nullstellenform. y 2 x 2x 3 2 ausklammern. Binom. Parabel zeichnen Parabel zeichnen chritt für chrittanleitungen unter www.fraengg.ch Klasse, GeoGebra) Funktionsgleichung in ABC-Form Funktionsgleichung in cheitelform Funktionsgleichung in Nullstellenform

Mehr

Fit für die MSS? Wiederholungsaufgaben aus Klasse 8-10

Fit für die MSS? Wiederholungsaufgaben aus Klasse 8-10 Fit für die MSS? Wiederholungsaufgaben aus Klasse 8-0 Aufgaben Richtig Themengebiet : Terme /. Vereinfache: (9x ) + 3x xy + x ( 3xy) (x + 3) (x ) + (x + 3)² abc 5x 0 3yx x +. Kürze: a) b) c) d) 5a² b 5

Mehr

Regel Die Steigung einer Funktion kann rechnerisch ermittelt werden, wenn mindestens zwei Punkte gegeben sind.

Regel Die Steigung einer Funktion kann rechnerisch ermittelt werden, wenn mindestens zwei Punkte gegeben sind. Funktionen Station 1 Bestimmung der Steigung einer Geraden durch zwei Punkte Die Steigung einer Funktion kann rechnerisch ermittelt werden, wenn mindestens zwei Punkte gegeben sind. m = f(x 2 ) f(x 1 )

Mehr

Lösungen: Quadratische Funktionen Kompetenzorientiertes Üben 1

Lösungen: Quadratische Funktionen Kompetenzorientiertes Üben 1 Lösungen: Quadratische Funktionen Kompetenzorientiertes Üben 1 Aufgabe 1.: 6,0 5,0,0 3,0,0 1,0 0,0 1,0,0 3,0,0 5,0 6,0 7,0 f() 31,0,5 15,0 8,5 3,0 1,5 5,0 7,5 9,0 9,5 9,0 7,5 5,0 1,5 g(),0 9,0 18,0 9,0,0

Mehr

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1 B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,

Mehr

Becker I Brugger. Erfolg in Mathe Realschulabschluss Baden-Württemberg Wahlteil. Übungsbuch mit Tipps und Lösungen

Becker I Brugger. Erfolg in Mathe Realschulabschluss Baden-Württemberg Wahlteil. Übungsbuch mit Tipps und Lösungen Becker I Brugger Erfolg in Mathe 0 Realschulabschluss Baden-Württemberg Wahlteil Übungsbuch mit Tipps und Lösungen Inhaltsverzeichnis Vorwort Aufgaben 5 Algebra....................................... 5

Mehr

Die Quadratische Gleichung (Gleichung 2. Grades)

Die Quadratische Gleichung (Gleichung 2. Grades) - 1 - VB 003 Die Quadratische Gleichung (Gleichung. Grades) Inhaltsverzeichnis Die Quadratische Gleichung (Gleichung. Grades)... 1 Inhaltsverzeichnis... 1 1. Die Quadratische Gleichung (Gleichung. Grades)....

Mehr

Repetitionsaufgaben: quadratische Funktionen

Repetitionsaufgaben: quadratische Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: quadratische Funktionen Zusammengestellt von Bruno Wyrsch und Erich Huber, KS Seetal Inhaltsverzeichnis 1. Einführungsbeispiel.... Allgemeine Form der

Mehr

Expertenpuzzle Quadratische Funktionen

Expertenpuzzle Quadratische Funktionen Phase 1 Aufgaben für die Expertengruppe I Im Folgenden sollen die in IR definierten Funktionen a : x x, b : x x 0,5, c : x x und d: x x 3 untersucht werden. Die Abbildung zeigt den Graphen G a von a, also

Mehr

Lineare Funktion. Wolfgang Kippels 21. März 2011

Lineare Funktion. Wolfgang Kippels 21. März 2011 Lineare Funktion Wolfgang Kippels. März 0 Inhaltsverzeichnis Grundlegende Zusammenhänge. Aufbau der Linearen Funktion......................... Nullstellenbestimmung............................. Schnittpunktbestimmung............................

Mehr

F u n k t i o n e n Quadratische Funktionen

F u n k t i o n e n Quadratische Funktionen F u n k t i o n e n Quadratische Funktionen Eine Parabolantenne bündelt Radio- und Mikrowellen in einem Brennpunkt. Dort wird die Strahlung detektiert. Die Form einer Parabolantenne entsteht durch die

Mehr

2.3 Quadratische Funktionen

2.3 Quadratische Funktionen 2.3 Quadratische Funktionen 2.3.1 Definition einer quadratischen Funktion Bisher hatten wir uns ganz auf lineare Funktionen beschränkt. Wir stellen sie im Koordinatensystem als Geraden dar.interessanter

Mehr

Wertetabelle : x 0 0,5 1 2 3 4 0,5 1. y = f(x) = x 2 0 0,25 1 4 9 16 0,25 1. Graph der Funktion :

Wertetabelle : x 0 0,5 1 2 3 4 0,5 1. y = f(x) = x 2 0 0,25 1 4 9 16 0,25 1. Graph der Funktion : Quadratische Funktionen ================================================================= 1. Die Normalparabel Die Funktion f : x y = x, D = R, heißt Quadratfunktion. Wertetabelle : x 0 0,5 1 3 4 0,5 1

Mehr

+ 2. Bruchgleichungen

+ 2. Bruchgleichungen Bruchgleichungen Gleichungen mit einer Lösungsvariablen im Nenner eines Bruchs heißen Bruchgleichungen. Definitionsmenge: Nenner 0 Lösungsweg: 1. Multiplikation mit dem Hauptnenner 2. Äquivalenzumformungen

Mehr

Bei den Parabeln gibt es eine Grundfigur: Die Normalparabel, sie hat die

Bei den Parabeln gibt es eine Grundfigur: Die Normalparabel, sie hat die Die allgemeine Sinusfunktion Bei den Parabeln gibt es eine Grundfigur: Die Normalparabel, sie hat die Funktionsgleichung f(x) x. Aus ihr erzeugt man andere Parabeln, indem man den Funktionsterm verändert.

Mehr

Arbeitsblatt 4: Kurvendiskussion - Von Skizzen zu Extremstellen-Bedingungen

Arbeitsblatt 4: Kurvendiskussion - Von Skizzen zu Extremstellen-Bedingungen Arbeitsblatt 4: Kurvendiskussion - Von Skizzen zu Etremstellen-Bedingungen Häufig sind Ableitungsfunktionsterme leichter zu handhaben als die Terme der Ausgangsfunktonen, weil sie niedrigere Eponenten

Mehr

Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag,

Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag, Lineare Funktionen Aufgabe 1: Welche der folgenden Abbildungen stellen eine Funktion dar? Welche Abbildungen stellen eine lineare Funktion dar? Ermittle für die linearen Funktionen eine Funktionsgleichung.

Mehr

Mathematik Klasse 11 Maximilian Ernestus 1

Mathematik Klasse 11 Maximilian Ernestus 1 QUADRATISCHE FUNKTIONEN UND PARABELN Mathematik Klasse 11 Maximilian Ernestus 1 1. Geraden und ihre Gleichungen Zu jeder Geraden lässt sich in einem Koordinatensystem eine Gleichung angeben. Diese Gleichung

Mehr

Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft

Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft Berufsbildende Schule 11 der Region Hannover Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft Das folgende Material soll Ihnen helfen sich einen Überblick

Mehr

Lineare Funktion. Wolfgang Kippels 3. November Inhaltsverzeichnis

Lineare Funktion. Wolfgang Kippels 3. November Inhaltsverzeichnis Lineare Funktion Wolfgang Kippels. November 0 Inhaltsverzeichnis Grundlegende Zusammenhänge. Aufbau der Linearen Funktion......................... Nullstellenbestimmung............................. Schnittpunktbestimmung............................

Mehr

III. Integralrechnung 7. Übungen für die Klausur Teil 1 - Integralrechnung

III. Integralrechnung 7. Übungen für die Klausur Teil 1 - Integralrechnung III. Integralrechnung 7. Übungen für die Klausur Teil - Integralrechnung Beachten Sie auch die Materialien aus dem Unterricht. Hier finden Sie viele Übungen, die Sie entweder noch nicht gemacht haben oder

Mehr

Werratalschule Heringen Gesamtschule mit gymnasialer Oberstufe. Aufgaben zur Wiederholung und Vertiefung

Werratalschule Heringen Gesamtschule mit gymnasialer Oberstufe. Aufgaben zur Wiederholung und Vertiefung Werratalschule Heringen Gesamtschule mit gymnasialer Oberstufe Aufgaben zur Wiederholung und Vertiefung Mathematik Einführungsphase gymnasiale Oberstufe Seite 1 Hinweise zum Umgang mit dem Aufgabenmaterial

Mehr

Diese Funktion ist mein Typ!

Diese Funktion ist mein Typ! Diese Funktion ist mein Typ! Überblick über die wichtigsten Funktionstypen der 10.Jgst.: Lineare Funktionen Quadratische Funktionen Ganzrationale Funktionen Gebrochen-rationale Funktionen Trigonometrische

Mehr

1 Analysis Kurvendiskussion

1 Analysis Kurvendiskussion 1 Analysis Kurvendiskussion 1.1 Allgemeingültige Betrachtungen Die folgenden aufgezeigten Betrachtungen und Rechenschritte gelten für alle Arten von Funktionen. Funktion (z.b. Polynom n-ten Grades) Schreibweise

Mehr

Aufgabe 2 Tippkarte. Aufgabe 1 Tippkarte. Aufgabe 4 Tippkarte. Aufgabe 3 Tippkarte

Aufgabe 2 Tippkarte. Aufgabe 1 Tippkarte. Aufgabe 4 Tippkarte. Aufgabe 3 Tippkarte Aufgabe 1 Aufgabe 2 Die Funktion f ist eine ganzrationale Funktion dritten Grades. Die Summanden sind nicht in der richtigen Reihenfolge und müssen deshalb nach absteigenden x- Potenzen geordnet werden.

Mehr

Dr. Jürgen Senger MATHEMATIK. Grundlagen für Ökonomen

Dr. Jürgen Senger MATHEMATIK. Grundlagen für Ökonomen Dr. Jürgen Senger MATHEMATIK Grundlagen für Ökonomen ÜBUNG.. LÖSUNGEN. Es handelt sich um lineare Funktionen (Geraden), die sich in der Steigung und im Ordinatenschnittpunkt unterscheiden. Der Linearfaktor

Mehr

Aufgabenpool zur Quereinstiegsvorbereitung Q1

Aufgabenpool zur Quereinstiegsvorbereitung Q1 Aufgabenpool zur Quereinstiegsvorbereitung Q Vereinfachen Sie nachfolgende Terme soweit wie möglich.. 6 a + 8b + 0c 4a + b c x y + z 7x + y z,8u +,4v 0,8w + 0,6u, v + w r + s t r + 6s + t. ( a + 7 + (9a

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

Skript Mathematik Klasse 10 Realschule

Skript Mathematik Klasse 10 Realschule Skript Mathematik Klasse 0 Realschule Das vorliegende Skript wurde erstellt durch: Marco Johannes Türk marco.tuerk@googlemail.com Die aktuellste Version dieses Skriptes ist online auf www.marco-tuerk.de

Mehr

Vorbereitungsaufgaben für den Teil 1 der 3. Klausur am

Vorbereitungsaufgaben für den Teil 1 der 3. Klausur am Vorbereitungsaufgaben für den Teil 1 der 3. Klausur am 24.2.15 1 NT 2013: Quadratische und lineare Funktionen Die abgebildete Parabel gehört zur Funktion f mit f(x) = x 2 5 x + 4. a) Zeige durch eine Rechnung,

Mehr

1. Zeichnen Sie ein kartesisches Koordinatensystem mit folgenden Punkten: P 1 (3/2); P 2 (-2,4), P 3 (-3/-2), P 4 (1/-2), P 4 (-2/4)

1. Zeichnen Sie ein kartesisches Koordinatensystem mit folgenden Punkten: P 1 (3/2); P 2 (-2,4), P 3 (-3/-2), P 4 (1/-2), P 4 (-2/4) Aufgaben analytische Geometrie:. Zeichnen Sie ein kartesisches Koordinatensystem mit folgenden Punkten: P (/2); P 2 (-2,4), P (-/-2), P 4 (/-2), P 4 (-2/4) 2. In welchem Quadranten liegt folgender Punkt?

Mehr

12.4 Berechnung und Darstellung betriebswirtschaftlicher Funktionen

12.4 Berechnung und Darstellung betriebswirtschaftlicher Funktionen . Berechnung und Darstellung betriebswirtschaftlicher Funktionen.. Kostenfunktion a) Vorgaben und Fragestellung Die Materialkosten für die Herstellung eines Stücks belaufen sich auf CHF.--. Die anteilmässigen

Mehr

Lösungen zum 3. Übungsblatt zum Vorkurs Mathematik

Lösungen zum 3. Übungsblatt zum Vorkurs Mathematik Fachbereich Elektrotechnik und Informationstechnik Prof. Georg Hoever WS 204/5 09.09.204 Lösungen zum 3. Übungsblatt zum Vorkurs Mathematik Die Aufgaben entstammen meinem Buch Vorkurs Mathematik, Springer-Verlag

Mehr

x 0 0,5 1 2 3 4 0,5 1 2. Die Quadratfunktion ist für x 0 streng monoton fallend und für x 0 streng monoton steigend.

x 0 0,5 1 2 3 4 0,5 1 2. Die Quadratfunktion ist für x 0 streng monoton fallend und für x 0 streng monoton steigend. Quadratische Funktionen ================================================================= 1. Die Normalparabel Die Funktion f : x y = x 2, D = R, heißt Quadratfunktion. Ihr Graph heißt Normalparabel. Wertetabelle

Mehr

Gegeben ist die Funktionsgleichung einer Parabel mit: f ( x) = x + 2x + 1

Gegeben ist die Funktionsgleichung einer Parabel mit: f ( x) = x + 2x + 1 R. Brinkmann http://brinkmann-du.de Seite 0.0.0 Lösungen Text- und Anwendungsaufgaben II en: A A A Gegeben ist die Funktionsgleichung einer Parabel mit: f ( x) = x + x + a) Berechnen Sie die Scheitelpunktform.

Mehr

Lernkontrolle Relationen, Funktionen, lineare Funktionen

Lernkontrolle Relationen, Funktionen, lineare Funktionen Lernkontrolle Relationen, Funktionen, lineare Funktionen A 1) Im folgenden Diagramm bedeuten A, B, C, D jeweils die Kinder einer Familie; die Pfeile drücken die Relation "hat als Schwester" aus. a) Wie

Mehr

Kroemer

Kroemer Kroemer - 02011-1- Normalparabel 13 y 2.0 2.1 3.0 3.1 4.0 4.1 5.1 5.2 6.1 6.2 12 11 10 9 8 7 6 5 4 3 2 1 0-7 -6-5 -4-3 -2-1 0 1 2 3 4 5 6 7 8 9-1 -2 Aufgabe: a) Zeichne eine Normalparabel p: y= x² - erstelle

Mehr

Parabeln. x y Um die Beziehung von x und y aufzudecken, teilen wir die y-werte durch 5.

Parabeln. x y Um die Beziehung von x und y aufzudecken, teilen wir die y-werte durch 5. c) = (x a) Parabeln Wir stellen uns vor, einen Stein von einem hohen Gebäude fallen zu lassen und interessieren uns für den Zusammenhang von verstrichener Zeit x (in Sekunden) und zurückgelegter Fallstrecke

Mehr

Angebotene Lösungen: Fehlerinterpretation: DF: nicht halbiert (FNr 15) 8. DF: nicht quadriert (FNr 6) richtig. DF: falscher Quotient (FNr 7)

Angebotene Lösungen: Fehlerinterpretation: DF: nicht halbiert (FNr 15) 8. DF: nicht quadriert (FNr 6) richtig. DF: falscher Quotient (FNr 7) Blatt Nr 0.06 Mathematik Online - Übungen Blatt Klasse Blatt 0 Kapitel 6 quadratische Funktionen Textaufgabe reelle Zahlen Nummer: 59 0 2009010033 Kl: X Grad: 10 Zeit: 20 Quelle: NW 4 W Aufgabe.1.1: Die

Mehr

12 M-Gk1/5 Led Übungen zur 1. Klausur 3. September Kurvendiskussion. Im Folgenden sei die Funktion f(x) = 1 6 x3 1 2 x 1 3 gegeben!

12 M-Gk1/5 Led Übungen zur 1. Klausur 3. September Kurvendiskussion. Im Folgenden sei die Funktion f(x) = 1 6 x3 1 2 x 1 3 gegeben! 12 M-Gk1/5 Led Übungen zur 1. Klausur 3. September 2008 1. Kurvendiskussion. Im Folgenden sei die Funktion f(x) = 1 6 x3 1 2 x 1 3 gegeben! a) Untersuche den Graphen von f(x) auf Standardsymmetrien (Punktsymmetrie

Mehr

Realschule Abschlussprüfung

Realschule Abschlussprüfung Realschule Abschlussprüfung Annegret Sonntag 4. Januar 2010 Inhaltsverzeichnis 1 Strategie zur Berechnung von ebenen Figuren (Trigonometrie) 3 1.1 Skizze.................................................

Mehr

Urs Wyder, 4057 Basel Funktionen. f x x x x 2

Urs Wyder, 4057 Basel Funktionen. f x x x x 2 Urs Wyder, 4057 Basel Urs.Wyder@edubs.ch Funktionen f 3 ( ) = + f ( ) = sin(4 ) Inhaltsverzeichnis DEFINITION DES FUNKTIONSBEGRIFFS...3. NOTATION...3. STETIGKEIT...3.3 ABSCHNITTSWEISE DEFINIERTE FUNKTIONEN...4

Mehr

Abiturprüfung Mathematik 006 Baden-Württemberg (ohne CAS) Haupttermin Pflichtteil - Aufgaben Aufgabe : ( VP) Bilden Sie die Ableitung der Funktion f mit f(x) sin(4x ). Aufgabe : ( VP) Geben Sie eine Stammfunktion

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Quadratische Funktionen - Stationenlernen

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Quadratische Funktionen - Stationenlernen Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Quadratische Funktionen - Stationenlernen Das komplette Material finden Sie hier: School-Scout.de SCHOOL-SCOUT Seite 2 von 26 Für

Mehr

Basistext Funktionen. Eine Funktion f ordnet jedem Element x aus einer Definitionsmenge D f genau ein Wert y zu.

Basistext Funktionen. Eine Funktion f ordnet jedem Element x aus einer Definitionsmenge D f genau ein Wert y zu. Basistext Funktionen Definition Eine Funktion f ordnet jedem Element x aus einer Definitionsmenge D f genau ein Wert y zu. Man schreibt: f: x -> y mit y = f(x) Die Wertemenge einer Funktion f besteht aus

Mehr

Algebra: (ab Seite 2) Quadratische Gleichungen, Bruchgleichungen, lineare und quadratische Funktionen, Gleichungssysteme

Algebra: (ab Seite 2) Quadratische Gleichungen, Bruchgleichungen, lineare und quadratische Funktionen, Gleichungssysteme Vorwort: Sehr geehrte Schülerinnen und Schüler, anhand der folgenden 11 Fragen können Sie sich schnell und nachhaltig alle Kenntnisse aneignen, die Sie für eine erfolgreiche Mathematik-Prüfung benötigen

Mehr

Pflichtteilaufgaben zu Elemente der Kurvendiskussion. Baden-Württemberg

Pflichtteilaufgaben zu Elemente der Kurvendiskussion. Baden-Württemberg Pflichtteilaufgaben zu Elemente der Kurvendiskussion Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Aleander Schwarz www.mathe-aufgaben.com September 6 Übungsaufgaben: Ü: Gegeben ist

Mehr

11 Üben X Affine Funktionen 1.01

11 Üben X Affine Funktionen 1.01 Üben X Aine Funktionen.0 Zeichne die Graphen zu olgenden Funktionsgleichungen! + + d c b a Augabenkarte von MUED Lösung X Aine Funktionen.0 + + d c b a Üben X Aine Funktionen.0 Bestimme die Funktionsgleichung

Mehr

FUNKTIONEN. ein Leitprogramm für die Berufsmaturität

FUNKTIONEN. ein Leitprogramm für die Berufsmaturität FUNKTIONEN ein Leitprogramm für die Berufsmaturität von Johann Berger 2000 Inhaltsverzeichnis Einleitung 3 Arbeitsanleitung 3 1 Der Funktionsbegriff 3 2 Lineare 6 3 Quadratische 10 EINLEITUNG Dieses Leitprogramm

Mehr

In diesem Arbeitsblatt behandeln wir die Grundlagen quadratischer Funktionen. Beispiel: f(x)=x 2 ( Standardparabel ) Beispiel: f(x)=x 2 +3

In diesem Arbeitsblatt behandeln wir die Grundlagen quadratischer Funktionen. Beispiel: f(x)=x 2 ( Standardparabel ) Beispiel: f(x)=x 2 +3 In diesem Arbeitsblatt behandeln wir die Grundlagen quadratischer Funktionen. Mögliche Schreibweisen einer quadratischen Funktion lauten = a x + b x oder ( SCHEITELPUNKTFORM ) oder ( x Nullstelle) Nullstellenform

Mehr

Lineare Funktionen Auftrag 1: Bearbeitung mit dem GTR (grafikfähigen Taschenrechner)

Lineare Funktionen Auftrag 1: Bearbeitung mit dem GTR (grafikfähigen Taschenrechner) Lineare Funktionen Auftrag : Ein Wasserwerk verlangt von seinen Kunden jährlich eine Grundgebühr von,0. Für einen m³ Wasser muss man 0,80 und zudem 0,0 Kanalgebühren bezahlen. a) Notiere eine passende

Mehr

f : x y = mx + t Der Graph einer linearen Funktion ist eine Gerade, welche die y-achse im Punkt S schneidet. = m 2 x 2 m x 1

f : x y = mx + t Der Graph einer linearen Funktion ist eine Gerade, welche die y-achse im Punkt S schneidet. = m 2 x 2 m x 1 III. Funktionen und Gleichungen ================================================================== 3.1. Lineare Funktionen Eine Funktion mit der Zuordnungvorschrift f : x y = mx + t und m, t R heißt lineare

Mehr

Mathemathik-Prüfungen

Mathemathik-Prüfungen M. Arend Stand Juni 2005 Seite 1 1980: Mathemathik-Prüfungen 1980-2005 1. Eine zur y-achse symmetrische Parabel 4.Ordnung geht durch P 1 (0 4) und hat in P 2 (-1 1) einen Wendepunkt. 2. Diskutieren Sie

Mehr

Mathematik im Berufskolleg I

Mathematik im Berufskolleg I 1 Bohner Ott Deusch Mathematik im Berufskolleg I Ausführliche Lösungen zu im Buch gekennzeichneten Aufgaben ab 6. Auflage 2016 ISBN 978-3-8120-0234-9 Das Werk und seine Teile sind urheberrechtlich geschützt.

Mehr

Angebotene Lösungen: Fehlerinterpretation: DF: nicht halbiert (FNr 14) DF: falscher Quotient (FNr 3) DF: falscher Quotient (FNr 7) 7

Angebotene Lösungen: Fehlerinterpretation: DF: nicht halbiert (FNr 14) DF: falscher Quotient (FNr 3) DF: falscher Quotient (FNr 7) 7 Blatt Nr 08.02 Mathematik Online - Übungen Blatt 8 Textaufgabe reelle Zahlen Nummer: 24 0 2000100 Kl: 8X Grad: 10 Zeit: 20 Quelle: NW 4 W Aufgabe 8.1.1: Die Bahnkurve eines Balls, der im Ursprung eines

Mehr

BOS - MATHEMATIK. Hilfe vor den Eintritt und zur einfacheren Verständnis im Fach Mathematik der Berufsoberschule.

BOS - MATHEMATIK.  Hilfe vor den Eintritt und zur einfacheren Verständnis im Fach Mathematik der Berufsoberschule. BOS - MATHEMATIK Eine Zusammenfassung über die Grundlegenden Themen im Fach Mathematik für die Vorbereitung zur Berufsoberschule (Klasse 12). Hilfe vor den Eintritt und zur einfacheren Verständnis im Fach

Mehr