Technische Informatik 1 Übung 6 Pipelining (Rechenübung) Andreas Tretter 24./25. November 2016

Größe: px
Ab Seite anzeigen:

Download "Technische Informatik 1 Übung 6 Pipelining (Rechenübung) Andreas Tretter 24./25. November 2016"

Transkript

1 Technische Informatik 1 Übung 6 Pipelining (Rechenübung) Andreas Tretter 24./25. November 2016

2 Aufgabe 1: Taktrate / Latenz TI1 - Übung 6: Pipelining

3 Einzeltakt-Architektur TI1 - Übung 6: Pipelining

4 Pipelining-Architektur TI1 - Übung 6: Pipelining

5 Pipelining-Architektur ps ps ps ps ps «Sowohl das Lesen als auch das Schreiben der Register erzeugt eine zusätzliche Verzögerung von jeweils 15 ps»

6 Lösung Aufgaben 1.a, 1.b 500ps IF ID EX MEM WB 100ps 120ps 90ps 130ps 60ps Langsamste Stufe Taktperiode Pipeline-Architektur: Taktperiode Einzeltakt-Architektur: 130 ps ps = 160 ps 100 ps ps= 500ps Ausführungszeit lw Pipeline-Architektur: Ausführungszeit lw Einzeltakt-Architektur: ps = 800 ps 500 ps

7 Lösung Aufgabe 1.c Taktzyklen IF ID EX MEM WB IF ID EX MEM WB IF ID EX MEM WB IF ID EX MEM WB IF ID EX MEM WB 100 Instr.... IF ID EX MEM WB Laufzeit Pipeline-Architektur: Laufzeit Einzeltakt-Architektur: Speedup: ( ) 160 ps = ns ps = ns 50 ns ns = 3.0 TI1 - Übung 6: Pipelining

8 Lösung Aufgabe 1.d Alt: IF ID EX MEM WB 100ps 120ps 90ps 130ps 60ps Langsamste Stufe Neu: Langsamste Stufe IF ID EX M1 M2 WB 100ps 120ps 90ps 65ps 65ps 60ps Neue Taktperiode: 120 ps ps = 150 ps

9 Lösung Aufgabe 1.e Taktperiode: Laufzeit: 130 ps n 130 ps n ps ps (5n ) Anzahl Register: 5n 1 n = 5 n = 10 Taktperiode 56 ps 43 ps Laufzeit für 100 Instr ns ns Anzahl Register 24 49

10 Aufgabe 2: Daten-Hazards und Forwarding TI1 - Übung 6: Pipelining

11 Aufgabe 2 Annahmen MIPS32-Architektur Kein branch delay slot Perfekte Sprungvoraussage $v0 mit 0 initialisiert MIPS Befehl: Instruktion Bedeutung slt $d, $s, $t $d ቊ 1 für $s < $t 0 sonst Zusatzaufgabe zu 2e: Warum wird die dort vorgeschlagene Konfiguration nicht auch im tatsächlichen MIPS verwendet?

12 Lösung Aufgabe 2.a Volles Forwarding Nur ALU-ALU Forwarding

13 Lösung Aufgabe 2.b Taktzyklen (volles Forwarding): (7+1) + 1 = 805 Taktzyklen (ALU-ALU-Forwarding): (7+2) + 1 = 905 Laufzeit (volles Forwarding): Laufzeit (ALU-ALU-Forwarding): ps = 161 ns ps = ns

14 Lösung Aufgabe 2.c loop: lw $t0, 0($a0) addi $a0, $a0, 4 addi $a1, $a1, -1 slt $t1, $v0, $t0 beq $t1, $zero, l1 addi $v0, $t0, 0 l1: bne $a1, $zero, loop jr $ra

15 Aufgabe 2.d ForwardA ForwardB

16 Lösung Aufgabe 2.d x (2) ForwardA ForwardB x (1) x (3)

17 Lösung Aufgabe 2.d if ( EX/MEM.RegWrite = 1 and EX/MEM.RegisterRd!= 0 and EX/MEM.RegisterRd = ID/EX.RegisterRs) { ForwardA = '1'; } if ( EX/MEM.RegWrite = 1 and EX/MEM.RegisterRd!= 0 and EX/MEM.RegisterRd = ID/EX.RegisterRt) { ForwardB = '1'; }

18 Lösung Aufgabe 2.e IF ID EX-MEM WB loop: lw $t0, 0($a0)... Es gibt keine Stalls mehr Taktzyklen: = 704 Laufzeit: ps = ns

19 Lösung Aufgabe 2.e Zusatzaufgabe zu 2e: Warum wird die vorgeschlagene Konfiguration nicht auch im tatsächlichen MIPS verwendet? Der Offset vereinfacht häufige Aufgaben Stackvariablen: sw $s0, 8($sp) Strukturen: struct {int x; int y;} * ppt; ppt->y = 0; sw $zero, 4($t1) offset x y

20 Aufgabe 3: Sprung-Vorhersage TI1 - Übung 6: Pipelining

21 Falsche Sprung-Vorhersage Sprung-Entscheidung nach MEM bekannt: Verzweigung Falsche Instruktionen Richtige Instruktion IF ID EX MEM WB IF ID EX 3 verlorene IF ID Taktzyklen Flush IF IF ID EX MEM WB Sprung-Entscheidung nach ID bekannt: Verzweigung Falsche Instruktion Richtige Instruktion IF ID EX MEM WB IF Flush IF ID EX MEM WB 1 verlorener Taktzyklus

22 Aufgabe 3 Sprung-Vorhersage Input: [5, 10, 8, 15, 7, 4, 22, 26, 3, 30] Programm: loop: lw $t0, 0($a0) slt $t1, $v0, $t0 beq $t1, $zero, l1 addi $v0, $t0, 0 l1: addi $a0, $a0, 4 addi $a1, $a1, -1 bne $a1, $zero, loop jr $ra TI1 - Übung 6: Pipelining

23 Lösung Aufgabe 3.1 (Statische Vorhersage) a) Beste statische Sprung-Vorhersagen: beq: NOT TAKEN (weil Sprung 4 von 10 Mal ausgeführt) bne: TAKEN (weil Sprung 9 von 10 Mal ausgeführt) b) Sprung-Entscheidung nach MEM bekannt Taktzyklen: (7+1) + 4 (6+1+3) = 96 Laufzeit: ps = 19.2 ns c) Sprung-Entscheidung nach ID bekannt Taktzyklen: (7+1) + 4 (6+1+1) = 86 Laufzeit: ps = 19.8 ns

24 Aufgabe Dynamische Vorhersage 2-Bit Prädiktor

25 Lösung Aufgabe 3.2 Iteration der Schleife Zustand P1 vor beq ST LT SNT LNT SNT LNT ST LT SNT LNT Sprungvorhersage T T NT NT NT NT T T NT NT Sprungentscheidung NT NT T NT T T NT NT T NT Vorhersage korrekt nein nein nein ja nein nein nein nein nein ja beq Iteration der Schleife Zustand P2 vor bne SNT LNT ST ST ST ST ST ST ST ST Sprungvorhersage NT NT T T T T T T T T Sprungentscheidung T T T T T T T T T NT Vorhersage korrekt nein nein ja ja ja ja ja ja ja nein bne

Technische Informatik 1 - HS 2016

Technische Informatik 1 - HS 2016 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik 1 - HS 2016 Lösungsvorschläge für Übung 6 Datum: 24. 25. 11. 2016 Pipelining 1 Taktrate / Latenz In dieser

Mehr

Technische Informatik 1 Übung 8 Instruktionsparallelität (Rechenübung) Andreas Tretter 8./9. Dezember Bitte immer eine Reihe freilassen

Technische Informatik 1 Übung 8 Instruktionsparallelität (Rechenübung) Andreas Tretter 8./9. Dezember Bitte immer eine Reihe freilassen Technische Informatik 1 Übung 8 Instruktionsparallelität (Rechenübung) Andreas Tretter 8./9. Dezember 2016 Bitte immer eine Reihe freilassen Ziele der Übung Verschiedene Arten von Instruktionsparallelität

Mehr

Technische Informatik 1 - HS 2016

Technische Informatik 1 - HS 2016 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik 1 - HS 2016 Lösungsvorschläge für Übung 8 Datum: 8. 9. 12. 2016 1 Instruktionsparallelität VLIW Gegeben

Mehr

Was ist die Performance Ratio?

Was ist die Performance Ratio? Was ist die Performance Ratio? Wie eben gezeigt wäre für k Pipeline Stufen und eine große Zahl an ausgeführten Instruktionen die Performance Ratio gleich k, wenn jede Pipeline Stufe dieselbe Zeit beanspruchen

Mehr

Technische Informatik 1

Technische Informatik 1 Technische Informatik 1 5 Prozessor Pipelineimplementierung Lothar Thiele Computer Engineering and Networks Laboratory Pipelining Definition 5 2 Definition Pipelining (Fliessbandverarbeitung) ist eine

Mehr

Pipelining. Die Pipelining Idee. Grundlagen der Rechnerarchitektur Prozessor 45

Pipelining. Die Pipelining Idee. Grundlagen der Rechnerarchitektur Prozessor 45 Pipelining Die Pipelining Idee Grundlagen der Rechnerarchitektur Prozessor 45 Single Cycle Performance Annahme die einzelnen Abschnitte des MIPS Instruktionszyklus benötigen folgende Ausführungszeiten:

Mehr

Beispiele von Branch Delay Slot Schedules

Beispiele von Branch Delay Slot Schedules Beispiele von Branch Delay Slot Schedules Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 97 Weniger

Mehr

CPU. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011

CPU. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 CPU Dr.-Ing. Volkmar Sieh Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 CPU 1/62 2012-02-29 CPU Übersicht: Pipeline-Aufbau Pipeline- Hazards CPU

Mehr

Lösungsvorschlag 10. Übung Technische Grundlagen der Informatik II Sommersemester 2009

Lösungsvorschlag 10. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Fachgebiet Rechnerarchitektur Fachbereich Informatik Lösungsvorschlag. Übung Technische Grundlagen der Informatik II Sommersemester 29 Aufgabe.: MIPS-Kontrollsignale Für die 5 Befehlstypen a) R-Format

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Zugriff auf den Datenspeicher Grundlagen der Rechnerarchitektur Prozessor 19 Betrachten nun Load und Store Word Erinnerung, Instruktionen lw und sw sind vom I Typ Format:

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Zugriff auf den Datenspeicher Grundlagen der Rechnerarchitektur Prozessor 19 Betrachten nun Load und Store Word Erinnerung, Instruktionen lw und sw sind vom I Typ Format:

Mehr

Auch hier wieder. Control. RegDst Branch MemRead MemtoReg ALUOp MemWrite ALUSrc RegWrite. Instruction[31 26] (also: das Opcode Field der Instruktion)

Auch hier wieder. Control. RegDst Branch MemRead MemtoReg ALUOp MemWrite ALUSrc RegWrite. Instruction[31 26] (also: das Opcode Field der Instruktion) Auch hier wieder Aus voriger Wahrheitstabelle lässt sich mechanisch eine kombinatorische Schaltung generieren, die wir im Folgenden mit dem Control Symbol abstrakt darstellen. Instruction[31 26] (also:

Mehr

Das Prinzip an einem alltäglichen Beispiel

Das Prinzip an einem alltäglichen Beispiel 3.2 Pipelining Ziel: Performanzsteigerung é Prinzip der Fließbandverarbeitung é Probleme bei Fließbandverarbeitung BB TI I 3.2/1 Das Prinzip an einem alltäglichen Beispiel é Sie kommen aus dem Urlaub und

Mehr

Technische Informatik 1 Übung 2 Assembler (Computerübung) Matthias Meyer

Technische Informatik 1 Übung 2 Assembler (Computerübung) Matthias Meyer Technische Informatik 1 Übung 2 Assembler (Computerübung) Matthias Meyer Ziele der Übung Aufgabe 1 Ein lauffähiges Assembler-Programm Umgang mit dem Debugger Aufgabe 2 (Zusatzaufgabe) Lesen und Analysieren

Mehr

Heute nur MIPS-Praxis (4 Aufgaben)

Heute nur MIPS-Praxis (4 Aufgaben) Themen heute Heute nur MIPS-Praxis (4 Aufgaben) Hinweis: Diese Aufgaben findet ihr auf den Übungsblättern zu den Tutorien (bei Aufgabe 4 wurde eine Teilaufgabe und im Tutorium #6 bereits geklärte Wissensfragen

Mehr

Institut für Informatik Prof. Dr. D. Hogrefe Dipl.-Inf. R. Soltwisch, Dipl.-Inform. M. Ebner, Prof. Dr. D. Hogrefe Informatik II - SS 04.

Institut für Informatik Prof. Dr. D. Hogrefe Dipl.-Inf. R. Soltwisch, Dipl.-Inform. M. Ebner, Prof. Dr. D. Hogrefe Informatik II - SS 04. Kontrollstrukturen Informatik II SS 2004 Teil 4: Assembler Programmierung Sprünge (bedingte und unbedingte) If-then-else, Case Loop (n Durchläufe) While (Abbruchbedingung) Institut für Informatik Prof.

Mehr

Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 8 und Präsenzaufgaben Übung 9

Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 8 und Präsenzaufgaben Übung 9 Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 8 und Präsenzaufgaben Übung 9 Dominik Schoenwetter Erlangen, 30. Juni 2014 Lehrstuhl für Informatik 3 (Rechnerarchitektur)

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Technische Informatik - Eine Einführung Rechnerarchitektur Aufgabe

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Prozessor Übersicht Datenpfad Control Pipelining Data Hazards Control Hazards Multiple Issue Grundlagen der Rechnerarchitektur Prozessor 2 Datenpfad einer einfachen MIPS

Mehr

Technischen Informatik I, WS 2004/05

Technischen Informatik I, WS 2004/05 PHILIPPS-UNIVERSITÄT MARBURG Fachbereich Mathematik und Informatik Prof Dr R Loogen, Dipl-Inform J Beringer D-3532 Marburg Hans-Meerwein-Straße Lahnberge Klausur zur Technischen Informatik I, WS 24/5 3

Mehr

Leistung und Pipelining. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck

Leistung und Pipelining. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Leistung und Pipelining Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Übersicht Leistung Leistungsmessung Leistungssteigerung Pipelining Einführung in die

Mehr

Lösungsvorschlag zur 4. Übung

Lösungsvorschlag zur 4. Übung Prof. Frederik Armknecht Sascha Müller Daniel Mäurer Grundlagen der Informatik 3 Wintersemester 09/10 Lösungsvorschlag zur 4. Übung 1 Präsenzübungen 1.1 Schnelltest a) Welche Aussagen zu Bewertungskriterien

Mehr

Technische Informatik 1 Übung 2 Assembler (Rechenübung) Georgia Giannopoulou (ggeorgia@tik.ee.ethz.ch) 22./23. Oktober 2015

Technische Informatik 1 Übung 2 Assembler (Rechenübung) Georgia Giannopoulou (ggeorgia@tik.ee.ethz.ch) 22./23. Oktober 2015 Technische Informatik 1 Übung 2 Assembler (Rechenübung) Georgia Giannopoulou (ggeorgia@tik.ee.ethz.ch) 22./23. Oktober 2015 Ziele der Übung Aufgabe 1 Aufbau und Aufruf von Funktionen in Assembler Codeanalyse

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Die Branch Instruktion beq Grundlagen der Rechnerarchitektur Prozessor 13 Betrachten nun Branch Instruktion beq Erinnerung, Branch Instruktionen beq ist vom I Typ Format:

Mehr

Name: Vorname: Matr.-Nr.: 4. a) RISC-Architekturen müssen zur Decodierung von Maschinenbefehlen stets ein mikroprogrammierbares Steuerwerk verwenden.

Name: Vorname: Matr.-Nr.: 4. a) RISC-Architekturen müssen zur Decodierung von Maschinenbefehlen stets ein mikroprogrammierbares Steuerwerk verwenden. Name: Vorname: Matr.-Nr.: 4 Aufgabe 1 (8 Punkte) Entscheiden Sie, welche der folgenden Aussagen zum Thema CISC/RISC-Prinzipien korrekt sind. a) RISC-Architekturen müssen zur Decodierung von Maschinenbefehlen

Mehr

RO-Tutorien 15 und 16

RO-Tutorien 15 und 16 Tutorien zur Vorlesung Rechnerorganisation Tutorienwoche 5 am 25.05.2011 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft

Mehr

DIGITALE SCHALTUNGEN II

DIGITALE SCHALTUNGEN II DIGITALE SCHALTUNGEN II 3. Sequentielle Schaltkreise 3.1 Vergleich kombinatorische sequentielle Schaltkreise 3.2 Binäre Speicherelemente 3.2.1 RS Flipflop 3.2.2 Getaktetes RS Flipflop 3.2.3 D Flipflop

Mehr

, WS2013 Übungsgruppen: Di., Fr.,

, WS2013 Übungsgruppen: Di., Fr., VU Technische Grundlagen der Informatik Übung : Stack, Pipelining., WS20 Übungsgruppen: Di., 0.01. Fr.,.01.201 Aufgabe 1: Stack - Funktionsweise Erläutern Sie die Funktionsweise eines Stacks bzw. Kellerspeichers

Mehr

Technische Informatik 1

Technische Informatik 1 Technische Informatik 1 4 Prozessor Einzeltaktimplementierung Lothar Thiele Computer Engineering and Networks Laboratory Vorgehensweise 4 2 Prinzipieller Aufbau Datenpfad: Verarbeitung und Transport von

Mehr

Lösungsvorschlag 9. Übung Technische Grundlagen der Informatik II Sommersemester 2009

Lösungsvorschlag 9. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Fachgebiet Rechnerarchitektur Fachbereich Informatik Lösungsvorschlag 9. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Aufgabe 9.1: Dinatos-Algorithmus-Analyse Die folgenden Verilog-Zeilen

Mehr

Besprechung des 5. Übungsblattes Parallelität innerhalb der CPU Pipelining

Besprechung des 5. Übungsblattes Parallelität innerhalb der CPU Pipelining Themen heute Besprechung des 5. Übungsblattes Parallelität innerhalb der CPU Pipelining Organisatorisches Wie schon in den vorhergehenden Tutorien erwähnt, ist Mehrfachabgabe, außer bei Programmieraufgaben,

Mehr

Tutorium Rechnerorganisation

Tutorium Rechnerorganisation Woche 7 Tutorien 3 und 4 zur Vorlesung Rechnerorganisation 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

Parallele Rechnerarchitekturen. Bisher behandelte: Vorlesung 7 (theoretische Grundkonzepte) Nun konkrete Ausprägungen

Parallele Rechnerarchitekturen. Bisher behandelte: Vorlesung 7 (theoretische Grundkonzepte) Nun konkrete Ausprägungen Parallele Rechnerarchitekturen Bisher behandelte: Vorlesung 7 (theoretische Grundkonzepte) Nun konkrete Ausprägungen Pipelining Beispiel aus dem realen Leben (;-)) Wäschewaschen in WG Füllen der Waschmaschine

Mehr

Einführung in die Systemprogrammierung

Einführung in die Systemprogrammierung Einführung in die Systemprogrammierung Speedup: Grundlagen der Performanz Prof. Dr. Christoph Reichenbach Fachbereich 12 / Institut für Informatik 30. April 2015 Eine Aufgabe aus der Praxis Gegeben ein

Mehr

Technische Informatik 1 Übung 5: Eingabe/Ausgabe (Computerübung) Georgia Giannopoulou, ETZ G & 18.

Technische Informatik 1 Übung 5: Eingabe/Ausgabe (Computerübung) Georgia Giannopoulou, ETZ G & 18. Technische Informatik 1 Übung 5: Eingabe/Ausgabe (Computerübung) Georgia Giannopoulou, ETZ G77 ggeorgia@tik.ee.ethz.ch 17. & 18. November 2016 Inhalt Implementierung von Device-I/O mittels Polling und

Mehr

ARM: Befehlssatz (Forts.)

ARM: Befehlssatz (Forts.) ARM: Befehlssatz (Forts.) Befehl SWI zum Auslösen eines Software-Interrupts: Instruktionsformat: Ausführung von SWI überführt CPU in den supervisor mode (nach Retten des PC in r14_svc und des CPSR in SPSR_svc)

Mehr

9. Fließbandverarbeitung

9. Fließbandverarbeitung 9. Fließbandverarbeitung Nachteile der Mikroprogrammierung Von CISC zu RISC Fließbandverarbeitung Pipeline-Hazards Behandlung von Daten- und Kontroll-Hazards 334 Nachteile mikroprogrammierter CPUs Zusätzliche

Mehr

9.1. Aufbau einer Befehlspipeline

9.1. Aufbau einer Befehlspipeline Kapitel 9 - Befehlspipelining Seite 191 Kapitel 9 Befehlspipelining 9.1. Aufbau einer Befehlspipeline Ein typischer Befehl in einer Maschine mit einem RISC-artigen Befehlssatz besteht aus den Operationen:

Mehr

Einführung in die Systemprogrammierung 02

Einführung in die Systemprogrammierung 02 Einführung in die Systemprogrammierung 02 Prof. Dr. Christoph Reichenbach Fachbereich 12 / Institut für Informatik 4. Mai 2014 Eine Aufgabe aus der Praxis Gegeben ein bestimmtes Programm: Machen Sie dieses

Mehr

Weitere Arithmetik. Grundlagen der Rechnerarchitektur Assembler 33

Weitere Arithmetik. Grundlagen der Rechnerarchitektur Assembler 33 Weitere Arithmetik Grundlagen der Rechnerarchitektur Assembler 33 Die speziellen Register lo und hi Erinnerung: ganzzahliges Produkt von zwei n Bit Zahlen benötigt bis zu 2n Bits Eine MIPS Instruktion

Mehr

Steuerwerk einer CPU. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck

Steuerwerk einer CPU. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Steuerwerk einer CPU Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Übersicht Implementierung des Datenpfads Direkte Implementierung Mikroprogrammierung

Mehr

HW/SW Codesign 5 - Performance

HW/SW Codesign 5 - Performance HW/SW Codesign 5 - Performance Martin Lechner e1026059 Computer Technology /29 Inhalt Was bedeutet Performance? Methoden zur Steigerung der Performance Einfluss der Kommunikation Hardware vs. Software

Mehr

Technische Informatik 1

Technische Informatik 1 Technische Informatik 1 2 Instruktionssatz Lothar Thiele Computer Engineering and Networks Laboratory Instruktionsverarbeitung 2 2 Übersetzung Das Kapitel 2 der Vorlesung setzt sich mit der Maschinensprache

Mehr

4. Übung - Rechnerarchitektur/Betriebssysteme

4. Übung - Rechnerarchitektur/Betriebssysteme 4. Übung - Rechnerarchitektur/Betriebssysteme 1. Aufgabe: Caching Informatik I für Verkehrsingenieure Aufgaben inkl. Beispiellösungen a) Was ist ein Cache? Wann kommt Caching zum Einsatz? b) Welchen Vorteil

Mehr

Beispielhafte Prüfungsaufgaben zur Vorlesung Technische Informatik I Gestellt im Frühjahr 2012

Beispielhafte Prüfungsaufgaben zur Vorlesung Technische Informatik I Gestellt im Frühjahr 2012 Beispielhafte Prüfungsaufgaben zur Vorlesung Technische Informatik I Gestellt im Frühjahr 2012 Die beigefügte Lösung ist ein Vorschlag. Für Korrektheit, Vollständigkeit und Verständlichkeit wird keine

Mehr

Programmiersprachen Einführung in C

Programmiersprachen Einführung in C Programmiersprachen Einführung in C Teil 1: Von der Maschinensprache zu C Prof. Dr. Maschinensprache: MIPS R2000 Was bewirkt folgendes Programm: 00100111101111011111111111100000 10101111101111110000000000010100

Mehr

Lösungsvorschlag zur 3. Übung

Lösungsvorschlag zur 3. Übung Prof Frederik Armknecht Sascha Müller Daniel Mäurer Grundlagen der Informatik Wintersemester 09/10 1 Präsenzübungen 11 Schnelltest Lösungsvorschlag zur Übung a) Welche der folgenden Aussagen entsprechen

Mehr

Beispiel: A[300] = h + A[300]

Beispiel: A[300] = h + A[300] Beispiel: A[300] = h + A[300] $t1 sei Basisadresse von A und h in $s2 gespeichert. Assembler Code? Maschinen Code (der Einfachheit halber mit Dezimalzahlen)? op rs rt rd adr/shamt funct Instruktion Format

Mehr

Mikroprozessortechnik. 03. April 2012

Mikroprozessortechnik. 03. April 2012 Klausur 03. April 2012 Name:. Vorname Matr.-Nr:. Studiengang Hinweise: Bitte füllen Sie vor dem Bearbeiten der Aufgaben das Deckblatt sorgfältig aus. Die Klausur besteht aus 6 doppelseitig bedruckten Blättern.

Mehr

Assembler Kontrollstrukturen

Assembler Kontrollstrukturen Assembler Kontrollstrukturen Dr.-Ing. Volkmar Sieh Department Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2008 Assembler Kontrollstrukturen 1/21 2008-04-03 Kontrollstrukturen

Mehr

Besprechung des 4. Übungsblattes Was ist MIPS? SPIM-Simulator MIPS-Befehlsformate MIPS-Befehle Assemblerdirektiven Syscalls in MIPS

Besprechung des 4. Übungsblattes Was ist MIPS? SPIM-Simulator MIPS-Befehlsformate MIPS-Befehle Assemblerdirektiven Syscalls in MIPS Organisatorisches Es gibt kein Übungsblatt zur heutigen Abgabe, da sich durch ausfallende Vorlesungstermine entsprechende Verschiebungen ergeben haben Das jetzige Übungsblatt ist abzugeben bis zum nächsten

Mehr

Digitaltechnik und Rechnerstrukturen. 2. Entwurf eines einfachen Prozessors

Digitaltechnik und Rechnerstrukturen. 2. Entwurf eines einfachen Prozessors Digitaltechnik und Rechnerstrukturen 2. Entwurf eines einfachen Prozessors 1 Rechnerorganisation Prozessor Speicher Eingabe Steuereinheit Instruktionen Cachespeicher Datenpfad Daten Hauptspeicher Ausgabe

Mehr

Fernuniversität in Hagen

Fernuniversität in Hagen Fernuniversität in Hagen FACHBEREICH lnformatik Lehrgebiet Technische lnformatik I Rechnerarchitektur Prof. Dr. Wolfram Schiffmann Fernuniversität in Hagen. 58084 Hagen An die Teilnehmer der Hauptklausur

Mehr

CPU II. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011

CPU II. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 CPU II Dr.-Ing. Volkmar Sieh Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 CPU II 1/77 2012-02-29 CPU Bisher: Pipeline mit 5 sequentiellen Pipeline-Stufen

Mehr

Hardware/Software-Codesign

Hardware/Software-Codesign Klausur zur Lehrveranstaltung Hardware/Software-Codesign Dr. Christian Plessl Paderborn Center for Parallel Computing Universität Paderborn 8.10.2009 Die Bearbeitungsdauer beträgt 75 Minuten. Es sind keine

Mehr

9. Pipelining und Parallelverarbeitung. 9.1 Einführung

9. Pipelining und Parallelverarbeitung. 9.1 Einführung 9. Pipelining und Parallelverarbeitung 9.1 Einführung Wir haben an anderer Stelle bereits festgestellt, daß der Von-Neumann-Computer eine systematische Schwachstelle hat, also ein "Bottleneck". Es wird

Mehr

RISC: Reduced Instruction Set Computer. Technische Informatik I Wintersemester 12/13 1. J. Kaiser, IVS-EOS

RISC: Reduced Instruction Set Computer. Technische Informatik I Wintersemester 12/13 1. J. Kaiser, IVS-EOS RISC: Reduced Instruction Set Computer 1 The CMOS Generations: Speedup through Miniaturization 10-fache Leistungssteigerung 2 Was ist ein Reduced Instruction Set Computer (RISC*)? * Der Begriff RISC wurde

Mehr

Aufgabe 1) Die folgenden Umwandlungen/Berechnungen beziehen sich auf das 32-Bit Single-Precision Format nach IEEE-754.

Aufgabe 1) Die folgenden Umwandlungen/Berechnungen beziehen sich auf das 32-Bit Single-Precision Format nach IEEE-754. Aufgabe 1) Die folgenden Umwandlungen/Berechnungen beziehen sich auf das 32-Bit Single-Precision Format nach IEEE-754. a) Stellen Sie die Zahl 7,625 in folgender Tabelle dar! b) Wie werden denormalisierte

Mehr

Einführung in die Systemprogrammierung 02

Einführung in die Systemprogrammierung 02 Einführung in die Systemprogrammierung 02 Prof. Dr. Christoph Reichenbach Fachbereich 12 / Institut für Informatik 1. Mai 2013 Eine Aufgabe aus der Praxis Gegeben ein bestimmtes Programm: Machen Sie dieses

Mehr

5.BMaschinensprache und Assembler

5.BMaschinensprache und Assembler Die Maschinenprogrammebene eines Rechners Jörg Roth 268 5.BMaschinensprache und Assembler Die vom Prozessor ausführbaren Befehle liegen im Binärformat vor. Nur solche Befehle sind direkt ausführbar. So

Mehr

Grundlagen der Informatik III Wintersemester 2010/2011 16. Vorlesung Dr.-Ing. Wolfgang Heenes

Grundlagen der Informatik III Wintersemester 2010/2011 16. Vorlesung Dr.-Ing. Wolfgang Heenes Grundlagen der Informatik III Wintersemester 2010/2011 16. Vorlesung Dr.-Ing. Wolfgang Heenes int main() { printf("hello, world!"); return 0; } msg: main:.data.asciiz "Hello, world!".text.globl main la

Mehr

Ausgewählte Kapitel eingebetteter Systeme

Ausgewählte Kapitel eingebetteter Systeme Ausgewählte Kapitel eingebetteter Systeme Verfahren zur Bestimmung der WCET Andreas Kaiser Friedrich-Alexander University Erlangen-Nuremberg Übersicht Wieso WCET Berechnung? Methoden zur Bestimmung der

Mehr

TI2 Übung 2. Hauptspeicher, 6809-Prozessor. 23. November 2004 (WS 2004) Andreas I. Schmied Universität Ulm Fakultät für Informatik

TI2 Übung 2. Hauptspeicher, 6809-Prozessor. 23. November 2004 (WS 2004) Andreas I. Schmied Universität Ulm Fakultät für Informatik Universität Ulm Fakultät für Informatik Abteilung Verteilte Systeme Projektgruppe AspectIX TI2 Übung 2 Hauptspeicher, 6809-Prozessor 23. November 2004 (WS 2004) Andreas I. Schmied (schmied@inf...) 1 Hauptspeicher

Mehr

Prinzipieller Aufbau und Funktionsweise eines Prozessors

Prinzipieller Aufbau und Funktionsweise eines Prozessors Prinzipieller Aufbau und Funktionsweise eines Prozessors [Technische Informatik Eine Einführung] Univ.- Lehrstuhl für Technische Informatik Institut für Informatik Martin-Luther-Universität Halle-Wittenberg

Mehr

Instruktionen pro Takt

Instruktionen pro Takt (c) Peter Sturm, Universität Trier (u.a.) 1 Instruktionen pro Takt 500 MIPS (Dhrystone) Taktfrequenz 450 400 350 300 250 200 150 100 50 0 8086 80286 80386 80486 Pentium Pentium Pro Die-Größen: Intel Vorlesung

Mehr

Hinweise C-Programmierung

Hinweise C-Programmierung Hinweise C-Programmierung Dr.-Ing. Volkmar Sieh Department Informatik 4 Verteilte Systeme und Betriebssysteme Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2016/2017 V. Sieh Hinweise C-Programmierung

Mehr

DLX-Assembler für Anfänger Kutil, 2004

DLX-Assembler für Anfänger Kutil, 2004 DLX-Assembler für Anfänger Kutil, 200 Hiermit können Sie die ersten Schritte in die Assemblerprogrammierung am Beispiel des virtuellen DLX-Prozessors machen. Dieses Dokument erklärt aber nicht die Befehle

Mehr

Quantitative Prinzipien im Hardwareentwurf. 1. Small is fast

Quantitative Prinzipien im Hardwareentwurf. 1. Small is fast Quantitative Prinzipien im Hardwareentwurf 1. Small is fast Kleine Hardwareeinheiten schalten in der Regel schneller als größere. Kleine Transistoren bilden an ihren Gates kleinere Kapazitäten die Source-Drain

Mehr

Elementare Konzepte von

Elementare Konzepte von Elementare Konzepte von Programmiersprachen Teil 2: Anweisungen (Statements) Kapitel 6.3 bis 6.7 in Küchlin/Weber: Einführung in die Informatik Anweisungen (statements) in Java Berechnung (expression statement)

Mehr

Digitaltechnik und Rechnerstrukturen Lothar Thiele Institut für Technische Informatik und Kommunikationsnetze ETH Zürich 1.

Digitaltechnik und Rechnerstrukturen Lothar Thiele Institut für Technische Informatik und Kommunikationsnetze ETH Zürich 1. Materialien Digitaltechnik und Rechnerstrukturen Lothar Thiele Institut für Technische Informatik und Kommunikationsnetze ETH Zürich 1. Einleitung 1 Digitaltechnik und Rechnerstrukturen Vorlesungs- und

Mehr

Aktuelle Techniken zur Leistungssteigerung von Mikroprozessoren

Aktuelle Techniken zur Leistungssteigerung von Mikroprozessoren INFORMATIONSTECHNIK UND ARMEE Vorlesungen an der Eidgenössischen Technischen Hochschule in Zürich im Wintersemester 1994/1995 Leitung: Bundesamt für Übermittlungstruppen Divisionär E. Ebert, Waffenchef

Mehr

Kapitel 10 (5. Teil MIPS): Pipeline-Implementierung

Kapitel 10 (5. Teil MIPS): Pipeline-Implementierung Kapitel (5. Teil IPS): Pipeline-Implementierung Technische Grundlagen der Informatik 2 SS 29 R. Hoffmann FG Rechnerarchitektur Technische Universität Darmstadt In Anlehnung an das Patterson/Hennessy: Computer

Mehr

Arbeitsfolien - Teil 4 CISC und RISC

Arbeitsfolien - Teil 4 CISC und RISC Vorlesung Informationstechnische Systeme zur Signal- und Wissensverarbeitung PD Dr.-Ing. Gerhard Staude Arbeitsfolien - Teil 4 CISC und RISC Institut für Informationstechnik Fakultät für Elektrotechnik

Mehr

Einführung in die Systemprogrammierung

Einführung in die Systemprogrammierung Einführung in die Systemprogrammierung Dynamische Programmbibliotheken Prof. Dr. Christoph Reichenbach Fachbereich 12 / Institut für Informatik 28. Mai 2015 Dynamische Programmbibliotheken Idee: Programm

Mehr

H E F B G D. C. DLX Rechnerkern

H E F B G D. C. DLX Rechnerkern C. DLX Rechnerkern C.1. Einordnung DLX Architektur und Konzepte: Einfache "Gesamtzyklus"-DLX Maschine (non-pipelined), Verarbeitungsschritte einer Instruktion, Taktverhalten im Rechner, RISC & CISC...

Mehr

Klausur zur Vorlesung Rechnerarchitektur

Klausur zur Vorlesung Rechnerarchitektur Platznummer hier eintragen! LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN INSTITUT FÜR INFORMATIK LEHRSTUHL FÜR MOBILE UND VERTEILTE SYSTEME PROF. DR. CLAUDIA LINNHOFF-POPIEN Sommersemester 2011 Klausur 26.07.2011

Mehr

Einführung in die Systemprogrammierung

Einführung in die Systemprogrammierung Einführung in die Systemprogrammierung Prof. Dr. Christoph Reichenbach Fachbereich 12 / Institut für Informatik 9. Juli 2015 Der MIPS-Prozessor MIPS R2000, von iamretro.gr Kurze Geschichte der MIPS-Architektur

Mehr

Grundzüge der Informatik II

Grundzüge der Informatik II Grundzüge der Informatik II Kapitel 4: Realisierung von Rechen- und Steuerwerk (2. Teil) Prof. Dr. Oskar von Stryk Fachgebiet Simulation und Systemoptimierung TU Darmstadt Skript: Patterson/Hennessy, Chapter

Mehr

Prüfungsklausur Computersysteme Teil Computersysteme I WS 2010/ Prof. Dr. J. Keller LG Parallelität und VLSI

Prüfungsklausur Computersysteme Teil Computersysteme I WS 2010/ Prof. Dr. J. Keller LG Parallelität und VLSI Prüfungsklausur Computersysteme Teil 01608 Computersysteme I WS 2010/2011 19.03.2011 Lösungsvorschläge Prof. Dr. J. Keller LG Parallelität und VLSI 1 Aufgabe 1 (9 Punkte): a) Gegeben ist das folgende Karnaugh-Diagramm

Mehr

Grundlagen der Informatik III Wintersemester 2010/ Vorlesung Dr.-Ing. Wolfgang Heenes

Grundlagen der Informatik III Wintersemester 2010/ Vorlesung Dr.-Ing. Wolfgang Heenes Grundlagen der Informatik III Wintersemester 2010/2011 5. Vorlesung Dr.-Ing. Wolfgang Heenes int main() { printf("hello, world!"); return 0; } msg: main:.data.asciiz "Hello, world!".text.globl main la

Mehr

Ausführungszeitvorhersage. Dipl.-Inf. J. Richling M. Mergner Wintersemester 2003/2004

Ausführungszeitvorhersage. Dipl.-Inf. J. Richling M. Mergner Wintersemester 2003/2004 Ausführungszeitvorhersage Dipl.-Inf. J. Richling M. Mergner Wintersemester 2003/2004 Gliederung 1. Einleitung 2. Theoretische Vorbetrachtungen 3. Technische Grundlagen der Referenzarchitektur 4. Ein Beispielalgorithmus

Mehr

Grundlagen zur Assemblerprogrammierung unter SPIM im Sommersemester Lorenz Schauer Mobile & Verteilte Systeme

Grundlagen zur Assemblerprogrammierung unter SPIM im Sommersemester Lorenz Schauer Mobile & Verteilte Systeme Grundlagen zur Assemblerprogrammierung unter SPIM im Sommersemester 2016 Lorenz Schauer Mobile & Verteilte Systeme 12. Juli 2016 Agenda heute Grundlagen: Unterprogramme I Call-by-Value (CBV) vs. Call-by-Reference

Mehr

Assembler Programmierung Motivation. Informatik II SS 2004 Teil 4: Assembler Programmierung. Assembler vs. Maschinensprache

Assembler Programmierung Motivation. Informatik II SS 2004 Teil 4: Assembler Programmierung. Assembler vs. Maschinensprache Assembler Programmierung Motivation Informatik II SS 2004 Teil 4: Assembler Programmierung Was ist ein Programm? Eine Reihe von Befehlen, die der Ausführung einer Aufgabe dient Dazu wird das Programm sequentiell

Mehr

Teil 2: Rechnerorganisation

Teil 2: Rechnerorganisation Teil 2: Rechnerorganisation Inhalt: Zahlendarstellungen Rechnerarithmetik schrittweiser Entwurf eines hypothetischen Prozessors mit Daten-, Adreß- und Kontrollpfad Speicherorganisation Mikroprogrammierung

Mehr

Modul Computersysteme Prüfungsklausur SS 2011. Prof. Dr. J. Keller LG Parallelität und VLSI Prof. Dr.-Ing. W. Schiffmann LG Rechnerarchitektur

Modul Computersysteme Prüfungsklausur SS 2011. Prof. Dr. J. Keller LG Parallelität und VLSI Prof. Dr.-Ing. W. Schiffmann LG Rechnerarchitektur Modul Computersysteme Prüfungsklausur SS 2011 Lösungsvorschläge Prof. Dr. J. Keller LG Parallelität und VLSI Prof. Dr.-Ing. W. Schiffmann LG Rechnerarchitektur 1 Aufgabe 1 (12 Punkte): a) Gegeben ist das

Mehr

Struktur der CPU (1) Die Adress- und Datenpfad der CPU: Befehl holen. Vorlesung Rechnerarchitektur und Rechnertechnik SS Memory Adress Register

Struktur der CPU (1) Die Adress- und Datenpfad der CPU: Befehl holen. Vorlesung Rechnerarchitektur und Rechnertechnik SS Memory Adress Register Struktur der CPU (1) Die Adress- und Datenpfad der CPU: Prog. Counter Memory Adress Register Befehl holen Incrementer Main store Instruction register Op-code Address Memory Buffer Register CU Clock Control

Mehr

Einführung in die Systemprogrammierung

Einführung in die Systemprogrammierung Einführung in die Systemprogrammierung Der Binder Prof. Dr. Christoph Reichenbach Fachbereich 12 / Institut für Informatik 28. Mai 2015 Herausforderungen durch große Programme Große Programme: die meisten

Mehr

Systemprogrammierung (37-023)

Systemprogrammierung (37-023) Systemprogrammierung (37-023) Assemblerprogrammierung Betriebssystemgrundlagen Maschinenmodelle Dozenten: Thomas Stricker Roman Geus WebSite: www.cs.inf.ethz.ch/37-023 Begleit-/Textbuch: R. Paul: SPARC

Mehr

Samsungs Exynos 5 Dual

Samsungs Exynos 5 Dual Fakultät Informatik, Institut für Technische Informatik, Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur Samsungs Exynos 5 Dual Candy Lohse Dresden, 12.12.12 Gliederung 1. Motivation und

Mehr

Aufgabenblatt 7. Es sind keine Abgaben mit mehreren Namen oder Kopien von Abgaben anderer erlaubt

Aufgabenblatt 7. Es sind keine Abgaben mit mehreren Namen oder Kopien von Abgaben anderer erlaubt Aufgabenblatt 7 Wichtige Hinweise: Bitte Namen und Gruppennummer deutlich lesbar rechts oben auf allen Blättern der Abgabe angeben und alle Blätter der Abgabe zusammenheften (1 Zusatzpunkt!) Es sind keine

Mehr

Stephan Brumme, SST, 2.FS, Matrikelnr. 70 25 44

Stephan Brumme, SST, 2.FS, Matrikelnr. 70 25 44 Aufgabe 33 a) Der Pseudobefehl move $rd,$rs wird als addu $rd,$0,$rs übersetzt. Dabei macht sich SPIM zunutze, dass das Register $0 immer Null ist. Somit wird das Register $rd ersetzt durch $rd=0+$rs=$rs,

Mehr

Übungsblatt 10 (Block C 2) (16 Punkte)

Übungsblatt 10 (Block C 2) (16 Punkte) georg.von-der-brueggen [ ] tu-dortmund.de ulrich.gabor [ ] tu-dortmund.de pascal.libuschewski [ ] tu-dortmund.de Übung zur Vorlesung Rechnerstrukturen Wintersemester 2016 Übungsblatt 10 (Block C 2) (16

Mehr

Eingebettete Systeme 2. Übungsblatt Lösungsvorschlag

Eingebettete Systeme 2. Übungsblatt Lösungsvorschlag Institut für Informatik Lehrstuhl für Eingebettete Systeme Prof. Dr. Uwe Brinkschulte Mathias Pacher Eingebettete Systeme 2. Übungsblatt Lösungsvorschlag 1. Aufgabe (Mikrocontroller) Ein Mikrocontroller

Mehr

Die Maschinenprogrammebene eines Rechners Jörg Roth 294

Die Maschinenprogrammebene eines Rechners Jörg Roth 294 Die Maschinenprogrammebene eines Rechners Jörg Roth 294 5.E Die SPIM-Umgebung SPIM ist ein Simulationswerkzeug für MIPS-Prozessoren Es enthält einen Assembler und eine Laufzeitumgebung Da das Wirtsystem

Mehr

Computer-Architektur Ein Überblick

Computer-Architektur Ein Überblick Computer-Architektur Ein Überblick Johann Blieberger Institut für Rechnergestützte Automation Computer-Architektur Ein Überblick p.1/27 Computer-Aufbau: Motherboard Computer-Architektur Ein Überblick p.2/27

Mehr

Vorlesung: Technische Informatik 3

Vorlesung: Technische Informatik 3 Rechnerarchitektur und Betriebssysteme zhang@informatik.uni-hamburg.de Universität Hamburg AB Technische Aspekte Multimodaler Systeme zhang@informatik.uni-hamburg.de Inhaltsverzeichnis 4. Computerarchitektur........................235

Mehr

Übersetzung von Datenstrukturen

Übersetzung von Datenstrukturen Übersetzung von Datenstrukturen bisher: Übersetzung von Mini-Java-Exp: Datenkeller zur Auswertung arithm. Ausdrücke Mini-Java: Sprünge zur Simulation von Kontrollstrukturen Mini-Java-FunProc: rekursive

Mehr

Vortrag zum Ergebnis der Literaturrecherche. Fehlerinjektion mittels Trace-Architektur auf einem Mips-Prozessor. Matthias Brinker

Vortrag zum Ergebnis der Literaturrecherche. Fehlerinjektion mittels Trace-Architektur auf einem Mips-Prozessor. Matthias Brinker Vortrag zum Ergebnis der Literaturrecherche Fehlerinjektion mittels Trace-Architektur auf einem Mips-Prozessor Matthias Brinker Dresden, 27.10.2016 Gliederung 1. Einleitung und Motivation 2. Trace-Architektur

Mehr