Bonusklausur über den Stoff der Vorlesung Grundlagen der Informatik II (45 Minuten)

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Bonusklausur über den Stoff der Vorlesung Grundlagen der Informatik II (45 Minuten)"

Transkript

1 Institut für Angewndte Informtik und Formle Beschreiungsverfhren Bonusklusur üer den Stoff der Vorlesung Grundlgen der Informtik II (45 Minuten) Nme: Vornme: Mtr.-Nr.: Semester: (WS 207/8) Ich estätige, dss ich die folgenden Angen gelesen und mich von der Vollständigkeit dieses lusurexemplrs üerzeugt he (Seiten -5). Anmerkungen:. Legen Sie itte Ihren Studierendenusweis ereit. Unterschrift des o. g. lusurteilnehmers zw. der o. g. lusurteilnehmerin 2. Bitte trgen Sie Nme, Vornme und Mtr.-Nr. deutlich lesr ein. 3. Die folgenden 4 Aufgen sind vollständig zu ereiten. 4. Folgende Hilfsmittel sind zugelssen: keine. 5. Täuschungsversuche führen zum Ausschluss von der lusur. 6. Unleserliche oder mit Bleistift geschrieene Lösungen können von der lusur zw. Wertung usgeschlossen werden. 7. Die Bereitungszeit eträgt 45 Minuten. Nur für den Prüfer : gesmt

2 Aufgenüersicht ) Endliche Automten ) ellerutomt ) Schltwerk ) XWizrd

3 Grundlgen der Informtik II Bonusklusur WS 207/8 Mtr.-Nr. 2 Aufge 208-B-0 Endliche Automten Gegeen sei der folgende nichtdeterministische endliche Automt: A = ({, }, {s 0,..., s 3 }, δ, s 0, {s 3 }) δ: s 0 s 3 s 2 / s s 0 {s, s 2, s 3 } s {s 0, s 2 } {s 2, s 3 } s 2 {s, s 3 } s 3 {s 0, s 2, s 3 } Erstellen Sie mithilfe des us der Vorlesung eknnten Algorithmus einen deterministischen endlichen Automten A = (E, S, δ, s 0, F ) mit L(A ) = L(A) und geen Sie diesen vollständig n. Hinweis: Geen Sie insesondere ein Zustndsüerführungsdigrmm n. Nutzen Sie die vorgegeene Telle. δ : A = } {{ }, } {{ }, δ, }{{}, } {{ } E S s F 0

4 Grundlgen der Informtik II Bonusklusur WS 207/8 Mtr.-Nr. 3 Aufge B-02 ellerutomt Gegeen sei die Sprche ller Wörter w mit L = {w {,, c} w = m n c k, mit m, n N, k {m, n}}. Ds heißt, dss in einem Wort der Sprche L zuerst m-ml, dnn n-ml geschrieen wird; uf diese Zeichenfolge folgt dnn entweder m-ml oder n-ml c. Es gilt eispielsweise: c, ccc, cc, c, L, λ,,, c,, c, c, cc L. () Entwerfen Sie einen nichtdeterministischen ellerutomten A = {,, c}, s 0, s, s 2, s 3, s e,, δ, s 0, k } {{ }} {{ }}{{} 0, s e } {{ } S s 0 F welcher die Sprche L erkennt. Der erste Teil des ellerutomten ist Ihnen im Folgenden ereits vorgegeen und erkennt lle Worte der Form w = m n c m. Ergänzen Sie diesen Automten, so dss er zusätzlich uch die Worte der Form m n c n erkennt. (s 0,, k 0 ) (s, k 0 ) (s,, ) (s, ) (s,, ) (s 2, ) (s 2,, ) (s 2, ) (s 2, c, ) (s 3, λ) (s 3, c, ) (s 3, λ) (s 3, λ, k 0 ) (s e, k 0 ) () Ergänzen Sie die zusätzlich enötigten Üergänge unter der Annhme, dss m, n N 0. Es gilt lso eispielsweise zusätzlich λ, cc,, cc L.

5 Grundlgen der Informtik II Bonusklusur WS 207/8 Mtr.-Nr. 4 Aufge B-03 Schltwerk Der gegeene Moore-Automt A eschreit eine Ampelschltung, ei der die Lichter der Ampel direkt durch die Signle q rot, q gel und q gruen n-, zw. usgeschltet werden (0 us, n). A = ( {}, {0, } }{{} 3, {s 0,..., s 3 }, δ, γ, {s 0 } ) =(q gel,q rot,q gruen ) δ, γ: }{{} =Tkt S 0 0,,0 S 3,0,0 S,,0 S 2 0,0, Verinden Sie die Eingänge der drei J--Flip-Flops in geeigneter Weise mit den Ausgngssignlen q rot, q gel und q gruen, sodss ds Verhlten des Schltwerks dem Automten entspricht, lso die Lichtfolge rot rot/gel grün gel rot u.s.w. entsteht. Füllen Sie dfür uch die gegeene Telle us. Sie enötigen keine zusätzlichen Gtter. Hinweis: Es knn vorkommen, dss die Belegung eines Eingngssignls für ein Flip-Flop sowohl 0 ls uch sein drf, z.b. wenn eine Eins m Ausgng sowohl durch Setzen dieser Eins (J =, = 0), ls uch durch Speichern von q = us dem vorhergehenden Tkt (J = = 0) erreicht werden knn. Trgen Sie in diesem Fll ein X in die Telle ein. q gel q rot q gruen q gel q rot q gruen J gel gel J rot rot J gruen gruen rot gel grün Jgel FF gel gel q gel q gel Jrot FF rot rot q rot q rot & q gruen gruen FFgruen q gruen gruen J Tkt

6 Grundlgen der Informtik II Bonusklusur WS 207/8 Mtr.-Nr. 5 Aufge B-04 XWizrd δ: A = ({, }, {s 0,..., s 3 }, δ, s 0, {s 3 }) s 2 / s 0 s 3 s fsm: (s0, ) => s3 s s2; (s, ) => s2 s0; (s, ) => s3 s2; (s2, ) => s3 s; (s3, ) => s0 s2 s3; --declrtions-- simultetostep=-; input=null; s0=s0; F=s3; --declrtions-end-- Zum oen links geildeten Automten A us Aufge gehöre ds oen rechts geildete XWizrd-Skript A XS kript. () Beschreien Sie kurz, wie Sie vorgehen würden, um A mit XWizrd deterministisch und miniml zu mchen. () Beschreien Sie kurz, wie Sie vorgehen würden, um A mit XWizrd uf dem Wort für drei Schritte zu simulieren. (c) Worn sieht mn im Skript, dss A nicht deterministisch ist? Welche kennzeichnende Eigenschft hätte ein Skript eines deterministischen Automten? Hinweise: Sie dürfen ei () und () uf Skript- oder GUI-Eene eschreien. Bei (c) müssen Sie ds deterministische Skript nicht ngeen, nur seine wesentliche Eigenschft eschreien. Die Aufge ist einfch, denken Sie nicht zu kompliziert!

Was nicht bewertet werden soll, streichen Sie bitte durch. Werden Täuschungsversuche beobachtet, so wird die Präsenzübung mit 0 Punkten bewertet.

Was nicht bewertet werden soll, streichen Sie bitte durch. Werden Täuschungsversuche beobachtet, so wird die Präsenzübung mit 0 Punkten bewertet. Prof Dr Dr hc W Thoms Formle Systeme, Automten, Prozesse SS 2011 Musterlösung - Präsenzüung Dniel Neider, Crsten Otto Vornme: Nchnme: Mtrikelnummer: Studiengng (itte nkreuzen): Informtik Bchelor Informtik

Mehr

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }.

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }. Lösung zur Klusur Grundlgen der Theoretischen Informtik 1. Zeigen Sie, dss die folgende Sprche regulär ist: { w {, } w w 0 (mod 3) }. Lösung: Wir nennen die Sprche L. Eine Sprche ist genu dnn regulär,

Mehr

Klausur zur Vorlesung Grundbegriffe der Informatik 10. März 2009 mit Lösungsvorschlägen

Klausur zur Vorlesung Grundbegriffe der Informatik 10. März 2009 mit Lösungsvorschlägen Klusur zur Vorlesung Grundegriffe der Informtik 10. März 2009 mit Lösungsvorschlägen Klusurnummer Nme: Vornme: Mtr.-Nr.: Aufge 1 2 3 4 5 6 7 mx. Punkte 4 2 7 8 8 8 9 tts. Punkte Gesmtpunktzhl: Note: Aufge

Mehr

Grundbegriffe der Informatik Aufgabenblatt 5

Grundbegriffe der Informatik Aufgabenblatt 5 Grundegriffe der Informtik Aufgenltt 5 Mtr.nr.: Nchnme: Vornme: Tutorium: Nr. Nme des Tutors: Ausge: 20. Novemer 2013 Age: 29. Novemer 2013, 12:30 Uhr im GBI-Briefksten im Untergeschoss von Geäude 50.34

Mehr

Vorname: Nachname: Matrikelnummer: Studiengang (bitte ankreuzen): Technik-Kommunikation M.A.

Vorname: Nachname: Matrikelnummer: Studiengang (bitte ankreuzen): Technik-Kommunikation M.A. Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Klusur 23.09.2010 Prof. Dr. J. Giesl M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Vornme: Nchnme: Mtrikelnummer: Studiengng (itte nkreuzen):

Mehr

a q 0 q 1 a M q 1 q 3 q 2

a q 0 q 1 a M q 1 q 3 q 2 Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 4 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

6. Übungsblatt. (i) Von welchem Typ ist die Grammatik G? Begründen Sie Ihre Antwort kurz.

6. Übungsblatt. (i) Von welchem Typ ist die Grammatik G? Begründen Sie Ihre Antwort kurz. Vorlesung Theoretische Informtik Sommersemester 2015 Prof. S. Lnge 6. Üungsltt 1. Aufge Es sei die folgende Grmmtik G = [Σ, V, S, R] gegeen. Dei seien Σ = {, } und V = {S, B}, woei S ds Strtsymol ist.

Mehr

Klausur TheGI 2 Automaten und Komplexität (Niedermeier/Hartung/Nichterlein, Sommersemester 2013)

Klausur TheGI 2 Automaten und Komplexität (Niedermeier/Hartung/Nichterlein, Sommersemester 2013) Berlin, 17.07.2013 Nme:... Mtr.-Nr.:... Klusur TheGI 2 Automten und Komplexität (Niedermeier/Hrtung/Nichterlein, Sommersemester 2013) 1 2 3 4 5 6 7 8 Σ Bereitungszeit: mx. Punktezhl: 60 min. 60 Punkte

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip.

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip. Reguläre Sprchen Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 0 Ds Pumping-Lemm Wir hen is jetzt vier Formlismen kennengelernt, mit denen wir eine reguläre Sprche ngeen können:

Mehr

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 2 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien Üerführungsfunction eines DFA (Folie 92) Wie sieht die Üerführungfunktion us? δ : Z Σ Z Ds heißt: Ein Pr us Zustnd und Alphetsymol

Mehr

Endliche Automaten können wahlweise graphisch oder tabellarisch angegeben werden.

Endliche Automaten können wahlweise graphisch oder tabellarisch angegeben werden. Aufgensmmlung GTI Hinweise. Dies ist eine Aufgensmmlung zum Lernen für die Klusur, keine Proeklusur. Die Zeitduer, die für die Lösung vorgesehen ist, ist lso nicht uf drei Stunden normiert. Für die Klusur

Mehr

Mitschrift Repetitorium Theoretische Informatik und Logik

Mitschrift Repetitorium Theoretische Informatik und Logik Mitschrift Repetitorium Theoretische Informtik und Logik Teil 1: Formle Sprchen, 15.01.2010, 1. Edit Allgemeine Hinweise für die Prüfung Ds Pumping-Lemm für kontextfreie Sprchen kommt nicht (sehr wohl

Mehr

Übungsblatt Nr. 1. Lösungsvorschlag

Übungsblatt Nr. 1. Lösungsvorschlag Institut für Kryptogrphie und Sicherheit Prof. Dr. Jörn Müller-Qude Nico Döttling Dirk Achench Tois Nilges Vorlesung Theoretische Grundlgen der Informtik Üungsltt Nr. svorschlg Aufge (K) (4 Punkte): Semi-Thue-Systeme

Mehr

Name... Matrikel Nr... Studiengang...

Name... Matrikel Nr... Studiengang... Proeklusur zur Vorlesung Berechenrkeitstheorie WS 201/1 1. Jnur 201 Prof. Dr. André Schulz Bereitungszeit: 120 Minuten [So oder so ähnlich wird ds Deckltt der Klusur ussehen.] Nme... Mtrikel Nr.... Studiengng...

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien Üerführungsfunktion eines NFA (Folien 107 und 108) Wie sieht die Üerführungsfunktion us? δ : Z Σ P(Z) Ds heißt, jedem Pr us Zustnd

Mehr

Name... Matrikel-Nr... Studiengang...

Name... Matrikel-Nr... Studiengang... Proeklusur zum ersten Teil der Vorlesung Berechenrkeitstheorie WS 2015/16 30. Novemer 2015 Dr. Frnzisk Jhnke, Dr. Dniel Plcín Bereitungszeit: 80 Minuten Nme... Mtrikel-Nr.... Studiengng... 1. So oder so

Mehr

Algorithmische Bioinformatik I

Algorithmische Bioinformatik I Ludwig-Mximilins-Universität München Institut für Informtik Prof. Dr. Volker Heun Sommersemester 2016 Semestrlklusur 21. Juli 2016 Algorithmische Bioinformtik I Vornme Nme Mtrikelnummer Reihe Pltz Unterschrift

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Schufchprinzip (Folie 144) Automten und formle Sprchen Notizen zu den Folien Im Block Ds Schufchprinzip für endliche Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl

Mehr

Aufgabe 1: Diskutieren Sie die Unterschiede bzw. die Vorteile und Nachteile der Mealy- und Moore- Zustandsmaschinen.

Aufgabe 1: Diskutieren Sie die Unterschiede bzw. die Vorteile und Nachteile der Mealy- und Moore- Zustandsmaschinen. Üungen zur Vorlesung Technische Informtik I, SS 2 Strey / Guenkov-Luy / Prger Üungsltt 3 Asynchrone Schltungen / Technologische Grundlgen / Progrmmierre Logische Busteine Aufge : Diskutieren Sie die Unterschiede

Mehr

Prof. Dr. Ulrich Furbach Dr. Manfred Jackel Dr. Björn Pelzer Christian Schwarz. Nachklausur

Prof. Dr. Ulrich Furbach Dr. Manfred Jackel Dr. Björn Pelzer Christian Schwarz. Nachklausur Grundlgen der Theoretischen Infomtik SS 213 Institut für Informtik Prof. Dr. Ulrich Furch Dr. Mnfred Jckel Dr. Björn Pelzer Christin Schwrz Nchklusur Modul Grundlgen der Theoretischen Informtik 4IN118/INLP1

Mehr

RWTH Aachen Lehrgebiet Theoretische Informatik Rossmanith Dreier Hark Kuinke. SS 2017 Blatt

RWTH Aachen Lehrgebiet Theoretische Informatik Rossmanith Dreier Hark Kuinke. SS 2017 Blatt RWTH Achen Lehrgeiet Theoretische Informtik Rossmnith Dreier Hrk Kuinke SS 2017 Bltt 4 22.5.2017 Lösungsvorschlg zur Vorlesung Formle Sprchen, Automten und Prozesse Aufge T11 1. L, d L, er / L. L, d für

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fkultät für Informtik Prof. Tois Nipkow, Ph.D. Ssch Böhme, Lrs Noschinski Sommersemester 2011 Lösungsltt 4 20. Juni 2011 Einführung in die Theoretische Informtik Hinweis:

Mehr

FORMALE SYSTEME. Kleene s Theorem. Wiederholung: Reguläre Ausdrücke. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2.

FORMALE SYSTEME. Kleene s Theorem. Wiederholung: Reguläre Ausdrücke. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2. FORMALE SYSTEME 7. Vorlesung: Reguläre Ausdrücke Mrkus Krötzsch Rndll Munroe, https://xkcd.com/851_mke_it_etter/, CC-BY-NC 2.5 TU Dresden, 2. Novemer 2017 Mrkus Krötzsch, 2. Novemer 2017 Formle Systeme

Mehr

Theoretische Informatik und Logik Übungsblatt 2 (2013S) Lösung

Theoretische Informatik und Logik Übungsblatt 2 (2013S) Lösung Theoretische Informtik und Logik Üungsltt 2 (2013S) en Aufge 2.1 Geen Sie jeweils eine kontextfreie Grmmtik n, welche die folgenden Sprchen erzeugt, sowie einen Aleitungsum für ein von Ihnen gewähltes

Mehr

Universität Karlsruhe Institut für Theoretische Informatik. Klausur: Informatik III

Universität Karlsruhe Institut für Theoretische Informatik. Klausur: Informatik III Nme Vornme Mtrikelnummer Lösungsvorschlg Universität Krlsruhe Institut für Theoretische Informtik o. Prof. Dr. P. Snders 8. März 2006 Klusur: Informtik III Aufgbe 1. Multiple Choice 10 Punkte Aufgbe 2.

Mehr

Grundlagen der Theoretischen Informatik, WS11/12 Minimale Automaten

Grundlagen der Theoretischen Informatik, WS11/12 Minimale Automaten Fkultät IV Deprtment Mthemtik Lehrstuhl für Mthemtische Logik und Theoretische Informtik Prof. Dr. Dieter Spreen Dipl.Inform. Christin Uhrhn Grundlgen der Theoretischen Informtik, WS11/12 Minimle Automten

Mehr

Grundlagen der Informatik II Prüfung SS Aufg./15 pages 2. ) = a n ba m1 ba m k

Grundlagen der Informatik II Prüfung SS Aufg./15 pages 2. ) = a n ba m1 ba m k Grundlgen der Informtik II Prüfung 23.7.212 SS 212 1 Aufg./15 pges 2 Aufge 1. Endliche Automten (1 Punkte) / 1 Gegeen seien die folgenden Sprchen L und ihr Komplement L: k L = w {, } w = n ( m i ) = n

Mehr

>1 z. a b. a b. a b. log. 0. a b. Übung 3: Schaltnetze. VU Technische Grundlagen der Informatik

>1 z. a b. a b. a b. log. 0. a b. Übung 3: Schaltnetze. VU Technische Grundlagen der Informatik VU Technische Grundlgen der Informtik Üung 3: Schltnetze 83.579, 205W Üungsgruppen: Mo., 6.. Mi., 8..205 Allgemeiner Hinweis: Die Üungsgruppennmeldung in TISS läuft von Montg, 09.., 20:00 Uhr is Sonntg,

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Grundlgen der Informtik Vorlesungsprüfung vom 02.03.2007 Gruppe B Lösung Nme: Mtrikelnummer: Zuerst itte Nme und Mtrikelnummer uf ds Titelltt schreien. Es sind keine Unterlgen und keine Temreit erlut.

Mehr

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen Dr. Theo Lettmnn Pderorn, den 9. Jnur 24 Age 9. Jnur 24 A x, A 2 x, Üungen zur Vorlesung Modellierung WS 23/24 Bltt Musterlösungen AUFGABE 7 : Es sei der folgende prtielle deterministishe endlihe Automt

Mehr

DEA1 Deterministische Version

DEA1 Deterministische Version Endliche Automten 4 Deterministische endliche Automten Zu dem nichtdeterministischen Automten EA git es eine deterministische Version. EA Akzeptor für Wörter üer X = { } mit mindestens einem führenden.

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Mthemtik: Mg. Schmid Wolfgng Areitsltt. Semester ARBEITSBLATT MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Zunächst einml müssen wir den Begriff Sklr klären. Definition: Unter einem Sklr ersteht mn eine

Mehr

Automaten, Spiele, und Logik

Automaten, Spiele, und Logik Automten, Spiele, und Logik Woche 1 15. April 2014 Inhlt der gnzen Vorlesung Automten uf endlichen Wörtern uf undendlichen Wörtern uf endlichen Bäumen Spiele Erreichrkeitsspiele Ehrenfeucht-Frïssé Spiele

Mehr

i)((a + b) + (ā b)) + c ii ) (a c) + ((b + 0) c) iii) (a c) (ā + c) (b + c + b) iv ) (ā + (b c)) + (c (b + c))

i)((a + b) + (ā b)) + c ii ) (a c) + ((b + 0) c) iii) (a c) (ā + c) (b + c + b) iv ) (ā + (b c)) + (c (b + c)) Boolsche Alger In dieser Aufge soll noch einml der Umgng mit der Boolschen Alger geuet werden. Zur Erinnerung deshl hier zunechst noch einml die grundlegenden Regeln (Nummerierung entsprechenend den GTI-Folien):

Mehr

Frank Heitmann 2/71. 1 Betrachten wir Σ für ein Alphabet Σ, so ist Σ die Menge

Frank Heitmann 2/71. 1 Betrachten wir Σ für ein Alphabet Σ, so ist Σ die Menge Formle Grundlgen der Informtik Kpitel 2 und reguläre Sprchen Frnk Heitmnn heitmnn@informtik.uni-hmurg.de 7. April 24 Frnk Heitmnn heitmnn@informtik.uni-hmurg.de /7 Alphet und Wörter - Zusmmengefsst Die

Mehr

Franz Binder. Vorlesung im 2006W

Franz Binder. Vorlesung im 2006W Formle Reguläre und Formle Institut für Alger Johnnes Kepler Universität Linz Vorlesung im 2006W http://www.lger.uni-linz.c.t/students/win/ml Formle Inhlt Reguläre Reguläre Formle Zustndsdigrmm δ: Σ (Q

Mehr

dem Verfahren aus dem Beweis zu Satz 2.20 erhalten wir zunächst die folgenden beiden ε-ndeas für die Sprachen {a} {b} und {ε} {a} +

dem Verfahren aus dem Beweis zu Satz 2.20 erhalten wir zunächst die folgenden beiden ε-ndeas für die Sprachen {a} {b} und {ε} {a} + Lösungen zu Üungsltt 3 Aufge 1. Es gilt L(( ) ) = ({} {}) {} = ({} {}) ({} {} + ). Mit dem Verfhren us dem Beweis zu Stz 2.20 erhlten wir zunächst die folgenden eiden -NDEAs für die Sprchen {} {} und {}

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlgen der Theoretischen Informtik / Einführung in die Theoretische Informtik I Bernhrd Beckert Institut für Informtik Sommersemester 2007 B. Beckert Grundlgen d. Theoretischen Informtik:

Mehr

Algorithmen und Datenstrukturen 1 Kapitel 4.2

Algorithmen und Datenstrukturen 1 Kapitel 4.2 Endliche Automten Algorithmen und Dtenstrukturen 1 Kpitel 4.2 Roert Giegerich Technische Fkultät roert@techfk.uni-bielefeld.de Vorlesung, U. Bielefeld, Winter 2005/2006 Roert Giegerich Endliche Automten

Mehr

Automaten, Spiele, und Logik

Automaten, Spiele, und Logik Automten, Spiele, und Logik Woche 9 13. Juni 2014 Inhlt der heutigen Vorlesung Büchi Automten co-büchi Automten Komplementierung für deterministische Büchi Automten Ein Ziel: den Stz von Büchi-Elgot-Trkhtenrot

Mehr

Reguläre Ausdrücke, In12 G8

Reguläre Ausdrücke, In12 G8 Reguläre Ausdrücke, In2 G8 Beweise, dss A* unendlich viele Elemente esitzt. Hinweis: Indirekter Beweis R A = {0,} Bilde A 3, A 4 A = {,, c} Bilde A 2, A 3 A = {,, c} Gi die Menge ller Wörter der Länge

Mehr

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt Lösungsskizze 3

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt Lösungsskizze 3 Prof. J. Esprz Technische Universität München S. Sickert, J. Krämer KEINE ABGABE Einführung in die theoretische Informtik Sommersemester 27 Üungsltt 3 Üungsltt Wir unterscheiden zwischen Üungs- und Agelättern.

Mehr

Grundbegriffe der Informatik Aufgabenblatt 6

Grundbegriffe der Informatik Aufgabenblatt 6 Mtr.nr.: Nchnme: Vornme: Grundbegriffe der Informtik Aufgbenbltt 6 Tutorium: Nr. Nme des Tutors: Ausgbe: 2. Dezember 2015 Abgbe: 11. Dezember 2015, 12:30 Uhr im GBI-Briefksten im Untergeschoss von Gebäude

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Gleichmächtigkeit von DEA und NDEA

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Gleichmächtigkeit von DEA und NDEA Dnk Vorleung Grundlgen der Theoretichen Informtik / Einführung in die Theoretiche Informtik I Bernhrd Beckert Diee Vorleungmterilien ieren gnz weentlich uf den Folien zu den Vorleungen von Ktrin Erk (gehlten

Mehr

Grundlagen der Informatik II Übungsblatt: 2, WS 17/18 mit Lösungen

Grundlagen der Informatik II Übungsblatt: 2, WS 17/18 mit Lösungen PD. Dr. Prdyumn Shukl Mrlon Brun Micel Wünsche Dr. Friederike Pfeiffer-Bohnen Dr. Luks König Institut für ngewndte Informtik und Formle Beschreibungsverfhren Grundlgen der Informtik II Übungsbltt: 2, WS

Mehr

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert. Lösung

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert. Lösung Technische Universität München Sommer 2016 Prof. J. Esprz / Dr. M. Luttenerger, S. Sickert Lösung Einführung in die theoretische Informtik Klusur Bechten Sie: Soweit nicht nders ngegeen, ist stets eine

Mehr

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt 5

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt 5 Prof. J. Esprz Technische Universität München S. Sickert, J. Krämer KEINE ABGABE Vielen Dnk n Jn Wgener für die erweiterten Aufgenlösungen Einführung in die theoretische Informtik Sommersemester 2017 Üungsltt

Mehr

Formal Languages and Automata

Formal Languages and Automata Forml Lnguges nd Automt Aufgensmmlung Jn Hldik und Stephn Schulz 10. Novemer 2014 1 Üungsufgen 1.1 Endliche Automten 1.1.1 Aufge Sei Σ = {, }. Geen Sie für die folgenden Sprchen einen DFA n L 0 = {w Σ

Mehr

vollständig (Vervollständigung) deterministisch, DFA (Potenzmengenkonstruktion) Minimalautomat: minimaler vollständiger DFA

vollständig (Vervollständigung) deterministisch, DFA (Potenzmengenkonstruktion) Minimalautomat: minimaler vollständiger DFA Ws isher geschh NFA A = (X, Q, δ, I, F ) vollständig (Vervollständigung) deterministisch, DFA (Potenzmengenkonstruktion) Minimlutomt: minimler vollständiger DFA Für jede Sprche L X sind die folgenden Aussgen

Mehr

Brüche gleichnamig machen

Brüche gleichnamig machen Brüche gleichnmig mchen L Ds Erweitern von Brüchen (siehe L ) ist lediglich ein Instrument, ds vorwiegend eingesetzt wird, um Brüche mit unterschiedlichem Divisor gleichnmig zu mchen. Brüche gleichnmig

Mehr

Inhalt. Endliche Automaten. Automaten und Formale Sprachen. Franz Binder. Endliche Automaten. Deterministische Automaten

Inhalt. Endliche Automaten. Automaten und Formale Sprachen. Franz Binder. Endliche Automaten. Deterministische Automaten Formle Inhlt Reguläre Reguläre Formle Zustndsdigrmm Reguläre δ: Σ (Q Q Ω) Beispiel δ 0 δ 0 1 2 1 2 0 1 2 δ Formle Automt Reguläre Definition Ein nicht-deterministischer, endlicher Automt esteht us einer

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundegriffe der Informtik Einheit 14: Endliche Automten Thoms Worsch Krlsruher Institut für Technologie, Fkultät für Informtik Wintersemester 2009/2010 1/56 Üerlick Erstes Beispiel: ein Getränkeutomt

Mehr

Analytischen Geometrie in vektorieller Darstellung

Analytischen Geometrie in vektorieller Darstellung Anltische Geometrie Anltischen Geometrie in vektorieller Drstellung Anltische Geometrie Gerden Punkt-Richtungs-Form () Mit Hilfe von Vektoren lssen sich geometrische Ojekte wie Gerden und Eenen eschreien

Mehr

Endliche Automaten und ihre Verwendung in der morphologischen Verarbeitung. Hans Uszkoreit

Endliche Automaten und ihre Verwendung in der morphologischen Verarbeitung. Hans Uszkoreit Vorlesung CL Endliche Automten und ihre Verwendung in der morphologischen Verrbeitung Hns Uszkoreit WS 00/01 Automten Automten in der weiteren Bedeutung des Wortes sind ein zentrles Konzept ber nicht forml

Mehr

Endliche Automaten 7. Endliche Automaten

Endliche Automaten 7. Endliche Automaten Endliche Automten 7 Endliche Automten Einfches Modellierungswekzeug (z.b. UML-Sttechrts) Verrbeiten Wörter/Ereignisfolgen Erkennen Sprchen Erluben schnelle Sprcherkennung Anwendungsbereiche: Objektorientierte

Mehr

1.1 Grundlagen: Reguläre Ausdrücke

1.1 Grundlagen: Reguläre Ausdrücke 11 Grundlgen: Reguläre Ausdrücke Progrmmtext enutzt ein endliches Alphet Σ von Einge-Zeichen, zb ASCII :-) Die Menge der Textschnitte einer Token-Klsse ist i regulär Reguläre Sprchen knn mn mithile regulärer

Mehr

Reduktion. Seien A Σ und B Γ. Man sagt A ist reduzierbar auf B (A B) gdw. f : Σ Γ : x Σ : x A f(x) B

Reduktion. Seien A Σ und B Γ. Man sagt A ist reduzierbar auf B (A B) gdw. f : Σ Γ : x Σ : x A f(x) B Reduktion Seien A Σ und B Γ. Mn sgt A ist reduzierr uf B (A B) gdw. f : Σ Γ : x Σ : x A f(x) B Í* * A B von speziellem Interesse: Polynomilzeitreduktion ( pol ), logrithmische-pltz- Reduktion ( log ).

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Mthemtik: Mg. Schmid Wolfgng Areitsltt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Wir wollen eine Gerde drstellen, welche durch die Punkte A(/) und B(5/) verläuft. Die Idee ist folgende:

Mehr

7 Modellierung von Abläufen 7.1 Endliche Automaten

7 Modellierung von Abläufen 7.1 Endliche Automaten 7 Modellierung von Aläufen 7. Endliche Automten Mod-7. Endlicher Automt: Formler Klkül zur Spezifiktion von relen oder strkten Mschinen. Sie regieren uf äußere Ereignisse, ändern ihren inneren Zustnd,

Mehr

Grundlagen der Technischen Informatik. 5. Übung. Christian Knell Keine Garantie für Korrekt-/Vollständigkeit

Grundlagen der Technischen Informatik. 5. Übung. Christian Knell Keine Garantie für Korrekt-/Vollständigkeit Grundlgen der Technischen Informtik 5. Üung Christin Knell Keine Grntie für Korrekt-/Vollständigkeit Üung u Grundlgen der Technischen Informtik 5. Üungsltt Themen Aufge 1: Aufge 2: Aufge 3: Aufge 4: Aufge

Mehr

Reduktion. Seien A Σ und B Γ. Man sagt A ist reduzierbar auf B (A B) gdw. von speziellem Interesse: Polynomialzeitreduktion

Reduktion. Seien A Σ und B Γ. Man sagt A ist reduzierbar auf B (A B) gdw. von speziellem Interesse: Polynomialzeitreduktion Reduktion Seien A Σ und B Γ. Mn sgt A ist reduzierr uf B (A B) gdw. f : Σ Γ. x Σ.x A f(x) B Í* * A B von speziellem Interesse: Polynomilzeitreduktion ( pol ), logrithmische-pltz- Reduktion ( log ). F3

Mehr

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 2015 Bltt 6 26.05.2015 Üungen zur Vorlesung Grundlgen der Mthemtik II Lösungsvorschlg 21. ) Ein Qudrt mit der Seitenlänge + und dmit dem

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung)

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung) Wörter, Grmmtiken und die Chomsky-Hierrchie Sprchen und Grmmtiken Wörter Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 2012 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Alphet Ein

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 2 FS 16

Datenstrukturen & Algorithmen Lösungen zu Blatt 2 FS 16 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérle de Zurich Politecnico federle di Zurigo Federl Institute of Technology t Zurich Institut für Theoretische Informtik 9. März 2016

Mehr

Aufgaben zu Brechung - Lösungen:

Aufgaben zu Brechung - Lösungen: Aufgen zu Brechung - Lösungen: Aufg. 2 (mit Berechnung von n) ) 1 = 1,8 cm; = / n' mit n' = 1/1,5 ==> 1 = 1,8 cm. 1,5 = 2,7 cm r = 2,1cm; d 1 > r ==> Totlreflexion 2 = 0,9 cm; 2 = 0,9 cm. 1,5 = 1,35 cm

Mehr

Berechenbarkeitstheorie 2. Vorlesung

Berechenbarkeitstheorie 2. Vorlesung Berechenrkeitstheorie Dr. Frnzisk Jhnke Institut für Mthemtische Logik und Grundlgenforschung WWU Münster WS 15/16 Alle Folien unter Cretive Commons Attriution-NonCommercil 3.0 Unported Lizenz. Deterministischer

Mehr

Potenzautomat. Gegeben: A = (Z, I, d, s 0, F ) P(A) = (P(Z), I, D, {s 0 }, F P ) P(Z) = {S S Z}: Potenzmenge von Z; D : P(Z) I P(Z) mit

Potenzautomat. Gegeben: A = (Z, I, d, s 0, F ) P(A) = (P(Z), I, D, {s 0 }, F P ) P(Z) = {S S Z}: Potenzmenge von Z; D : P(Z) I P(Z) mit 1 Potenzutomt Gegeben: A = (Z, I, d, s 0, F ) P(A) = (P(Z), I, D, {s 0 }, F P ) P(Z) = {S S Z}: Potenzmenge von Z; D : P(Z) I P(Z) mit D(S, x) = d(s, x) s S für lle S P(Z), x I; F P = {S P(Z) S F }. Potenzutomt

Mehr

2. Klausur in K2 am

2. Klausur in K2 am Nme: Punkte: Note: Ø: Profilfch Physik Azüge für Drstellung: Rundung:. Klusur in K m.. 04 Achte uf die Drstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Aufge ) (8 Punkte) In drei

Mehr

Kontextsensitive Sprachen. Christian Scheideler Universität Paderborn WS 2014

Kontextsensitive Sprachen. Christian Scheideler Universität Paderborn WS 2014 Kontextsensitive Sprchen Christin Scheideler Universität Pderorn WS 2014 Kontextsensitive Sprchen Definition 5.1.4 Eine Grmmtik heißt kontextsensitiv oder vom Typ Chomsky-1 flls für jede Regel u v gilt

Mehr

Z R Z R Z R Z = 50. mit. aus a) Z L R. Wie groß ist der Leistungsfaktor cos der gesamten Schaltung?

Z R Z R Z R Z = 50. mit. aus a) Z L R. Wie groß ist der Leistungsfaktor cos der gesamten Schaltung? Aufge F 99: Drehstromverruher Ein symmetrisher Verruher ist n ds Drehstromnetz ( 0 V, f 50 Hz) ngeshlossen. Die us dem Netz entnommene Wirkleistung eträgt,5 kw ei einem eistungsfktor os 0,7. ) Berehnen

Mehr

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/15 09:12:15 hk Exp hk $ 1.4 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/15 09:12:15 hk Exp hk $ 1.4 Dreiecksberechnung mit Seiten und Winkeln Mthemtishe Proleme, SS 2013 Montg 15.4 $Id: dreiek.tex,v 1.5 2013/04/15 09:12:15 hk Exp hk $ 1 Dreieke 1.4 Dreiekserehnung mit Seiten und Winkeln In der letzten Sitzung htten wir egonnen die vershiedenen

Mehr

Hausaufgabe 2 (Induktionsbeweis):

Hausaufgabe 2 (Induktionsbeweis): Prof. Dr. J. Giesl Formle Sprhen, Automten, Prozesse SS 2010 Üung 3 (Age is 12.05.2010) M. Brokshmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden

Mehr

ARBEITSBLATT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-ACHSE

ARBEITSBLATT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-ACHSE Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-CHSE Wie wir die Fläche zwischen einer Funktion und der -chse erechnen, hen wir rechentechnische ereits geklärt.

Mehr

Endliche Automaten. Stoyan Mutafchiev. Programming Systems Lab, Universität des Saarlandes, Saarbrücken

Endliche Automaten. Stoyan Mutafchiev. Programming Systems Lab, Universität des Saarlandes, Saarbrücken Endliche Automten Stoyn Mutfchiev Progrmming Systems L, Universität des Srlndes, Srrücken Astrct Gegenstnd dieser Areit ist der endliche Automt, sowie die Aschlusseigenschften der Sprchen, die von endlichen

Mehr

L = L(a(a b) b b(a b) a)

L = L(a(a b) b b(a b) a) Lösungen zur Proeklusur mit Kommentren Aufge 1. Ein Wort w {,} liegt genu dnn in L, wenn es entweder mit nfängt und mit endet oder umgekehrt. Also erhält mn L = L(( ) ( ) ). Ein DEA, der die Sprche L kzeptiert,

Mehr

Eine Relation R in einer Menge M ist transitiv, wenn für alle x, y, z M gilt: (x R y y R z) x R z

Eine Relation R in einer Menge M ist transitiv, wenn für alle x, y, z M gilt: (x R y y R z) x R z Reltionen, 11 Reltionen Reltion ist einfch gesgt eine Beziehung zwischen Elementen von Mengen. In der Geometrie sind z.b. die Reltionen "ist gleich", "ist senkrecht zu", "ist prllel zu" eknnt. Die letzten

Mehr

2. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004

2. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004 Universität Krlsruhe Theoretische Informtik Fkultät für Informtik WS 2003/04 ILKD Prof. Dr. D. Wgner 14. April 2004 2. Klusur zur Vorlesung Informtik III Wintersemester 2003/2004 Lösung! Bechten Sie: Bringen

Mehr

Modul 3: Schaltnetze. Informatik I. Modul 3: Schaltnetze. Schaltnetze. Formale Grundlagen. Huntingtonsche Axiome.

Modul 3: Schaltnetze. Informatik I. Modul 3: Schaltnetze. Schaltnetze. Formale Grundlagen. Huntingtonsche Axiome. Herstsemester 2, Institut für Informtik IFI, UZH, Schweiz Modul 3: Schltnetze Informtik I Modul 3: Schltnetze Einführung in die formlen Grundlgen logischer Beschreiungen Boolesche Alger, Schltlger Vorussetzende

Mehr

Übungsblatt 4 - Lösung

Übungsblatt 4 - Lösung Formle Sprchen und Automten Üungsltt 4 - Lösung 26. M 2013 1 Whr oder flsch? Begründe kurz dene Antwort! 1. In enem determnstschen endlchen Automten gt es für jedes Wort w Σ mxml enen kzepterenden Pfd.

Mehr

Die Dreiecke ADM A und BCM C sind kongruent aufgrund

Die Dreiecke ADM A und BCM C sind kongruent aufgrund Westfälische Wilhelms-Universität Münster Mthemtisches Institut pl. Prof. Dr. Lutz Hille Dr. Krin Hlupczok Üungen zur Vorlesung Elementre Geometrie Sommersemester 010 Musterlösung zu ltt 4 vom 3. Mi 010

Mehr

1. Formale Sprachen Formale Sprachen

1. Formale Sprachen Formale Sprachen 1. Formle Sprchen Formle Sprchen 1. Formle Sprchen 1.1. Ws ist eine formle Sprche? Wenn mn einen Gednken in einer ntürlichen Sprche usdrücken will, kommt es im wesentlichen uf 2 Aspekte n: 1. Der korrekte

Mehr

Kapitel 4. Minimierung. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik

Kapitel 4. Minimierung. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Kpitel 4 Minimierung Prof. Dr. Dirk W. Hoffmnn Hochschule Krlsruhe w University of Applied Sciences w Fkultät für Informtik Minimierung Motivtion Jede Boolesche Funktion lässt sich uf verschiedene Weise

Mehr

G2.3 Produkte von Vektoren

G2.3 Produkte von Vektoren G Grundlgen der Vektorrechnung G. Produkte von Vektoren Ds Sklrprodukt Beispiel: Ein Schienenfhrzeug soll von einem Triler ein Stück s gezogen werden, der neen den Schienen fährt (vgl. Skizze). Wir wollen

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informtik Johnnes Köler Institut für Informtik Humoldt-Universität zu Berlin WS 011/1 Inhlt der Vorlesung Themen dieser VL: Welche Rechenmodelle sind däqut? Welche Proleme

Mehr

FORMALE SYSTEME. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2. November Markus Krötzsch

FORMALE SYSTEME. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2. November Markus Krötzsch FORMALE SYSTEME 7. Vorlesung: Reguläre Ausdrücke Mrkus Krötzsch TU Dresden, 2. November 2017 Rndll Munroe, https://xkcd.com/851_mke_it_better/, CC-BY-NC 2.5 Mrkus Krötzsch, 2. November 2017 Formle Systeme

Mehr

Automaten und Formale Sprachen 7. Vorlesung

Automaten und Formale Sprachen 7. Vorlesung Automten und Formle Sprchen 7. Vorlesung Mrtin Dietzfelinger Bis nächste Woche: Folien studieren. Detils, Beispiele im Skript, Seiten 70 99. Definitionen lernen, Beispiele nsehen, Frgen vorereiten. Üungsufgen

Mehr

Deterministische endliche Automaten

Deterministische endliche Automaten Endliche Automten Idee: endlicher Automt A ht endlich viele innere Zustände liest Einge wєσ* zeichenweise von links nch rechts git zum Schluß eine J/Nein Antwort A Lesekopf w 1 w 2 w n gelesenes Symol

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Shufhprinzip (Folie 137) Automten und formle Sprhen Notizen zu den Folien Im Blok Ds Shufhprinzip für endlihe Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl von

Mehr

10: Lineare Abbildungen

10: Lineare Abbildungen Chr.Nelius: Linere Alger SS 2008 1 10: Linere Aildungen 10.1 BEISPIEL: Die Vektorräume V 2 und Ê 2 hen diegleiche Struktur. Es git eine ijektive Aildung f : V 2 Ê 2, die durch die Vorschrift definiert

Mehr

mathematik und informatik

mathematik und informatik Prof. Dr. André Schulz Kurs 0657 Grundlgen der Theoretischen Informtik A LESEPROBE mthemtik und informtik Ds Werk ist urheerrechtlich geschützt. Die ddurch egründeten Rechte, insesondere ds Recht der Vervielfältigung

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

Eine endliche Folge von Operationen und Entscheidungen, die ein Problem in endlich vielen Schritten löst.

Eine endliche Folge von Operationen und Entscheidungen, die ein Problem in endlich vielen Schritten löst. Formle Methoen er Informtik WS 00/0 Lehrstuhl für Dtennken un Künstliche Intelligenz ProfDrDrFJRermcher H Ünver T Rehfel J Dollinger Aufgenltt Besprechung in en Tutorien vom 000 ( Üungstermin) is 000 (is

Mehr

10 1 Grundlagen der Schulgeometrie. 1.3 Das Dreieck

10 1 Grundlagen der Schulgeometrie. 1.3 Das Dreieck 10 1 Grundlgen der Shulgeometrie 13 Ds Dreiek In diesem shnitt findet lles in der ffinen Stndrdeene 2 = R 2 sttt Drei Punkte, und, die niht uf einer Gerden liegen, ilden ein Dreiek Die Punkte,, nennt mn

Mehr

Formale Sprachen. Endliche Automaten - Kleene. Reguläre Sprachen. Rudolf FREUND, Marion OSWALD. Endliche Automaten. Endliche Automaten: Beispiel

Formale Sprachen. Endliche Automaten - Kleene. Reguläre Sprachen. Rudolf FREUND, Marion OSWALD. Endliche Automaten. Endliche Automaten: Beispiel Formle Sprchen Reguläre Sprchen Endliche Automten - Kleene STEPHEN KLEENE (99-994) Rudolf FREUND, Mrion OSWALD 956: Representtion of events in nerve nets nd finite utomt. In: C.E. Shnnon und J. McCrthy

Mehr

Grundlagen des Maschinellen Lernens Kap 3: Lernverfahren in anderen Domänen

Grundlagen des Maschinellen Lernens Kap 3: Lernverfahren in anderen Domänen . Motivtion 2. Lernmodelle Teil I 2.. Lernen im Limes 2.2. Fllstudie: Lernen von Ptternsprchen 3. Lernverfhren in nderen Domänen 3.. 3.2. Entscheidungsbäume 3.3. Entscheidungsbäume über regulären Ptterns

Mehr

Grenzwerte von Funktionen

Grenzwerte von Funktionen Grenzwert und Stetigkeit von Funktionen Methodische Bemerkungen H Hinweise und didktisch-methodische Anmerkungen zum Einstz der Areitslätter und Folien für den Themenkreis Grenzwert und Stetigkeit von

Mehr

Leichtbau Übung 2 - Fachwerke

Leichtbau Übung 2 - Fachwerke Leichtu Üung 2 - Fchwerke C. Krl, D. Montenegro, F. Runkel, C. Schneeerger 07.10.2015 ((Vornme Nchnme)) 09.10.2015 1 Aufge 1 Verformung von Rhmen- und Fchwerken Ds unten drgestellte Rhmenwerk esteht us

Mehr

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben Seite Einführung in die Integrlrechnung Lösungen und Ergenisse Gr Stefn Gärtner Grundkurs Mthemtik Einführung in die Integrlrechnung Lösungen und Ergenisse zu den Aufgen Von llen Wissenschftlern können

Mehr