2. Das Kundtsche Rohr

Größe: px
Ab Seite anzeigen:

Download "2. Das Kundtsche Rohr"

Transkript

1 Mithilfe des Kundtschen Rohrs kann die spezifische akustische Impedanz von Oberflächen gemessen werden. Versuchsaufbau: L x P(0) = P 0 P(L) = ZV(L) Prof. Dr. Wandinger 3. Schallausbreitung in Rohren Akustik 3.2-1

2 Am linken Ende eines Rohres mit schallharten Wänden wird über einen Lautsprecher die Schalldruckamplitude P 0 aufgebracht. Am rechten Ende befindet sich die Probe, deren Impedanz Z bestimmt werden soll. Der untersuchte Frequenzbereich liegt unterhalb der niedrigsten Grenzfrequenz, so dass sich das Schallfeld aus ebenen Wellen zusammensetzt. Prof. Dr. Wandinger 3. Schallausbreitung in Rohren Akustik 3.2-2

3 Schalldruck: Das Schallfeld setzt sich aus zwei ebenen Wellen zusammen: P x =P R e i k x P L e i k x Der erste Summand ist die nach rechts laufende auf die Probe auftreffende ebene Welle. Der zweite Summand ist die nach links laufende von der Probe reflektierte ebene Welle. Für die Schallschnelle gilt: V x = 1 i 0 dp dx = 1 0 c P R e i k x P L e i k x Prof. Dr. Wandinger 3. Schallausbreitung in Rohren Akustik 3.2-3

4 Randbedingung am rechten Ende: P L =Z V L P R e i k L P L e i k L = Z 0 c P R e i k L P L e i k L P L e i k L Z 0 c 1 =P R e i k L Z 0 c 1 P L e i k L P R e i k L = Z 0 c 1 Z 0 c 1 =R Prof. Dr. Wandinger 3. Schallausbreitung in Rohren Akustik 3.2-4

5 Das Verhältnis R aus der Amplitude des reflektierten Schalldrucks zur Amplitude des einfallenden Schalldrucks am Ort L der Probe wird als Reflexionsfaktor bezeichnet. Der Reflexionsfaktor ist eine komplexe Größe: Randbedingung am linken Ende: P 0 =P R P L, P L =R P R e 2i k L P 0 =P R 1 R e 2i k L P 0 =P 0 2i k L P P R = 0 1 R e, P L= P 0 R e 2i k L 1 R e =P 2i k L R R e 2i k L R=r e i Prof. Dr. Wandinger 3. Schallausbreitung in Rohren Akustik 3.2-5

6 Damit gilt für das Schallfeld: P x =P R e i k x r e i 2 k L e i k x Ermittlung des Reflexionsfaktors: Amplitude r und Phase φ des Reflexionsfaktors können aus dem quadratischen Mittelwert des Schalldrucks ermittelt werden. Prof. Dr. Wandinger 3. Schallausbreitung in Rohren Akustik 3.2-6

7 Der quadratische Mittelwert des Schalldrucks berechnet sich zu 2 p 2 = P x 2 = P R 2 e i k x r e i 2 k L e i k x e i k x r e i 2k L e i k x = P R 2 1 r 2 r e i 2k L 2k x r e i 2 k L 2k x = P R 2 1 r 2 2 r cos 2k L 2k x Die Maximalwerte sind Die Minimalwerte sind 2 p 2 max = P R 2 1 r 2 2 r = P R 2 1 r 2 2 p 2 min = P R 2 1 r 2 2 r = P R 2 1 r 2 Prof. Dr. Wandinger 3. Schallausbreitung in Rohren Akustik 3.2-7

8 Damit gilt für das Verhältnis der Effektivwerte: = p min = 1 r p max 1 r Auflösen nach r ergibt: r= 1 1 Der Phasenwinkel φ kann aus der Lage x min des ersten Minimums bestimmt werden: =2 k L x min =2 k L x min = L x min /4 1 Prof. Dr. Wandinger 3. Schallausbreitung in Rohren Akustik 3.2-8

9 Ermittlung der Impedanz: 2. Das Kundtsche Rohr Z Aus 0 c folgt: Z 0 c =R Z 0 c = 1 R 1 R Spezialfälle: Offenes Ende: R= 1 Z=0 P=Z V =0 Vollständige Absorption: R=0 Z = 0 c Schallhartes Ende: R 1 Z V =P/ Z 0 Prof. Dr. Wandinger 3. Schallausbreitung in Rohren Akustik 3.2-9

10 Absorptionsgrad: 2. Das Kundtsche Rohr Der Absorptionsgrad α ist definiert als das Verhältnis der während einer Periode absorbierten Energie W A zur Energie der auftreffenden Welle: W R = W A W R Die absorbierte Energie ist gleich der Differenz zwischen der Energie W R der auftreffenden Welle und der Energie W L der reflektierten Welle: W A =W R W L Prof. Dr. Wandinger 3. Schallausbreitung in Rohren Akustik

11 Die Energien berechnen sich als Produkt der Intensitäten mit der Querschnittsfläche S und der Periodendauer T: I R T = P R 2 W = I T S T Mit folgt: 2 0 c 2 0 c, I L T = P L 2 =1 I L T I R T =1 P L 2 P R 2=1 R 2 =1 r 2 Prof. Dr. Wandinger 3. Schallausbreitung in Rohren Akustik

12 Der Absorptionsgrad hat ein Maximum für r = 0, d.h. für Z = ρ 0 c. Der Absorptionsgrad ist null für R = 1 (Reflexion am schallharten Ende) und für R = -1 (Reflexion am offenen Ende). Ist von einer absorbierenden Oberfläche nur der Absorptionsgrad bekannt, so kann die Impedanz mit dem positiven Reflexionsfaktor R= 1 abgeschätzt werden. Je näher der Reflexionsfaktor bei 1 liegt, desto größer wird die Impedanz. Prof. Dr. Wandinger 3. Schallausbreitung in Rohren Akustik

3.3 Schalldämpfer. Prof. Dr. Wandinger 3. Schallausbreitung in Rohren Akustik 3.3-1

3.3 Schalldämpfer. Prof. Dr. Wandinger 3. Schallausbreitung in Rohren Akustik 3.3-1 3.3 Schalldämpfer Prof. Dr. Wandinger 3. Schallausbreitung in Rohren Akustik 3.3-1 3. Schalldämpfer Schalldämpfer haben die Aufgabe, das durch sie transportierte Schallfeld abzuschwächen. Reflexionsschalldämpfer:

Mehr

4. Gleichungen im Frequenzbereich

4. Gleichungen im Frequenzbereich Stationäre Geräusche: In der technischen Akustik werden überwiegend stationäre Geräusche untersucht. Stationäre Geräusche sind zusammengesetzt aus harmonischen Schallfeldern p x,t = p x cos t x Im Folgenden

Mehr

5. Eigenschwingungen

5. Eigenschwingungen 5. Eigenschwingungen Bei Innenraumproblemen gibt es wie bei elastischen Strukturen Eigenschwingungen. Eigenschwingungen sind rein reelle Lösungen der Helmholtz-Gleichung bei homogenen Randbedingungen.

Mehr

4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.

4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4. 4. Die ebene Platte 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.4-1 Schallabstrahlung einer unendlichen ebenen Platte: Betrachtet

Mehr

1. Die Wellengleichung

1. Die Wellengleichung 1. Die Wellengleichung Die Wellengleichung ist eine partielle Differenzialgleichung für das Schallfeld. Sie lässt sich durch Linearisierung aus der Massenbilanz, der Impulsbilanz und der Energiebilanz

Mehr

Physik Protokoll - Akustische Wellen in der Messleitung. André Grüneberg Janko Lötzsch Versuch: 11. Juni 2001 Protokoll: 24.

Physik Protokoll - Akustische Wellen in der Messleitung. André Grüneberg Janko Lötzsch Versuch: 11. Juni 2001 Protokoll: 24. Physik Protokoll - Akustische Wellen in der Messleitung André Grüneberg Janko Lötzsch Versuch: 11. Juni 001 Protokoll: 4. Juni 001 1 Versuchsaufbau Mit Hilfe eines Metallrohres von etwa 1m Länge und einem

Mehr

3. Leistungsdichtespektren

3. Leistungsdichtespektren Stochastische Prozesse: 3. Leistungsdichtespektren Wird das gleiche Geräusch mehrmals gemessen, so ergeben sich in der Regel unterschiedliche zeitliche Verläufe des Schalldrucks. Bei Geräuschen handelt

Mehr

Kommunikationstechnik I

Kommunikationstechnik I Kommunikationstechnik I Prof. Dr. Stefan Weinzierl Musterlösung 2. Aufgabenblatt 1. Nahfeld und Fernfeld 1.1 Beschreiben Sie die drei unterschiedlichen Kriterien, unter denen die Begriffe Nahfeld und Fernfeld

Mehr

Fachhochschule Dortmund FB Nachrichtentechnik ASM - Prakt. Versuch 8: Schalldämpfungsmessungen SS 200

Fachhochschule Dortmund FB Nachrichtentechnik ASM - Prakt. Versuch 8: Schalldämpfungsmessungen SS 200 Ein poröser Stoff besteht aus einem festen Skelett mit zahlreichen, miteinander in Verbindung stehenden Hohlräumen. Beispiele sind Textilien, Holzfasermaterialien, Watte, Glaswolle oder Gesteinswolle,

Mehr

1. Frequenzgehalt. Quadratischer Mittelwert:

1. Frequenzgehalt. Quadratischer Mittelwert: Quadratischer Mittelwert: 1. Frequenzgehalt Bei stationären Vorgängen ist der zeitliche Mittelwert des Schalldrucks null. Ein Maß für die Größe des Schalldrucks ist der quadratische Mittelwert: p = lim

Mehr

3. Akustische Energie und Intensität

3. Akustische Energie und Intensität Aus der Energiebilanz lässt sich durch Berücksichtigung von Gliedern zweiter Ordnung eine Bilanzgleichung für die akustische Energie gewinnen. Etwas einfacher kann diese Energiegleichung aus der linearisierten

Mehr

Formelsammlung Formelsammlung Formelsammlung. Formelsammlung Formelsammlung Formelsammlung

Formelsammlung Formelsammlung Formelsammlung. Formelsammlung Formelsammlung Formelsammlung Technische Akustik 2016 Jan Borgers 1. Grundlagen Bezugsgrößen für Schalldruck; Schallleistung Seite 2 Filterkurven A-; B-; C-Gewichtung Seite 3 Terz-; Oktavfilter und deren Bandbreiten Seite 5 Rauschsignale

Mehr

Inhalt dieses Vorlesungsteils - ROADMAP

Inhalt dieses Vorlesungsteils - ROADMAP Inhalt dieses Vorlesungsteils - ROADMAP 2 Von der Kavitation zur Sonochemie 21 Industrieller Einsatz von Ultraschall 22 Physikalische Grundlagen I Was ist Ultraschall? 23 Einführung in die Technik des

Mehr

3. Fluid-Struktur-Kopplung

3. Fluid-Struktur-Kopplung 3. Fluid-Struktur-Kopplung Bei einer schwingenden Struktur muss die Normalkomponente der Schallschnelle mit der Normalkomponente der Geschwindigkeit an der Oberfläche der Struktur übereinstimmen. Dadurch

Mehr

2. Physikalisches Pendel

2. Physikalisches Pendel 2. Physikalisches Pendel Ein physikalisches Pendel besteht aus einem starren Körper, der um eine Achse drehbar gelagert ist. A L S φ S z G Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.2-1 2.1 Bewegungsgleichung

Mehr

Vorteile der raumakustischen Simulation bei der Gestaltung von Aufnahme-, Regie-, und Bearbeitungsräumen

Vorteile der raumakustischen Simulation bei der Gestaltung von Aufnahme-, Regie-, und Bearbeitungsräumen Vorteile der raumakustischen Simulation bei der Gestaltung von Aufnahme-, Regie-, und Bearbeitungsräumen (Advantages of room acoustical simulation for the design of recording and control rooms) Sebastian

Mehr

Mindestkanon: Akustik in der Bachelor-Ausbildung

Mindestkanon: Akustik in der Bachelor-Ausbildung Deutsche Gesellschaft für Akustik e.v. DEGA-Empfehlung 102 Mindestkanon: Akustik in der Bachelor-Ausbildung September 2009 Diese DEGA-Empfehlung wurde einem Einspruchsverfahren unterzogen und ist am 11.09.2009

Mehr

4. Stoßvorgänge. Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten.

4. Stoßvorgänge. Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten. 4. Stoßvorgänge Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten. Gesucht wird ein Zusammenhang zwischen den Geschwindigkeiten vor dem

Mehr

2. Berechnen Sie anhand der beigefügten Korrektur-Tabelle den gesamten linearen Schallleistungs-Pegel!

2. Berechnen Sie anhand der beigefügten Korrektur-Tabelle den gesamten linearen Schallleistungs-Pegel! Übungen zur Technischen Akustik SS 13 Aufgabe 1: Ein leerer Raum mit kreisförmiger Grundfläche (Radius = 6m, Höhe = 3m) sei auf allen Flächen mit Ausnahme der Bodens mit einem Material (Absorptionsgrad

Mehr

SCHREINER LERN-APP: « SCHALLSCHUTZ»

SCHREINER LERN-APP: « SCHALLSCHUTZ» Wie breitet sich Schall aus? Was ist der akkustische Unterschied zwischen einem Ton und einem Geräusch? Was gibt die Frequenz an? Was gibt der Schalldruck an? 443 Schallausbreitung 444 Ton - Geräusch 445

Mehr

MESSEN WAS MAN NICHT HÖRT

MESSEN WAS MAN NICHT HÖRT MESSEN WAS MAN NICHT HÖRT Matthias Brechbühl Dr.sc.techn ETH Norsonic Brechbühl AG 3415 Rüegsauschachen Inhalt Die Schallschnelle Das Arbeitsprinzip Richtwirkung Eigenschaften Herstellung der u Sensoren

Mehr

Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung

Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung 28. September 2016 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung Aufgabe 1. Die nachfolgende Grafik stellt das Oszillogramm zweier sinusförmiger Spannungen

Mehr

Antennen Technik. Einfluss der Phase auf die Dimensionierung von Leitungen

Antennen Technik. Einfluss der Phase auf die Dimensionierung von Leitungen Einfluss der Phase bei der Dimensionierung von Leitungen Antennen Technik Einfluss der Phase auf die Dimensionierung von Leitungen Mitteilungen aus dem Institut für Umwelttechnik Nonnweiler-Saar Dr. rer.

Mehr

3. Erzwungene Schwingungen

3. Erzwungene Schwingungen 3. Erzwungene Schwingungen 3.1 Grundlagen 3.2 Tilger 3.3 Kragbalken 3.4 Fahrbahnanregung 3.3-1 3.1 Grundlagen Untersucht wird die Antwort des Systems auf eine Anregung mit harmonischem Zeitverlauf. Bewegungsgleichung:

Mehr

Labor für Technische Akustik

Labor für Technische Akustik Labor für Technische Akustik Bestimmung der Wellenlänge von Schallwellen mit einer Abbildung 1: Experimenteller Aufbau zur Bestimmung der Wellenlänge von Schallwellen mit einer. 1. Versuchsziel Wenn sich

Mehr

A Rechnen mit Pegeln A.1 Dekadischer Logarithmus A.2 Pegel-Umkehrgesetz A.3 Gesetz der Pegeladdition

A Rechnen mit Pegeln A.1 Dekadischer Logarithmus A.2 Pegel-Umkehrgesetz A.3 Gesetz der Pegeladdition Inhaltsverzeichnis 1 Wahrnehmung von Schall.................................. 1 1.1 Terz- und Oktav-Filter................................... 8 1.2 Die Hörfläche...........................................

Mehr

Numerische Methoden in der Akustik

Numerische Methoden in der Akustik Numerische Methoden in der Akustik Prof.Dr.-Ing. Matthias Blau Institut für Hörtechnik und Audiologie FH Oldenburg/Ostfriesland/Wilhelmshaven XXI. Winterschule der Deutschen Gesellschaft für Medizinische

Mehr

Versuch 213 Messung der Phasen- und Gruppengeschwindigkeit mit Ultraschall

Versuch 213 Messung der Phasen- und Gruppengeschwindigkeit mit Ultraschall Versuch 213 Messung der Phasen- und Gruppengeschwindigkeit mit Ultraschall Praktikum für Fortgeschrittene am Dritten Physikalischen Institut der Universität Göttingen 27. April 2008 Praktikant Johannes

Mehr

Wima-Praktikum 2: Bildsynthese-Phong

Wima-Praktikum 2: Bildsynthese-Phong Wima-Praktikum 2: Bildsynthese-Phong Wima-Praktikum 2: Prof. Dr. Lebiedz, M. Sc. Radic 1 Inhaltsverzeichnis 1 Einleitung 3 2 Kurze Beschreibung der Aufgabenstellung und dem Phong- Modell 3 3 Modellierung

Mehr

Temperaturabhängigkeit: ca. + 0,6 m/s pro C

Temperaturabhängigkeit: ca. + 0,6 m/s pro C Schallausbreitung Ausbreitungsgeschwindigkeit Schallgeschwindigkeit (bei 20 C) Luft Wasser Gummi Holz Aluminium 343 m/s 1480 m/s 50 m/s 3300 3400 m/s 5100 m/s Temperaturabhängigkeit: ca. + 0,6 m/s pro

Mehr

Wärmestrahlung. Einfallende Strahlung = absorbierte Strahlung + reflektierte Strahlung

Wärmestrahlung. Einfallende Strahlung = absorbierte Strahlung + reflektierte Strahlung Wärmestrahlung Gleichheit von Absorptions- und Emissionsgrad Zwei Flächen auf gleicher Temperatur T 1 stehen sich gegenüber. dunkelgrau hellgrau Der Wärmefluss durch Strahlung muss in beiden Richtungen

Mehr

Vergleich DIN EN mit VDI 2571

Vergleich DIN EN mit VDI 2571 Vergleich DIN EN 12354-4 mit VDI 2571 Schallübertragung von Räumen ins Freie Ingenieurbüro Frank & Apfel GbR 1 Gemeinsamer Anwendungszweck beider h a Regelwerke t d e n S t a t u s e i n e r D e u t s

Mehr

Virtuelle Raumakustik Faltungshall, Spiegelschallquellen. von Kai Oertel

Virtuelle Raumakustik Faltungshall, Spiegelschallquellen. von Kai Oertel Faltungshall, Spiegelschallquellen von Inhalt 1. Motivation 2. Raumakustik Grundbegriffe 3. Raumakustische Modelle 4. 5. Fazit 1. Motivation Reflexionen überwiegen im Raum Raumakustik hat also wesentlichen

Mehr

Praktikum EE2 Grundlagen der Elektrotechnik. Name: Testat : Einführung

Praktikum EE2 Grundlagen der Elektrotechnik. Name: Testat : Einführung Fachbereich Elektrotechnik Ortskurven Seite 1 Name: Testat : Einführung 1. Definitionen und Begriffe 1.1 Ortskurven für den Strom I und für den Scheinleistung S Aus den Ortskurven für die Impedanz Z(f)

Mehr

Drehprüfung. Biophysikalische Grundlagen. Stefan Langenberg

Drehprüfung. Biophysikalische Grundlagen. Stefan Langenberg Drehprüfung Biophysikalische Grundlagen Stefan Langenberg Optokinetik Ermittlung der GLP (Geschwindigkeit der langsamen Phase) Projektion eines Streifenmusters auf einen Schirm, videonystagmographische

Mehr

Technische Akustik. Bearbeitet von Michael Möser

Technische Akustik. Bearbeitet von Michael Möser Technische Akustik Bearbeitet von Michael Möser 1. Auflage 2012. Buch. xviii, 538 S. Hardcover ISBN 978 3 642 30932 8 Format (B x L): 16,8 x 24 cm Gewicht: 1096 g Weitere Fachgebiete > Technik > Sonstige

Mehr

II) WÄRMELEHRE 10. Temperatur und Stoffmenge

II) WÄRMELEHRE 10. Temperatur und Stoffmenge EP Vorlesung 13: Diese Vorlesung enthält noch einige Nachträge zu I) MECHANIK 8. Wellen 9. Akustik Danach beginnen wir mit II) WÄRMELEHRE 10. Temperatur und Stoffmenge Versuche: Wellen-Reflexion -Brechung

Mehr

AUSWERTUNG: SCHWINGUNGEN, RESONANZVERHALTEN 1. AUFGABE 1

AUSWERTUNG: SCHWINGUNGEN, RESONANZVERHALTEN 1. AUFGABE 1 AUSWERTUNG: SCHWINGUNGEN, RESONANZVERHALTEN TOBIAS FREY & FREYA GNAM, GRUPPE 6, DONNERSTAG 1. AUFGABE 1 An das Winkel-Zeit-Diagramm (Abb. 1) haben wir eine einhüllende e-funktion der Form e = Ae βt angelegt.

Mehr

Taschenbuch Akustik. Herausgegeben von Prof. Dr.-Ing. Wolfgang Fasold Prof. Dr.-Ing. habil. Wolfgang Kraak Dr.-Ing.

Taschenbuch Akustik. Herausgegeben von Prof. Dr.-Ing. Wolfgang Fasold Prof. Dr.-Ing. habil. Wolfgang Kraak Dr.-Ing. Taschenbuch Akustik Teil 1 Herausgegeben von Prof. Dr.-Ing. Wolfgang Fasold Prof. Dr.-Ing. habil. Wolfgang Kraak Dr.-Ing. Werner Schirmer & VEB VERLAG TECHNIK BERLIN 1 Physikalische Grundlagen 1.1 Kennzeichnung

Mehr

LIEBER LEISER LERNEN

LIEBER LEISER LERNEN LIEBER LEISER LERNEN BAUTECHNISCHE UND PÄDAGOGISCHE MAßNAHMEN ZUR LÄRMMINDERUNG IN SCHULEN - FACHVERANSTALTUNG UND AUSSTELLUNG - Möglichkeiten zur Lärmvermeidung und Lärmminderung bei Neubau, Sanierung

Mehr

2. Parallel- und Reihenschaltung. Resonanz

2. Parallel- und Reihenschaltung. Resonanz Themen: Parallel- und Reihenschaltungen RLC Darstellung auf komplexen Ebene Resonanzerscheinungen // Schwingkreise Leistung bei Resonanz Blindleistungskompensation 1 Reihenschaltung R, L, C R L C U L U

Mehr

Übungsblatt 6 ( ) mit Lösungen

Übungsblatt 6 ( ) mit Lösungen 1) Wellengleichung Experimentalphysik für Naturwissenschaftler 1 Universität Erlangen Nürnberg WS 014/15 Übungsblatt 6 (09.01.015) mit Lösungen Eine Welle, die sich in positiver x-richtung mit der Geschwindigkeit

Mehr

4 Wärmeübertragung durch Temperaturstrahlung

4 Wärmeübertragung durch Temperaturstrahlung Als Wärmestrahlung bezeichnet man die in einem bestimmten Bereich der Wellenlängen und Temperaturen auftretende Energiestrahlung (elektromagnetische trahlung). Nach den Wellenlängen unterscheidet man:

Mehr

Übungsblatt 6 ( ) mit Lösungen

Übungsblatt 6 ( ) mit Lösungen Experimentalphysik für Naturwissenschaftler 1 Universität Erlangen Nürnberg WS 011/1 Übungsblatt 6 (7.01.01) mit Lösungen Vorlesungen: Mo, Mi, jeweils 08:15-09:50 HG Übungen: Fr 08:15-09:45 oder Fr 1:15-13:45

Mehr

Grundlagen der Schallabsorption im Hallraum. Prüfwerte nach EN ISO dämmen formen kaschieren

Grundlagen der Schallabsorption im Hallraum. Prüfwerte nach EN ISO dämmen formen kaschieren Grundlagen der Schallabsorption im Hallraum Prüfwerte nach EN ISO 20 354 dämmen formen kaschieren Inhalt Grundlagen Schallabsorption 1. Anwendungsbereiche........................ 2 Raumakustische Gestaltung

Mehr

Übungsblatt 04 Grundkurs IIIa für Physiker, Wirtschaftsphysiker und Physik Lehramt

Übungsblatt 04 Grundkurs IIIa für Physiker, Wirtschaftsphysiker und Physik Lehramt Übungsblatt 4 Grundkurs IIIa für Physiker, Wirtschaftsphysiker und Physik Lehramt Othmar Marti, (othmar.marti@physik.uni-ulm.de) 17., 23. und 24. 6. 23 1 Aufgaben Das Fermatsche Prinzip 1, Polarisation

Mehr

Bachelorarbeit. Erstellen eines Versuchsaufbaus zur Bestimmung von Transmissionsgraden poröser Materialien mit einem Impedanzrohr

Bachelorarbeit. Erstellen eines Versuchsaufbaus zur Bestimmung von Transmissionsgraden poröser Materialien mit einem Impedanzrohr Technische Universität Berlin Fakultät V - Verkehrs- und Maschinensyteme Institut für Strömungsmechanik und Technische Akustik Fachgebiet Signale und Systeme Prof. Dr.-Ing. Michael Möser Bachelorarbeit

Mehr

Berechnungen in der Akustik - Möglichkeiten und Grenzen

Berechnungen in der Akustik - Möglichkeiten und Grenzen Otto von Estorff Berechnungen in der Akustik - Möglichkeiten und Grenzen Inhalt: Einleitung Finite-Elemente-Methode Boundary-Elemente-Methode Vergleiche Messung/Rechnung Entwicklungsbedarf Zusammenfassung

Mehr

4. Stoßvorgänge. Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten.

4. Stoßvorgänge. Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten. 4. Stoßvorgänge Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten. Gesucht wird ein Zusammenhang zwischen den Geschwindigkeiten vor dem

Mehr

Polarisationsapparat

Polarisationsapparat 1 Polarisationsapparat Licht ist eine transversale elektromagnetische Welle, d.h. es verändert die Länge der Vektoren des elektrischen und magnetischen Feldes. Das elektrische und magnetische Feld ist

Mehr

Physikalisches Praktikum O 4 Debye-Sears Effekt

Physikalisches Praktikum O 4 Debye-Sears Effekt Physik-Labor Fachbereich Elektrotechnik und Informatik Fachbereich Mechatronik und Maschinenbau Physikalisches Praktikum O 4 Debye-Sears Effekt Versuchsziel Messung der Ultraschallwellenlänge. Literatur

Mehr

Diese Vorlesung enthält noch einige Nachträge zum Thema 7. Wellen und einige zum Thema 8. Akustik.

Diese Vorlesung enthält noch einige Nachträge zum Thema 7. Wellen und einige zum Thema 8. Akustik. Diese Vorlesung enthält noch einige Nachträge zum Thema 7. Wellen und einige zum Thema 8. Akustik. Danach beginnen wir mit Kapitel 9. Wärmelehre Reflexion: Trifft eine Welle aus Medium 1 kommend auf eine

Mehr

R-C-Kreise. durchgeführt am 07.06.2010. von Matthias Dräger und Alexander Narweleit

R-C-Kreise. durchgeführt am 07.06.2010. von Matthias Dräger und Alexander Narweleit R-C-Kreise durchgeführt am 07.06.200 von Matthias Dräger und Alexander Narweleit PHYSIKALISCHE GRUNDLAGEN Physikalische Grundlagen. Kondensator Ein Kondensator ist ein passives elektrisches Bauelement,

Mehr

1 Grundlagen. Grundlagen 9

1 Grundlagen. Grundlagen 9 1 Grundlagen Der Begriff Akustik stammt aus der griechischen Srache (ἀκούειν akoyein: hören) und bedeutet die Lehre vom Schall und seiner Ausbreitung. Er umfasst die Schwingungen in gasförmigen, flüssigen

Mehr

Vorlesung Physik für Pharmazeuten und Biologen

Vorlesung Physik für Pharmazeuten und Biologen Vorlesung Physik für Pharmazeuten und Biologen Schwingungen Mechanische Wellen Akustik Freier harmonischer Oszillator Beispiel: Das mathematische Pendel Bewegungsgleichung : d s mg sinϕ = m dt Näherung

Mehr

Versuch Polarisiertes Licht

Versuch Polarisiertes Licht Versuch Polarisiertes Licht Vorbereitung: Eigenschaften und Erzeugung von polarisiertem Licht, Gesetz von Malus, Fresnelsche Formeln, Brewstersches Gesetz, Doppelbrechung, Optische Aktivität, Funktionsweise

Mehr

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung 34 Schwingungen Im Zusammenhang mit Polardarstellungen trifft man häufig auf Funktionen, die Schwingungen beschreiben und deshalb für den Ingenieur von besonderer Wichtigkeit sind Fast alle in der Praxis

Mehr

Bivariate Analyse: Gemeinsame (bivariate) Häufigkeitstabelle. Sie wird auch Kontingenz-, Assoziations- oder Korrelationstabelle (f b )genannt.

Bivariate Analyse: Gemeinsame (bivariate) Häufigkeitstabelle. Sie wird auch Kontingenz-, Assoziations- oder Korrelationstabelle (f b )genannt. Bivariate Analyse: Tabellarische Darstellung: Gemeinsame (bivariate) Häufigkeitstabelle. Sie wird auch Kontingenz-, Assoziations- oder Korrelationstabelle (f b )genannt. Beispiel: Häufigkeitsverteilung

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Musterlösung Montag 14. März 2011 1 Maxwell Wir bilden die Rotation der Magnetischen Wirbelbleichung mit j = 0: ( B) = +µµ 0 ɛɛ 0 ( E) t und verwenden wieder die Vektoridenditäet

Mehr

Ausblick. 1. Lineare dynamische Analysen 2. Nichtlineare Analysen 3. Weitere Anwendungen. Prof. Dr. Wandinger 5. Ausblick FEM 5-1

Ausblick. 1. Lineare dynamische Analysen 2. Nichtlineare Analysen 3. Weitere Anwendungen. Prof. Dr. Wandinger 5. Ausblick FEM 5-1 Ausblick 1. Lineare dynamische Analysen 2. Nichtlineare Analysen 3. Weitere Anwendungen Prof. Dr. Wandinger 5. Ausblick FEM 5-1 1. Lineare dynamische Analysen Beschleunigungen: Bei linearen dynamischen

Mehr

Prüfbericht DEK Messung der Schallabsorption im Hallraum gemäß EN ISO

Prüfbericht DEK Messung der Schallabsorption im Hallraum gemäß EN ISO INSTITUT FÜR AKUSTIK Im Technologischen Zentrum an der Fachhochschule Lübeck VMPA anerkannte Sachverständige Schallschutzprüfstelle für DIN 4109 VMPA-SPG-143-97-SH Mönkhofer Weg 239 23562 Lübeck Tel.:

Mehr

AUSWERTUNG: POLARISATION

AUSWERTUNG: POLARISATION AUSWERTUNG: POLARISATION TOBIAS FREY, FREYA GNAM 1. POLARISIERTES LICHT Linear polarisiertes Licht. Die linear polarisierte Welle wurde mit Hilfe eines Polarisationsfilters erzeugt, wobei weißes Licht

Mehr

Bestimmung des Schallabsorptionsgrades im Impedanzrohr nach DIN EN Holzfaserdämmplatte Typ holzflex040 Fabrikat HOMATHERM

Bestimmung des Schallabsorptionsgrades im Impedanzrohr nach DIN EN Holzfaserdämmplatte Typ holzflex040 Fabrikat HOMATHERM Robert-Koch-Straße 11 82152 Planegg bei München Tel. +49 (0)89 85602-0 Fax +49 (0)89 85602-111 www.muellerbbm.de Lorenz Huber Tel. +49 (0)89 85602-268 LHuber@MuellerBBM.de Bestimmung des Schallabsorptionsgrades

Mehr

3. Übertragungsfunktionen

3. Übertragungsfunktionen Definitionen: Die Fourier-Transformierte der Impulsantwortfunktion heißt Übertragungsfunktion: H ( f )= h(t )e 2 π i f t dt Mithilfe der Übertragungsfunktion kann die Fourier-Transformierte der Antwort

Mehr

Experimentalphysik für ET. Aufgabensammlung

Experimentalphysik für ET. Aufgabensammlung Experimentalphysik für ET Aufgabensammlung 1. Wellen Eine an einem Draht befestigte Stimmgabel schwinge senkrecht zum Draht und erzeuge so auf diesem eine Transversalwelle. Die Amplitude der Stimmgabelschwingung

Mehr

Welche Möglichkeiten bieten Simulationsprogramme bei der Planung eines Abhörraumes?

Welche Möglichkeiten bieten Simulationsprogramme bei der Planung eines Abhörraumes? Welche Möglichkeiten bieten Simulationsprogramme bei der Planung eines Abhörraumes? 26. Tonmeistertagung 2010 Leipzig Holger Schmalle 1, Stefan Feistel 1, Anselm Goertz 2, Michael Makarski 2 1 AFMG (Ahnert

Mehr

P1-12,22 AUSWERTUNG VERSUCH RESONANZ

P1-12,22 AUSWERTUNG VERSUCH RESONANZ P1-12,22 AUSWERTUNG VERSUCH RESONANZ GRUPPE 19 - SASKIA MEIßNER, ARNOLD SEILER 0.1. Drehpendel - Harmonischer Oszillator. Bei dem Drehpendel handelt es sich um einen harmonischen Oszillator. Das Trägheitsmoment,

Mehr

Lesen von Sonagrammen I: Grundlagen. Uwe Reichel IPS, LMU München 16. November 2007

Lesen von Sonagrammen I: Grundlagen. Uwe Reichel IPS, LMU München 16. November 2007 Lesen von Sonagrammen I: Grundlagen Uwe Reichel IPS, LMU München reichelu@phonetik.uni-muenchen.de 16. November 2007 Inhalt Das Sonagramm: Allgemeines Gewinnung des Sonagramms Zeitsignal Spektrum Spektrogramm

Mehr

Pappröhre, die an einem Ende offen und am anderen mit einem Plastikdeckel verschlossen ist. Vernier Mikrofon-Sonde, CBL oder LabPro und TI-83.

Pappröhre, die an einem Ende offen und am anderen mit einem Plastikdeckel verschlossen ist. Vernier Mikrofon-Sonde, CBL oder LabPro und TI-83. Stehende Wellen Zielsetzung: In diesem Experiment ist es unser Ziel, die Schallwellen zu untersuchen, die entstehen, wenn der Deckel einer Pappröhre mit dem Finger angeschlagen wird. Das Geräusch wird

Mehr

Einfluß von Wind bei Maximalfolgenmessungen

Einfluß von Wind bei Maximalfolgenmessungen 1 von 5 05.02.2010 11:10 Der Einfluß von Wind bei Maximalfolgenmessungen M. KOB, M. VORLÄNDER Physikalisch-Technische Bundesanstalt, Braunschweig 1 Einleitung Die Maximalfolgenmeßtechnik ist eine spezielle

Mehr

Praktikum Elektronische Messtechnik WS 2007/2008. Versuch OSZI. Tobias Doerffel Andreas Friedrich Heiner Reinhardt

Praktikum Elektronische Messtechnik WS 2007/2008. Versuch OSZI. Tobias Doerffel Andreas Friedrich Heiner Reinhardt Praktikum Elektronische Messtechnik WS 27/28 Versuch OSZI Tobias Doerffel Andreas Friedrich Heiner Reinhardt Chemnitz, 9. November 27 Versuchsvorbereitung.. harmonisches Signal: Abbildung 4, f(x) { = a

Mehr

Labor für Technische Akustik

Labor für Technische Akustik Labor für Technische Akustik Kraus Abbildung 1: Experimenteller Aufbau zur optischen Ermittlung der Schallgeschwindigkeit. 1. Versuchsziel In einer mit einer Flüssigkeit gefüllten Küvette ist eine stehende

Mehr

Vorbereitung. Resonanz. Carsten Röttele. 17. Januar Drehpendel, freie Schwingungen 3. 2 Drehpendel, freie gedämpfte Schwingungen 3

Vorbereitung. Resonanz. Carsten Röttele. 17. Januar Drehpendel, freie Schwingungen 3. 2 Drehpendel, freie gedämpfte Schwingungen 3 Vorbereitung Resonanz Carsten Röttele 17. Januar 01 Inhaltsverzeichnis 1 Drehpendel, freie Schwingungen 3 Drehpendel, freie gedämpfte Schwingungen 3 3 Messung der Winkelrichtgröße D 4 4 Drehpendel, erzwungene

Mehr

Versuch 11 a/b. a) Schallwellen in Rohren b) Kundtsche Staubfiguren

Versuch 11 a/b. a) Schallwellen in Rohren b) Kundtsche Staubfiguren 1 V 11 Versuch 11 a/b a) Schallwellen in Rohren b) Kundtsche Staubfiguren Aufgaben : a) Mit einer Drucksonde läßt sich die Schallwechseldruckverteilung von fortschreitenden und stehenden Schallwellen in

Mehr

Bauakustik I. FHNW HABG CAS Akustik 4 h. Version: 26. Februar kann man das Verhalten mit den folgenden drei Grössen beschreiben: p t p i.

Bauakustik I. FHNW HABG CAS Akustik 4 h. Version: 26. Februar kann man das Verhalten mit den folgenden drei Grössen beschreiben: p t p i. Bauakustik I FHNW HABG CAS Akustik 4 h Version: 6. Februar 009 Inhalt 1 3 Theoretische Grundlagen der Luftschalldämmung Messen und Masse der Luftschalldämmung Praktische Berechnungsverfahren für die Luftschalldämmung

Mehr

1. Bestimmen Sie die Energie eines Photons bei einer Wellenlänge λ 500nm in ev! (h Js, c m s, e As) (Φ e 60W)

1. Bestimmen Sie die Energie eines Photons bei einer Wellenlänge λ 500nm in ev! (h Js, c m s, e As) (Φ e 60W) Seminar Lichttechnik I Übungsaufgaben 27. Februar 2015 1. Bestimmen Sie die nergie eines Photons bei einer Wellenlänge λ 500nm in ev! (h 6 626 10 34 Js, c 3 10 8 m s, e 1 602 10 19 As) 2. Das Auge ist

Mehr

ACHTUNG: Bevor das Klystron eingeschaltet wird, ist jedesmal zuprüfen, ob der Isolator eingebaut und die Reflektorspannung nicht eingeschaltet ist.

ACHTUNG: Bevor das Klystron eingeschaltet wird, ist jedesmal zuprüfen, ob der Isolator eingebaut und die Reflektorspannung nicht eingeschaltet ist. Institut für Laser- und Plasmaphysik Praktikum für Fortgeschrittene Versuch LPP 4: Mikrowellen 1. Aufgabe: Der Versuch besteht aus zwei Teilaufgaben, die die Erzeugung von Mikrowellen und die Leitung von

Mehr

Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 214 Dr K Rothe Komplexe Funktionen für Studierende der Ingenieurwissenschaften Aufgaben und Theoriehinweise zu Blatt 6 Komplexe Funktionen, K Rothe,

Mehr

Polarisation durch Reflexion

Polarisation durch Reflexion Version: 27. Juli 2004 Polarisation durch Reflexion Stichworte Erzeugung von polarisiertem Licht, linear, zirkular und elliptisch polarisiertes Licht, Polarisator, Analysator, Polarisationsebene, optische

Mehr

Im dargestellten Drehstomnetz sind folgende Impedanzen angeschlossen:

Im dargestellten Drehstomnetz sind folgende Impedanzen angeschlossen: Aufgabe Ü3 Im dargestellten Drehstomnetz sind folgende Impedanzen angeschlossen: R = 1 Ω L1 W1 W4 I 1 R X C = 3 Ω X L = 2 3 Ω L2 W2 I 2 jx L -jx C = 13 V = 13 V e j120 L3 W3 W5 I 3 = 13 V e j120 N 1. Zeichnen

Mehr

Musterprotokoll am Beispiel des Versuches M 12 Gekoppelte Pendel

Musterprotokoll am Beispiel des Versuches M 12 Gekoppelte Pendel * k u r z g e f a s s t * i n f o r m a t i v * s a u b e r * ü b e r s i c h t l i c h Musterprotokoll am Beispiel des Versuches M 1 Gekoppelte Pendel M 1 Gekoppelte Pendel Aufgaben 1. Messen Sie für

Mehr

= 6,63 10 J s 8. (die Plancksche Konstante):

= 6,63 10 J s 8. (die Plancksche Konstante): 35 Photonen und Materiefelder 35.1 Das Photon: Teilchen des Lichts Die Quantenphysik: viele Größen treten nur in ganzzahligen Vielfachen von bestimmten kleinsten Beträgen (elementaren Einheiten) auf: diese

Mehr

Praktikum Physik. Protokoll zum Versuch 3: Drehschwingungen. Durchgeführt am Gruppe X

Praktikum Physik. Protokoll zum Versuch 3: Drehschwingungen. Durchgeführt am Gruppe X Praktikum Physik Protokoll zum Versuch 3: Drehschwingungen Durchgeführt am 27.10.2011 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuer: Wir bestätigen hiermit, dass wir das

Mehr

Übungsaufgaben zu Kapitel 7 und 8

Übungsaufgaben zu Kapitel 7 und 8 Hochschule für Technik und Wirtschaft Dresden Sommersemester 016 Fakultät Informatik/Mathematik Prof. Dr.. Jung Übungsaufgaben zu Kapitel 7 und 8 Aufgabe 1: Für die rennweite einer einfachen, bikonvexen

Mehr

Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002

Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002 Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002 30. Juli 2002 Gruppe 17 Christoph Moder 2234849 Michael Wack 2234088 Sebastian Mühlbauer 2218723

Mehr

Verbesserte Resonatoren: DFB-Struktur

Verbesserte Resonatoren: DFB-Struktur Verbesserte Resonatoren: DFB-Struktur FB-Resonatoren (=Kantenemitter) sind einfach herzustellen Nachteil: - Es werden sehr viele longitudinale Moden unterstützt - es gibt keine eingebaute Modenselektivität

Mehr

Rechenübung HFT I. Smithdiagramm Impedanztransformation

Rechenübung HFT I. Smithdiagramm Impedanztransformation Rechenübung HFT I Smithdiagramm Impedanztransformation Organisatorisches zur Rechenübung HFT I UPDATE! Anmeldung für die Klausur: Bis 01.02.2010 im Sekretariat HFT 4 - (Bachelor und Diplom) Klausur wird

Mehr

Tutorium Physik 2. Schwingungen

Tutorium Physik 2. Schwingungen 1 Tutorium Physik 2. Schwingungen SS 16 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 9. SCHWINGUNGEN 9.1 Bestimmen der

Mehr

Protokoll zum Versuch S7: Schallgeschwindigkeit - Stehende Wellen. Jan Christoph M Daniel B Tobias F

Protokoll zum Versuch S7: Schallgeschwindigkeit - Stehende Wellen. Jan Christoph M Daniel B Tobias F Protokoll zum Versuch S7: Schallgeschwindigkeit - Stehende Wellen Jan Christoph M Daniel B Tobias F Abgabedatum: 4. April 007 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Motivation Grundlagen.1 Stehende

Mehr

Wechselstromkreis mit verschiedenen Bauteilen

Wechselstromkreis mit verschiedenen Bauteilen Wechselstromkreis mit verschiedenen Bauteilen Im Folgenden werden nun die Auswirkungen eines ohmschen Widerstands, eines induktiven Widerstands (Spule) und eines kapazitiven Widerstands (Kondensator) auf

Mehr

Einführung in die Technische Akustik

Einführung in die Technische Akustik Einführung in die echnische Akustik Inhalt Grundbegriffe der Schwingungslehre Schallfeldgrößen und Wellengleichung für fluide Medien 3 Ebene Schallwellen in fluiden Medien 4 Kugelwellen 5 Synthese von

Mehr

Übung 2 vom

Übung 2 vom Übung vom.0.04 Aufgabe 5 Gegeben ist die Gleichung sin(α) + sin(α + β) + sin(α + β) = 0 Für welches Argument β ist diese Gleichung für jedes α erfüllt? Wo findet diese Gleichung Anwendung in der Technik?

Mehr

Kommunikationstechnik I

Kommunikationstechnik I Kounikationstechnik I Prof. Dr. Stefan einzierl Musterlösung 4. Aufgabenblatt 1. Diffuses Schallfeld Meyer gibt für den statistischen Richtfaktor Γ st der roete folgende erte an: 1.1 Erläutern Sie die

Mehr

Möglichkeiten der Raumakustik bei der Projektierung von Musikräumen Kurt Eggenschwiler Abteilung Akustik/Lärmbekämpfung, EMPA, CH-8600 Dübendorf

Möglichkeiten der Raumakustik bei der Projektierung von Musikräumen Kurt Eggenschwiler Abteilung Akustik/Lärmbekämpfung, EMPA, CH-8600 Dübendorf Möglichkeiten der Raumakustik bei der Projektierung von Musikräumen Kurt Eggenschwiler Abteilung Akustik/Lärmbekämpfung, EMPA, CH-8600 Dübendorf 1 Einleitung 1.1 Gesamtheit der Sinne In der Gegenwart besteht

Mehr

Akustische und aerodynamische Vermessung einer PKW-Auslassdüse

Akustische und aerodynamische Vermessung einer PKW-Auslassdüse PKW-Auslassdüse Dipl.-Ing. Carsten Haukap Prof. Dr.-Ing. Frank Kameier Versuchsobjekt Ziel der Untersuchungen Versuchsaufbau an der FH Düsseldorf Messergebnisse Zusammenfassung Kameier / Haukap, 3 Akustische

Mehr

Schallgeschwindigkeit in Gasen Seite 1

Schallgeschwindigkeit in Gasen Seite 1 1. Aufgabenstellung Schallgeschwindigkeit in Gasen Seite 1 1.1. Die Schallgeschwindigkeit und der Adiabatenexponent von Luft und Kohlendioxid sind mithilfe eines Kundtschen Rohres zu bestimmen. 1.2. Für

Mehr

1. Bestimmen Sie die Phasengeschwindigkeit von Ultraschallwellen in Wasser durch Messung der Wellenlänge und Frequenz stehender Wellen.

1. Bestimmen Sie die Phasengeschwindigkeit von Ultraschallwellen in Wasser durch Messung der Wellenlänge und Frequenz stehender Wellen. Universität Potsdam Institut für Physik und Astronomie Grundpraktikum 10/015 M Schallwellen Am Beispiel von Ultraschallwellen in Wasser werden Eigenschaften von Longitudinalwellen betrachtet. Im ersten

Mehr