Tutorium Physik 1. Wärme.

Größe: px
Ab Seite anzeigen:

Download "Tutorium Physik 1. Wärme."

Transkript

1 1 Tutorium Physik 1. Wärme. WS 17/18 1. Sem. B.Sc. Catering und Hospitality Services Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nicht-kommerziell Weitergabe unter gleichen Bedingungen 4.0 International Lizenz

2 2 Themen 1. Einführung, Umrechnen von Einheiten / Umformen von Formeln 2. Kinematik, Dynamik 3. Arbeit, Energie, Leistung 4. Impuls 5. Wärme 6. Verformung (Technische Mechanik) 7. Fluide

3 3 5. WÄRME

4 5.1 Wärmetransport/Temperaturskalen: Aufgabe (*) 4 a. Wie kann Wärmetransport stattfinden? b. Welche Temperaturskalen gibt es? c. Welche der Temperaturskalen wird als SI-Einheit angesehen und wo liegt bei dieser Skala der Nullpunkt?

5 5.2 Temperatur: Aufgabe (*) 6 Worin liegt der physikalische Unterschied zwischen absolutem Nullpunkt und höheren Temperaturen?

6 5.3 Suppe: Aufgabe (*) 8 Eine Suppe hat eine Temperatur von T = 67 C. Die folgenden Ergebnisse sollen auf ganze Zahlen gerundet angegeben werden. a. Wie viel Kelvin sind das? b. Hätte die Suppe eine Temperatur von T = 67 K, welchem Wert entspräche dies in C? c. Um wie viel Kelvin muss die Temperatur erhöht werden, damit die Suppe kocht?

7 PE-Strang: Aufgabe (**) PE hat einen Längenausdehnungskoeffizienten α = K -1. Wie lang wird ein 10 m langer PE-Strang, der von 20 C auf 200 C erwärmt wird?

8 5.5 Längenausdehnung: Aufgabe (**) 13 Ein Material hat einen Längenausdehnungskoeffizienten von α = K -1. Es wurde von 15 C auf 80 C erwärmt und hat sich dabei um 0,25 m ausgedehnt. Wie lang war es vor der Erwärmung?

9 5.6 Volumenausdehnung: Aufgabe (**) 15 Ein Tank mit einem Fassungsvermögen von V 0 = L soll mit Olivenöl gefüllt werden. Bei der Befüllung beträgt die Ausgangstemperatur 5 C. Die Lagertemperatur beträgt 25 C. Der Volumenausdehnungskoeffizient von Olivenöl beträgt γ Öl = 9, K -1 a. Wie groß ist ΔV in m 3? b. Wie groß ist die relative Volumenänderung des Öls? c. Wie groß muss das Gesamtvolumen V Ges des Tanks bei Lagerung sein?

10 5.7 Suppenschüssel: Aufgabe (**) 18 Beim Eingießen einer heißen Suppe erwärmt sich die Glasschüssel (c = 840 J/(kg K)) um 20 C. a. Wie groß ist die dabei übertragene Wärmemenge Q, wenn die Glasschüssel eine Masse von m = 500 g hat? b. Wie verändert sich die übertragene Wärmemenge Q, wenn die Schüssel m = 1 kg wiegen würde?

11 5.8 Jenaer Glasschüssel: Aufgabe (***) 21 Der Durchmesser einer Jenaer Glasschüssel (α = 3,3 * 10-6 / K) verändert sich beim Erhitzen um 0,15 %. Wie groß ist die übertragene Wärme Q, wenn die Schüssel (c = 840 J/kg*K) eine Masse von m = 800 g hat?

12 5.9 Wärmemenge: Aufgabe (**) 24 Wasser hat eine spezifische Wärme c = 4,19 kj/(kg K) spezifische Schmelzwärme s = 333 kj/kg spezifische Verdampfungswärme r = kj/kg. Sie haben einen Eisblock mit einer Masse m = 3 kg. a. Wie viel Energie muss dem Eis zugeführt werden, damit es schmilzt? b. Nach dem Schmelzen des Wassers (T = 1 C) wird es auf 50 C erwärmt. Wie viel Energie wird dazu benötigt? c. Wie viel Energie wird benötigt, um das 50 C warme Wasser zu verdampfen?

13 5.10 Latente Wärme: Aufgabe (*) 29 Was ist latente Wärme?

14 5.11 Aggregatzustand: Aufgabe (*/*/*/**) 31 a. Nennen Sie die drei Phasen/Aggregatszustände von Materie. b. Nennen Sie die Eigenschaften der unterschiedlichen Phasen. c. Wie werden die Phasenübergänge genannt? d. Skizzieren Sie die Phasenübergänge von 1kg Wasser. Tragen Sie dabei die Wärmemenge gegen die Temperatur in das Diagramm ein. Tragen Sie auch ein, in welchem Bereich welche Phase zu finden ist.

15 5.12 Längenänderung: Aufgabe (**) 37 Um wie viel % verlängert sich ein Stahldraht bei der Erwärmung von T 1 = 0 C auf T 2 = 100 C. Hinweis: Ausdehnungskoeffizient α = / K

16 5.13 Dampfrohr: Aufgabe 39 Ein Dampfrohr aus Stahl hat bei einer Temperatur T 1 = 20 C eine Länge von l = 6,0 m. Um welchen Betrag in mm ändert sich die Länge, wenn Dampf von T 2 = 120 C hindurchströmt? Hinweis: Der Längenausdehnungskoeffizient für Stahl beträgt: α = 1, /K

17 5.14 Schnellkochtopf: Aufgabe (***) 41 In einem elektrischen Schnellkochtopf mit der Leistungsaufnahme P = 1,5 kw soll Wasser mit der Masse m = 2,0 kg und der Temperatur T = 15 C zum Sieden gebracht werden. Wie viele Minuten dauert es, wenn der Wirkungsgrad n = 75 % beträgt? Hinweis: Spezifische Wärmekapazität das Wassers c = 4,19 J/(g K)

18 5.15 Wärmekapazität: Aufgabe (**) 44 Welche Wärmemenge in kj ist erforderlich um eine Wassermasse m = 2 L von einer Temperatur T = 20 C bis zum Sieden zu erhitzen? Hinweis: Spezifische Wärmekapazität des Wassers c = 4,19 kj/(kg K)

19 5.16 Leistung: Aufgabe (***) 46 In einer Destillieranlage soll in einer Zeit t = 1,0 h Wasser mit einem Volumen von V = 2,50 L und einer Temperatur T = 15ºC verdampft werden. Welche Leistung in kw muss aufgebracht werden, wenn die Anlage mit einem Wirkungsgrad von n = 75 % arbeitet? Hinweise: c = 4,19 kj/(kg K) r = kj/kg

20 5.17 Wärmeaustausch: Aufgabe (***) 50 In einem Behälter befinden sich V 1 = 60 L Wasser mit einer Temperatur T 1 = 80ºC. Wie viel Wasser von T 2 = 10ºC wird benötigt, um eine Endtemperatur T E = 40ºC zu erreichen? Hinweis: 1 L Wasser soll eine Masse von 1 kg haben.

21 5.18 Eis: Aufgabe (***) Welche Wärmemenge Q in kj ist aufzuwenden, um Eis mit einer Masse m = 2,50 kg und einer Temperatur T = -10ºC zu schmelzen und das Schmelzwasser vollständig zu verdampfen? Hinweise: Schmelzwärme s = 333 kj/kg, Verdampfungswärme r = kj/kg c Eis = 2,09 kj/(kg K) c Wasser = 4,19 kj/(kg K) 52

22 5.19 Volumenänderung: Aufgabe 56 Eine Wasserheizung ist mit einer Wassermenge V = L gefüllt. Wie viel Wasser tritt in das Überlaufgefäß ein, wenn die Wassertemperatur T 1 = 20 C auf eine Temperatur T 2 = 80 C steigt? Hinweis: Volumenausdehnungskoeffizient des Wassers γ = /K

23

Tutorium Physik 1. Wärme

Tutorium Physik 1. Wärme 1 Tutorium Physik 1. Wärme WS 15/16 1.Semester BSc. Oec. und BSc. CH 2 Themen 1. Einführung, Umrechnen von Einheiten / Umformen von Formeln 2. Kinematik, Dynamik 3. Arbeit, Energie, Leistung 4. Impuls

Mehr

Grund- und Angleichungsvorlesung Physik der Wärme.

Grund- und Angleichungsvorlesung Physik der Wärme. 2 Grund- und Angleichungsvorlesung Physik. Physik der Wärme. WS 17/18 1. Sem. B.Sc. LM-Wissenschaften Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nichtkommerziell Weitergabe

Mehr

9. Thermodynamik. 9.1 Temperatur und thermisches Gleichgewicht 9.2 Thermometer und Temperaturskala. 9.4 Wärmekapazität

9. Thermodynamik. 9.1 Temperatur und thermisches Gleichgewicht 9.2 Thermometer und Temperaturskala. 9.4 Wärmekapazität 9. Thermodynamik 9.1 Temperatur und thermisches Gleichgewicht 9.2 Thermometer und Temperaturskala 93 9.3 Thermische h Ausdehnung 9.4 Wärmekapazität 9. Thermodynamik Aufgabe: - Temperaturverhalten von Gasen,

Mehr

Lösungen zu den Zusatzübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14)

Lösungen zu den Zusatzübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14) Lösungen zu den Zusatzübungen zur hysik für Ingenieure (Maschinenbau) (WS 13/14) rof. W. Meyer Übungsgruppenleiter: A. Berlin & J. Herick (NB 2/28) Zusatzübung (Lösung) alle Angaben ohne Gewähr Zusatzaufgabe

Mehr

oder 10 = 1bar = = 10 Pa Für viele Zwecke wird die Umrechnung 1bar = 10 verwendet.

oder 10 = 1bar = = 10 Pa Für viele Zwecke wird die Umrechnung 1bar = 10 verwendet. R. Brinkmann http://brinkmann-du.de Seite 1 5.11.013 HF14S Arbeitsblatt Wärme als Energieform Die Celsius-Skala ist durch folgende Fixpunkte definiert: 0 0 C: Schmelzpunkt des Eises bei einem Druck von

Mehr

( ) 3 = Grösse = Zahlenwert Einheit. Inhalte gemäss Rahmenlehrplan 2012 GESO. Geltende Ziffern

( ) 3 = Grösse = Zahlenwert Einheit. Inhalte gemäss Rahmenlehrplan 2012 GESO. Geltende Ziffern GEWERBLICH-INDUSTRIELLE BERUFSSCHULE BERN BERUFSMATURITÄTSSCHULE BMS Gesundheit und Soziales GESO Formelsammlung Physik David Kamber, Ruben Mäder Stand 7.5.016 Inhalte gemäss Rahmenlehrplan 01 GESO Mechanik:

Mehr

Die Heizungsanlage eines Hauses wird auf Ölfeuerung umgestellt. Gleichzeitig wird mit dieser Anlage Warmwasser aufbereitet.

Die Heizungsanlage eines Hauses wird auf Ölfeuerung umgestellt. Gleichzeitig wird mit dieser Anlage Warmwasser aufbereitet. Übungsaufgaben zur Wärmelehre mit Lösungen 1) Die Heizungsanlage eines Hauses wird auf Ölfeuerung umgestellt. Gleichzeitig wird mit dieser Anlage Warmwasser aufbereitet. Berechnen Sie die Wärme, die erforderlich

Mehr

O. Sternal, V. Hankele. 5. Thermodynamik

O. Sternal, V. Hankele. 5. Thermodynamik 5. Thermodynamik 5. Thermodynamik 5.1 Temperatur und Wärme Systeme aus vielen Teilchen Quelle: Wikimedia Commons Datei: Translational_motion.gif Versuch: Beschreibe 1 m 3 Luft mit Newton-Mechanik Beschreibe

Mehr

Lösungen Serie 16: Kalorimetrie

Lösungen Serie 16: Kalorimetrie en Serie 16: Kalorimetrie Aufgabe 16.1 A Sie wollen in einem Kochtopf ( =0.6, =0.4 ( =4.182 k K gegeben: =0.6 =0.4 k K ) einen halben Liter Wasser ) von 10 auf 40 erwärmen. Welche Wärmemenge ist dazu notwendig?

Mehr

Tutorium Physik 1. Arbeit, Energie, Leistung.

Tutorium Physik 1. Arbeit, Energie, Leistung. 1 Tutorium Physik 1. Arbeit, Energie, Leistung. WS 17/18 1. Sem. B.Sc. Catering und Hospitality Services Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nicht-kommerziell Weitergabe

Mehr

Physik1. Physik der Wärme. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH

Physik1. Physik der Wärme. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH 3 Physik1. Physik der Wärme. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH Physik Wärme 5 Themen Begriffsklärung Anwendungen Temperaturskalen Modellvorstellung Wärmeausdehnung Thermische Ausdehnung Phasenübergänge

Mehr

1. Klausur ist am 5.12.! (für Vets sowie Bonuspunkte für Zahni-Praktikum) Jetzt lernen!

1. Klausur ist am 5.12.! (für Vets sowie Bonuspunkte für Zahni-Praktikum) Jetzt lernen! 1. Klausur ist am 5.12.! (für Vets sowie Bonuspunkte für Zahni-Praktikum) Jetzt lernen! http://www.physik.uni-giessen.de/dueren/ User: duerenvorlesung Password: ****** Druck und Volumen Gesetz von Boyle-Mariotte:

Mehr

Energie und Energieerhaltung. Mechanische Energieformen. Arbeit. Die goldene Regel der Mechanik. Leistung

Energie und Energieerhaltung. Mechanische Energieformen. Arbeit. Die goldene Regel der Mechanik. Leistung - Formelzeichen: E - Einheit: [ E ] = 1 J (Joule) = 1 Nm = 1 Energie und Energieerhaltung Die verschiedenen Energieformen (mechanische Energie, innere Energie, elektrische Energie und Lichtenergie) lassen

Mehr

A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C?

A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C? A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C? (-> Tabelle p) A 1.1 b Wie groß ist der Auftrieb eines Helium (Wasserstoff) gefüllten

Mehr

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System:

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System: Theorie der Wärme kann auf zwei verschiedene Arten behandelt werden. mikroskopisch: Bewegung von Gasatomen oder -molekülen. Vielzahl von Teilchen ( 10 23 ) im Allgemeinen nicht vollständig beschreibbar

Mehr

(VIII) Wärmlehre. Wärmelehre Karim Kouz WS 2014/ Semester Biophysik

(VIII) Wärmlehre. Wärmelehre Karim Kouz WS 2014/ Semester Biophysik Quelle: http://www.pro-physik.de/details/news/1666619/neues_bauprinzip_fuer_ultrapraezise_nuklearuhr.html (VIII) Wärmlehre Karim Kouz WS 2014/2015 1. Semester Biophysik Wärmelehre Ein zentraler Begriff

Mehr

Fachrichtung Klima- und Kälteanlagenbauer

Fachrichtung Klima- und Kälteanlagenbauer Fachrichtung Klima- und Kälteanlagenbauer 1-7 Schüler Datum: 1. Titel der L.E. : 2. Fach / Klasse : Fachrechnen, 3. Ausbildungsjahr 3. Themen der Unterrichtsabschnitte : 1. Zustandsänderung 2. Schmelzen

Mehr

2.2 Spezifische und latente Wärmen

2.2 Spezifische und latente Wärmen 1 Einleitung Physikalisches Praktikum für Anfänger - Teil 1 Gruppe 2 Wärmelehre 2.2 Spezifische und latente Wärmen Die spezifische Wärme von Wasser gibt an, wieviel Energie man zu 1 kg Wasser zuführen

Mehr

Ausdehnung und Temperatur

Ausdehnung und Temperatur Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mathematik und Naturwissenschaften Arbeitsblatt Physik 4 (Wärmelehre) Dozent: - Brückenkurs Mathematik / Physik 2016 Modul: Physik

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? Temperatur Der nullte Hauptsatz der Thermodynamik: Thermoskop und Thermometer Kelvin, Celsius- und der Fahrenheit-Skala Wärmeausdehnung

Mehr

Formelsammlung Abfallwirtschaft Seite 1/6 Wärmekapazität Prof. Dr. Werner Bidlingmaier & Dr.-Ing. Christian Springer

Formelsammlung Abfallwirtschaft Seite 1/6 Wärmekapazität Prof. Dr. Werner Bidlingmaier & Dr.-Ing. Christian Springer Formelsammlung Abfallwirtschaft Seite 1/6 1 Energiebedarf zur Erwärmung von Stoffen Der Energiebetrag, der benötigt wird, um 1 kg einer bestimmten Substanz um 1 C zu erwärmen, wird als die (auch: Spezifische

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - Einführung in die Wärmelehre - Prof. Dr. Ulrich Hahn WS 2008/09 Entwicklung der Wärmelehre Sinnesempfindung: Objekte warm kalt Beschreibung der thermische Eigenschaften

Mehr

3.4 Änderung des Aggregatzustandes

3.4 Änderung des Aggregatzustandes 34 Änderung des Aggregatzustandes Man unterscheidet 3 Aggregatzustände: Fest Flüssig Gasförmig Temperatur: niedrig mittel hoch Molekülbindung: Gitter lose Bindung keine Bindung schmelzen sieden erstarren

Mehr

8.4.5 Wasser sieden bei Zimmertemperatur ******

8.4.5 Wasser sieden bei Zimmertemperatur ****** 8.4.5 ****** 1 Motivation Durch Verminderung des Luftdrucks siedet Wasser bei Zimmertemperatur. 2 Experiment Abbildung 1: Ein druckfester Glaskolben ist zur Hälfte mit Wasser gefüllt, so dass die Flüsigkeit

Mehr

Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung.

Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Nullter und Erster Hauptsatz der Thermodynamik. Thermodynamische

Mehr

Praktikum Physik. Protokoll zum Versuch 5: Spezifische Wärme. Durchgeführt am Gruppe X

Praktikum Physik. Protokoll zum Versuch 5: Spezifische Wärme. Durchgeführt am Gruppe X Praktikum Physik Protokoll zum Versuch 5: Spezifische Wärme Durchgeführt am 10.11.2011 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuer: Wir bestätigen hiermit, dass wir das

Mehr

d) Das ideale Gas makroskopisch

d) Das ideale Gas makroskopisch d) Das ideale Gas makroskopisch Beschreibung mit Zustandsgrößen p, V, T Brauchen trotzdem n, R dazu Immer auch Mikroskopische Argumente dazunehmen Annahmen aus mikroskopischer Betrachtung: Moleküle sind

Mehr

Freiwillige Feuerwehr Rosenheim. Wärmelehre. Hans Meyrl. Stadt Rosenheim Sachgebiet III/323 Brand- und Katastrophenschutz, ILS

Freiwillige Feuerwehr Rosenheim. Wärmelehre. Hans Meyrl. Stadt Rosenheim Sachgebiet III/323 Brand- und Katastrophenschutz, ILS Freiwillige Feuerwehr Rosenheim Wärmelehre Hans Meyrl Stadt Rosenheim Sachgebiet III/323 Brand- und Katastrophenschutz, ILS Wärmelehre physikalische Grundlagen Inhalt Begriffe, Größen, Einheiten Physikalische

Mehr

Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt

Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt 1 Aufgabe: Entropieänderung Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt 1 Aufgabe: Entropieänderung a) Ein Kilogramm Wasser bei = C wird in thermischen Kontakt mit einem Wärmereservoir bei

Mehr

PHYSIKTEST 3C Dezember 2015 GRUPPE A

PHYSIKTEST 3C Dezember 2015 GRUPPE A PHYSIKTEST 3C Dezember 2015 GRUPPE A SCHÜLERNAME: PUNKTEANZAHL: /20 NOTE: NOTENSCHLÜSSEL 18-20 Sehr Gut (1) 15-17 Gut (2) 13-14 Befriedigend (3) 10-12 Genügend (4) 0-9 Nicht Genügend (5) Aufgabe 1. (3

Mehr

NOI, I TECNICI DELLA COSTRUZIONE.

NOI, I TECNICI DELLA COSTRUZIONE. Schweizerisch-Liechtensteinischer Gebäudetechnikverband Association suisse et liechtensteinoise de la technique du bâtiment Associazione svizzera e del Liechtenstein della tecnica della costruzione Associaziun

Mehr

Aggregatzustände, Schmelzen, Sieden, Verdunsten

Aggregatzustände, Schmelzen, Sieden, Verdunsten Aggregatzustände, Schmelzen, Sieden, erdunsten 1. Washalb sollte man nasse Kleidung nicht am Körper trocknen lassen? Lösung: Beim trocknen der Kleidung wird dem Körper die erdunstungswärme entzogen. 2.

Mehr

Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007

Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007 Versuch 2 Physik für (Zahn-)Mediziner c Claus Pegel 13. November 2007 1 Wärmemenge 1 Wärme oder Wärmemenge ist eine makroskopische Größe zur Beschreibung der ungeordneten Bewegung von Molekülen ( Schwingungen,

Mehr

1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen

1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen IV. Wärmelehre 1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen Historisch: Wärme als Stoff, der übertragen und in beliebiger Menge erzeugt werden kann. Übertragung: Wärmezufuhr Joulesche

Mehr

Temperatur Wärme Thermodynamik

Temperatur Wärme Thermodynamik Temperatur Wärme Thermodynamik Stoffwiederholung und Übungsaufgaben... 2 Lösungen... 33 Thermodynamik / 1 Einführung: Temperatur und Wärme Alle Körper haben eine innere Energie, denn sie sind aus komplizierten

Mehr

1. Wärmelehre 1.1. Temperatur. Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités)

1. Wärmelehre 1.1. Temperatur. Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für die Temperatur Prinzip

Mehr

Antrieb und Wärmebilanz bei Phasenübergängen. Speyer, März 2007

Antrieb und Wärmebilanz bei Phasenübergängen. Speyer, März 2007 Antrieb und Wärmebilanz bei Phasenübergängen Speyer, 19-20. März 2007 Michael Pohlig, WHG-Durmersheim michael@pohlig.de Literatur: Physik in der Oberstufe; Duden-PAETEC Schmelzwärme wird auch als Schmelzenergie

Mehr

Grundwissen Physik (8. Klasse)

Grundwissen Physik (8. Klasse) Grundwissen Physik (8. Klasse) 1 Energie 1.1 Energieerhaltungssatz 1.2 Goldene egel der Mechanik Energieerhaltungssatz: n einem abgeschlossenen System ist die Gesamtenergie konstant. Goldene egel der Mechanik:

Mehr

Abschlussprüfung an Fachoberschulen im Schuljahr 2005/2006

Abschlussprüfung an Fachoberschulen im Schuljahr 2005/2006 Abschlussprüfung an Fachoberschulen im Schuljahr 200/2006 Haupttermin: Nach- bzw. Wiederholtermin: 12.06.2006 Fachrichtung: Technik Fach: Physik Prüfungsdauer: 210 Minuten Hilfsmittel: - Formelsammlung/Tafelwerk

Mehr

Physikalisches Grundpraktikum. Phasenumwandlungen

Physikalisches Grundpraktikum. Phasenumwandlungen Fachrichtungen der Physik UNIVERSITÄT DES SAARLANDES Physikalisches Grundpraktikum WWW-Adresse Grundpraktikum Physik: http://grundpraktikum.physik.uni-saarland.de/ Kontaktadressen der Praktikumsleiter:

Mehr

Kompetenztraining: Schaubilder, Tabellen, unbekannte Formeln, funktionale Zusammenhänge, Alltagsbezug physikalischer Phänomene und Textarbeit

Kompetenztraining: Schaubilder, Tabellen, unbekannte Formeln, funktionale Zusammenhänge, Alltagsbezug physikalischer Phänomene und Textarbeit Kompetenztraining: Schaubilder, Tabellen, unbekannte Formeln, funktionale Zusammenhänge, Alltagsbezug physikalischer Phänomene und Textarbeit Im Folgenden findest du Aufgaben, um deine Kompetenzen in den

Mehr

Skript zur Vorlesung

Skript zur Vorlesung Skript zur Vorlesung 1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für

Mehr

Maßeinheiten der Wärmelehre

Maßeinheiten der Wärmelehre Maßeinheiten der Wärmelehre Temperatur (thermodynamisch) Benennung der Einheit: Einheitenzeichen: T für Temp.-punkte, ΔT für Temp.-differenzen Kelvin K 1 K ist der 273,16te Teil der (thermodynamischen)

Mehr

Grundlagen der Wärmelehre

Grundlagen der Wärmelehre Ausgabe 2007-09 Grundlagen der Wärmelehre (Erläuterungen) Die Wärmelehre ist das Teilgebiet der Physik, in dem Zustandsänderungen von Körpern infolge Zufuhr oder Abgabe von Wärmeenergie und in dem Energieumwandlungen,

Mehr

b ) den mittleren isobaren thermischen Volumenausdehnungskoeffizienten von Ethanol. Hinweis: Zustand 2 t 2 = 80 C = 23, kg m 3

b ) den mittleren isobaren thermischen Volumenausdehnungskoeffizienten von Ethanol. Hinweis: Zustand 2 t 2 = 80 C = 23, kg m 3 Aufgabe 26 Ein Pyknometer ist ein Behälter aus Glas mit eingeschliffenem Stopfen, durch den eine kapillarförmige Öffnung führt. Es hat ein sehr genau bestimmtes Volumen und wird zur Dichtebestimmung von

Mehr

1. Was bedeutet das griechische Wort Energie? Definiere (Erkläre) den Begriff Energie: Energie ist die F

1. Was bedeutet das griechische Wort Energie? Definiere (Erkläre) den Begriff Energie: Energie ist die F Probetest 01 für den 1. PH-Test am Alle Lösungen findest du in deinen PH-Unterlagen! 1. Was bedeutet das griechische Wort Energie? Definiere (Erkläre) den Begriff Energie: Energie ist die F 2. Welches

Mehr

2 Wärmelehre. Reibungswärme Reaktionswärme Stromwärme

2 Wärmelehre. Reibungswärme Reaktionswärme Stromwärme 2 Wärmelehre Die Thermodynamik ist ein Musterbeispiel an axiomatisch aufgebauten Wissenschaft. Im Gegensatz zur klassischen Mechanik hat sie die Quantenrevolution überstanden, ohne in ihren Grundlagen

Mehr

Flüssigkeitsthermometer Bimetallthermometer Gasthermometer Celsius Fahrenheit

Flüssigkeitsthermometer Bimetallthermometer Gasthermometer Celsius Fahrenheit Wärme Ob etwas warm oder kalt ist können wir fühlen. Wenn etwas wärmer ist, so hat es eine höhere Temperatur. Temperaturen können wir im Bereich von etwa 15 Grad Celsius bis etwa 45 Grad Celsius recht

Mehr

A 0 K D 373 K B 100 K E 200 K 273 K. B nimmt leicht zu. E nimmt stark zu. A 273 K D 100 K B 100 K E 273 K VORANSICHT 0 K A 273 K D 22 K B 251 K E 0 K

A 0 K D 373 K B 100 K E 200 K 273 K. B nimmt leicht zu. E nimmt stark zu. A 273 K D 100 K B 100 K E 273 K VORANSICHT 0 K A 273 K D 22 K B 251 K E 0 K 11. Multiple-hoice-Tests zur Wärmelehre 1 von 24 Multiple-hoice-Tests zur Wärmelehre Dr. Wolfgang Tews, Berlin Mit diesen Tests, die viele Themenbereiche der Wärmelehre in der Sek I abdecken, geben wir

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Rudolf Feile Dipl. Phys. Markus Domschke Sommersemster 2010 17. 21. Mai 2010 Physik für Bauingenieure Übungsblatt 5 Gruppenübungen 1. Wärmepumpe Eine Wärmepumpe hat eine Leistungszahl

Mehr

Mensch und Technik. Berechnungen und Beispiele

Mensch und Technik. Berechnungen und Beispiele 1 Berechnungen und Beispiele Wärmekapazität Wird einem Stoff durch Erwärmen Energie zugeführt, so steigt deren Temperatur, dies ist stoffabhängig und der Temperaturanstieg ist proportional zur Wärmemenge:

Mehr

Einleitung in die Wärmelehre

Einleitung in die Wärmelehre Einleitung in die Wärmelehre Im ersten Teil der Experimentalphysik, Mechanik, haben wir die Grundlagen geschaffen, Bewegung von einzelnen Massepunkten und später von starren Körpern zu berechnen. Wir hatten

Mehr

Wärme, unsere wichtigste Energieform.

Wärme, unsere wichtigste Energieform. Kalorik Lehrwerkstätten und Berufsschule Zeughausstrasse 56 für Mechanik und Elektronik Tel. 052 267 55 42 CH-8400 Winterthur Fax 052 267 50 64 Thermo-Gefäss, 1 Liter PA6100 Wärme, unsere wichtigste Energieform.

Mehr

Praktikum Physik Physiologie Thema: Muskelarbeit, leistung und Wärme

Praktikum Physik Physiologie Thema: Muskelarbeit, leistung und Wärme Praktikum Physik Physiologie Thema: Muskelarbeit, leistung und Wärme Stichpunkte zur Vorbereitung auf das Praktikum Theresia Kraft Molekular und Zellphysiologie November 2012 Kraft.Theresia@mh hannover.de

Mehr

Aufgaben zur Wärmelehre

Aufgaben zur Wärmelehre Aufgaben zur Wärmelehre 1. Ein falsch kalibriertes Quecksilberthermometer zeigt -5 C eingetaucht im schmelzenden Eis und 103 C im kochenden Wasser. Welche ist die richtige Temperatur, wenn das Thermometer

Mehr

Fehlermöglichkeiten bei der Auswertung thermodynamischer Messungen an Wärmeaustauschern der Pkw- Klimatisierung

Fehlermöglichkeiten bei der Auswertung thermodynamischer Messungen an Wärmeaustauschern der Pkw- Klimatisierung Fehlermöglichkeiten bei der Auswertung thermodynamischer Messungen an Wärmeaustauschern der Pkw- Klimatisierung Fehlermöglichkeiten bei der Auswertung thermodynamischer Messungen an Wärmeaustauschern der

Mehr

Vorlesung Physik für Pharmazeuten PPh Wärmelehre

Vorlesung Physik für Pharmazeuten PPh Wärmelehre Vorlesung Physik für Pharmazeuten PPh - 07 Wärmelehre Aggregatzustände der Materie im atomistischen Bild Beispiel Wasser Eis Wasser Wasserdampf Dynamik an der Wasser-Luft Grenzfläche im atomistischen Bild

Mehr

NTB Druckdatum: DWW

NTB Druckdatum: DWW WÄRMELEHRE Der Begriff der Thermisches Gleichgewicht und - Mass für den Wärmezustand eines Körpers - Bewegung der Atome starke Schwingung schwache Schwingung gleichgewicht (Thermisches Gleichgewicht) -

Mehr

1. GRUNDLAGEN B04 SPEZIFISCHE WÄRMEN B04

1. GRUNDLAGEN B04 SPEZIFISCHE WÄRMEN B04 B04 SPEZIFISCHE WÄRMEN B04 1. GRUNDLAGEN 1.1. Spezifische Wärme Wie viel Energie ist erforderlich, um die Luft im Raum oder einen Topf mit Wasser zu erwärmen? Und wie viel Energie, um das Wasser zu verdampfen?

Mehr

T 300K,p 1,00 10 Pa, V 0, m,t 1200K, Kontrolle Physik Leistungskurs Klasse Hauptsatz, Kreisprozesse

T 300K,p 1,00 10 Pa, V 0, m,t 1200K, Kontrolle Physik Leistungskurs Klasse Hauptsatz, Kreisprozesse Kontrolle Physik Leistungskurs Klasse 2 7.3.207. Hauptsatz, Kreisprozesse. Als man früh aus dem Haus gegangen ist, hat man doch versehentlich die Kühlschranktür offen gelassen. Man merkt es erst, als man

Mehr

Thermodynamik (Wärmelehre) I Die Temperatur

Thermodynamik (Wärmelehre) I Die Temperatur Physik A VL24 (04.12.2012) hermodynamik (Wärmelehre) I Die emperatur emperatur thermische Ausdehnung Festkörper und Flüssigkeiten Gase Das ideale Gas 1 Die emperatur Der Wärmezustand ist nicht mit bisherigen

Mehr

Der Magnus-Effekt. Rotierender Körper in äußerer Strömung: Anwendungen:

Der Magnus-Effekt. Rotierender Körper in äußerer Strömung: Anwendungen: Der Magnus-Effekt Rotierender Körper in äußerer Strömung: Ohne Strömung: Körper führt umgebendes Medium an seinen Oberflächen mit Keine resultierende Gesamtkraft. ω Mit Strömung: Geschwindigkeiten der

Mehr

Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer

Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I 12.12.2014 Gase Flüssigkeiten Feststoffe Wiederholung Teil 2 (05.12.2014) Ideales Gasgesetz: pv Reale Gase: Zwischenmolekularen Wechselwirkungen

Mehr

Grundlagen der statistischen Physik und Thermodynamik

Grundlagen der statistischen Physik und Thermodynamik Grundlagen der statistischen Physik und Thermodynamik "Feuer und Eis" von Guy Respaud 6/14/2013 S.Alexandrova FDIBA 1 Grundlagen der statistischen Physik und Thermodynamik Die statistische Physik und die

Mehr

Technische Mathe: Problem-Lösungen Seite 1 von 6

Technische Mathe: Problem-Lösungen Seite 1 von 6 Technische Mathe: Problem-Lösungen Seite 1 von 6 Diese Lerneinheit ist besonders den Schülern gewidmet, für die jede Rechenaufgabe ein Problem darstellt. Ich versuche hier Problem-Lösungs-Strategien auf

Mehr

Technische Mathe: Problem-Lösungen: Wärmemenge in einer Flüssigkeit Seite 1 von 7

Technische Mathe: Problem-Lösungen: Wärmemenge in einer Flüssigkeit Seite 1 von 7 Technische Mathe: Problem-Lösungen: Wärmemenge in einer Flüssigkeit Seite 1 von 7 Diese Lerneinheit ist besonders den Schülern gewidmet, für die jede Rechenaufgabe ein Problem darstellt. Ich versuche hier

Mehr

tgt HP 2007/08-2: Heizungsanlage

tgt HP 2007/08-2: Heizungsanlage tgt HP 007/08-: Heizungsanlage Ein Wohngebäude wird durch eine Warmwasserheizung beheizt und erfordert eine maximale Wärmeleistung von 50 kw. Wärmepumpe Anlagenschema Stoffwerte für leichtes Heizöl: Dichte:

Mehr

SC-PROJEKT EISWÜRFEL: HÖHE = 21MM. Patrick Kurer & Marcel Meschenmoser

SC-PROJEKT EISWÜRFEL: HÖHE = 21MM. Patrick Kurer & Marcel Meschenmoser SC-PROJEKT EISWÜRFEL: HÖHE = 21MM Patrick Kurer & Marcel Meschenmoser 2.1.2013 INHALTSVERZEICHNIS Inhaltsverzeichnis... 1 Allgemeine Parameter... 2 Aufgabe A Allgemeine Berechnung des Eiswürfels... 2 Aufgabe

Mehr

Lösungen zu den Aufgaben Besuch aus dem Weltall ein kleiner Asteroid tritt ein in die Erdatmosphäre

Lösungen zu den Aufgaben Besuch aus dem Weltall ein kleiner Asteroid tritt ein in die Erdatmosphäre Lösungen zu den Aufgaben Besuch aus dem Weltall ein kleiner Asteroid tritt ein in die Erdatmosphäre Achtung Fehler: Die Werte für die spezifische Gaskonstante R s haben als Einheit J/kg/K, nicht, wie angegeben,

Mehr

TEMPERATUR UND WÄRMEKAPAZITÄT... 2 KALORIMETRIE I... 3 KALORIMETRIE II... 5 PHASENUMWANDLUNGEN... 6

TEMPERATUR UND WÄRMEKAPAZITÄT... 2 KALORIMETRIE I... 3 KALORIMETRIE II... 5 PHASENUMWANDLUNGEN... 6 E-Mail: Homepage: info@schroeder-doms.de schroeder-doms.de München den 11. Mai 2009 W1 Kalorimetrie (Skript zur Vorbereitung) TEMPERATUR UND WÄRMEKAPAZITÄT... 2 Wärme und Temperatur, Kelvin-Skala:... 2

Mehr

Aufgabenblatt Z/ 01 (Physikalische Größen und Einheiten)

Aufgabenblatt Z/ 01 (Physikalische Größen und Einheiten) Aufgabenblatt Z/ 01 (Physikalische Größen und Einheiten) Aufgabe Z-01/ 1 Welche zwei verschiedenen physikalische Bedeutungen kann eine Größe haben, wenn nur bekannt ist, dass sie in der Einheit Nm gemessen

Mehr

Temperatur. Temperaturmessung. Grundgleichung der Kalorik. 2 ² 3 2 T - absolute Temperatur / ºC T / K

Temperatur. Temperaturmessung. Grundgleichung der Kalorik. 2 ² 3 2 T - absolute Temperatur / ºC T / K Temperatur Temperatur ist ein Maß für die mittlere kinetische Energie der Teilchen 2 ² 3 2 T - absolute Temperatur [ T ] = 1 K = 1 Kelvin k- Boltzmann-Konst. k = 1,38 10-23 J/K Kelvin- und Celsiusskala

Mehr

Physik 2 exp. Teil. 15 Temperatur, Wärme und der erste Hauptsatz der Thermodynamik 15.1 Temperatur

Physik 2 exp. Teil. 15 Temperatur, Wärme und der erste Hauptsatz der Thermodynamik 15.1 Temperatur Physik 2 exp. Teil. 15 Temperatur, Wärme und der erste Hauptsatz der Thermodynamik 15.1 Temperatur Der zentrale Begriff der Thermodynamik ist die Temperatur. Bsp.: Menschlicher Temperatursinn - Eisen vs.

Mehr

Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung)

Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung) Versuch Nr. 57 Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung) Stichworte: Dampf, Dampfdruck von Flüssigkeiten, dynamisches Gleichgewicht, gesättigter Dampf, Verdampfungsenthalpie, Dampfdruckkurve,

Mehr

Fachhochschule Flensburg. Institut für Physik

Fachhochschule Flensburg. Institut für Physik Name: Fachhochschule Flensburg Fachbereich Technik Institut für Physik Versuch-Nr.: W 2 Bestimmung der Verdampfungswärme von Wasser Gliederung: Seite Einleitung Versuchsaufbau (Beschreibung) Versuchsdurchführung

Mehr

l0 Die Ausgangslänge ist die Länge, die das Rohr vor der Erwärmung hatte.

l0 Die Ausgangslänge ist die Länge, die das Rohr vor der Erwärmung hatte. Technische Mathematik Längenänderung Seite 1 von 11 Auf diesen Seiten wird die Berechnung der Längenänderung durch Erwärmung oder Abkühlung vorgestellt. Alle Rechenschritte werden sehr ausführlich erläutert,

Mehr

Physikalisches Praktikum Bestimmung der Schmelzwärme von Eis

Physikalisches Praktikum Bestimmung der Schmelzwärme von Eis Physikalisches Praktikum Bestimmung der Schmelzwärme von Eis Autoren: Markus Krieger Nicolai Löw Erstellungsdatum: 4. Juni 2000 Disclaimer: Alle von mir im Internet unter http://www.krieger-online.de veröffentlichten

Mehr

Thermodynamik I Klausur 1

Thermodynamik I Klausur 1 Aufgabenteil / 100 Minuten Name: Vorname: Matr.-Nr.: Das Aufgabenblatt muss unterschrieben und zusammen mit den (nummerierten und mit Namen versehenen) Lösungsblättern abgegeben werden. Nicht nachvollziehbare

Mehr

Übungsblatt 2 ( )

Übungsblatt 2 ( ) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 01 Übungsblatt (11.05.01) 1) Geschwindigkeitsverteilung eines idealen Gases (a) Durch welche Verteilung lässt sich die Geschwindigkeitsverteilung

Mehr

1 Grundwissen Energie. 2 Grundwissen mechanische Energie

1 Grundwissen Energie. 2 Grundwissen mechanische Energie 1 Grundwissen Energie Die physikalische Größe Energie E ist so festgelegt, dass Energieerhaltung gilt. Energie kann weder erzeugt noch vernichtet werden. Sie kann nur von einer Form in andere Formen umgewandelt

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #7 28/10/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Wärmelehre Teil 1 - Energie, Wärmekapazität Def. 1: Lehre der Energie, ihrer Erscheinungsform und

Mehr

Kalorimetrische Bestimmung des Wirkungsgrades von elektrischen

Kalorimetrische Bestimmung des Wirkungsgrades von elektrischen Titel Autor Kalorimetrische Bestimmung des Wirkungsgrades von elektrischen Verbrauchern Denis Nordmann Version 13. Mai 2015, 07:34 Zitierung Copyright D. Nordmann. Kalorimetrische Bestimmung des Wirkungsgrades

Mehr

Thema Grundlagen Inhalt Praktische Umsetzung Literatur 1. Kaffee und

Thema Grundlagen Inhalt Praktische Umsetzung Literatur 1. Kaffee und Themen für GFS Idealfall einer GFS: Das Thema steht im Zusammenhang mit dem Physikunterricht. Es sollte eine praktische Arbeit oder einen Versuch beinhalten. Möglich sind zum Beispiel Vorbereiten und Gestalten

Mehr

WS 17/18 1. Sem. B.Sc. Catering und Hospitality Services

WS 17/18 1. Sem. B.Sc. Catering und Hospitality Services 2 Physik 1. Fluide. WS 17/18 1. Sem. B.Sc. Catering und Hospitality Services Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nicht-kommerziell Weitergabe unter gleichen Bedingungen

Mehr

Klausur zur Vorlesung. Thermodynamik

Klausur zur Vorlesung. Thermodynamik Institut für Thermodynamik 18. Februar 2010 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

Technische Mathe: Problem-Lösungen Seite 1 von 9

Technische Mathe: Problem-Lösungen Seite 1 von 9 Technische Mathe: Problem-Lösungen Seite 1 von 9 Diese Lerneinheit ist besonders den Schülern gewidmet, für die jede Rechenaufgabe ein Problem darstellt. Ich versuche hier Problem-Lösungs-Strategien auf

Mehr

Musterprüfung Themen:

Musterprüfung Themen: Musterprüfung Themen: Spezifische Wärmekapazität Latente Wärme Heizwert Wärmetransport Wärmeausdehnung Zustandsgleichung der idealen Gase Zustandsänderungen von Gasen Erster und zweiter Hauptsatz 1. Welche

Mehr

Spezifische Wärme. Was ist ein Dewargefäß? Wie ist es konstruiert und welche Vorteile bietet dieser Aufbau?

Spezifische Wärme. Was ist ein Dewargefäß? Wie ist es konstruiert und welche Vorteile bietet dieser Aufbau? Wie viel Energie ist nötig, um die Luft im Raum oder einen Topf mit Wasser zu erwärmen? Und wie viel Energie, um das Wasser zu verdampfen? In diesem Versuch sollen Sie solche Fragen experimentell untersuchen.

Mehr

Die Aggregatzustände (Orientieren und Verstehen)

Die Aggregatzustände (Orientieren und Verstehen) Die Aggregatzustände (Orientieren und Verstehen) Auf der Internetseite www.chemiedidaktik.uni- bremen.de/multimedia/lernumgebung_teilchen/ aggregatzustaende.html findest Du viele Informationen zu den Aggregatzuständen.

Mehr

Übung 2. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen

Übung 2. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen Wärmekapazitäten isochore/isobare Zustandsänderungen Standardbildungsenthalpien Heizwert/Brennwert adiabatische Flammentemperatur WS 2013/14

Mehr

Thermodynamik I Klausur SS 2010

Thermodynamik I Klausur SS 2010 Thermodynamik I Klausur 00 Prof. Dr. J. Kuck, Prof. Dr. G. Wilhelms Aufgabenteil / 00 Minuten/eite Name: Vorname: Matr.-Nr.: Das Aufgabenblatt muss unterschrieben und zusammen mit den (nummerierten und

Mehr

Stoffplan PH Wintersemester

Stoffplan PH Wintersemester Stoffplan PH Wintersemester 1 Mechanik 1.1 Eindimensionale Bewegungen 1.1.1 Geschwindigkeit 1.1.2 Beschleunigung 1.1.3 Integration 1.1.4 Zusammenfassung 1.2 Bewegung in 2 und 3 Dimensionen 1.2.1 Vektoren

Mehr

Was ist eine Wärmepumpe? Und wie funktioniert die Wärmepumpe?

Was ist eine Wärmepumpe? Und wie funktioniert die Wärmepumpe? Was ist eine Wärmepumpe? Und wie funktioniert die Wärmepumpe? Grundlagen Dies ist zum Beispiel eine Wärmepumpe! Eine Wärmepumpe funktioniert wie ein Kühlschrank Aber was passiert jetzt genau im Kühlschrank,

Mehr

1. Wärmelehre 2.4. Die Freiheitsgrade eines Gases. f=5 Translation + Rotation. f=7 Translation + Rotation +Vibration. Wiederholung

1. Wärmelehre 2.4. Die Freiheitsgrade eines Gases. f=5 Translation + Rotation. f=7 Translation + Rotation +Vibration. Wiederholung 1. Wärmelehre 2.4. Die Freiheitsgrade eines Gases Wiederholung Speziische molare Wärmekapazität c m,v = 2 R R = N A k B = 8.315 J mol K =5 Translation + Rotation =7 Translation + Rotation +ibration 1.

Mehr

Anwenden des Aktualisierungsservices

Anwenden des Aktualisierungsservices Seite 19 1.5.7 Flexible Plankostenrechnung Aktualisierungsservice 0/013 Anwenden des Aktualisierungsservices Legen Sie die aufgeführten Textpassagen neben Ihre Formelsammlung und vergleichen Sie. Notwendige

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I W21 Name: Verdampfungswärme von Wasser Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Folgende Fragen

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti.

Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti. (c) Ulm University p. 1/1 Grundlagen der Physik 2 Schwingungen und Wärmelehre 10. 05. 2007 Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik Universität Ulm (c) Ulm University p.

Mehr

Ide egy rajz hiányzik (egy vonal, a végein két telegömb, a baloldali felett Q 1 és a másik felett Q 2 )

Ide egy rajz hiányzik (egy vonal, a végein két telegömb, a baloldali felett Q 1 és a másik felett Q 2 ) 1. Es gibt drei gleiche Glühlampen. An eine Batterie wird eine Glühlampe angeschlossen. An eine andere Batterie werden zwei Glühlampen in der Reihe angeschlossen. Bei welcher Anordnung gibt es mehr Licht?

Mehr

... U I t = c m ΔT ( ΔT = T 2 - T 1 )

... U I t = c m ΔT ( ΔT = T 2 - T 1 ) nergie - Wärmespeicherung und Wärmeumsatz 1.) Spezifische Wärmekapazität von Wasser F Unter der spezifischen Wärmekapazität c eines Stoffes versteht man die nergie, die man zuführen muß, um 1 kg dieses

Mehr

II. Wämelehre. II.1 Temperatur Temperaturabhängigkeit von Stoffeigenschaften. Physik für Mediziner 1

II. Wämelehre. II.1 Temperatur Temperaturabhängigkeit von Stoffeigenschaften. Physik für Mediziner 1 II. Wämelehre II.1 Temperatur Temperaturabhängigkeit von Stoffeigenschaften Physik für Mediziner 1 Temperatur Temperatur ist ein alltäglicher Begriff; Wahrnehmung über die Haut als warm oder kalt physikalisch

Mehr