Bewegung im Gravitationsfeld in der Allgemeinen Relativitätstheorie Ein neuer Zugang auf Schulniveau

Größe: px
Ab Seite anzeigen:

Download "Bewegung im Gravitationsfeld in der Allgemeinen Relativitätstheorie Ein neuer Zugang auf Schulniveau"

Transkript

1 Didaktik de Physik Fühjahstagung Jena 013 Bewegung im Gavitationsfeld in de Allgemeinen Relativitätstheoie Ein neue Zugang auf Schulniveau Covin Zahn, Ute Kaus Univesität Hildesheim, Institut fü Physik, Maienbuge Platz, Hildesheim, Kuzfassung In de Allgemeinen Relativitätstheoie wid die Bahn eines fei fallenden Teilchens als Geodäte beschieben, d.h. als geadestmögliche Linie in eine gekümmten Raumzeit. Wi haben geometische Methoden entwickelt, mit denen eine gekümmte Raumzeit anschaulich dagestellt weden kann und mit denen Bahnen feie Teilchen als Geaden in eine gekümmten Raumzeit konstuiet weden können. Diese Zugang zu Allgemeinen Relativitätstheoie basiet auf dem Regge Calculus, eine Methode zu Lösung de Einsteinschen Feldgleichungen und esultiet in eine koodinatenfeien, nu auf messbaen Abständen beuhenden Bescheibung de Raumzeit. Voaussetzungen sind lediglich Gundlagen de Speziellen Relativitätstheoie, so dass diese Zugang in de Obestufe einsetzba ist. 1. Gavitation ist Geometie Matte tells space how to cuve. Space tells matte how to move. (John Wheele) In diesem Beitag geht es um die Aussage Space tells matte how to move. In de Allgemeinen Relativitätstheoie existiet die Newtonsche Gavitationskaft als Usache de Bewegungsändeung eines Köpes im Gavitationsfeld nicht meh. Feie Teilchen bewegen sich auf Geodäten, also geadestmöglichen Linien duch Raum und Zeit. Die als Auswikung de Gavitation spübae elative Beschleunigung zweie Massen wid mit eine geadlinigen Bewegung in eine gekümmten Raumzeit eklät: Gavitation ist Geometie. Die mathematische Behandlung de duch Einstein gefundenen Geometisieung de Gavitationstheoie übescheitet bei Weitem die Möglichkeiten de Schulmathematik. Wi haben neues Unteichtsmateial entwickelt, das den geometischen Aspekt in den Mittelpunkt stellt und fast ohne Mathematik auskommt. Stattdessen setzen wi auf geometische Anschauung und das Konstuieen und Basteln von Modellen. In [1] wude ein maßstabsgeechtes Modell des deidimensionalen gekümmten Raums um ein Schwazes Loch vogestellt (s. a. [, 3]). Die dabei eingefühte, auf dem Regge Calculus ([4]) basieende Methode, eine gekümmte Mannigfaltigkeit in ungekümmte Teilsektoen zu zelegen ( Katen eines Staßenatlas ), lässt sich vewenden, um mittels diese sog. Sektokaten in gekümmten Räumen geometische Konstuktionen duchzufühen, wie z. B. die küzeste Vebindung zwischen zwei Punkten zu finden ode ganz pofan eine Reiseoute zu planen. Hie soll die Eweiteung unsees Unteichtsmateials auf gekümmte Raumzeiten und die daauf aufbauende Bescheibung de Bewegung im Gavitationsfeld vogestellt weden. Dass Geodäten als Geaden in stückweise ungekümmten Raumzeitsektoen konstuiet weden können, wude in [5, 6] in numeischen Simulationen nachgewiesen. Dass dieses Vefahen schon als didaktisches Wekzeug eingesetzt wude, ist uns nicht bekannt. Um den Begiff de Geodäten einzufühen, betachten wi zuest Geodäten im Raum, genaue gesagt, in einem zweidimensionalen gekümmten Raum, eine gekümmten Fläche. 1

2 Zahn, Kaus. Geodäten im Raum Eine äumliche Geodäte ist die geadestmögliche Linie in einem gekümmten Raum. Sie entspicht eine gespannten Schnu..1 Gekümmte Flächen Anhand von Flächen im Raum wid de Begiff de Kümmung eingefüht. Dabei untescheiden wi positive, negative und veschwindende Kümmung; als Pototypen weden die Sphäe, die Sattelfläche sowie die Ebene vogestellt. Ein Kiteium zu Emittlung de Kümmung ist: Ein kleines Stück de Fläche wid ausgeschnitten und flachgedückt. Reißt es dabei ein, ist die Kümmung positiv, wift es Falten, ist die Kümmung negativ. Lässt es sich ohne Eineißen ode Faltenwefen flach ausbeiten, dann ist die Kümmung null. Dieses Kiteium stellt das Vozeichen de inneen (Gaußschen) Kümmung fest. Eine gekümmte Fläche kann duch kleine ebene Flächenstücke angenähet und aus Pappe nachgebaut weden (Abb. 1 oben). Diese Flächenstücke können auch nebeneinande auf de Ebene angeodnet und als maßstabsgeechte Sektokate de gekümmten Fläche vewendet weden, wie ein Staßenatlas (Abb. 1 unten). Positiv gekümmt Positiv gekümmte Fläche, Sektokate Negativ gekümmt Negativ gekümmte Fläche, Sektokate Abb. 1: Gekümmte Flächen als Sektokaten.. Zusammenschieben von Raumsektoen Vesucht man, vie an einem gemeinsamen Eckpunkt liegende Sektoen zusammenzuschieben, gelingt das bei Sektoen eine gekümmten Fläche nicht (Abb. ). Es bleiben Lücken (die gekümmte Fläche wüde aufeißen) ode es ist zuviel Mateial da (die gekümmte Fläche wüde Falten wefen). Sektoen eine positiv gekümmten Fläche, an einem Eckpunkt zusammengeschoben. Sektoen eine negativ gekümmten Fläche, an einem Eckpunkt zusammengeschoben. Abb. : Sektoen gekümmte Flächen passen nicht zusammen..3 Gekümmte Raum um ein Schwazes Loch In Abb. 3 echts ist die Äquatoebene duch ein Schwazes Loch als Sektokate dagestellt. Die Abmessungen diese Sektoen egeben sich aus de Schwazschildmetik (links). Die Sektoen passen nicht lückenlos zusammen: Die Fläche hat eine innee Kümmung. Schwazschildmetik: ds = ( 1 s ) 1 d + dφ s = Schwazschildadius Abb. 3: Die Schwazschildmetik und die dazugehöige Sektokate fü einen Teil de Äquatoebene des Schwazen Lochs.

3 Bewegung im Gavitationsfeld in de Allgemeinen Relativitätstheoie.4 Geodäten Eine Geodäte in einem gekümmten (hie zweidimensionalen) Raum ist eine geadestmögliche Linie, sie entspicht eine gespannten Schnu. Mathematisch wid eine Geodäte duch die Geodätengleichungen (Abb. 4, links, fü die Raumzeit in de Nähe eines Schwazen Lochs) beschieben. Diese Bescheibung ist fü den Einsatz in Schule und Gundstudium nicht geeignet. In eine maßstabsgeechten Sektokate ist eine Geodäte dagegen einfach eine Geade und kann mit dem Lineal gezeichnet weden. d t M M 1 d dt = 1 M dt M M 1 d d M + 1 = 1 dφ dθ + ( M) ( ) + sin θ d θ dφ dθ d + sin θ cos θ = dφ d dφ dθ d φ = cot θ. Geodätengleichungen in de Schwazschildmetik. Wekzeug: Compute. Geodäte auf de Sektokate. Wekzeug: Lineal! Abb. 4: Geodäten: Beechnen ode Konstuieen?.5 Konstuktion von Geodäten Um eine Geodäte (gespannte Schnu) mit dem Lineal übe Sektogenzen hinweg zu zeichnen, müssen benachbate Sektoen aneinandegelegt weden. In de symmetischen Anodnung de gleichen Sektoen in Abb. 5 echts oben ist zu sehen, dass die an einem Schwazen Loch vobei gespannte Schnu ihe Richtung ändet, obwohl sie lokal gesehen an jede Stelle geadeaus läuft. Ein Geadenstück auf de zweidimensionalen Kate. Das Geadenstück auf de Kate in symmetische Anodnung. Abb. 5: Eine am Schwazen Loch vobeilaufende Geade ändet ihe Richtung. Wid eine zweite Schnu paallel zu esten gespannt (Abb. 6, die Schnüe beginnen echts im Bild als paallele Linien), ist zu sehen, dass die beiden Schnüe nicht paallel bleiben, obwohl jede einzelne eine Geodäten folgt. De Abstand de anfänglich paallelen Schnüe nimmt nach links zu. Dass Paallelen nicht paallel bleiben ist eine Eigenschaft gekümmte Räume. Diese Methode, einen gekümmten Raum und dain velaufende Geodäten zu konstuieen, kann jetzt auf eine gekümmte Raumzeit angewandt weden. Ein zweites Geadenstück, das am echten Rand paallel zum esten statet. Beide Geadenstücke auf de Kate in symmetische Anodnung. Abb. 6: Paallelen bleiben nicht paallel. 3. Geodäten in de Raumzeit Fei fallende Köpe bewegen sich auf geadestmöglichen Bahnen duch eine gekümmte Raumzeit. Ihe Weltlinien sind aumzeitliche Geodäten. 3

4 Zahn, Kaus 3.1 Minkowski-Raumzeitdiagamme ct Die Bewegung eines Köpes kann in einem Raumzeitdiagamm (Abb. 7) dagestellt weden. 9 8 Die Zeit ct (c = Lichtgeschwindigkeit) ist nach oben 7 aufgetagen, de Ot x nach echts. Die Weltlinie eines 6 Köpes bescheibt seinen Ot als Funktion de Zeit. 5 Licht beitet sich in diesem Maßstab auf Diagonalen 4 aus (c t = x). 3 In einem solchen Raumzeitdiagamm eine lokal ungekümmten Raumzeit (Inetialsystem) sind Weltlini- 1 en unbeschleunigte Köpe Geaden. 0 Weltlinie (beschleunigt) Weltlinie Licht Weltlinie (unbeschleunigt) x Abb. 7: Raumzeitdiagamm. 3. Gekümmte Raumzeit um ein Schwazes Loch Genauso wie eine gekümmte Fläche duch einzelne ungekümmte Sektoen angenähet weden kann, kann eine gekümmte Raumzeit duch einzelne ungekümmte Raumzeitsektoen angenähet weden. Die Abmessungen diese Sektoen egeben sich aus de Metik. Auf dem Papie stehen nu zwei Dimensionen zu Vefügung, so dass nu ein Unteaum aus de viedimensionalen Raumzeit dagestellt weden kann. Zusätzlich zu Zeitkoodinate t wählen wi als Raumkoodinate die Radialkoodinate. In den Raumzeitdiagammen können adiale Bewegungen, z. B. ein feie Fall nach unten beschieben weden. In Abb. 8 sind echts maßstabsgeechte Raumzeitsektoen in de Nähe eines Schwazen Lochs dagestellt ( = 1.5 s s, ct = s, de Vetex im Mittelpunkt hat die(ct,)-koodinaten (1.5 s,.5 s )). Schwazschildmetik: ds = ( 1 s ) c dt + ( 1 s ) 1 d s = Schwazschildadius Abb. 8: Jede Raumzeitsekto ist ein Minkowskidiagamm mit nach echts laufende Raum- und nach oben laufende Zeitkoodinate. Die Diagonalen stellen jeweils den Lichtkegel da. 3.3 Zusammenschieben von Raumzeitsektoen Um eine Geodäte übe die Genze zwischen zwei Raumzeitsektoen zu ziehen, müssen diese zusammengeschoben weden. Abb. 9 links: Zwei Sektoen mit eine gemeinsamen Kante. Mitte: Die beiden Sektoen zusammengeschoben, de obee gedeht. Die Lichtgeschwindigkeit ist in beiden Sektoen unteschiedlich, was nicht elaubt ist! Rechts: Die beiden Sektoen zusammengeschoben, de obee loentztansfomiet. Die Lichtgeschwindigkeit ist in beiden Sektoen gleich. Falsch! Richtig! Abb. 9: Die Lichtgeschwindigkeit ist in beiden Sektoen gleich. In Abb. 10 weden vie um einen gemeinsamen Vetex liegende Raumzeitsektoen zusammengeschoben (und dabei ggf. loentztansfomiet). Sie passen nicht zusammen: Die Raumzeit ist gekümmt! Abb. 10: Die Raumzeitsektoen passen nicht zusammen. 4

5 Bewegung im Gavitationsfeld in de Allgemeinen Relativitätstheoie 3.4 Konstuktion von Geodäten Links in Abb. 11 ist die Sektokate eines zweidimensionalen Ausschnitts aus de gekümmten Raumzeit in de Nähe eines Schwazen Lochs dagestellt. Die Raumkoodinate läuft von links nach echts im Beeich 1.5 s s, die Zeitkoodinate ct von unten nach oben im Beeich s. Die Vetizes in de Mitte haben die -Koodinate.5 s. Die Diagonalen stellen jeweils den Lichtkegel da. Im Sekto unten echts statet die Weltlinie eines Köpes (ot), de sich anfänglich in Ruhe bei =.7 s befindet. Um die Weltlinie als Geade duch die Raumzeitsektoen fotzusetzen, müssen diese entspechend loentztansfomiet aneinande gelegt weden (Bild Mitte). In de symmetischen (zuücktansfomieten) Anodnung de Sektoen (echts) ist zu sehen, dass die Weltlinie ihe Richtung (= Geschwindigkeit) ändet, obwohl sie lokal gesehen an jede Stelle geadeaus läuft. De Köpe fällt im Gavitationsfeld beschleunigt nach unten. Die Weltlinie des fallenden Köpes (t) entspicht näheungsweise de aus de Newton schen Physik bekannten, dot aus = g folgenden Paabel. Abb. 11: Weltlinie eines fei fallenden Köpes (ot) in eine Sektokate de Schwazschildmetik. Wid ein zweite Köpe aus gößee Höhe (= 3.5 s ) gleichzeitig mit dem esten fallengelassen, so beginnt seine Weltlinie paallel zu esten (links in Abb. 1). In de echten Sektokate sind beide Weltlinien gezeigt. Die anfänglich paallelen Weltlinien bleiben nicht paallel. De Abstand de fallenden Köpe nimmt mit de Zeit beschleunigt zu, obwohl jede einzelne Weltlinie eine Geodäte ist. Diese elative Beschleunigung wid in de Newtonschen Physik duch die Gezeitenkäfte beschieben. Sie ist in de Allgemeinen Relativitätstheoie eine diekte Folge de Kümmung unsee Raumzeit. Abb. 1: Zwei im Gavitationsfeld hinteeinande fei fallende Köpe steben auseinande. 4. Liteatu [1] Zahn, C.; Kaus, U.: Wokshops zu Allgemeinen Relativitätstheoie im Schülelabo Raumzeitwekstatt, Tagungsbeitag zu Fühjahstagung Didaktik de Physik, Hannove 010. [] Zahn, C.; Kaus, U.: Wi basteln ein Schwazes Loch, Abeitsheft mit Bastelbögen, 004, [3] Kaus, U.; Zahn, C.: Wi basteln ein Schwazes Loch Unteichtsmateialien zu Allgemeinen Relativitätstheoie, Paxis de Natuwissenschaften Physik, Didaktik de Relativitätstheoien, Heft 4/54, 38 43, 005. [4] Regge, T.: Geneal Relativity without Coodinates, Il Nuovo Cimento 19, , [5] R. M. Williams, G. F. R. Ellis:, Regge Calculus and Obsevations. I. Fomalism and Applications to Radial Motion and Cicula Obits, Geneal Relativity and Gavitation 13 (4), , [6] R. M. Williams, G. F. R. Ellis:, Regge Calculus and Obsevations. II. Futhe Applications, Geneal Relativity and Gavitation 16 (11), ,

Lösung V Veröentlicht:

Lösung V Veröentlicht: 1 Bewegung entlang eines hoizontalen Keises (a) Ein Ball de Masse m hängt an einem Seil de Länge L otiet mit eine konstanten Geschwindigkeit v auf einem hoizontalen Keis mit Radius, wie in Abbildung 2

Mehr

Mathematik für Ingenieure 2

Mathematik für Ingenieure 2 Mathematik fü Ingenieue Doppelintegale THE SERVICES Mathematik PROVIDER fü Ingenieue DIE - Doppelintegale Anschauung des Integals ingenieusmäßige Intepetation des bestimmten Integals Das bestimmte Integal

Mehr

Kapitel 4 Energie und Arbeit

Kapitel 4 Energie und Arbeit Kapitel 4 negie und Abeit Kaftfelde Wenn wi jedem unkt des Raums eindeutig einen Kaft-Vekto zuodnen können, ehalten wi ein Kaftfeld F ( ) Häufig tauchen in de hysik Zental-Kaftfelde auf : F( ) f ( ) ˆ

Mehr

8. Bewegte Bezugssysteme

8. Bewegte Bezugssysteme 8. Bewegte Bezugssysteme 8.1. Vobemekungen Die gundlegenden Gesetze de Mechanik haben wi bishe ohne Bezug auf ein spezielles Bezugssystem definiet. Gundgesetze sollen ja auch unabhängig vom Bezugssystem

Mehr

Kreisbewegungen (und gekrümmte Bewegungen allgemein)

Kreisbewegungen (und gekrümmte Bewegungen allgemein) Auf den folgenden Seiten soll anhand de Gleichung fü die Zentipetalbeschleunigung, a = v 2 / 1, dagelegt weden, dass es beim Ekläen physikalische Sachvehalte oftmals veschiedene Wege gibt, die jedoch fühe

Mehr

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s 2.4 Konsevative Käfte und Potential /mewae/sc/kap2 4s3 29-0-0 Einige Begiffe: Begiff des Kaftfeldes: Def.: Kaftfeld: von Kaft-Wikung efüllte Raum. Dastellung: F ( ) z.b. Gavitation: 2. Masse m 2 in Umgebung

Mehr

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008 Übungsblatt 4 zu Physik II Von Patik Hlobil (38654), Leonhad Doeflinge (496) Übungen zu Kusvolesung Physik II (Elektodynamik) Sommesemeste8 Übungsblatt N. 4 Aufgabe 3: Feldstäke im Innen eines Ladungsinges

Mehr

Bogenweichen. Entstehung von Außen- und Innenbogenweichen aus einer einfachen Weiche

Bogenweichen. Entstehung von Außen- und Innenbogenweichen aus einer einfachen Weiche Technische Univesität Desden Faultät Veehswissenschaften "Fiedich List" Pof. f. Gestaltung v. Bahnanlagen Bogenweichen Pof. Fengle A 9 Vesion 1-1 Gundlagen Die feizügige Anodnung von Weichen in einem Gleisplan

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EPI 06 I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang EPI WS 2006/07 Dünnwebe/Faessle 1 x 1 = x 1 y 1 x 1 x 1 = y 1 I)Mechanik: 1.Kinematik, 2.Dynamik Bewegung in Ebene und Raum (2- und

Mehr

Projekt : Geometrie gotischer Kirchenfenster Jgst. 10

Projekt : Geometrie gotischer Kirchenfenster Jgst. 10 Pojekt : Geometie gotische Kichenfenste Jgst. 0 Begiffsekläung : Das Wot Gotik wude im 5. Jahhundet von italienischen Humanisten fü eine nichtantike, im Noden entstandene babaische (gotische) Kunst gebaucht.

Mehr

2.12 Dreieckskonstruktionen

2.12 Dreieckskonstruktionen .1 Deieckskonstuktionen 53.1 Deieckskonstuktionen.1.1 B aus a, b und c. Keis um mit Radius b 3. Keis um B mit Radius a 4. Schnittpunkt de Keise ist Bemekung: Es entstehen zwei konguente B..1. B aus α,

Mehr

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher Seminavotag Diffeentialgeometie: Rotationsflächen konstante Gaußsche Kümmung Paul Ebeman, Jens Köne, Mata Vitalis 1. Juni 22 Inhaltsvezeichnis Vobemekung 2 1 Einfühung 2 2 Este Fundamentalfom 2 3 Vetägliche

Mehr

Von Kepler zu Hamilton und Newton

Von Kepler zu Hamilton und Newton Von Kele zu Hamilton und Newton Eine seh elegante Vaiante von 3 Kele egeben 1 Newton 1. Das este Kele sche Gesetz 2. Das zweite Kele sche Gesetz 3. Die Bahngeschwindigkeit v und de Hodogah 4. Die Beschleunigung

Mehr

Experimentierfeld 1. Statik und Dynamik. 1. Einführung. 2. Addition von Kräften

Experimentierfeld 1. Statik und Dynamik. 1. Einführung. 2. Addition von Kräften Expeimentiefeld 1 Statik und Dynamik 1. Einfühung Übelegungen im Beeich de Statik und Dynamik beuhen stets auf de physikalischen Göße Kaft F. Betachten wi Käfte und ihe Wikung auf einen ausgedehnten Köpe,

Mehr

Ebene und räumliche Koordinatentransformationen

Ebene und räumliche Koordinatentransformationen Inhalte Mathematische Gundlagen Koodinatensysteme Ebene und äumliche Koodinatentansfomationen Zentalpespektive HS BO Lab. fü Photogammetie: Ebene und äumliche Koodinatensysteme 1 Veschiebung (Tanslation)

Mehr

Workshops zur Allgemeinen Relativitätstheorie im Schülerlabor Raumzeitwerkstatt an der Universität Hildesheim

Workshops zur Allgemeinen Relativitätstheorie im Schülerlabor Raumzeitwerkstatt an der Universität Hildesheim Didaktik der Physik Frühjahrstagung Hannover 2010 Workshops zur Allgemeinen Relativitätstheorie im Schülerlabor Raumzeitwerkstatt an der Universität Hildesheim Corvin Zahn, Ute Kraus Universität Hildesheim,

Mehr

6 Die Gesetze von Kepler

6 Die Gesetze von Kepler 6 DIE GESETE VON KEPER 1 6 Die Gesetze von Kele Wi nehmen an, dass de entalköe (Sonne) eine seh viel gössee Masse M besitzt als de Planet mit de Masse m, so dass de Schweunkt in gute Näheung im entum de

Mehr

6. Gravitation. m s. r r. G = Nm 2 /kg 2. Beispiel: Mond. r M = 1738 km

6. Gravitation. m s. r r. G = Nm 2 /kg 2. Beispiel: Mond. r M = 1738 km 00 0 6. Gavitation Gavitationswechselwikung: eine de vie fundaentalen Käfte (die andeen sind elektoagnetische, schwache und stake Wechselwikung) Ein Köpe it asse i Abstand zu eine Köpe it asse übt auf

Mehr

Ebene Bildkoordinatentransformationen. HS BO Lab. für Photogrammetrie: Ebene und räumliche Koordinatensysteme 1

Ebene Bildkoordinatentransformationen. HS BO Lab. für Photogrammetrie: Ebene und räumliche Koordinatensysteme 1 Ebene Bildkoodinatentansfomationen HS BO Lab. fü Photogammetie: Ebene und äumliche Koodinatensysteme 1 Ebene Bildkoodinatentansfomation Veschiebung (Tanslation) (2 Paamete): x, y T x, y Übe Tanslationen

Mehr

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler Klassische Mechanik - Feienkus Sommesemeste 2011, Pof. Metzle 1 Inhaltsvezeichnis 1 Kelegesetze 3 2 Zweiköeoblem 3 3 Zentalkäfte 4 4 Bewegungen im konsevativen Zentalkaftfeld 5 5 Lenzsche Vekto 7 6 Effektives

Mehr

Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie

Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie Übungsaufgaben zum Püfungsteil Lineae Algeba /Analytische Geometie Aufgabe Von de Ebene E ist folgende Paametefom gegeben: 3 E: x= 4 + 0 + s 3 ;,s 0 3 4 a) Duch geeignete Wahl de Paamete und s ehält man

Mehr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr PHYSIK A Zusatvolesung SS 13 3. Gadient Divegen & Rotation 3.1 De Gadient eines Skalafeldes Sei ein skalaes eld.b. ein Potential das von abhängt. Dann kann man scheiben: d d d d d d kann duch eine Veändeung

Mehr

[ M ] = 1 Nm Kraft und Drehmoment

[ M ] = 1 Nm Kraft und Drehmoment Stae Köpe - 4 HBB mü 4.2. Kaft und Dehmoment Käfte auf stae Köpe weden duch Kaftvektoen dagestellt. Wie in de Punktmechanik besitzen diese Kaftvektoen einen Betag und eine Richtung. Zusätzlich wid abe

Mehr

Stereo-Rekonstruktion. Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion

Stereo-Rekonstruktion. Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion Steeo-Rekonstuktion Geometie de Steeo-Rekonstuktion Steeo-Kalibieung Steeo-Rekonstuktion Steeo-Rekonstuktion Kameakalibieung kann dazu vewendet weden, um aus einem Bild Weltkoodinaten zu ekonstuieen, falls

Mehr

Protein. Proteine. Zentrales Dogma. BIOINF1110 Einführung in die Bioinforma7k. Molekulare Maschinen Proteinstrukturen und ihre Funk/on

Protein. Proteine. Zentrales Dogma. BIOINF1110 Einführung in die Bioinforma7k. Molekulare Maschinen Proteinstrukturen und ihre Funk/on BIOINF111 infühung in die Bioinfoma7k Molekulae Maschinen Poteinstuktuen und ihe Funk/on Olive Kohlbache Angewandte Bioinfomak Zentum fü Bioinfomak Tübingen Poteine 2 Zentales Dogma DNA Tanskiption mrna

Mehr

Kepler sche Bahnelemente

Kepler sche Bahnelemente Keple sche Bahnelemente Siegfied Eggl In de Dynamischen Astonomie ist es üblich, das Vehalten von gavitativ inteagieenden Köpen nicht im katesischen Koodinatensystem zu studieen, sonden die Entwicklung

Mehr

Versiera der Agnesi INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL. Text Nr Stand

Versiera der Agnesi INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.  FRIEDRICH W. BUCKEL. Text Nr Stand Vesie de Agnesi Tet N. 5455 Stnd 5.. FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de 5455 Vesie de Agnesi Vowot Die Vesie de Agnesi ist eine lgebische Kuve. Gdes, die mn uf eine

Mehr

Seminar Gewöhnliche Dierentialgleichungen Anwendungen in der Mechanik

Seminar Gewöhnliche Dierentialgleichungen Anwendungen in der Mechanik Semina Gewöhnliche Dieentialgleichungen Anwendungen in de Mechanik Geog Daniilidis 6.Juli 05 Inhaltsvezeichnis Einleitung Motivation:.Newtonsche Gesetz 3 Vowissen 4 Konsevativen Systeme 3 5 Zentale Kaftfelde

Mehr

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November Seie 3 29. Oktobe 2012 Vozuechnen bis zum 9. Novembe Aufgabe 1: Zwei Schwimme spingen nacheinande vom Zehn-Mete-Tum ins Becken. De este Schwimme lässt sich vom Rand des Spungbetts senkecht heuntefallen,

Mehr

Abiturprüfung Physik, Grundkurs

Abiturprüfung Physik, Grundkurs Seite 1 von 10 Abitupüfung 2011 Physik, Gundkus Aufgabenstellung: Aufgabe 1: Definition und Messung de Feldstäke B (auch Flussdichte genannt) magnetische Felde kontaktlose Messung goße Stöme 1.1 Die Abbildung

Mehr

1 Umkehrfunktionen und implizite Funktionen

1 Umkehrfunktionen und implizite Funktionen $Id: impliit.tex,v 1.6 2012/10/30 14:00:59 hk Exp $ 1 Umkehfunktionen und impliite Funktionen 1.1 De Umkehsat Am Ende de letten Situng hatten wi alle Vobeeitungen um Beweis des Umkehsates abgeschlossen,

Mehr

Graphische Datenverarbeitung. Polar-, Zylinder- und Kugelkoordinatensysteme. Prof. Dr. Elke Hergenröther. h_da

Graphische Datenverarbeitung. Polar-, Zylinder- und Kugelkoordinatensysteme. Prof. Dr. Elke Hergenröther. h_da Gaphische Datenveabeitung Pola-, Zylinde- und Kugelkoodinatensysteme Pof. D. Elke Hegenöthe h_da GDV : Pola-, Zylinde-und Kugelkoodinatensystem Koodinatensysteme zu Dastellung geometische Daten: Katesisches

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

3b) Energie. Wenn Arbeit W von außen geleistet wird: W = E gesamt = E pot + E kin + EPI WS 2006/07 Dünnweber/Faessler

3b) Energie. Wenn Arbeit W von außen geleistet wird: W = E gesamt = E pot + E kin + EPI WS 2006/07 Dünnweber/Faessler 3b) Enegie (Fotsetzung) Eines de wichtigsten Natugesetze Die Gesamtenegie eines abgeschlossenen Systems ist ehalten, also zeitlich konstant. Enegie kann nu von eine Fom in eine andee vewandelt weden kann

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

Physik A VL6 ( )

Physik A VL6 ( ) Physik A VL6 (19.10.01) Bescheibung on Bewegungen - Kinematik in dei Raumichtungen II Deh- und Rotationsbewegungen Zusammenfassung: Kinematik Deh- und Rotationsbewegungen Deh- und Rotationsbewegungen Paamete

Mehr

5. Vorlesung EP. f) Scheinkräfte 3. Arbeit, Leistung, Energie und Stöße

5. Vorlesung EP. f) Scheinkräfte 3. Arbeit, Leistung, Energie und Stöße 5. Volesung EP I) Mechanik 1. Kinematik.Dynamik a) Newtons Axiome (Begiffe Masse und Kaft) b) Fundamentale Käfte c) Schwekaft (Gavitation) d) Fedekaft e) Reibungskaft f) Scheinkäfte 3. Abeit, Leistung,

Mehr

Tutoriumsaufgaben. 1. Aufgabe. Die Eulerschen Formeln für Geschwindigkeiten und Beschleunigungen auf einem Starrkörper lauten:

Tutoriumsaufgaben. 1. Aufgabe. Die Eulerschen Formeln für Geschwindigkeiten und Beschleunigungen auf einem Starrkörper lauten: Technische Univesität elin Fakultät V Institut fü Mechanik Fachgebiet fü Kontinuumsmechanik und Mateialtheoie Seketaiat MS 2, Einsteinufe 5, 10587 elin 9. Übungsblatt-Lösungen Staköpekinematik I SS 2016

Mehr

5. Gravitation Drehimpuls und Drehmoment. Mechanik Gravitation

5. Gravitation Drehimpuls und Drehmoment. Mechanik Gravitation Mechanik Gavitation 5. Gavitation 5.1. Dehipuls und Dehoent De Dehipuls titt bei Dehbewegungen an die Stelle des Ipulses. Wi betachten zunächst den Dehipuls eines Teilchens (späte weden wi den Dehipuls

Mehr

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck Pof. D.-Ing. Victo Gheoghiu Kolbenmaschinen 88 5. Massenausgleich 5. Käfte und Momente eines Einzylindemotos 5.. Käfte und Momente duch den Gasduck S N De Gasduck beitet sich in alle Richtungen aus und

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwöte von de letzten Volesung können Sie sich noch einnen? Positive und negative Ladung Das Coulombsche Gesetz F 1 4πε q q 1 Quantisieung und haltung de elektischen Ladung e 19 1, 6 1 C Das

Mehr

Teilbereich 5: Exponential Funktionen 1. Grundkursniveau. Hier eine Musteraufgabe mit Lösung Auf CD alles komplett. Datei Nr

Teilbereich 5: Exponential Funktionen 1. Grundkursniveau. Hier eine Musteraufgabe mit Lösung Auf CD alles komplett. Datei Nr Püfungsaufgaben Mündliches Abitu Analysis Teilbeeich 5: Eponential Funktionen Gundkusniveau Hie eine Musteaufgabe mit Lösung Auf CD alles komplett Datei N. 495 Fiedich Buckel Oktobe 003 INTERNETBIBLIOTHEK

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

1. Übungsblatt zur Theoretischen Physik I im SS16: Mechanik & Spezielle Relativitätstheorie. Newtonsche Mechanik

1. Übungsblatt zur Theoretischen Physik I im SS16: Mechanik & Spezielle Relativitätstheorie. Newtonsche Mechanik 1. Übungsblatt zu Theoetischen Physik I im SS16: Mechanik & Spezielle elativitätstheoie Newtonsche Mechanik Aufgabe 1 Abhängigkeit physikalische Gesetze von de Zeitdefinition Eine wesentliche Gundlage

Mehr

AR: Grundlagen der Gravitation

AR: Grundlagen der Gravitation Auto: Walte Bislin 1 von 1 walte.bislins.ch/doku/a 08.10.2013 17:42 AR: Gundlagen de Gavitation In de klassischen Physik wid die Gavitation duch eine Feldtheoie beschieben. Seit de allgemeinen Relativitätstheoie

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker und Biologen

PN 2 Einführung in die Experimentalphysik für Chemiker und Biologen PN 2 Einfühung in die alphysik fü Chemike und Biologen 2. Volesung 27.4.07 Nadja Regne, Thomas Schmiee, Gunna Spieß, Pete Gilch Lehstuhl fü BioMolekulae Optik Depatment fü Physik LudwigMaximiliansUnivesität

Mehr

Vorlesung Technische Mechanik 1 Statik, Wintersemester 2007/2008. Technische Mechanik

Vorlesung Technische Mechanik 1 Statik, Wintersemester 2007/2008. Technische Mechanik Volesung Technische Mechanik 1 Statik, Wintesemeste 2007/2008 Technische Mechanik 1. Einleitung 2. Statik des staen Köpes 2.1 Äquivalenz von Käfteguppen am staen Köpe 2.2 Käfte mit gemeinsamem Angiffspunkt

Mehr

Ouvertüre: Kreise in gotischem Maßwerk

Ouvertüre: Kreise in gotischem Maßwerk Ouvetüe: Keise in gotischem Maßwek 1 Wi beginnen unseen Spaziegang duch die Keisgeometie mit de Konstuktion einige inteessante und in de Kunst vielfach auftetende Figuen, die sich aus Keisbögen zusammensetzen.

Mehr

7 Trigonometrie. 7.1 Defintion am Einheitskreis. Workshops zur Aufarbeitung des Schulsto s Wintersemester 2014/15 7 TRIGONOMETRIE

7 Trigonometrie. 7.1 Defintion am Einheitskreis. Workshops zur Aufarbeitung des Schulsto s Wintersemester 2014/15 7 TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

F63 Gitterenergie von festem Argon

F63 Gitterenergie von festem Argon 1 F63 Gitteenegie von festem Agon 1. Einleitung Die Sublimationsenthalpie von festem Agon kann aus de Dampfduckkuve bestimmt weden. Dazu vewendet man die Clausius-Clapeyon-Gleichung. Wenn außedem noch

Mehr

Gravitationsgesetz. Name. d in km m in kg Chaldene 4 7, Callirrhoe 9 8, Ananke 28 3, Sinope 38 7, Carme 46 1,

Gravitationsgesetz. Name. d in km m in kg Chaldene 4 7, Callirrhoe 9 8, Ananke 28 3, Sinope 38 7, Carme 46 1, . De Jupite hat etwa 60 Monde auch Tabanten genannt. De Duchesse seines gößten Mondes Ganyed betägt 56k. Es gibt abe auch Monde die nu einen Duchesse von etwa eine Kiloete haben. Die Monde des Jupites

Mehr

Kapitel 13. Das Wasserstoff-Atom Energiewerte des Wasserstoff-Atoms durch Kastenpotential-Näherung

Kapitel 13. Das Wasserstoff-Atom Energiewerte des Wasserstoff-Atoms durch Kastenpotential-Näherung Kapitel 13 Das Wassestoff-Atom 13.1 negiewete des Wassestoff-Atoms duch Kastenpotential-Näheung Das gobe Atommodell des im Potentialtopf eingespeten Atoms vemag in qualitative Weise das Aufteten von Linienspekten

Mehr

Kreis / Kugel - Integration. 5. Kugelsegment 6. Kreiskegel 7. Kugelausschnitt 8. Rotationskörper: Torus

Kreis / Kugel - Integration. 5. Kugelsegment 6. Kreiskegel 7. Kugelausschnitt 8. Rotationskörper: Torus Keis / Kugel - Integation 1. Keis 2. Kugel 3. Keissekto 4. Keissegment 5. Kugelsegment 6. Keiskegel 7. Kugelausschnitt 8. Rotationsköpe: Tous 1. Keis Fomelsammlung - Fläche: A = 2 Integation katesische

Mehr

Übungen zur Ingenieur-Mathematik III WS 2013/14 Blatt

Übungen zur Ingenieur-Mathematik III WS 2013/14 Blatt Übungen zu Ingenieu-Mathematik III WS 3/4 Blatt 7..4 Aufgabe 38: Betachten Sie eine Ellipse (in de Ebene) mit den Halbachsen a und b und bestimmen Sie die Kümmung in den Scheitelpunkten. Lösung:Eine Paametisieung

Mehr

Experimentalphysik II (Kip SS 2007)

Experimentalphysik II (Kip SS 2007) Epeimentalphysik II (Kip SS 7) Zusatzvolesungen: Z- Ein- und mehdimensionale Integation Z- Gadient, Divegenz und Rotation Z-3 Gaußsche und Stokessche Integalsatz Z-4 Kontinuitätsgleichung Z-5 Elektomagnetische

Mehr

Gruppentheoretische Methoden in der Physik 1 Prof. Dr. H.-R. Trebin Auszug aus dem Vorlesungsmanuskript, WS 06/07

Gruppentheoretische Methoden in der Physik 1 Prof. Dr. H.-R. Trebin Auszug aus dem Vorlesungsmanuskript, WS 06/07 1 Guppentheoetische Methoden in de Physik 1 Pof. D. H.-R. Tebin Auszug aus dem Volesungsmanuskipt, WS 06/07 3.3.3 Die eigentlichen Punktguppen Diese Punktguppen enthalten keine Spiegelungen und keine Invesion.

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 DER KREIS

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 DER KREIS ARBEITSBLATT 15 DER KREIS Zunächst einmal wollen wi uns übelegen, was man mathematisch unte einem Keis vesteht. Definition: Ein Keis ist die Menge alle Punkte, die von einem gegebenen Punkt ( Keismittelpunkt)

Mehr

9.2. Bereichsintegrale und Volumina

9.2. Bereichsintegrale und Volumina 9.. Beeichsintegale und Volumina Beeichsintegale Rein fomal kann man Integale übe einem (meßbaen) Beeich B bilden, indem man eine möglicheweise auf einem gößeen Beeich definiete Funktion f mit de chaakteistischen

Mehr

6.Vorlesung 6. Vorlesung EP b) Energie (Fortsetzung): Energie- und Impulserhaltung c) Stöße 4. Starre Körper a) Drehmoment b) Schwerpunkt Versuche:

6.Vorlesung 6. Vorlesung EP b) Energie (Fortsetzung): Energie- und Impulserhaltung c) Stöße 4. Starre Körper a) Drehmoment b) Schwerpunkt Versuche: 6. Volesung EP I) Mechanik. Kinematik. Dynamik 3. a) Abeit b) Enegie (Fotsetzung): Enegie- und Impulsehaltung c) Stöße 4. Stae Köpe a) Dehmoment b) Schwepunkt 6.Volesung Vesuche: Hüpfende Stahlkugel Veküztes

Mehr

Dr. Jan Friedrich Nr L 2

Dr. Jan Friedrich Nr L 2 Übungen zu Expeimentalphysik 4 - Lösungsvoschläge Pof. S. Paul Sommesemeste 5 D. Jan Fiedich N. 4 9.5.5 Email Jan.Fiedich@ph.tum.de Telefon 89/89-1586 Physik Depatment E18, Raum 3564 http://www.e18.physik.tu-muenchen.de/teaching/phys4/

Mehr

Aufgabe 1: LKW. Aufgabe 2: Drachenviereck

Aufgabe 1: LKW. Aufgabe 2: Drachenviereck Aufgabe 1: LKW Ein LKW soll duch einen Tunnel mit halbkeisfömigem Queschnitt fahen. Die zweispuige Fahbahn ist insgesamt 6 m beit; auf beiden Seiten befindet sich ein Randsteifen von je 2 m Beite. Wie

Mehr

1 Worum es geht Archimedes pflegte seine gelehrten Besucher mit der Frage zu nerven, wie groß der rote Anteil an der gesamten Kreisfläche sei.

1 Worum es geht Archimedes pflegte seine gelehrten Besucher mit der Frage zu nerven, wie groß der rote Anteil an der gesamten Kreisfläche sei. Hans Walse, [20071228e] De Bat des Achimedes Anegung: [Netz/Noel 2007] 1 Woum es geht Achimedes pflegte seine gelehten Besuche mit de Fage zu neven, wie goß de ote Anteil an de gesamten Keisfläche sei.

Mehr

Mechanik. 2. Dynamik: die Lehre von den Kräften. Physik für Mediziner 1

Mechanik. 2. Dynamik: die Lehre von den Kräften. Physik für Mediziner 1 Mechanik. Dynamik: die Lehe von den Käften Physik fü Medizine 1 Usache von Bewegungen: Kaft Bislang haben wi uns auf die Bescheibung von Bewegungsvogängen beschänkt, ohne nach de Usache von Bewegung zu

Mehr

Greedy Algorithmen für aufspannende Arboreszenzen

Greedy Algorithmen für aufspannende Arboreszenzen Geedy Aloithmen fü aufspannende Aboeszenzen Biit Hubet 23. Juni 29 1 Minimal aufspannende Bäume 1.1 Wiedeholun Sei G=(V, E) ein zusammenhänende Gaph, wobei V die Mene de Knoten und E die Mene de Kanten

Mehr

Lösungen. Mathematik ISME Matura Gegeben ist die Funktionsschar f a (x) = ax e a2 x 2, wobei x R und a > 0 ist. 12 Punkte Vorerst sei a = 2.

Lösungen. Mathematik ISME Matura Gegeben ist die Funktionsschar f a (x) = ax e a2 x 2, wobei x R und a > 0 ist. 12 Punkte Vorerst sei a = 2. Mathematik ISME Matua 5. Gegeen ist die Funktionsscha f a ( = a e a, woei R und a > ist. Punkte Voest sei a =. (a Beechnen Sie i. die Nullstelle ii. die Gleichung de Asymptote fü iii. die Etema iv. die

Mehr

Bezugssysteme neu beleuchtet

Bezugssysteme neu beleuchtet Bezugssysteme neu beleuchtet D. Holge Hauptmann Euopa-Gymnasium Wöth Bezugsysteme neu beleuchtet, Folie 1 Kleine Vobemekung Beim Bezugssystemwechsel: ändet sich die mathematische Bescheibung das physikalische

Mehr

Analytische Geometrie Übungsaufgaben 2 Gesamtes Stoffgebiet

Analytische Geometrie Übungsaufgaben 2 Gesamtes Stoffgebiet Analytische Geometie Übungsaufgaben Gesamtes Stoffgebiet Pflichtteil (ohne Fomelsammlung und ohne GTR): P: a) Püfe, ob das Deieck ABC gleichschenklig ist: A(/7/), B(-//), C(//) b) Püfe, ob das Deieck ABC

Mehr

2.6. Wirbelströme und Hysterese

2.6. Wirbelströme und Hysterese 64 Wibelstöme und Hysteese.6. Wibelstöme und Hysteese Fü die bisheigen Betachtungen blieben zwei wesentliche Aspekte unbeachtet. Zum einen wuden bei den Feldbeechnungen stationäe Vehältnisse angenommen

Mehr

Kapitel 3 Kräfte und Drehmomente

Kapitel 3 Kräfte und Drehmomente Kapitel 3 Käfte und Dehmomente Käfte Messung und physikalische Bedeutung eine Kaft : Messung von Masse m Messung von Beschleunigung a (Rückgiff auf Längen- und Zeitmessung) Aus de Messung von Masse und

Mehr

{ } e r. v dv C 1. g R. dr dt. dv dr. dv dr v. dv dt G M. 2 v 2. F (r) r 2 e r. r 2. (g nicht const.)

{ } e r. v dv C 1. g R. dr dt. dv dr. dv dr v. dv dt G M. 2 v 2. F (r) r 2 e r. r 2. (g nicht const.) Otsabhängige Käfte Bsp.: akete i Gavitationsfeld (g nicht const.) F () Nu -Kop. G M 2 e (späte eh) a v dv a d v dv v dv d v dv 1 G M 2 v2 C 1 1 2 v (Abschuss vo Pol) d G M 2 C 1 d 2 G M dv d v 1 2 v 2

Mehr

Arbeit in Kraftfeldern

Arbeit in Kraftfeldern Abeit in Kaftfelden In einem Kaftfeld F ( ) ist F( )d die vom Feld bei Bewegung eines Köps entlang dem Weg geleistete Abeit. Achtung: Vozeichenwechsel bzgl. voheigen Beispielen Konsevative Kaftfelde Ein

Mehr

C Aufgabenlösungen zu Kapitel 3

C Aufgabenlösungen zu Kapitel 3 C Aufgabenlösungen zu Kapitel 3 C.1 ösung de Übungsaufgabe 3.1 In Beispiel 3.5 (Buch S.92) wude eine komplexe Abschlussimpedanz Z A = (37,5+j150) übe eine eitung mit de änge l e / = 0,194 und dem eitungswellenwidestand

Mehr

Wasserstoff mit SO(4)-Symmetrie

Wasserstoff mit SO(4)-Symmetrie Wassestoff mit SO(4)-Symmetie von Eduad Belsch Univesität Hambug 0. Dezembe 0 Inhaltsvezeichnis Einleitung Runge-Lenz-Vekto. klassisch......................................... quantenmechanisch..................................

Mehr

Einführung in die Physik I. Wärme 3

Einführung in die Physik I. Wärme 3 Einfühung in die Physik I Wäme 3 O. von de Lühe und U. Landgaf Duckabeit Mechanische Abeit ΔW kann von einem Gas geleistet weden, wenn es sein olumen um Δ gegen einen Duck p ändet. Dies hängt von de At

Mehr

Mehrkörperproblem & Gezeitenkräfte

Mehrkörperproblem & Gezeitenkräfte 508.55 Satellitengeodäsie Mehköpepoblem & Gezeitenkäfte Tosten Maye-Gü Tosten Maye-Gü Bewegungsgleichung Bewegungsgleichung (Keplepoblem): Diffeentialgleichung. Odnung ( t) ( t) GM ( t) Bestimmt bis auf

Mehr

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit 4 Stak-Effekt Als Anwendung de Stöungstheoie behandeln wi ein Wassestoffatom in einem elektischen Feld. Fü den nichtentateten Gundzustand des Atoms füht dies zum quadatischen Stak-Effekt, fü die entateten

Mehr

Einführung in die Theoretische Physik

Einführung in die Theoretische Physik Einfühung in die Theoetische Physik De elektische Stom Wesen und Wikungen Teil : Gundlagen Siegfied Pety Fassung vom 19. Janua 013 n h a l t : 1 Einleitung Stomstäke und Stomdichte 3 3 Das Ohmsche Gesetz

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwöte von de letzten Volesung können Sie sich noch einnen? Magnetfeld: Pemanentmagnete und Elektomagnete F = qv B B Gekeuzte Felde De Hall-Effekt Geladene Teilchen auf eine Keisbahn = mv

Mehr

Bewegungen im Zentralfeld

Bewegungen im Zentralfeld Egänzungen zu Physik I Wi wollen jetzt einige allgemeine Eigenschaften de Bewegung eines Massenpunktes unte dem Einfluss eine Zentalkaft untesuchen, dh de Bewegung in einem Zentalfeld Danach soll de spezielle

Mehr

Coulombsches Potential und Coulombsches Feld von Metallkugeln TEP

Coulombsches Potential und Coulombsches Feld von Metallkugeln TEP Vewandte Begiffe Elektisches Feld, Feldstäke, elektische Fluss, elektische Ladung, Gauß-Regel, Obeflächenladungsdichte, Induktion, magnetische Feldkonstante, Kapazität, Gadient, Bildladung, elektostatisches

Mehr

Geometrie Skript für die Vorlesung: , G, Geometrie, 86-3, Ausgabe 2002

Geometrie Skript für die Vorlesung: , G, Geometrie, 86-3, Ausgabe 2002 Reseach Collection Educational Mateial Geometie Skipt fü die Volesung: 91-157, G, Geometie, 86-3, Ausgabe 2002 Autho(s): Walse, Hans Publication Date: 2002 Pemanent Link: https://doi.og/10.3929/ethz-a-004377954

Mehr

Lösung 1: Die größte Schachtel

Lösung 1: Die größte Schachtel Lösung : Die gößte Schachtel Aufgabenstellung: Aus einem DIN-A-Blatt soll eine offene, quadefömige Schachtel hegestellt weden. Welches Füllvolumen ist maximal möglich, ohne dass etwas aus de Schachtel

Mehr

Elektrischer Strom. Strom als Ladungstransport

Elektrischer Strom. Strom als Ladungstransport Elektische Stom 1. Elektische Stom als Ladungstanspot 2. Wikungen des ektischen Stomes 3. Mikoskopische Betachtung des Stoms, ektische Widestand, Ohmsches Gesetz i. Diftgeschwindigkeit und Stomdichte ii.

Mehr

Steuerungskonzept zur Vermeidung des Schattenwurfs einer Windkraftanlage auf ein Objekt

Steuerungskonzept zur Vermeidung des Schattenwurfs einer Windkraftanlage auf ein Objekt teueungskonzept zu Vemeidung des chattenwufs eine Windkaftanlage auf ein Objekt Auto: K. Binkmann Lehgebiet Elektische Enegietechnik Feithstaße 140, Philipp-Reis-Gebäude, D-58084 Hagen, fa: +49/331/987

Mehr

Nicht rotierende schwarze

Nicht rotierende schwarze Kapitel 6 Nicht otieende schwaze Löche 6.1 Chaakteisieung de Koodinaten Schwaze weiße) Löche sind wohl die signifikanteste Vohesage de allgemeinen Relativitätstheoie. Sie folgen als unmittelbae Konsequenz

Mehr

Mathematische Hilfsmittel der Physik Rechen-Test I. Markieren Sie die richtige(n) Lösung(en):

Mathematische Hilfsmittel der Physik Rechen-Test I. Markieren Sie die richtige(n) Lösung(en): Technische Betiebswitschaft Gundlagen de Physik D. Banget Mat.-N.: Mathematische Hilfsmittel de Physik Rechen-Test I Makieen Sie die ichtige(n) Lösung(en):. Geben Sie jeweils den Wahheitswet (w fü wah;

Mehr

r [0, ), φ [0, 2π), ϑ [0, π]

r [0, ), φ [0, 2π), ϑ [0, π] ET2 Koodinatenssteme 1 Koodinatenssteme Zlindekoodinaten Kugelkoodinaten P(,,) P(,,) P(,,) P(,,ϑ) cos ϑ sin ϑ sin ϑ sin cos sin ϑ cos sin ϑ = cos = sin = [, ), [, 2π), (-, ) = sin ϑ cos = sin ϑ sin = cos

Mehr

Elektrostatik. Salze lösen sich in Wasser um Lösungen geladener Ionen zu bilden, die drei Viertel der Erdoberfläche bedecken.

Elektrostatik. Salze lösen sich in Wasser um Lösungen geladener Ionen zu bilden, die drei Viertel der Erdoberfläche bedecken. Elektostatik Elektische Wechselwikungen zwischen Ladungen bestimmen gosse Teile de Physik, Chemie und Biologie. z.b. Sie sind die Gundlage fü stake wie schwache chemische Bindungen. Salze lösen sich in

Mehr

5.3 Die hypergeometrische Verteilung

5.3 Die hypergeometrische Verteilung 5.3 Die hypegeometische Veteilung Das Unenmodell fü die hypegeometische Veteilung ist die Ziehung ohne Zuücklegen. Die Une enthalte n Kugeln, davon s schwaze und w n s weiße. De Anteil p : s n de schwazen

Mehr

7.1 Mechanik der trockenen Reibung

7.1 Mechanik der trockenen Reibung 41 7 eibung Bei Köpekontakt titt neben eine omalkaft senkecht zu Beühebene i. Allg. auch eine tangentiale Kaftkomponente auf. Zu untescheiden ist de haftende Kontakt, de eine tangentiale Bindung dastellt,

Mehr

Allgemeine Relativitätstheorie

Allgemeine Relativitätstheorie Allgemeine Relativitätstheorie Eine anschauliche Einführung in die Grundlagen Wegelemente euklidischer Raum: Minkowski-Raum: y c t ds dy ds 2 =dx 2 dy 2 ds c d t ds 2 =c 2 dt 2 dx 2 dx x invariant bei

Mehr

34. Elektromagnetische Wellen

34. Elektromagnetische Wellen Elektizitätslehe Elektomagnetische Wellen 3. Elektomagnetische Wellen 3.. Die MXWELLschen Gleichungen Die MXWELLschen Gleichungen sind die Diffeentialgleichungen, die die gesamte Elektodynamik bestimmen.

Mehr

Physik 1, WS 2015/16 Musterlösung 4. Aufgabenblatt (KW 46)

Physik 1, WS 2015/16 Musterlösung 4. Aufgabenblatt (KW 46) Physik, WS 05/6 Mustelösung 4. Aufgabenblatt (KW 46 Aufgabe Welche de folgenden Aussagen sind ichtig, welche falsch und waum? (i Nu konsevative Käfte können Abeit veichten. (ii Solange nu konsevative Käfte

Mehr

Gleichseitige Dreiecke im Kreis. aus der Sicht eines Punktes. Eckart Schmidt

Gleichseitige Dreiecke im Kreis. aus der Sicht eines Punktes. Eckart Schmidt Gleichseitige Deiecke im Keis aus de Sicht eines Punktes Eckat Schmidt Zu einem Punkt und einem gleichseitigen Deieck in seinem Umkeis lassen sich zwei weitee Deiecke bilden: das Lotfußpunktdeieck und

Mehr

Experimentelle Physik II

Experimentelle Physik II Expeimentelle Physik II Sommesemeste 08 Vladimi Dyakonov (Lehstuhl Expeimentelle Physik VI VL#4/5 07/08-07-008 Tel. 0931/888 3111 dyakonov@physik.uni-wuezbug.de Expeimentelle Physik II 8. Bandstuktu und

Mehr

Gravitation und Krümmung der Raum-Zeit - Teil 1

Gravitation und Krümmung der Raum-Zeit - Teil 1 Gravitation und Krümmung der Raum-Zeit - Teil 1 Gauß hat gezeigt, daß es Möglichkeiten gibt, die Krümmung von Flächen durch inhärente Messungen auf der Fläche selbst zu bestimmen Gauß sches Krümmungsmaß

Mehr

Magnetostatik. Feldberechnungen

Magnetostatik. Feldberechnungen Magnetostatik 1. Pemanentmagnete. Magnetfeld stationäe Stöme i. Elektomagnetismus Phänomenologie ii. Magnetische Fluss Ampeesches Gesetz iii. Feldbeechnungen mit Ampeschen Gesetz i.das Vektopotenzial.

Mehr

Flächenberechnungen 2b

Flächenberechnungen 2b Flächenbeechnungen b Teil b: Flächenbeechnungen mit Integal (Fotsetzung) Datei N. 8 Juni Fiedich Buckel Intenatsgymnasium Schloß Togelow Inhalt Datei 8. Rechtecksmethoden. Ein estes goßes Beispiel. Heleitung

Mehr

Drei Kreise. Fahrrad r = = = 3 = 3. r r r. n = = = Der Flächeninhalt beträgt 6,34 cm 2.

Drei Kreise. Fahrrad r = = = 3 = 3. r r r. n = = = Der Flächeninhalt beträgt 6,34 cm 2. Dei Keise Bestimmt den Flächeninhalt de schaffieten Fläche. Die schaffiete Figu besteht aus einem gleichseitigen Deieck ( cm) und dei Keisabschnitten (gau gezeichnet). Damit beechnet sich die Gesamtfläche:

Mehr