Kategorielle Zielgrössen

Größe: px
Ab Seite anzeigen:

Download "Kategorielle Zielgrössen"

Transkript

1 Kategorielle Zielgrössen

2 Motivation Bisher gesehen: Regressionsmodelle für diverse Arten von Zielgrössen Y. kontinuierliche Zielgrösse Lineare Regression Binäre/binomiale Zielgrösse Logistische Regression Anzahldaten Poisson Regression Heute: Kategorielle Zielgrössen (Faktoren) mit mehr als zwei Kategorien. Nominale Zielgrösse Multinomiale Regression Ordinale Zielgrösse Ordinale Regression

3 Nominale Zielgrössen

4 Beispiel: Umwelt-Umfrage 1. Wer trägt die Hauptverantwortung für den Umweltschutz? der Einzelne [1] der Staat [2] beide zusammen [3] 2. Wie stark fühlen Sie sich durch Umweltschadstoffe beeinträchtigt? überhaupt nicht [1] etwas [2] ziemlich [3] sehr stark [4] 3. Welches ist Ihr höchster Abschluss? Volks-, Hauptschulabschluss ohne Lehre [1] Lehrabschluss [2] Weiterbildende Schule ohne Abitur [3] Abitur, Hochschulreife, Fachhochschulreife [4] Studium (Universität, Akademie, Fachhochschule) [5] Zielgrösse Y (nominal)

5 Beispiel: Umweltumfrage Nominale Zielgrösse Y Hauptverantwortung für Umweltschutz (Einzelner, Staat, beide) Erklärende Variablen Frage Beeinträchtigung (überhaupt nicht, etwas, ziemlich, sehr) Schulbildung Alter Geschlecht (ungelernt, Lehre, ohne Abitur, Abitur, Studium) (weiblich, männlich) Wie können wir die Wahrscheinlichkeiten der Kategorien der nominalen Zielgrösse «Hauptverantwortung für Umweltschutz» modellieren als Funktion der erklärenden Variablen?

6 Modell: Multinomiale Regression Gegeben Zielgrösse Y mit K + 1 Kategorien Wir nummerieren die Kategorien der Zielgrösse Y mit k = 0,1,2,, K. ( für K = 1: logistische Regression) Achtung: Die Zielgrösse ist nominal, die Zahlen bedeuten keine Ordnung. Wir fixieren nun eine Referenzklasse, z.b. Kategorie 0. Erklärende Grössen x (1),, x (m). Grundidee Für jede Kategorie k = 1,, K modellieren wir die W keit, in Kategorie k zu fallen im Vergleich zur W keit, in die Referenzkategorie zu fallen.

7 Modell: Multinomiale Regression Wir wählen ein multinomiales Logit-Modell. Für jede Kategorie k = 1,2,, K (und Referenzkategorie k = 0): log P Y i = k x i = log π k i P Y i = 0 x i π i 0 m = η k i = β k 0 + β k j j x i j=1 Zusätzlich sollten sich die W keiten jeweils zu 1 addieren: σk k=0 π k i = 1. Bemerkungen Wie bei der logistischen Regression modellieren wir die logarithmierten Wettverhältnisse (log odds). Hier haben wir mehrere davon. Wir vergleichen jede der Kategorien k = 1,2,, K mit der Referenzklasse k = 0.

8 Modell: Multinomiale Regression Multinomiales Logit-Modell: Für k = 1,2,, K, log P Y i = k x i = log π k i P Y i = 0 x i π i 0 m = η k i = β k 0 + β k j x j i. j=1 Man kann zeigen, dass wir eigentlich die W keiten modellieren als: π i k = exp η i k 1 + σ K l=1 exp η i l, k 1. π i 0 K = 1 k=1 π i k Das Modell liefert uns die W keiten, in die einzelnen Klassen zu fallen, in Abhängigkeit der erklärenden Variablen ( Diskriminanzanalyse).

9 Interpretation der Parameter log P Y i = k x i = log π k i P Y i = 0 x i π i 0 m = η k i = β k 0 + β k j j x i j=1 Das Modell ist flexibel. Da wir für jede Kategorie k = 1,, K ein separates Modell ansetzten, haben wir eine grosse Anzahl an Parametern, nämlich K (m + 1) ( Parameter schlecht bestimmt bei kleinen Datensätzen). Für jede Kategorie k der Zielgrösse Y i erlaubt es eine eigene Form der Abhängigkeit der W keit π k i in diese Kategorie zu fallen von den erklärenden Variablen (separate Koeffizienten β k j für jede Kategorie k). Interpretation (wie bei der logistischen Regression): Für zunehmendes x (j) bedeutet ein positiver Koeffizient β k j eine steigende Neigung zur Kategorie k im Vergleich zur Referenzkategorie.

10 Eigenschaften Gruppierte Daten Fasst man die Beobachtungen mit gleichen Werten der Eingangsgrössen zusammen (cf. Vorlesung logistische Regression), dann folgen die Anzahlen einer multinomialen Verteilung mit den vorherigen W keiten. Wahl der Referenzklasse (k=0) Wir haben die Referenzklasse «willkürlich» als k=0 gewählt. Man kann zeigen, dass sich das Modell nicht ändert, wenn man die Referenzklasse ändert. Für eine andere Referenzklasse kann man die Parameter «eins zu eins» umrechnen (ähnlich wie bei Referenzlevel von Faktoren).

11 Beispiel: Umwelt-Umfrage R: Funktion multinom() im package nnet. «Einzelner» ist Referenzkategorie von Y «m» ist Referenzkategorie von Geschlecht Koeffizient von x (j) = Alter für die Kategorie k = Staat ist β k j = In 50 Jahren nehmen die log-odds von Staat:Einzelne um = ab.

12 Einfluss von erklärenden Grössen Ob eine erklärende Grösse einen Einfluss auf die Zielgrösse hat, sollte man nicht anhand der einzelnen Koeffizienten bestimmen (da ja K Koeffizienten null sein müssten, wenn kein Einfluss da ist). Es muss also ein grösseres Modell mit einem kleineren verglichen werden, dies geschieht wie üblich mit den log-likelihoods oder den Devianzen. R-Funktionen drop1() sieht für multinomiale Modelle keinen Test vor. Für den Vergleich von einem kleineren mit einem grösseren Modell oder für den Signifikanztest von Faktoren verwendet man die Funktion: anova(fit.small, fit, test=«chisq»)

13 Beispiel: Umwelt-Umfrage > fit.small <- update(fit, Hauptv ~. Schule) > anova(fit.small, fit, test = «Chisq») Das liefert folgendes Ergebnis:

14 Ordinale Zielgrösse

15 Beispiel: Umwelt-Umfrage 1. Wer trägt die Hauptverantwortung für den Umweltschutz? der Einzelne [1] der Staat [2] beide zusammen [3] 2. Wie stark fühlen Sie sich durch Umweltschadstoffe beeinträchtigt? überhaupt nicht [1] etwas [2] ziemlich [3] sehr stark [4] 3. Welches ist Ihr höchster Abschluss? Zielgrösse Y (ordinal) Volks-, Hauptschulabschluss ohne Lehre [1] Lehrabschluss [2] Weiterbildende Schule ohne Abitur [3] Abitur, Hochschulreife, Fachhochschulreife [4] Studium (Universität, Akademie, Fachhochschule) [5]

16 Beispiel: Umweltumfrage Ordinale Zielgrösse Y Beeinträchtigung (überhaupt nicht, etwas, ziemlich, sehr) Erklärende Variablen Hauptverantwortung für Umweltschutz (Einzelner, Staat, beide) Schulbildung (ungelernt, Lehre, ohne Abitur, Abitur, Studium) Alter Geschlecht (weiblich, männlich) Frage Wie können wir die Wahrscheinlichkeiten der Kategorien der ordinalen Zielgrösse «Beeinträchtigung» modellieren als Funktion der erklärenden Variablen?

17 Ordinale Regression Vorgehen bei ordinalen Zielgrössen: Das Modell geht von einer latenten kontinuierlichen Variable Z aus Beispiele: Menschen empfinden Schmerzen unter Umständen als sich kontinuierlich verändernd. Man kann das aber nicht direkt messen, sondern nur Kategorien erfragen (leicht, mittel, stark). Zugrundeliegende latente Variable: «Schmerzstärke» 5-Punkt Likert-Skala: trifft nicht zu, trifft eher nicht zu, teils-teils, trifft eher zu, trifft zu Zugrundeliegende latente Variable: «Grad der Zustimmung» Durch Klassierung von der kontinuierlichen Variable Z (mittels Schwellenwerten α k ) erhält man die verschiedenen Kategorien

18 Ordinale Regression Modell der latenten Variable Wir nehmen an, dass wir eine kontinuierliche latente Variable Z und Schwellenwerte α k haben, sodass gilt: Insgesamt haben wir K Schwellenwerte: α 1 < α 2 < < α K. Es gilt: P Y i k = P(Z i > α k )

19 Ordinale Regression Modell der latenten Variable Für die latente Variable Z nehmen wir ein gewöhnliches multiples lineares Regressionsmodell an: m (j) Z i = β 0 + β j x i + Ei = β 0 + x T i β + E i j=1 Mit einer bestimmten (noch zu wählenden) Verteilung für den Fehlerterm E i.

20 latente Variable Z Ordinale Regression Illustration: Modell der latenten Variable α 3 α 2 α 1 Schwellenwerte, sind unbekannt. Werden später zusammen mit Parametern geschätzt. Gesucht: W keit über Schwelle α k zu liegen: P Z i > α k X = P Y i k

21 Ordinale Regression Modell der latenten Variable Für die latente Variable Z nehmen wir ein gewöhnliches multiples lineares Regressionsmodell an: m (j) Z i = β 0 + β j x i + Ei = β 0 + x T i β + E i j=1 Mit einer bestimmten (noch zu wählenden) Verteilung für den Fehlerterm E i. Für die kumulierten Wahrscheinlichkeiten γ k P Y i k x i gilt: γ k P Y i k x i = P Z i > α k x i = P β 0 + x i T β + E i > α k = P E i > α k β 0 + x i T β = 1 P E i α k β 0 + x i T β = 1 F E α k β 0 + x i T β = F E x i T β α k β 0 Funktion von einem linearen Ausdruck in β

22 Ordinale Regression Identifikationsprobleme γ k P Y i k x i = P Z i > α k x i = F E x i T β α k β 0 1. Der Parameter β 0 ist unbestimmt. Wir können zu jedem Schwellenwert α k eine Konstante c hinzuzählen und diese von β 0 abziehen, ohne dass sich die Y i ändern. Setze β 0 = Die Streuung der latenten Variable ist nicht bestimmt. Wir können Z i und alle Schwellenwerte α k mit einer Konstanten multiplizieren, ohne Y i zu ändern. Nehme für die Verteilungsfunktion der Zufallsfehler an, dass die Varianz fix vorgegeben ist.

23 Ordinale Regression Link-Funktion und Verteilung des Fehlerterms Idee Verwende die Link-Funktion g = F 1 E um einen linearen Ausdruck zu erhalten: g γ k = g P Y i k x i = x i T β α k Abhängig von der Wahl der Verteilung der Zufallsfehler E i im Modell der latenten Variable ergibt sich jeweils ein anderes Regressionsmodell (z.b. für die Normalverteilung: Probitmodell, Extremwertvert.: Kompl. Log-log Modell). Wählen wir die logistische Verteilung, erhalten wir g γ k = logit γ k = log γ k 1 γ k = log P Y i k x i P Y i < k x i = x i T β α k Man spricht vom Modell der kumulativen Logits.

24 Ordinale Regression Was modellieren wir hier eigentlich? g γ k = logit γ k = log γ k 1 γ k = log P Y i k x i P Y i < k x i = x i T β α k Das sieht aus wie ein logistisches Regressionsproblem mit der binären Zielgrösse {Y i k} (ja oder nein). Für jedes Level k haben wir ein logistisches Regressionsmodell mit binärer Zielgrösse, die 1 ist, wenn Y i k, und sonst 0. Wichtig Die Modelle sind miteinander verknüpft, da die Parameter β j für alle Levels k die gleichen sind. Hinweis Nur die Schwellenwerte α k hängen von der Kategorie k ab. Sie sind unbekannt und müssen gleichzeitig mit den Hauptparametern β geschätzt werden.

25 Ordinale Regression Log odds Odds g γ k = logit γ k = log γ k 1 γ k = log P Y i k x i P Y i < k x i = x i T β α k odds Y i k x i = γ k 1 γ k = P Y i k x i P Y i < k x i = exp x i T β α k Kumulierte Wahrscheinlichkeiten via logistische Funktion γ k = P Y i k x i = exp x i T β α k 1 + exp x T i β α k Wahrscheinlichkeit für Kategorie k P Y i = k x i = P Y i k x i P Y i k + 1 x i = γ k γ k+1

26 Ordinale Regression Interpretation der Parameter odds Y i k x i = γ k 1 γ k = P Y i k x i P Y i <k x i = exp x i T β α k = exp α k exp β 1 x 1 exp{β m } x(m) Die Interpretation ist analog zur logistischen Regression. Erhöht man x j um eine Einheit, so ändern sich die odds, in die höhere Kategorie zu fallen, um den Faktor exp{β j }. Ein positives β j bedeutet also, dass man für steigende x j höhere Kategorien fällt. -Werte eher in

27 Ordinale Regression Interpretation anhand der Wettverhältnisse Mit Hilfe der log odds-ratios ausgedrückt erhalten wir log odds Y 1 k x 1 odds Y 2 k x 2 = β 1 x 1 1 x β m x 1 m x 2 m Der Einfluss der erklärenden Variablen auf die log odds-ratios beziehungsweise odds-ratios ist unabhängig von k (für alle k gleich)! Das heisst, die erklärenden Variablen wirken für alle «Unterteilungen» gleich. Man spricht daher auch vom proportional-odds Modell.

28 Ordinale Regression Vergleich mit multinomialer Regression g γ k = logit γ k = log γ k 1 γ k = log P Y i k x i P Y i < k x i = x i T β α k Verglichen mit dem multinomialen Regressionsmodell haben wir hier viel weniger Parameter zu schätzen, nämlich nur K + m statt K (m + 1), da die Parameter β für alle Kategorien k die gleichen sind. Zum Schätzen des ordinalen Regressionsmodells verwenden wir die R-Funktion polr() im package MASS.

29 Ordinale Regression R-Output von summary() von polr መβ α 1 α 3

30 Ordinale Regression Die Signifikanz von Faktoren kann hier wieder mittels der R-Funktion drop1 bestimmt werden. ergibt: Schulbildung und Ortsgrösse haben signifikanten Einfluss auf die Beeinträchtigung

31 Merkpunkte Multinomiale Regression Für ungeordnete (nominale) kategorielle Variablen mit mehr als zwei Kategorien Interpretation der Parameter, Schätzung und Tests wie bei der logistischen Regression Diskriminanzanalyse durch Schätzen der Wahrscheinlichkeiten, in die einzelnen Kategorien zu fallen. Ordinale Regression Für geordnete (ordinale) kategorielle Variablen Vorstellung einer kontinuierlichen latenten Variable Z und Schwellenwerten α k Vorgehensweise ähnlich zur logistischen Regression für die binäre Zielgrösse {Y i k} (ja oder nein).

Seminar zur Energiewirtschaft:

Seminar zur Energiewirtschaft: Seminar zur Energiewirtschaft: Ermittlung der Zahlungsbereitschaft für erneuerbare Energien bzw. bessere Umwelt Vladimir Udalov 1 Modelle mit diskreten abhängigen Variablen 2 - Ausgangssituation Eine Dummy-Variable

Mehr

5.Tutorium Generalisierte Regression

5.Tutorium Generalisierte Regression 5.Tutorium Generalisierte Regression - Multinomiales/Kummulatives Logit-Modell - Cynthia Huber: 09.12.2014 und 16.12.2014 Michael Hanselmann: 18.12.2014 Institut für Statistik, LMU München 1 / 16 Gliederung

Mehr

Poisson Regression & Verallgemeinerte lineare Modelle

Poisson Regression & Verallgemeinerte lineare Modelle Poisson Regression & Verallgemeinerte lineare Modelle 20.11.2017 Motivation Ausgangslage Wir haben Anzahldaten (count data) Y i, cf. Vorlesung zu kategoriellen Variablen. Zu jeder Beobachtung Y i haben

Mehr

Logistische Regression

Logistische Regression Logistische Regression 13.11.2017 Motivation Regressionsrechnung: Untersuchung des Zusammenhangs zwischen einer (oder mehreren) Zielvariablen und einer oder mehreren erklärenden Variablen. Bisher gesehen:

Mehr

Kategorielle Variablen

Kategorielle Variablen Kategorielle Variablen 06.11.2017 Motivation Bisher: Kontinuierliche Variablen Zusammenhang zwischen kontinuierlichen Variablen? Korrelation und Regression Jetzt: Kategorielle Variablen Zusammenhang zwischen

Mehr

Kategorielle*Zielgrössen*!

Kategorielle*Zielgrössen*! Kategorielle*Zielgrössen* Mul3nomialeundordinaleRegression BarbaraHellriegel 30.11.2015 Bisher:*Regressionsmodelle*für*diverseArtenvonZielgrössenY: * o kon3nuierlichesy o binäresbzw.binomialesy o Anzahl

Mehr

Ordinale abhängige Variablen. Einführung Regressionsmodelle für ordinale Variablen Empirisches Beispiel Ausblick

Ordinale abhängige Variablen. Einführung Regressionsmodelle für ordinale Variablen Empirisches Beispiel Ausblick Kap. 6: Ordinale abhängige Variablen Einführung Regressionsmodelle für ordinale Variablen Empirisches Beispiel Ausblick 6.1 Einführung Typische ökonomische Beispiele für ordinale abhängige Variablen: Bildungsniveau

Mehr

Logistische Regression

Logistische Regression Logistische Regression Markus Kalisch 30.09.2014 1 Big Picture: Statistisches Lernen Supervised Learning (X,Y) Unsupervised Learning X VL 7, 11, 12 Regression Y kontinuierlich VL 1, 2, 4, 5, 6 Klassifikation

Mehr

Poisson Regression. Verallgemeinerte Lineare Modelle (GLMs)

Poisson Regression. Verallgemeinerte Lineare Modelle (GLMs) Poisson Regression Verallgemeinerte Lineare Modelle (GLMs) 28.11.2011 Poisson Regression Aus der Einführungsvorlesung Poisson-Verteilung ist in der Regel gut geeignet, um Anzahlen zu modellieren. Frage

Mehr

Logistische Regression I. Odds, Logits, Odds Ratios, Log Odds Ratios

Logistische Regression I. Odds, Logits, Odds Ratios, Log Odds Ratios Logistische Regression I. Odds, Logits, Odds Ratios, Log Odds Ratios PD Dr.Gabriele Doblhammer, Fortgescrittene Methoden, SS2004 Logistische Regression Tabelle 2 Alter und Symptome von Herz-/Kreislauferkrankung(CD)

Mehr

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung. 5 Hypothesentests.

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung. 5 Hypothesentests. 0 Einführung 1 Wahrscheinlichkeitsrechnung 2 Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Intervallschätzung 5 Hypothesentests 6 Regression Lineare Regressionsmodelle Deskriptive Statistik:

Mehr

Lineare Regression 1 Seminar für Statistik

Lineare Regression 1 Seminar für Statistik Lineare Regression 1 Seminar für Statistik Markus Kalisch 17.09.2014 1 Statistik 2: Ziele Konzepte von einer breiten Auswahl von Methoden verstehen Umsetzung mit R: Daten einlesen, Daten analysieren, Grafiken

Mehr

8 Allgemeine Modelle & Robuste Regression

8 Allgemeine Modelle & Robuste Regression 8.1 Allgemeines Lineares Regressions-Modell 182 8 Allgemeine Modelle & Robuste Regression 8.1 Allgemeines Lineares Regressions-Modell a Modell. Y i F µ i, γ, g µ i = η i = x T i β b Weibull-Verteilung.

Mehr

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp Dr. Maike M. Burda Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 8.-10. Januar 2010 BOOTDATA.GDT: 250 Beobachtungen für die Variablen... cm:

Mehr

Biometrie. Regressionsmodelle

Biometrie. Regressionsmodelle 1 Regressionsmodelle Einflussgrößen Zielgröße (Alter, Geschlecht Blutdruck) Zielgröße entscheidet über das Regressionsmodell stetige Zielgröße lineare Regression binäre Zielgröße logistische Regression

Mehr

Empirische Analysen mit dem SOEP

Empirische Analysen mit dem SOEP Empirische Analysen mit dem SOEP Methodisches Lineare Regressionsanalyse & Logit/Probit Modelle Kurs im Wintersemester 2007/08 Dipl.-Volksw. Paul Böhm Dipl.-Volksw. Dominik Hanglberger Dipl.-Volksw. Rafael

Mehr

Datenanalyse mit Excel und Gretl

Datenanalyse mit Excel und Gretl Dozent: Christoph Hindermann christoph.hindermann@uni-erfurt.de Datenanalyse mit Excel und Gretl Teil Titel 2: Gretl 1 Teil 2: Gretl Datenanalyse mit Excel und Gretl Teil Titel 2: Gretl 2 Modellannahmen

Mehr

Bivariate Analyseverfahren

Bivariate Analyseverfahren Bivariate Analyseverfahren Bivariate Verfahren beschäftigen sich mit dem Zusammenhang zwischen zwei Variablen Beispiel: Konservatismus/Alter Zusammenhangsmaße beschreiben die Stärke eines Zusammenhangs

Mehr

Eine und zwei kategorielle Variablen

Eine und zwei kategorielle Variablen Eine und zwei kategorielle Variablen 7.11.2011 Einführung Kategorielle Variable, Faktor Eine kategorielle Variable (Faktor) hält fest, zu welcher Kategorie eine Beobachtung gehört. Falls die Kategorien

Mehr

Logistische Regression in SAS

Logistische Regression in SAS Logistische Regression in SAS Oliver Kuß Medizinische Universitätsklinik, Abt. Klinische Sozialmedizin, Bergheimer Str. 58, 69115 Heidelberg, email: okuss@med.uni-heidelberg.de 3. Konferenz für SAS -Anwender

Mehr

Logistische Regression

Logistische Regression Logistische Regression Werner Brannath VO Biostatistik im WS 2006/2007 Inhalt Logistische Regression Beispiel 1: Herzerkrankungsdaten aus Framingham Log Odds Modell Beispiel 1: Einfluss von Blutdruck Maximum

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 6 Genzwertsätze Einführung 1 Wahrscheinlichkeit: Definition und Interpretation

Mehr

Statistische Modellierung Merkblatt

Statistische Modellierung Merkblatt Inhaltsverzeichnis Statistische Modellierung Merkblatt Welches Modell nimmt man wann?... 1 Logit:... 2 Probit:... 2 Poisson:...2 Loglinear:... 2 multinomiales Logit:... 2 Ordinales Logit (PROC LOGISTIC

Mehr

2.5 Lineare Regressionsmodelle

2.5 Lineare Regressionsmodelle 2.5.1 Wiederholung aus Statistik I Gegeben Datenpunkte (Y i, X i ) schätze die beste Gerade Y i = β 0 + β 1 X i, i = 1,..., n. 2 Induktive Statistik 409 Bsp. 2.30. [Kaffeeverkauf auf drei Flohmärkten]

Mehr

Flussdiagramm der ökonometrischen Methode

Flussdiagramm der ökonometrischen Methode Flussdiagramm der ökonometrischen Methode z.b Sättigungs modell Parameter schätzung Daten Sach verhalt oder Spezifikation des ökonometrischen Modells geschätztes Modell phäno menologische Modellierung

Mehr

2.Tutorium Generalisierte Regression

2.Tutorium Generalisierte Regression 2.Tutorium Generalisierte Regression - Binäre Regression - Moritz Berger: 04.11.2013 und 11.11.2013 Shuai Shao: 06.11.2013 und 13.11.2013 Institut für Statistik, LMU München 1 / 16 Gliederung 1 Erweiterte

Mehr

Klassen diskreter Variablen

Klassen diskreter Variablen Modelle diskreter Variablen Klassen diskreter Variablen binär multinomial Weitere Klassifizierung multinomialer diskreter Variablen: kategorial y = 1, falls Einkommen < 3000 e. y = 2, falls Einkommen zw.

Mehr

VO Biostatistik im WS 2006/2007

VO Biostatistik im WS 2006/2007 VO Biostatistik im WS 2006/2007 1 Beispiel 1: Herzerkrankungsdaten aus Framingham für skoeffizienten : Leukemie-Daten 2 Beispiel 1: Herzerkrankungsdaten aus Framingham Stichprobe: 1329 männliche Bewohner

Mehr

Logit-Analyse mit ordinalen und nominalen abhängigen Variablen

Logit-Analyse mit ordinalen und nominalen abhängigen Variablen Logit-Analyse mit ordinalen und nominalen abhängigen Variablen Regressionsmodelle für Politikwissenschaftler Übersicht Das multinomiale Logit-Modell Das konditionale Logit-Modell Regressionsmodelle für

Mehr

Stochastik Praktikum Lineare Modelle

Stochastik Praktikum Lineare Modelle Stochastik Praktikum Lineare Modelle Thorsten Dickhaus Humboldt-Universität zu Berlin 06.10.2010 Übersicht 1 Einfache lineare Regression 2 Multiple lineare Regression 3 Varianzanalyse 4 Verallgemeinerte

Mehr

ML-Schätzung. Likelihood Quotienten-Test. Zusammenhang Reparametrisierung und Modell unter linearer Restriktion. Es gilt: β = Bγ + d (3.

ML-Schätzung. Likelihood Quotienten-Test. Zusammenhang Reparametrisierung und Modell unter linearer Restriktion. Es gilt: β = Bγ + d (3. Reparametrisierung des Modells Gegeben sei das Modell (2.1) mit (2.5) unter der linearen Restriktion Aβ = c mit A R a p, rg(a) = a, c R a. Wir betrachten die lineare Restriktion als Gleichungssystem. Die

Mehr

Übung V Lineares Regressionsmodell

Übung V Lineares Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Michael Alpert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2007 Übung

Mehr

Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik. 7. Februar 2008

Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik. 7. Februar 2008 L. Fahrmeir, G. Walter Department für Statistik Bitte für die Korrektur freilassen! Aufgabe 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik 7. Februar 8 Hinweise:. Überprüfen

Mehr

Prognoseintervalle für y 0 gegeben x 0

Prognoseintervalle für y 0 gegeben x 0 10 Lineare Regression Punkt- und Intervallprognosen 10.5 Prognoseintervalle für y 0 gegeben x 0 Intervallprognosen für y 0 zur Vertrauenswahrscheinlichkeit 1 α erhält man also analog zu den Intervallprognosen

Mehr

7. Stochastische Prozesse und Zeitreihenmodelle

7. Stochastische Prozesse und Zeitreihenmodelle 7. Stochastische Prozesse und Zeitreihenmodelle Regelmäßigkeiten in der Entwicklung einer Zeitreihe, um auf zukünftige Entwicklung zu schließen Verwendung zu Prognosezwecken Univariate Zeitreihenanalyse

Mehr

Teil XII. Einfache Lineare Regression. Woche 10: Lineare Regression. Lernziele. Zusammenfassung. Patric Müller

Teil XII. Einfache Lineare Regression. Woche 10: Lineare Regression. Lernziele. Zusammenfassung. Patric Müller Woche 10: Lineare Regression Patric Müller Teil XII Einfache Lineare Regression ETHZ WBL 17/19, 03.07.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Wahrscheinlichkeit

Mehr

Prüfung im Fach Mikroökonometrie im Sommersemester 2014 Aufgaben

Prüfung im Fach Mikroökonometrie im Sommersemester 2014 Aufgaben Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Prüfung im Fach Mikroökonometrie im Sommersemester 014 Aufgaben Vorbemerkungen: Anzahl der Aufgaben: Bewertung:

Mehr

Statistik Klausur Sommersemester 2013 Hamburg, BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN!

Statistik Klausur Sommersemester 2013 Hamburg, BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Statistik 2 1. Klausur Sommersemester 2013 Hamburg, 26.07.2013 A BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Nachname:............................................................................ Vorname:.............................................................................

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Inferenzstatistik in Regressionsmodellen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für

Mehr

Prüfung im Fach Mikroökonometrie im Wintersemester 2012/13 Aufgaben

Prüfung im Fach Mikroökonometrie im Wintersemester 2012/13 Aufgaben Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Prüfung im Fach Mikroökonometrie im Wintersemester 2012/13 Aufgaben Vorbemerkungen: Anzahl der Aufgaben: Bewertung:

Mehr

Teil XIII. Multiple lineare Regression. Woche 11: Multiple lineare Regression. Zusammenfassung Einfache lineare Regression.

Teil XIII. Multiple lineare Regression. Woche 11: Multiple lineare Regression. Zusammenfassung Einfache lineare Regression. Woche 11: Multiple lineare Regression Patric Müller Teil XIII Multiple lineare Regression ETHZ WBL 17/19, 10.07.017 Wahrscheinlichkeit und Statistik Patric Müller WBL

Mehr

Analyse von Querschnittsdaten. Signifikanztests I Basics

Analyse von Querschnittsdaten. Signifikanztests I Basics Analyse von Querschnittsdaten Signifikanztests I Basics Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Generalisierung kategoriale Variablen Datum 13.10.2004 20.10.2004 27.10.2004

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 1 Multivariate Verfahren Musterlösung Aufgabe 1 (40 Punkte) Auf der dem Kurs beigelegten CD finden Sie im Unterverzeichnis Daten/Excel/ die Datei zahlen.xlsx. Alternativ können Sie

Mehr

Teil: lineare Regression

Teil: lineare Regression Teil: lineare Regression 1 Einführung 2 Prüfung der Regressionsfunktion 3 Die Modellannahmen zur Durchführung einer linearen Regression 4 Dummyvariablen 1 Einführung o Eine statistische Methode um Zusammenhänge

Mehr

Die Regressionsanalyse

Die Regressionsanalyse Die Regressionsanalyse Zielsetzung: Untersuchung und Quantifizierung funktionaler Abhängigkeiten zwischen metrisch skalierten Variablen eine unabhängige Variable Einfachregression mehr als eine unabhängige

Mehr

X =, y In welcher Annahme unterscheidet sich die einfache KQ Methode von der ML Methode?

X =, y In welcher Annahme unterscheidet sich die einfache KQ Methode von der ML Methode? Aufgabe 1 (25 Punkte) Zur Schätzung der Produktionsfunktion des Unternehmens WV wird ein lineares Regressionsmodell der Form angenommen. Dabei ist y t = β 1 + x t2 β 2 + e t, t = 1,..., T (1) y t : x t2

Mehr

Statistische Datenanalyse

Statistische Datenanalyse Werner A. Stahel Statistische Datenanalyse Eine Einführung für Naturwissenschaftler 3., durchgesehene Auflage vieweg VII 1 Einleitung 1 1.1 Was ist Statistische Datenanalyse? 1 1.2 Ziele 6 1.3 Hinweise

Mehr

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 41 Übersicht Struktur eines Hypothesentests Stichprobenverteilung t-test: Einzelner-Parameter-Test F-Test: Multiple lineare Restriktionen 2 / 41 Struktur

Mehr

Empirischer Vergleich ordinaler Regressionsmodelle

Empirischer Vergleich ordinaler Regressionsmodelle Ludwig-Maximilians-Universität, München Institut für Statistik Empirischer Vergleich ordinaler Regressionsmodelle Bachelorarbeit Verfasser: Susanne Dandl Betreuer: Prof. Dr. Gerhard Tutz, Institut für

Mehr

Schweizer Statistiktage, Aarau, 18. Nov. 2004

Schweizer Statistiktage, Aarau, 18. Nov. 2004 Schweizer Statistiktage, Aarau, 18. Nov. 2004 Qualitative Überprüfung der Modellannahmen in der linearen Regressionsrechnung am Beispiel der Untersuchung der Alterssterblichkeit bei Hitzeperioden in der

Mehr

Kategorielle Daten. Seminar für Statistik Markus Kalisch

Kategorielle Daten. Seminar für Statistik Markus Kalisch Kategorielle Daten Markus Kalisch 1 Phase 3 Studie: Wirksamer als Placebo? Medikament Placebo Total Geheilt 15 9 24 Nicht geheilt 10 11 21 Total 25 20 45 Grundfrage: Sind Heilung und Medikamentengabe unabhängig?

Mehr

4.1. Verteilungsannahmen des Fehlers. 4. Statistik im multiplen Regressionsmodell Verteilungsannahmen des Fehlers

4.1. Verteilungsannahmen des Fehlers. 4. Statistik im multiplen Regressionsmodell Verteilungsannahmen des Fehlers 4. Statistik im multiplen Regressionsmodell In diesem Kapitel wird im Abschnitt 4.1 zusätzlich zu den schon bekannten Standardannahmen noch die Annahme von normalverteilten Residuen hinzugefügt. Auf Basis

Mehr

Thilo Moseler Bern,

Thilo Moseler Bern, Bern, 15.11.2013 (Verallgemeinerte) Lineare Modelle Stärken Schwächen Fazit und persönliche Erfahrung 2 i-te Beobachtung der zu erklärenden Variablen Yi ist gegeben durch Linearkombination von n erklärenden

Mehr

Einführung in die Maximum Likelihood Methodik

Einführung in die Maximum Likelihood Methodik in die Maximum Likelihood Methodik Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Gliederung 1 2 3 4 2 / 31 Maximum Likelihood

Mehr

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell Kapitel 8 Einfache Regression Josef Leydold c 2006 Mathematische Methoden VIII Einfache Regression 1 / 21 Lernziele Lineares Regressionsmodell Anpassen des linearen Regressionsmodells, OLS Eigenschaften

Mehr

Institut für Soziologie Dipl.-Soz. Benjamin Gedon. Methoden 2. Ausblick; Darstellung von Ergebnissen; Wiederholung

Institut für Soziologie Dipl.-Soz. Benjamin Gedon. Methoden 2. Ausblick; Darstellung von Ergebnissen; Wiederholung Institut für Soziologie Dipl.-Soz. Methoden 2 Ausblick; Darstellung von Ergebnissen; Wiederholung Ein (nicht programmierbarer) Taschenrechner kann in der Klausur hilfreich sein. # 2 Programm Ausblick über

Mehr

Proxies, Endogenität, Instrumentvariablenschätzung

Proxies, Endogenität, Instrumentvariablenschätzung 1 4.2 Multivariate lineare Regression: Fehler in den Variablen, Proxies, Endogenität, Instrumentvariablenschätzung Literatur: Wooldridge, Kapitel 15, Appendix C.3 und Kapitel 9.4 Wahrscheinlichkeitslimes

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 1 Multivariate Verfahren Diese Selbstkontrollarbeit bezieht sich auf die Kapitel 1 bis 4 der Kurseinheit 1 (Multivariate Statistik) des Kurses Multivariate Verfahren (883). Hinweise:

Mehr

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften Statistik II Übung 4: Skalierung und asymptotische Eigenschaften Diese Übung beschäftigt sich mit der Skalierung von Variablen in Regressionsanalysen und mit asymptotischen Eigenschaften von OLS. Verwenden

Mehr

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen)

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) 3 Einfache lineare Regression Einfache lineare Modelle mit R 36 Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) > summary(lm(y~x)) Call: lm(formula =

Mehr

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen)

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) 3 Einfache lineare Regression Einfache lineare Modelle mit R 3.6 Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) > summary(lm(y~x)) Call: lm(formula

Mehr

1 Beispiel zur Methode der kleinsten Quadrate

1 Beispiel zur Methode der kleinsten Quadrate 1 Beispiel zur Methode der kleinsten Quadrate 1.1 Daten des Beispiels t x y x*y x 2 ŷ ˆɛ ˆɛ 2 1 1 3 3 1 2 1 1 2 2 3 6 4 3.5-0.5 0.25 3 3 4 12 9 5-1 1 4 4 6 24 16 6.5-0.5 0.25 5 5 9 45 25 8 1 1 Σ 15 25

Mehr

Fortgeschrittene Ökonometrie: Maximum Likelihood

Fortgeschrittene Ökonometrie: Maximum Likelihood Universität Regensburg, Lehrstuhl für Ökonometrie Sommersemester 202 Fortgeschrittene Ökonometrie: Maximum Likelihood Poissonverteilung Man betrachte die poisson-verteilten Zufallsvariablen y t, t =, 2,...,

Mehr

Inferenz im multiplen Regressionsmodell

Inferenz im multiplen Regressionsmodell 1 / 29 Inferenz im multiplen Regressionsmodell Kapitel 4, Teil 1 Ökonometrie I Michael Hauser 2 / 29 Inhalt Annahme normalverteilter Fehler Stichprobenverteilung des OLS Schätzers t-test und Konfidenzintervall

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 22 Übersicht Weitere Hypothesentests in der Statistik 1-Stichproben-Mittelwert-Tests 1-Stichproben-Varianz-Tests 2-Stichproben-Tests Kolmogorov-Smirnov-Test

Mehr

Prüfung aus Statistik 2 für SoziologInnen

Prüfung aus Statistik 2 für SoziologInnen Prüfung aus Statistik 2 für SoziologInnen 11. Oktober 2013 Gesamtpunktezahl =80 Name in Blockbuchstaben: Matrikelnummer: Wissenstest (maximal 16 Punkte) Kreuzen ( ) Sie die jeweils richtige Antwort an.

Mehr

b Linear: h xi; θ = x T i θ. Yi = h x (1) a Regression: Das allgemeine Modell lautet 2.1 Das Modell 2 Nichtlineare Regression

b Linear: h xi; θ = x T i θ. Yi = h x (1) a Regression: Das allgemeine Modell lautet 2.1 Das Modell 2 Nichtlineare Regression 2 Nichtlineare Regression 2.1 Das Modell a Regression: Das allgemeine Modell lautet Yi = h x (1) i, x (2) i,..., x (m) i ; θ1, θ2,..., θp + Ei = h xi; θ + Ei Ei N 0, σ 2, unabhängig. b Linear: h xi; θ

Mehr

2. Fehlerhafte Auswahl der exogenen Variablen (Verletzung der A1-Annahme)

2. Fehlerhafte Auswahl der exogenen Variablen (Verletzung der A1-Annahme) 2. Fehlerhafte Auswahl der exogenen Variablen (Verletzung der A1-Annahme) Annahme A1: Im multiplen Regressionsmodell fehlen keine relevanten exogenen Variablen und die benutzten exogenen Variablen x 1,

Mehr

Übungsklausur Lineare Modelle. Prof. Dr. H. Toutenburg

Übungsklausur Lineare Modelle. Prof. Dr. H. Toutenburg Übungsklausur Lineare le Prof. Dr. H. Toutenburg Aufgabe Ein lineares Regressionsmodell mit der abhängigen Variablen Körpergröße und der unabhängigen Variablen Geschlecht wurde einmal mit der dummykodierten

Mehr

SBWL Tourismusanalyse und Freizeitmarketing

SBWL Tourismusanalyse und Freizeitmarketing SBWL Tourismusanalyse und Freizeitmarketing Vertiefungskurs 4: Multivariate Verfahren 2 Teil 3: Mischmodelle / Modellgestützte Clusteranalyse Achim Zeileis & Thomas Rusch Institute for Statistics and Mathematics

Mehr

SBWL Tourismusanalyse und Freizeitmarketing

SBWL Tourismusanalyse und Freizeitmarketing SBWL Tourismusanalse und Freizeitmarketing Vertiefungskurs 4: Multivariate Verfahren 2 Teil 3: Mischmodelle / Modellgestützte Clusteranalse Achim Zeileis Department of Statistics and Mathematics FleMi

Mehr

Gewöhnliche Autokorrelationsfunktion (ACF) eines stationären Prozesses {X t } t Z zum Lag h

Gewöhnliche Autokorrelationsfunktion (ACF) eines stationären Prozesses {X t } t Z zum Lag h 5. Die partielle Autokorrelationsfunktion 5.1 Definition, Berechnung, Schätzung Bisher: Gewöhnliche Autokorrelationsfunktion (ACF) eines stationären Prozesses {X t } t Z zum Lag h ρ X (h) = Corr(X t, X

Mehr

Anwendung logistischer und linearer Regressionsmodelle zur Berechnung von adjustierten NNEs und Risikodifferenzen

Anwendung logistischer und linearer Regressionsmodelle zur Berechnung von adjustierten NNEs und Risikodifferenzen Workshop der AG Statistische Methoden in der Medizin Magdeburg, 22.11.2007 Anwendung logistischer und linearer Regressionsmodelle zur Berechnung von adjustierten NNEs und Risikodifferenzen Ulrich Gehrmann

Mehr

Definition 18 (Die verallgemeinerte Pareto Verteilung (GPD)) Die standard GPD G γ : ) 1/γ. G γ,ν,β = 1 (1 + γ x ν β

Definition 18 (Die verallgemeinerte Pareto Verteilung (GPD)) Die standard GPD G γ : ) 1/γ. G γ,ν,β = 1 (1 + γ x ν β Die POT Methode (Peaks over Threshold) Definition 18 (Die verallgemeinerte Pareto Verteilung (GPD)) Die standard GPD G γ : G γ (x) = { 1 (1 + γx) 1/γ für γ 0 1 exp{ x} für γ = 0 wobei x D(γ) D(γ) = { 0

Mehr

Beispiel Wahlentscheidungen: Vierstufenmodell der Verkehrsplanung

Beispiel Wahlentscheidungen: Vierstufenmodell der Verkehrsplanung Beispiel Wahlentscheidungen: Vierstufenmodell der Verkehrsplanung Simultanes Verfahren Verkehrs erzeugung Aktivitätenwahl Verkehrs erzeugung Verkehrs verteilung Verkehrs verteilung Wege/Zielwahl Verkehrs

Mehr

Einführung in die Induktive Statistik: Regressionsanalyse

Einführung in die Induktive Statistik: Regressionsanalyse Einführung in die Induktive Statistik: Regressionsanalyse Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Regressionsanalyse Ziel: Analyse

Mehr

Kapitel 4. Zensierte (censored) und gestutzte (truncated) abhängige Variablen, Sample Selection

Kapitel 4. Zensierte (censored) und gestutzte (truncated) abhängige Variablen, Sample Selection Kapitel 4 Zensierte (censored) und gestutzte (truncated) abhängige Variablen, Sample Selection In den vorhergehenden Abschnitten haben wir uns mit Fällen beschäftigt, in denen die abhängige Variable y

Mehr

2.3 Nichtlineare Regressionsfunktion

2.3 Nichtlineare Regressionsfunktion Nichtlineare Regressionsfunktion Bisher: lineares Regressionsmodell o Steigung d. Regressionsgerade ist konstant o Effekt einer Änderung von X auf Y hängt nicht vom Niveau von X oder von anderen Regressoren

Mehr

Ein Vergleich von 2-Stichproben-Verfahren mit Berücksichtigung von Baselinewerten bei ordinalen Zielvariablen

Ein Vergleich von 2-Stichproben-Verfahren mit Berücksichtigung von Baselinewerten bei ordinalen Zielvariablen Ein Vergleich von 2-Stichproben-Verfahren mit Berücksichtigung von Baselinewerten bei ordinalen Zielvariablen Alexander Siemer Abteilung Medizinische Statistik Universität Göttingen 47. Biometrisches Kolloquium

Mehr

Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation

Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle Patric Müller ETHZ Teil VIII Zentraler Grenzwertsatz und Vertrauensintervalle WBL 17/19, 29.05.2017 Wahrscheinlichkeit

Mehr

ANalysis Of VAriance (ANOVA) 2/2

ANalysis Of VAriance (ANOVA) 2/2 ANalysis Of VAriance (ANOVA) 2/2 Markus Kalisch 22.10.2014 1 Wdh: ANOVA - Idee ANOVA 1: Zwei Medikamente zur Blutdrucksenkung und Placebo (Faktor X). Gibt es einen sign. Unterschied in der Wirkung (kontinuierlich

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung 11. Vorlesung Jochen Köhler 10.05.011 1 Inhalt der heutigen Vorlesung Zusammenfassung Parameterschätzung Übersicht über Schätzung und Modellbildung Modellevaluation

Mehr

Polynomiale Regression lässt sich mittels einer Transformation der Merkmale auf multiple lineare Regression zurückführen

Polynomiale Regression lässt sich mittels einer Transformation der Merkmale auf multiple lineare Regression zurückführen Rückblick Polynomiale Regression lässt sich mittels einer Transformation der Merkmale auf multiple lineare Regression zurückführen Ridge Regression vermeidet Überanpassung, indem einfachere Modelle mit

Mehr

Nicht-kontinuierliche abhängige Variablen: Das generalisierte lineare Modell und die Parameterschätzung via Maximum Likelihood

Nicht-kontinuierliche abhängige Variablen: Das generalisierte lineare Modell und die Parameterschätzung via Maximum Likelihood Nicht-kontinuierliche abhängige Variablen: Das generalisierte lineare Modell und die Parameterschätzung via Maximum Likelihood Interaktionseffekte Varianz-Kovarianz-Matrix Interaktionseffekte Varianz-Kovarianz-Matrix

Mehr

ε heteroskedastisch BINARY CHOICE MODELS Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS?

ε heteroskedastisch BINARY CHOICE MODELS Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS? BINARY CHOICE MODELS 1 mit Pr( Y = 1) = P Y = 0 mit Pr( Y = 0) = 1 P Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS? Y i = X i β + ε i Probleme: Nonsense Predictions

Mehr

Kapitel 4: Binäre Regression

Kapitel 4: Binäre Regression Kapitel 4: Binäre Regression Steffen Unkel (basierend auf Folien von Nora Fenske) Statistik III für Nebenfachstudierende WS 2013/2014 4.1 Motivation Ausgangssituation Gegeben sind Daten (y i, x i1,...,

Mehr

Hypothesentests mit SPSS

Hypothesentests mit SPSS Beispiel für eine zweifaktorielle Varianzanalyse mit Messwiederholung auf einem Faktor (univariate Lösung) Daten: POKIII_AG4_V06.SAV Hypothese: Die physische Attraktivität der Bildperson und das Geschlecht

Mehr

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Es können von den Antworten alle, mehrere oder keine Antwort(en) richtig sein. Nur bei einer korrekten Antwort (ohne Auslassungen

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 6 Genzwertsätze Einführung 1 Wahrscheinlichkeit: Definition und Interpretation

Mehr

Schätzverfahren ML vs. REML & Modellbeurteilung mittels Devianz, AIC und BIC. Referenten: Linda Gräfe & Konstantin Falk

Schätzverfahren ML vs. REML & Modellbeurteilung mittels Devianz, AIC und BIC. Referenten: Linda Gräfe & Konstantin Falk Schätzverfahren ML vs. REML & Modellbeurteilung mittels Devianz, AIC und BIC Referenten: Linda Gräfe & Konstantin Falk 1 Agenda Schätzverfahren ML REML Beispiel in SPSS Modellbeurteilung Devianz AIC BIC

Mehr

Institut für Soziologie Christian Ganser. Methoden 2. Regressionsanalyse II: Lineare multiple Regression

Institut für Soziologie Christian Ganser. Methoden 2. Regressionsanalyse II: Lineare multiple Regression Institut für Soziologie Christian Ganser Methoden 2 Regressionsanalyse II: Lineare multiple Regression Inhalt 1. Anwendungsbereich 2. Vorgehensweise bei multipler linearer Regression 3. Beispiel 4. Modellannahmen

Mehr

Vorlesung: Multivariate Statistik für Psychologen

Vorlesung: Multivariate Statistik für Psychologen Vorlesung: Multivariate Statistik für Psychologen 7. Vorlesung: 05.05.2003 Agenda 2. Multiple Regression i. Grundlagen ii. iii. iv. Statistisches Modell Verallgemeinerung des Stichprobenmodells auf Populationsebene

Mehr

Musterlösung. Modulklausur Multivariate Verfahren

Musterlösung. Modulklausur Multivariate Verfahren Musterlösung Modulklausur 31821 Multivariate Verfahren 25. September 2015 Aufgabe 1 (15 Punkte) Kennzeichnen Sie die folgenden Aussagen zur Regressionsanalyse mit R für richtig oder F für falsch. F Wenn

Mehr

Grundlagen der schließenden Statistik

Grundlagen der schließenden Statistik Grundlagen der schließenden Statistik Schätzer, Konfidenzintervalle und Tests 1 46 Motivation Daten erhoben (Umfrage, Messwerte) Problem: Bei Wiederholung des Experiments wird man andere Beobachtungen

Mehr

Empirische Forschungsmethoden

Empirische Forschungsmethoden Winfried Stier Empirische Forschungsmethoden Zweite, verbesserte Auflage Mit 22 Abbildungen und 53 Tabellen Springer L Inhaltsverzeichnis I. Grundlagen 1 1.1. Methoden, Methodologie, Empirie 1 1.2. Einige

Mehr

Statistik II Übung 1: Einfache lineare Regression

Statistik II Übung 1: Einfache lineare Regression Statistik II Übung 1: Einfache lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen dem Lohneinkommen von sozial benachteiligten Individuen (16-24 Jahre alt) und der Anzahl der

Mehr

entschieden hat, obwohl die Merkmalsausprägungen in der Grundgesamtheit voneinander abhängig sind.

entschieden hat, obwohl die Merkmalsausprägungen in der Grundgesamtheit voneinander abhängig sind. Bsp 1) Die Wahrscheinlichkeit dafür, dass eine Glühbirne länger als 200 Stunden brennt, beträgt 0,2. Wie wahrscheinlich ist es, dass von 10 Glühbirnen mindestens eine länger als 200 Stunden brennt? (Berechnen

Mehr