1. Prinzip von d'alembert

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "1. Prinzip von d'alembert"

Transkript

1 1. Prinzip von d'alembert 1.1 Freiheitsgrade 1.2 Zwangsbedingungen 1.3 Virtuelle Geschwindigkeiten 1.4 Prinzip der virtuellen Leistung Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik

2 1.1 Freiheitsgrade Definition: Die unabhängigen Bewegungsmöglichkeiten eines Systems von starren Körpern werden als Freiheitsgrade bezeichnet. Die Anzahl der Freiheitsgrade entspricht der Anzahl der Parameter, die vorgegeben werden müssen, damit die Lage der Körper eindeutig definiert ist. Massenpunkt im Raum: Die Lage eines Punktes im Raum ist durch die Angabe von 3 Koordinaten eindeutig festgelegt. Ein Massenpunkt im Raum hat also 3 Freiheitsgrade. Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik

3 1.1 Freiheitsgrade Kartesische Koordinaten: Kugelkoordinaten: z P z z P P x x P y P x P, y P, z P y x θ r φ r,, y x = r sin cos y = r sin sin z = r cos r = x 2 y 2 z 2 = arctan y/ x = arctan x 2 y 2 /z Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik

4 1.1 Freiheitsgrade Starrer Körper im Raum: Ein starrer Körper im Raum hat 6 Freiheitsgrade. 3 Koordinaten werden benötigt, um den Ort des Schwerpunktes im Raum festzulegen. 3 weitere Koordinaten werden benötigt, um die Orientierung des Körpers im Raum festzulegen. Die Orientierung im Raum kann z.b. durch die Eulerschen Winkel beschrieben werden: Die Eulerschen Winkel beschreiben die Drehungen, die nötig sind, um das raumfeste System (x g, y g, z g ) in das körperfeste System (x f, y f, z f ) zu überführen. Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik

5 1.1 Freiheitsgrade Zuerst wird das System (x g, y g, z g ) um den Gierwinkel Ψ um die z g -Achse gedreht. Das Ergebnis ist das System (k 1, k 2, z g ). Anschließend wird das System (k 1, k 2, z g ) um den Nickwinkel Θ um die k 2 -Achse gedreht. Das Ergebnis ist das System (x f, k 2, k 3 ). Zuletzt wird das System (x f, k 2, k 3 ) um den Rollwinkel Φ um die x f -Achse gedreht. Das Ergebnis ist das System (x f, y f, z f ). Je nach Wahl der Reihenfolge der Drehungen ergeben sich unterschiedliche Definitionen für die Eulerschen Winkel. Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik

6 1.1 Freiheitsgrade Quelle: Wikipedia, Artikel Eulersche Winkel Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik

7 1.1 Freiheitsgrade Ergebnis: Die Anzahl der Freiheitsgrade eines Systems ist festgelegt. Welche Koordinaten gewählt werden, ist nicht festgelegt. Die Koordinaten können also frei gewählt werden. Dabei darf keine Koordinate von einer anderen abhängig sein. Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik

8 1.2 Zwangsbedingungen Zwangsbedingungen schränken die Bewegungsmöglichkeiten ein. Ein Massenpunkt, der sich auf einer Fläche bewegen muss, hat nur noch 2 Freiheitsgrade. Wenn der Massenpunkt sich auf einer Kurve bewegen muss, hat er nur noch 1 Freiheitsgrad. Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik

9 1.2 Zwangsbedingungen Ebenes Pendel: Der Massenpunkt muss sich auf einem Kreis bewegen. Er hat nur einen Freiheitsgrad. φ L x Als Freiheitsgrad kann z.b. der Winkel φ gewählt werden. y=0 z x 2 z 2 =L 2 Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik

10 1.2 Zwangsbedingungen Verbundene Massen: Die beiden Massen können sich nur in x-richtung bewegen. m 1 Sie sind durch ein masseloses dehnstarres Seil verbunden. x 1 m 2 Das System hat 1 Freiheitsgrad. x y x 2 y 1 =c 1, y 2 =c 2, z 1 =z 2 =0 x 1 = x 2 x 1 x 2 =0 Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik

11 1.2 Zwangsbedingungen Allgemeine Form der Zwangsbedingungen: Zwangsbedingungen werden durch im Allgemeinen nichtlineare Gleichungen der Form beschrieben (holonome skleronome Zwangsbedingungen). Beispiele: F i x 1, y 1, z 1,, x n, y n, z n =0, i=1,, r Pendel: F x, z =x 2 z 2 L 2 =0 Verbundene Massen: F x 1, x 2 =x 1 x 2 =0 Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik

12 1.2 Zwangsbedingungen Anzahl der Freiheitsgrade: Für ein System von Massenpunkten gilt: f =3n r Für ein System von starren Körpern gilt: f =6 n r Dabei ist f die Anzahl der Freiheitsgrade, n die Anzahl der Körper und r die Anzahl der Zwangsbedingungen (Restriktionen). Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik

13 1.2 Zwangsbedingungen Verallgemeinerte Koordinaten: Ein System mit f Freiheitsgraden lässt sich durch f unabhängige verallgemeinerte Koordinaten q 1,, q f beschreiben. Die physikalischen Koordinaten sind Funktionen der verallgemeinerten Koordinaten: x k =x k q 1,,q f y k = y k q 1,,q f z k =z k q 1,,q f, k=1,, n Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik

14 Beispiel: Pendel 1.2 Zwangsbedingungen Die physikalischen Koordinaten sind die Koordinaten x und z des Massenpunktes. Wird als verallgemeinerte Koordinate der Winkel φ gewählt, dann gilt für die physikalischen Koordinaten: x x =L sin z =Lcos φ L z Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik

15 Definition: 1.3 Virtuelle Geschwindigkeiten Virtuelle Geschwindigkeiten δv sind beliebige gedachte Geschwindigkeiten des Systems, die mit den Zwangsbedingungen vereinbar sind. Virtuelle Geschwindigkeiten können daher als tatsächliche Geschwindigkeiten auftreten, wenn entsprechende äußere Kräfte auf das System einwirken. Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik

16 1.3 Virtuelle Geschwindigkeiten Beispiel: Massenpunkt auf Fläche Der Vektor der virtuellen Geschwindigkeit liegt in der Ebene, die im Punkt P tangential zur Fläche ist, auf der sich der Punkt bewegen kann. P δv Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik

17 1.3 Virtuelle Geschwindigkeiten Beispiel: Massenpunkt auf Kurve Der Vektor der virtuellen Geschwindigkeit ist tangential zu der Kurve, auf der sich der Massenpunkt bewegen kann. P δv Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik

18 1.3 Virtuelle Geschwindigkeiten Zwangsbedingungen für die Geschwindigkeiten: Die Zwangsbedingungen für die Geschwindigkeiten folgen durch Differentiation der Zwangsbedingungen nach der Zeit: d dt F i x 1 t, y 1 t, z 1 t,, x n t, y n t, z n t = F i ẋ 1 F i ẏ 1 F i ż 1 F i ẋ n F i ẏ n F i ż n =0, x 1 y 1 z 1 x n y n z n i=1,,r Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik

19 1.3 Virtuelle Geschwindigkeiten Die virtuellen Geschwindigkeiten müssen also die Bedingungen F i x 1 ẋ 1 F i y 1 ẏ 1 F i z 1 ż 1 erfüllen. F i x n ẋ n F i y n ẏ n F i z n ż n =0, i=1,,r Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik

20 1.3 Virtuelle Geschwindigkeiten Beispiel: Verbundene Massen Zwangsbedingung: F x 1, x 2 =x 1 x 2 =0 Virtuelle Geschwindigkeiten: m 1 F x 1 =1, F x 2 =1 x 1 m 2 ẋ 1 ẋ 2 =0 x 2 Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik

21 1.3 Virtuelle Geschwindigkeiten Beispiel: Pendel Zwangsbedingung: F x, z =x 2 z 2 L 2 =0 Virtuelle Geschwindigkeiten: φ L x F x =2 x, F z =2 z x ẋ z ż=0 z δv Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik

22 1.3 Virtuelle Geschwindigkeiten Wird der Winkel φ als Freiheitsgrad gewählt, so gilt: x=l sin, z=l cos Für die Geschwindigkeiten folgt: ẋ=l cos, ż= L sin Für die virtuellen Geschwindigkeiten gilt: ẋ=l cos, ż= L sin Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik

23 1.3 Virtuelle Geschwindigkeiten Zusammenfassung: Betrachtet wird ein System aus n Massenpunkten, das r Zwangsbedingungen unterliegt und f Freiheitsgrade hat. Die physikalischen Freiheitsgrade sind die Koordinaten der n Massenpunkte: x 1, y 1, z 1,, x n, y n, z n Die verallgemeinerten Koordinaten sind: q 1,,q f Als Zwangsbedingungen müssen r im allgemeinen nichtlineare Gleichungen erfüllt sein: F i x 1, y 1, z 1,, x n, y n, z n =0, i=1,, r Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik

24 1.3 Virtuelle Geschwindigkeiten Zwischen den verallgemeinerten und den physikalischen Koordinaten bestehen die Beziehungen: x k =x k q 1,,q f y k = y k q 1,,q f z k =z k q 1,,q f, k=1,, n Die Zwangsbedingungen für die virtuellen Geschwindigkeiten lauten F i x 1 ẋ 1 F i y 1 ẏ 1 F i z 1 ż 1 F i x n ẋ n F i y n ẏ n F i z n ż n =0, i=1,, r Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik

25 1.3 Virtuelle Geschwindigkeiten Zwischen den virtuellen Geschwindigkeiten der verallgemeinerten Koordinaten und den virtuellen Geschwindigkeiten der physikalischen Koordinaten bestehen die Beziehungen ẋ k = x k q 1 q 1 x k q f q f ẏ k = y k q 1 q 1 y k q f q f ż k = z k q 1 q 1 z k q f q f, k =1,,n Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik

26 Beispiel: 1.3 Virtuelle Geschwindigkeiten Ein Klotz hängt an einem Seil, das über eine masselose Rolle geführt und auf einer Trommel aufgewickelt ist. m 2, J 2 r i r a m 1 Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik

27 1.3 Virtuelle Geschwindigkeiten Physikalische Koordinaten: Der Ort der Trommel wird durch die Koordinate x des Schwerpunktes beschrieben. Die Lage der Trommel wird durch den Winkel φ beschrieben. Der Ort des Klotzes wird durch die Koordinate y beschrieben. S P φ x y Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik

28 1.3 Virtuelle Geschwindigkeiten Zwangsbedingungen: Die Trommel dreht sich um den Fußpunkt P. Für die Geschwindigkeit des Schwerpunktes S gilt: ẋ=r a F 1 x, y, =x r a =0 Der Weg, den der Klotz zurückgelegt hat, ist die Summe des Weges, den der Schwerpunkt der Trommel zurückgelegt hat, und der Länge des während dieses Weges abgewickelten Seils: y=x r i F 2 x, y, = y r a r i =0 Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik

29 1.3 Virtuelle Geschwindigkeiten Für die virtuellen Geschwindigkeiten folgt daraus: ẋ r a =0 ẏ r a r i =0 Verallgemeinerte Koordinaten: Das System hat 1 Freiheitsgrad. Wird der Winkel φ als verallgemeinerte Koordinate gewählt, so gelten die folgenden Beziehungen zwischen physikalischen und verallgemeinerten Koordinaten: x = r a y = r a r i ẋ = r a ẏ = r a r i Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik

30 1.4 Prinzip der virtuellen Leistung Impulssatz für den Massenpunkt: Die am Massenpunkt angreifenden Kräfte können in eingeprägte Kräfte F (e) und in Zwangskräfte F (z) eingeteilt werden. Der Impulssatz für den Massenpunkt lautet dann m a=f e F z Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik

31 1.4 Prinzip der virtuellen Leistung Beispiel: Pendel Eingeprägte Kraft: Gewichtskraft G Zwangskraft: Seilkraft S Die Seilkraft steht senkrecht auf der virtuellen Verschiebung. z S G δv x Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik

32 1.4 Prinzip der virtuellen Leistung Prinzip von d'alembert: Wenn ein Massenpunkt sich auf einer Kurve bewegen muss, so steht die Zwangskraft senkrecht auf der Tangente an die Kurve. Wenn ein Massenpunkt sich auf einer Fläche bewegen muss, so steht die Zwangskraft senkrecht auf der Tangentialebene an die Fläche. Daraus folgt in beiden Fällen, das die Zwangskraft senkrecht zu den virtuellen Geschwindigkeiten ist. Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik

33 1.4 Prinzip der virtuellen Leistung Daraus lässt sich das Prinzip von d'alembert folgern: F z v=0 Ein Massenpunkt bewegt sich so, dass die virtuelle Leistung der Zwangskräfte zu jedem Zeitpunkt verschwindet. Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik

34 1.4 Prinzip der virtuellen Leistung Prinzip der virtuellen Leistung: Aus dem Impulssatz für den Massenpunkt folgt: m a v=f e v F z v=f e v Virtuelle Leistung der eingeprägten Kräfte: P=F e v Virtuelle Leistung der d'alembertschen Trägheitskraft: P T =F T v= m a v Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik

35 1.4 Prinzip der virtuellen Leistung Prinzip der virtuellen Leistung für einen Massenpunkt: P P T =0 Ein Massenpunkt bewegt sich so, dass bei jeder virtuellen Geschwindigkeit die Summe der virtuellen Leistungen der eingeprägten Kräfte und der d'alembertschen Trägheitskräfte zu jedem Zeitpunkt verschwindet. Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik

36 1.4 Prinzip der virtuellen Leistung Massenpunktsysteme: Bei einem System von n Massenpunkten muss der Impulssatz für jeden Massenpunkt gelten: m i a i =F i e F i z, i=1,, n Für jeden einzelnen Massenpunkt ist die virtuelle Leistung der Zwangskräfte zu jedem Zeitpunkt Null: F i z v i =0, i=1,, n Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik

37 1.4 Prinzip der virtuellen Leistung Damit folgt: Mit und P= i i P T = i F i e m i a i v i =0 P i = i P T i = i F i v i folgt das Prinzip der virtuellen Leistung für Massenpunktsysteme: P P T =0 m i a i v i Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik

38 1.4 Prinzip der virtuellen Leistung Die Anzahl der unabhängigen virtuellen Verschiebungen entspricht der Anzahl der Freiheitsgrade des Systems. Damit liefert das Prinzip der virtuellen Leistung genau so viele Gleichungen, wie das System Freiheitsgrade hat. Das Prinzip der virtuellen Leistung gilt sinngemäß auch für Systeme aus starren Körpern. Der große Vorteil des Prinzips der virtuellen Leistung ist, dass es die Zwangskräfte nicht enthält. Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik

39 1.4 Prinzip der virtuellen Leistung Beispiel: Seiltrommel Für das dargestellte System, bestehend aus einer Seiltrommel und einem Klotz, ist die Bewegungsgleichung aufzustellen. m 2, J 2 r i r a m 1 Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik

40 1.4 Prinzip der virtuellen Leistung Die Zwangsbedingungen wurden bereits untersucht. Als verallgemeinerte Koordinate wird der Winkel φ gewählt, der die Lage der Trommel beschreibt. Dann gilt: x = r a y = r a r i S φ x ẋ = r a ẏ = r a r i P y Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik

41 1.4 Prinzip der virtuellen Leistung Virtuelle Leistung der eingeprägten Kräfte: m 2 S ẋ G 2 ẏ m 1 G 1 P=G 1 ẏ=m 1 g r a r i Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik

42 1.4 Prinzip der virtuellen Leistung Virtuelle Leistung der Trägheitskräfte: P T = F T 1 ẏ F T 2 ẋ M T 2 F T 1 =m 1 ÿ=m 1 r a r i F T 2 =m 2 ẍ=m 2 r a M T 2 =J 2 M T2 ẋ F T2 m 2, J 2 ẏ F T1 m 1 Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik

43 1.4 Prinzip der virtuellen Leistung Prinzip der virtuellen Leistung: m 1 g r a r i m 1 r a r i r a r i m 2 r a r a J 2 =0 P P T =0 Da die virtuelle Geschwindigkeit beliebig ist, muss gelten: m 1 g r a r 1 [m 1 r a r i 2 m 2 r a 2 J 2 ] =0 Ergebnis: = m 1 r a r 1 m 1 r a r i 2 m 2 r a 2 J 2 g Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

1. Bewegungsgleichung

1. Bewegungsgleichung 1. Bewegungsgleichung 1.1 Das Newtonsche Grundgesetz 1.2 Dynamisches Gleichgewicht 1.3 Geführte Bewegung 1.4 Massenpunktsysteme 1.5 Schwerpunktsatz Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik

Mehr

Theoretische Mechanik

Theoretische Mechanik Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 2008 Theoretische Mechanik 9. Übung 9.1 d alembertsches Prinzip: Flaschenzug Wir betrachten

Mehr

Grundlagen der Analytischen Mechanik

Grundlagen der Analytischen Mechanik Höhere Technische Mechanik Grundlagen der Analytischen Mechanik Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Grundlagen der Analytischen

Mehr

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus

Mehr

1. Kinematik. 1.1 Lage 1.2 Geschwindigkeit. Starrkörperdynamik Prof. Dr. Wandinger. 2. Der starre Körper

1. Kinematik. 1.1 Lage 1.2 Geschwindigkeit. Starrkörperdynamik Prof. Dr. Wandinger. 2. Der starre Körper 1. Kinematik 1.1 Lage 1.2 Geschwindigkeit 2.1-1 Aus den Eigenschaften des starren Körpers folgt: Wird an einem beliebigen Punkt B des starren Körpers ein kartesisches Koordinatensystem Bξηζ aufgetragen,

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Massenpunkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf

Mehr

1. Bewegungsgleichung

1. Bewegungsgleichung 1. Bewegungsgleichung 1.1 Das Newtonsche Grundgesetz 1.2 Dynamisches Gleichgewicht 1.3 Geführte Bewegung 1.4 Massenpunktsysteme 1.5 Schwerpunktsatz Prof. Dr. Wandinger 2. Kinetik des Massenpunktes TM 3

Mehr

Kinematik des starren Körpers

Kinematik des starren Körpers Technische Mechanik II Kinematik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes

Mehr

2.1 Kinematik 2.2 Momentensatz 2.3 Arbeit und Energie. 2. Kreisbewegung. Prof. Dr. Wandinger 3. Kinematik und Kinetik TM 3.2-1

2.1 Kinematik 2.2 Momentensatz 2.3 Arbeit und Energie. 2. Kreisbewegung. Prof. Dr. Wandinger 3. Kinematik und Kinetik TM 3.2-1 2.1 inematik 2.2 Momentensatz 2.3 Arbeit und Energie 2. reisbewegung Prof. Dr. Wandinger 3. inematik und inetik TM 3.2-1 2.1 inematik Bahngeschwindigkeit und Winkelgeschwindigkeit: Für den auf einer reisbahn

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Wenn die Bahn des Massenpunkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort im Raum zu bestimmen. Es muss ein Ortsvektor angegeben werden. Prof.

Mehr

Übungen zu Lagrange-Formalismus und kleinen Schwingungen

Übungen zu Lagrange-Formalismus und kleinen Schwingungen Übungen zu Lagrange-Formalismus und kleinen Schwingungen Jonas Probst 22.09.2009 1 Teilchen auf der Stange Ein Teilchen der Masse m wird durch eine Zwangskraft auf einer masselosen Stange gehalten, auf

Mehr

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe:

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe: Übungen zu Theoretische Physik I - Mechanik im Sommersemester 03 Blatt 7 vom 0.06.3 Abgabe: 7.06.3 Aufgabe 9 3 Punkte Keplers 3. Gesetz Das 3. Keplersche Gesetz für die Planetenbewegung besagt, dass das

Mehr

1. Rotation um eine feste Achse

1. Rotation um eine feste Achse 1. Rotation um eine feste Achse Betrachtet wird ein starrer Körper, der sich um eine raumfeste Achse dreht. z ω Das Koordinatensystem wird so gewählt, dass die Drehachse mit der z-achse zusammenfällt.

Mehr

1 Lagrange sche Gleichung 1. Art

1 Lagrange sche Gleichung 1. Art 1 Lagrange sche Gleichung 1. Art 1.1 Einführung und Beispiel Bewege sich ein Massepunkt auf einer Geraden (G) im Raum, so hat dieser einen Freiheitsgrad, d.h. es müssen 2 Zwangsbedingungen für ihn gelten.

Mehr

Drehbewegungen (Rotation)

Drehbewegungen (Rotation) Drehbewegungen (Rotation) Drehungen (Rotation) Die allgemeine Bewegung eines Systems von Massepunkten lässt sich immer zerlegen in: und Translation Rotation Drehungen - Rotation Die kinematischen Variablen

Mehr

Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3

Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3 Differenziation und Integration von Vektorfunktionen Der Ortsvektor: Man kann einen Punkt P im Raum eindeutig durch die

Mehr

Beispiel 1:Der Runge-Lenz Vektor [2 Punkte]

Beispiel 1:Der Runge-Lenz Vektor [2 Punkte] Übungen Theoretische Physik I (Mechanik) Blatt 9 (Austeilung am: 1.9.11, Abgabe am 8.9.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7 Sonja Hunscha - Koordinatensysteme 1 Inhalt Einleitung 2 1 Koordinatensysteme 2 1.1 Kartesisches Koordinatensystem 2 1.2 Polarkoordinaten 3 1.3 Zusammenhang zwischen kartesischen und Polarkoordinaten 3

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay

2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay ufgabenstellung: Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: Gesucht ist der Punkt П, dessen momentane Geschwindigkeit null ist. Lösung: v Px =x ( y P y ), v Py =y +

Mehr

Energie und Energieerhaltung

Energie und Energieerhaltung Arbeit und Energie Energie und Energieerhaltung Es gibt keine Evidenz irgendwelcher Art dafür, dass Energieerhaltung in irgendeinem System nicht erfüllt ist. Energie im Austausch In mechanischen und biologischen

Mehr

04/02/13. Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise:

04/02/13. Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Klausur Technische Mechanik C 04/0/ Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel sind: Formelsammlungen,

Mehr

Probeklausur zur Theoretischen Physik I: Mechanik

Probeklausur zur Theoretischen Physik I: Mechanik Prof. Dr. H. Friedrich Physik-Department T3a Technische Universität München Probeklausur zur Theoretischen Physik I: Mechanik Montag, 2.7.29 Hörsaal 1 1:15-11:5 Aufgabe 1 (8 Punkte) Geben Sie möglichst

Mehr

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64 1/64 VEKTORRECHNUNG Prof. Dr. Dan Eugen Ulmet Hochschule Esslingen März 2011 2/64 Overview Vektoralgebra 1 Vektoralgebra 2 Was sind Vektoren? 3/64 Vektoren werden geometrisch definiert als Pfeilklassen:

Mehr

Hamilton-Mechanik. Inhaltsverzeichnis. 1 Einleitung. 2 Verallgemeinerter oder kanonischer Impuls. Simon Filser

Hamilton-Mechanik. Inhaltsverzeichnis. 1 Einleitung. 2 Verallgemeinerter oder kanonischer Impuls. Simon Filser Hamilton-Mechanik Simon Filser 4.9.09 Inhaltsverzeichnis 1 Einleitung 1 Verallgemeinerter oder kanonischer Impuls 1 3 Hamiltonfunktion und kanonische Gleichungen 4 Die Hamiltonfunktion als Energie und

Mehr

Ferienkurs Theoretische Mechanik Lösungen Hamilton

Ferienkurs Theoretische Mechanik Lösungen Hamilton Ferienkurs Theoretische Mechanik Lösungen Hamilton Max Knötig August 10, 2008 1 Hamiltonfunktion, Energie und Zeitabhängigkeit 1.1 Perle auf rotierendem Draht Ein Teilchen sei auf einem halbkreisförmig

Mehr

11.3. Variablentrennung, Ähnlichkeit und Trajektorien

11.3. Variablentrennung, Ähnlichkeit und Trajektorien 3 Variablentrennung, Ähnlichkeit und Trajektorien Trennung der Veränderlichen (TdV) Es seien zwei stetige Funktionen a (der Variablen ) und b (der Variablen ) gegeben Die Dgl a( ) b( ) b( ) d d läßt sich

Mehr

Übung zu Mechanik 1 Seite 65

Übung zu Mechanik 1 Seite 65 Übung zu Mechanik 1 Seite 65 Aufgabe 109 Gegeben ist das skizzierte System. a) Bis zu welcher Größe kann F gesteigert werden, ohne daß Rutschen eintritt? b) Welches Teil rutscht, wenn F darüber hinaus

Mehr

2. Arbeit und Energie

2. Arbeit und Energie 2. Arbeit und Energie Die Ermittlung der Bewegungsgrößen aus der Bewegungsgleichung erfordert die Berechnung von mehr oder weniger komplizierten Integralen. Für viele Fälle kann ein Teil der Integrationen

Mehr

() = Aufgabe 1 ( Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 2012 P 2

() = Aufgabe 1 ( Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 2012 P 2 Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 212 P 2 BachelorPrüfung in Technischer Mechanik II/III Nachname, Vorname Matr.Nummer Fachrichtung 28.

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Prof. Dr. Wandinger 1. Kinematik des Punktes TM 3 1.2-1 2. Räumliche Bewegung Wenn die Bahn des Punkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort

Mehr

2 Lagrange sche Bewegungsgleichungen

2 Lagrange sche Bewegungsgleichungen 2 Lagrange sche Bewegungsgleichungen Ausgearbeitet von Christine Cronjäger, Klaus Grambach und Ulrike Wacker 2.1 Zwangsbedingungen: Zwangsbedingungen schränken die 3 Freiheitsgrade des Teilchens ein. Unterwirft

Mehr

Theoretische Physik I: Lösungen Blatt Michael Czopnik

Theoretische Physik I: Lösungen Blatt Michael Czopnik Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13

Mathematischer Vorkurs für Physiker WS 2012/13 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Übungsblatt 2 Wichtige Formeln aus der Vorlesung: Basisaufgaben Beispiel 1: 1 () grad () = 2 (). () () = ( 0 ) + grad ( 0 ) ( 0 )+

Mehr

2. Physikalisches Pendel

2. Physikalisches Pendel 2. Physikalisches Pendel Ein physikalisches Pendel besteht aus einem starren Körper, der um eine Achse drehbar gelagert ist. A L S φ S z G Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.2-1 2.1 Bewegungsgleichung

Mehr

Peter Hagedorn. Technische Mechanik. Band 3 Dynamik

Peter Hagedorn. Technische Mechanik. Band 3 Dynamik Peter Hagedorn Technische Mechanik Band 3 Dynamik Websites zum Buch http://www.harri-deutsch.de/1835.html http://www.dyn.tu-darmstadt.de/pub/tm/band3/ Der Autor Professor Peter Hagedorn vertritt an der

Mehr

Formelsammlung. Lagrange-Gleichungen: q k. Zur Koordinate q k konjugierter Impuls: p k = L. Hamilton-Funktion: p k. Hamiltonsche Gleichungen: q k = H

Formelsammlung. Lagrange-Gleichungen: q k. Zur Koordinate q k konjugierter Impuls: p k = L. Hamilton-Funktion: p k. Hamiltonsche Gleichungen: q k = H Formelsammlung Lagrange-Gleichungen: ( ) d L dt q k L q k = 0 mit k = 1,..., n. (1) Zur Koordinate q k konjugierter Impuls: p k = L q k. (2) Hamilton-Funktion: n H(q 1,..., q n, p 1,..., p n, t) = p k

Mehr

Theoretische Physik 1, Mechanik

Theoretische Physik 1, Mechanik Theoretische Physik 1, Mechanik Harald Friedrich, Technische Universität München Sommersemester 2009 Mathematische Ergänzungen Vektoren und Tensoren Partielle Ableitungen, Nabla-Operator Physikalische

Mehr

3.2 Das physikalische Pendel (Körperpendel)

3.2 Das physikalische Pendel (Körperpendel) 18 3 Pendelschwingungen 32 Das physikalische Pendel (Körperpendel) Ein starrer Körper (Masse m, Schwerpunkt S, Massenträgheitsmoment J 0 ) ist um eine horizontale Achse durch 0 frei drehbar gelagert (Bild

Mehr

Kinetik des starren Körpers

Kinetik des starren Körpers Technische Mechanik II Kinetik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes 2.

Mehr

Exzentrischer Stoß. Der genaue zeitliche Verlauf der Kraft ist nicht bekannt. Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik 2 4-1

Exzentrischer Stoß. Der genaue zeitliche Verlauf der Kraft ist nicht bekannt. Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik 2 4-1 Exzentrischer Stoß Allgemeine Stoßvorgänge zwischen zwei Körpern in der Ebene können mit Hilfe des integrierten Impulssatzes und des integrierten Drallsatzes behandelt werden. Während des Stoßes treten

Mehr

Theoretische Physik I

Theoretische Physik I Peter Reineker, Michael Schulz und Beatrix M. Schulz Theoretische Physik I Mechanik mit Aufgaben in Maple WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA VII Inhaltsverzeichnis Vorwort XV 1 Einleitung 1 1.1

Mehr

2. Arbeit und Energie

2. Arbeit und Energie 2. Arbeit und Energie Zur Ermittlung der Bewegungsgrößen aus der Bewegungsgleichung müssen mehr oder weniger komplizierte Integrale berechnet werden. Bei einer Reihe von wichtigen Anwendungen treten die

Mehr

4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.

4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4. 4. Die ebene Platte 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.4-1 Schallabstrahlung einer unendlichen ebenen Platte: Betrachtet

Mehr

Blatt 1. Kinematik- Lösungsvorschlag

Blatt 1. Kinematik- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 011 Blatt 1. Kinematik- Lösungsvorschlag Aufgabe 1.1. Schraubenlinie Die

Mehr

Lagrange sche Bewegungsgleichungen

Lagrange sche Bewegungsgleichungen Kapitel 2 Lagrange sche Bewegungsgleichungen Ausgearbeitet von Christine Cronjäger, Klaus Grambach und Ulrike Wacker 2.1 Zwangsbedingungen: Zwangsbedingungen schränken die 3 Freiheitsgrade des Teilchens

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am )

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am ) Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: 14.09.11, Abgabe am 1.09.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

1. Impuls- und Drallsatz

1. Impuls- und Drallsatz 1. Impuls- und Drallsatz Impulssatz Bewegung des Schwerpunkts des örpers aufgrund vorgegebener räfte Drallsatz Drehung des örpers aufgrund vorgegebener Momente Prof. Dr. Wandinger 3. inetik des starren

Mehr

M1 Maxwellsches Rad. 1. Grundlagen

M1 Maxwellsches Rad. 1. Grundlagen M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten

Mehr

Serie 8 - Parametrisierte Kurven

Serie 8 - Parametrisierte Kurven Analysis D-BAUG Dr Meike Akveld HS 05 Serie 8 - Parametrisierte Kurven Geben Sie für die folgenden Bewegungen eines Punktes jeweils eine parametrisierte Darstellung I [0, ] R xt, t yt an Lösung a Geradlinige

Mehr

Massenträgheitsmomente homogener Körper

Massenträgheitsmomente homogener Körper http://www.youtube.com/watch?v=naocmb7jsxe&feature=playlist&p=d30d6966531d5daf&playnext=1&playnext_from=pl&index=8 Massenträgheitsmomente homogener Körper 1 Ma 1 Lubov Vassilevskaya Drehbewegung um c eine

Mehr

2. Vorlesung Wintersemester

2. Vorlesung Wintersemester 2. Vorlesung Wintersemester 1 Mechanik von Punktteilchen Ein Punktteilchen ist eine Abstraktion. In der Natur gibt es zwar Elementarteilchen (Elektronen, Neutrinos, usw.), von denen bisher keine Ausdehnung

Mehr

Technische Mechanik 3

Technische Mechanik 3 Technische Mechanik 3 2. Kinematik eines Massenpunktes 2.1. Grundbegriffe, kartesische Koordinaten 2.2. Geradlinige Bewegung 2.3. Ebene Bewegung, Polarkoordinaten 2.4. räumliche Bewegung, natürliche Koordinaten

Mehr

Starrer Körper: Drehimpuls und Drehmoment

Starrer Körper: Drehimpuls und Drehmoment Starrer Körper: Drehimpuls und Drehmoment Weitere Schreibweise für Rotationsenergie: wobei "Dyade" "Dyadisches Produkt" Def.: "Dyadisches Produkt", liefert bei Skalarmultiplikation mit einem Vektor : und

Mehr

Partielle Ableitungen & Tangentialebenen. Folie 1

Partielle Ableitungen & Tangentialebenen. Folie 1 Partielle Ableitungen & Tangentialebenen Folie 1 Bei Funktionen mit einer Variable, gibt die Ableitung f () die Steigung an. Bei mehreren Variablen, z(,), gibt es keine eindeutige Steigung. Die Steigung

Mehr

3.2. Polarkoordinaten

3.2. Polarkoordinaten 3.2. Polarkoordinaten Die geometrische Bedeutung der komplexen Multiplikation versteht man besser durch die Einführung von Polarkoordinaten. Der Betrag einer komplexen Zahl z x + i y ist r: z x 2 + y 2.

Mehr

Dynamischer Entwurf von Achterbahnfiguren

Dynamischer Entwurf von Achterbahnfiguren Dynamischer Entwurf von Achterbahnfiguren Prof. Dr.-Ing.. Rill 1 Einleitung Bei der Entwicklung von Achterbahnfiguren wird in der Regel die Bahngeometrie vorgegeben. Mit Hilfe von Simulationsprogrammen

Mehr

Klassische Mechanik - Ferienkurs; Lösungem. Sommersemester 2011, Prof. Metzler

Klassische Mechanik - Ferienkurs; Lösungem. Sommersemester 2011, Prof. Metzler Klassische Mechanik - Ferienkurs; Lösunge Soerseester 2011, Prof. Metzler 1 Inhaltsverzeichnis 1 Quickies 3 2 Lagrange Gleichung 1. Art 3 2.1 Perle auf Schraubenlinie..................................

Mehr

Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 15

Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 15 5. Es sei Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 5 f(x, y) : x y, : x, y, x + y, y x. erechnen Sie f(x, y) d. Wir lösen diese Aufgabe auf zweierlei Art. Zuerst betrachten wir das Gebiet

Mehr

Kinematik des Massenpunktes

Kinematik des Massenpunktes Technische Mechanik II Kinematik des Massenpunktes Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes Eindimensionale

Mehr

Passerellen Prüfungen 2009 Mathematik

Passerellen Prüfungen 2009 Mathematik Passerellen Prüfungen 2009 Mathematik 1. Analysis: Polynom und Potenzfunktionen Gegeben sind die beiden Funktionen 21 und 32. a) Bestimmen Sie die Null, Extremal und Wendepunkte der beiden Funktionen.

Mehr

4. Verzerrungen. Der Abstand von zwei Punkten ändert sich. Der Winkel zwischen drei Punkten ändert sich

4. Verzerrungen. Der Abstand von zwei Punkten ändert sich. Der Winkel zwischen drei Punkten ändert sich 4. Verzerrungen Wird ein Körper belastet, so ändert sich seine Geometrie. Die Punkte des Körpers ändern ihre Lage. Sie erfahren eine Verschiebung. Ist die Verschiebung für benachbarte Punkte unterschiedlich,

Mehr

Linien- und Oberflächenintegrale

Linien- und Oberflächenintegrale Linien- und berflächenintegrale Bei den früheren eindimensionalen Integralen wurde in der Regel entlang eines Intervalls einer Koordinatenachse integriert. Bei einem Linienintegral wird der Integrationsweg

Mehr

Blatt 03.1: Scheinkräfte

Blatt 03.1: Scheinkräfte Fakultät für Physik T1: Klassische Mechanik, SoSe 2016 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_16/t1_theor_mechanik/

Mehr

Probeklausur PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt)

Probeklausur PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) CURANDO Probeklausur PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, (othmar.marti@uni-ulm.de) 30. 11. 005 Prüfungstermin 30. 11. 005, 13:15 bis 14:00 Name Vorname Matrikel-Nummer

Mehr

10.6. Implizite ebene Kurven und Tangenten

10.6. Implizite ebene Kurven und Tangenten 0.6. Implizite ebene Kurven und Tangenten Im Gegensatz zu expliziten Darstellungen sind weder implizite noch Parameterdarstellungen einer Kurve eindeutig. Der Übergang von impliziten zu expliziten Darstellungen

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 8. Funktionen von mehreren Variablen 8.2 Partielle Differentiation Prof. Dr. Erich Walter Farkas Mathematik I+II, 8.2 Part. Diff.

Mehr

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) =

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) = Karlsruher Institut für Technologie Institut für theoretische Festkörperphsik www.tfp.kit.edu Lösung Klassische Theoretische Phsik I WS / Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler Besprechung...

Mehr

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof. Dr. Erich Walter

Mehr

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n 2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n f ist in dem Fall ein Weg in R n. Das Bild f(t) des Weges wird als Kurve

Mehr

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie (Physik) (aus Wikipedia, der freien Enzyklopädie) Symmetrie ist ein grundlegendes Konzept der

Mehr

2. Freie Schwingungen

2. Freie Schwingungen 2. Freie Schwingungen Bei freien Schwingungen greifen keine zeitlich veränderlichen äußeren Kräfte am schwingenden System an. Das System wird nach einer anfänglichen Störung sich selbst überlassen. Die

Mehr

Übung zu Mechanik 3 Seite 36

Übung zu Mechanik 3 Seite 36 Übung zu Mechanik 3 Seite 36 Aufgabe 61 Ein Faden, an dem eine Masse m C hängt, wird über eine Rolle mit der Masse m B geführt und auf eine Scheibe A (Masse m A, Radius R A ) gewickelt. Diese Scheibe rollt

Mehr

9. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 8. Dezember 2009

9. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 8. Dezember 2009 9. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 8. Dezember 009 Aufgabe 9.1: Doppelfeder Eine Kugel wird im Schwerefeld der Erde zwischen zwei Federn mit

Mehr

Kapitel 2. Kinematik des Massenpunktes. 2.1 Einleitung. 2.2 Massenpunkt. 2.3 Ortsvektor

Kapitel 2. Kinematik des Massenpunktes. 2.1 Einleitung. 2.2 Massenpunkt. 2.3 Ortsvektor Kapitel 2 Kinematik des Massenpunktes 2.1 Einleitung In diesem Kapitel behandeln wir die Bewegung von einem oder mehreren Körpern im Raum. Wir unterscheiden dabei zwischen Kinematik und Dynamik. Die Kinematik

Mehr

TECHNISCHE MECHANIK III (DYNAMIK)

TECHNISCHE MECHANIK III (DYNAMIK) Klausur im Fach TECHNISCHE MECHANIK III (DYNAMIK) WS 2014 / 2015 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 Summe Punkte: 15 7 23 15 60 Davon erreicht Bearbeitungszeit: Hilfsmittel:

Mehr

10. und 11. Vorlesung Sommersemester

10. und 11. Vorlesung Sommersemester 10. und 11. Vorlesung Sommersemester 1 Die Legendre-Transformation 1.1 Noch einmal mit mehr Details Diese Ableitung wirkt einfach, ist aber in dieser Form sicher nicht so leicht verständlich. Deswegen

Mehr

Übungen zu Lagrange-Formalismus und kleinen Schwingungen

Übungen zu Lagrange-Formalismus und kleinen Schwingungen Übungen zu Lagrange-Foralisus und kleinen Schwingungen Jonas Probst.9.9 Teilchen auf der Stange Aufgabe: Ein Teilchen der Masse wird durch eine Zwangskraft auf einer asselosen Stange gehalten, auf der

Mehr

2. Freie gedämpfte Schwingungen

2. Freie gedämpfte Schwingungen 2. Freie gedämpfte Schwingungen Bei realen Systemen werden die Schwingungsausschläge mit der Zeit kleiner, und die Schwingung kommt zum Stillstand. Ursache sind Energieverluste durch Reibungs- und Dämpfungskräfte:

Mehr

9 Teilchensysteme. 9.1 Schwerpunkt

9 Teilchensysteme. 9.1 Schwerpunkt der Impuls unter ganz allgemeinen Bedingungen erhalten bleibt. Obwohl der Impulserhaltungssatz, wie wir gesehen haben, aus dem zweiten Newton schen Axiom folgt, ist er tatsächlich allgemeiner als die Newton

Mehr

3.3. Drehungen und Spiegelungen

3.3. Drehungen und Spiegelungen 3.3. Drehungen und Spiegelungen Drehungen und Spiegelungen in der Ebene Die Multiplikation einer komplexen Zahl z = x + i y (aufgefaßt als Punkt oder Ortsvektor der Ebene) mit der Zahl w = e ( ) = i φ

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 2 - Lösung Technische Universität München 1 Fakultät für Physik 1 Perle Eine Perle der Masse m gleite reibungsfrei auf einem vertikal stehenden Ring vom Radius

Mehr

1 Mechanik starrer Körper

1 Mechanik starrer Körper 1 Mechanik starrer Körper 1.1 Einführung Bisher war die Mechanik auf Massepunkte beschränkt. Nun gehen wir den Schritt zu starren Körpern. Ein starrer Körper ist ein System aus Massepunkten, welche nicht

Mehr

2.3.4 Drehungen in drei Dimensionen

2.3.4 Drehungen in drei Dimensionen 2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1

Mehr

3. Das Prinzip der virtuellen Arbeit

3. Das Prinzip der virtuellen Arbeit 3.1 Stab 3.2 Scheibe 3. Das Prinzip der virtuellen Arbeit Prof. Dr. Wandinger 3. Prinzip der virtuellen Arbeit FEM 3.3-1 3.1 Stab Herleitung des Prinzips der virtuellen Arbeit: Am Stab greifen als äußere

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 1/13/14) Dozent: J. von Delft Übungen: B. Kubala Klausur zur Vorlesung T1: Theoretische Mechanik, SoSe 008 (3. Juli 007) Bearbeitungszeit:

Mehr

1. Einfache ebene Tragwerke

1. Einfache ebene Tragwerke Die Ermittlung der Lagerreaktionen einfacher Tragwerke erfolgt in drei Schritten: Freischneiden Aufstellen der Gleichgewichtsbedingungen Auflösen der Gleichungen Prof. Dr. Wandinger 3. Tragwerksanalyse

Mehr

2.4 Stoßvorgänge. Lösungen

2.4 Stoßvorgänge. Lösungen .4 Stoßvorgänge Lösungen Aufgabe 1: a) Geschwindigkeit und Winkel: Für die Wurfhöhe gilt: H = v 0 g sin Die zugehörige x-koordinate ist: x 1 = v 0 g sincos Aus diesen beiden Gleichungen lässt sich die

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2016 Vorlesung 1 (mit freundlicher Genehmigung von Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 1 Mathematische

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober

Mehr

Kinetik des Massenpunktes

Kinetik des Massenpunktes Technische Mechanik II Kinetik des Massenpunktes Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes 2.

Mehr

Theoretische Physik I Mechanik Probeklausur - Lösungshinweise

Theoretische Physik I Mechanik Probeklausur - Lösungshinweise Prof. H. Monien St. Kräer R. Sanchez SS2014 Theoretische Physik I Mechanik Probeklausur - Lösungshinweise Hinweise: Diese Lösung/Lösungshinweise erhebt keinen Anspruch auf Richtigkeit oder Vollständigkeit,

Mehr

7.6. Prüfungsaufgaben zu Normalenformen

7.6. Prüfungsaufgaben zu Normalenformen 7.6. Prüfungsaufgaben zu Normalenformen Aufgabe () Gegeben sind die Gerade g: x a + r u mit r R und die Ebene E: ( x p ) n. a) Welche geometrische Bedeutung haben die Vektoren a und u bzw. p und n? Veranschaulichen

Mehr

Harmonische Schwingungen

Harmonische Schwingungen Kapitel 6 Harmonische Schwingungen Von periodisch spricht man, wenn eine feste Dauer zwischen wiederkehrenden ähnlichen oder gleichen Ereignissen besteht. Von harmonisch spricht man, wenn die Zeitentwicklung

Mehr

3. Übungsblatt Aufgaben mit Lösungen

3. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sind zwei Teilmengen von R : E := {x R : x x = }, und F ist eine Ebene durch die Punkte A = ( ), B = ( ) und C = ( ). (a) Stellen Sie diese Mengen

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 29/ Vorlesung 9, Freitag vormittag Linienintegrale und Potential Wir betrachten einen Massenpunkt, auf den die konstante

Mehr

4.1. Vektorräume und lineare Abbildungen

4.1. Vektorräume und lineare Abbildungen 4.1. Vektorräume und lineare Abbildungen Mengen von Abbildungen Für beliebige Mengen X und Y bezeichnet Y X die Menge aller Abbildungen von X nach Y (Reihenfolge beachten!) Die Bezeichnungsweise erklärt

Mehr