Digitale Signaturen. GHR-und Chamäleon-Signaturen Björn Kaidel. FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK

Größe: px
Ab Seite anzeigen:

Download "Digitale Signaturen. GHR-und Chamäleon-Signaturen Björn Kaidel. FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK"

Transkript

1 Digitale Signaturen GHR-und Chamäleon-Signaturen Björn Kaidel FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK B. Kaidel Digitale Signaturen: GHR- und Chamäleon-Signaturen KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft

2 Socrative: Wiederholung B. Kaidel Digitale Signaturen: GHR- und Chamäleon-Signaturen Room: SIGNATUREN Eigenschaften von Chamäleon-Hashfkt.? Wie werden Chamäleon-Hashfkt. ausgewertet? Ist die Def. von Kollisionsresistenz von CH-Fkt. identisch zur üblichen Def.? Signaturen können weitergeben werden - ist das problematisch?

3 Evaluation Siehe Evaluations-PDF! B. Kaidel Digitale Signaturen: GHR- und Chamäleon-Signaturen

4 Socrative-Fragen vom letzten Mal Reicht die Zahlentheorie aus VL/Skript für die Prüfung? Man sollte in der Lage sein, die besprochenen Verfahren (mit Beweis!) zu verstehen und erklären zu können Die dafür nötige Mathematik sollte man verstehen Werden CH-Fkt. in der Praxis angewandt? B. Kaidel Digitale Signaturen: GHR- und Chamäleon-Signaturen

5 Inhalt Chamäleon-Signaturen (Kap. 3.4) B. Kaidel Digitale Signaturen: GHR- und Chamäleon-Signaturen

6 Chamäleon-Signaturen: Motivation (Kap. 3.1) (Wdh) Angebot? Händler Kunde 100$, σ 1 100$, σ 1 99$, σ 2 Händler B. Kaidel Digitale Signaturen: GHR- und Chamäleon-Signaturen

7 Chamäleon-Signaturen: Ziel (Wdh) Frage: Können wir ein Signaturverfahren konstruieren, sodass K die Authentizität des Angebots von H 1 verifizieren kann... K den Händler H 2 nicht davon überzeugen kann, dass das Angebot von H 1 kam. (Man spricht bei Verfahren mit solchen Eigenschaften von Abstreitbarkeit) B. Kaidel Digitale Signaturen: GHR- und Chamäleon-Signaturen

8 Chamäleon-Hashfunktionen (Definition) (Kap. 3.2) (Wdh) Def. (Chamäleon-Hashfunktion): Eine Chamäleon-Hashfunktion CH besteht aus zwei PPT-Algorithmen (Gen CH, TrapColl CH ): Gen CH (1 k ) : gibt (ch, τ) aus, wobei: ch ist eine Funktion ch : M R N M Nachrichtenraum R Zufallsraum N Zielraum M, R, N abhängig von konkreter CH! τ eine Trapdoor ( Falltür ) ist B. Kaidel Digitale Signaturen: GHR- und Chamäleon-Signaturen

9 Chamäleon-Hashfunktionen (Definition - II) (Wdh) TrapColl CH (τ, m, r, m ) für (m, r, m ) M R M berechnet r R, sodass ch(m, r) = ch(m, r ) Wer τ kennt, kann Kollisionen berechnen Daher der Name Chamäleon -Hashfunktion Ausgabe wechselt ihr Urbild wechselt ihre Farbe B. Kaidel Digitale Signaturen: GHR- und Chamäleon-Signaturen

10 Chamäleon-Hashfunktion von DLog (Wdh) Kollisionsresistente CH-Fkt. von DLog: ch = (g, h = g x ), τ = x ch(m, r) = g m h r B. Kaidel Digitale Signaturen: GHR- und Chamäleon-Signaturen

11 Chamäleon-Hashfunktion von DLog (Wdh) Kollisionsresistente CH-Fkt. von DLog: ch = (g, h = g x ), τ = x ch(m, r) = g m h r Kollisionen berechnen durch Lösen nach r : m + x r = m + x r mod p r = m m x + r mod p B. Kaidel Digitale Signaturen: GHR- und Chamäleon-Signaturen

12 Chamäleon-Hashfunktion von DLog (Wdh) Kollisionsresistente CH-Fkt. von DLog: ch = (g, h = g x ), τ = x ch(m, r) = g m h r Kollisionen berechnen durch Lösen nach r : m + x r = m + x r mod p r = m m x + r mod p (Es gibt auch eine CH-Fkt. basierend auf dem RSA-Problem) B. Kaidel Digitale Signaturen: GHR- und Chamäleon-Signaturen

13 Kollisionsresistenz (Wdh) Def. 39 (Kollisionsresistenz für Chamäleon-Hashfkt.): Eine Chamäelon-Hashfunktion CH = (Gen CH, TrapColl CH ) ist kollisionsresistent, falls für alle PPT A gilt, dass [ (ch, τ) GenCH (1 Pr k ) A(1 k, ch) = (m, r, m, r ) : ch(m, r) = ch(m, r ] ) (m, r) = (m, r negl(k) ) für eine im Sicherheitsparameter k vernachlässigbare Funktion negl B. Kaidel Digitale Signaturen: GHR- und Chamäleon-Signaturen

14 Chamäleon-Signaturen (Kap. 3.4) CH = (Gen CH, TrapColl CH ) CH-Fkt., ch : M R N Signatur Σ = (Gen, Sign, Vfy ) Konstruiere Chamäleon-Signatur Σ = (Gen, Sign, Vfy) B. Kaidel Digitale Signaturen: GHR- und Chamäleon-Signaturen

15 Chamäleon-Signaturen (Kap. 3.4) CH = (Gen CH, TrapColl CH ) CH-Fkt., ch : M R N Signatur Σ = (Gen, Sign, Vfy ) Konstruiere Chamäleon-Signatur Σ = (Gen, Sign, Vfy) Gen(1 k ) : (pk, sk ) Gen (1 k ) pk := pk, sk := sk B. Kaidel Digitale Signaturen: GHR- und Chamäleon-Signaturen

16 Chamäleon-Signaturen (Kap. 3.4) Sign(sk, m, ch) : (ch ist CH-Fkt. des Empfängers) r R, ch(m, r) =: y σ := Sign (sk, y) σ := (σ, r) B. Kaidel Digitale Signaturen: GHR- und Chamäleon-Signaturen

17 Chamäleon-Signaturen (Kap. 3.4) Sign(sk, m, ch) : (ch ist CH-Fkt. des Empfängers) r R, ch(m, r) =: y σ := Sign (sk, y) σ := (σ, r) Vfy(pk, m, σ, ch) : Vfy (pk, ch(m, r), σ )? = B. Kaidel Digitale Signaturen: GHR- und Chamäleon-Signaturen

18 EUF-CMA für Chamäleon-Signaturen C EUF-CMA A B. Kaidel Digitale Signaturen: GHR- und Chamäleon-Signaturen

19 EUF-CMA für Chamäleon-Signaturen C EUF-CMA (pk, sk) Gen(1 k ) (ch, τ) Gen CH (1 k ) pk, ch A B. Kaidel Digitale Signaturen: GHR- und Chamäleon-Signaturen

20 EUF-CMA für Chamäleon-Signaturen C EUF-CMA (pk, sk) Gen(1 k ) (ch, τ) Gen CH (1 k ) σ i Sign(sk, m i, ch) pk, ch m i σ i A Anfragen nacheinander q = q(k) Anfragen q Polynom B. Kaidel Digitale Signaturen: GHR- und Chamäleon-Signaturen

21 EUF-CMA für Chamäleon-Signaturen C EUF-CMA (pk, sk) Gen(1 k ) (ch, τ) Gen CH (1 k ) σ i Sign(sk, m i, ch) pk, ch m i σ i A Anfragen nacheinander q = q(k) Anfragen q Polynom m, σ Vfy(pk, m, σ, ch) = 1? m / {m 1,..., m q }? B. Kaidel Digitale Signaturen: GHR- und Chamäleon-Signaturen

22 EUF-CMA für Chamäleon-Signaturen C EUF-CMA (pk, sk) Gen(1 k ) (ch, τ) Gen CH (1 k ) σ i Sign(sk, m i, ch) pk, ch m i σ i A Anfragen nacheinander q = q(k) Anfragen q Polynom m, σ Vfy(pk, m, σ, ch) = 1? m / {m 1,..., m q }? A gewinnt, falls Vfy(pk, m, σ, ch) = 1 und m / {m 1,..., m q } B. Kaidel Digitale Signaturen: GHR- und Chamäleon-Signaturen

23 EUF-CMA für Chamäleon-Signaturen C EUF-CMA (pk, sk) Gen(1 k ) (ch, τ) Gen CH (1 k ) σ i Sign(sk, m i, ch) pk, ch m i σ i A Anfragen nacheinander q = q(k) Anfragen q Polynom m, σ Vfy(pk, m, σ, ch) = 1? m / {m 1,..., m q }? A gewinnt, falls Vfy(pk, m, σ, ch) = 1 und m / {m 1,..., m q } Frage: Ist dieses Sicherheitsmodell stark genug? B. Kaidel Digitale Signaturen: GHR- und Chamäleon-Signaturen

24 CH-Sig: Sicherheitsmodell (Skript) Frage: Ist dieses Sicherheitsmodell stark genug? B. Kaidel Digitale Signaturen: GHR- und Chamäleon-Signaturen

25 CH-Sig: Sicherheitsmodell (Skript) Frage: Ist dieses Sicherheitsmodell stark genug? Antwort: Nein! Angreifer hat beim Signieren keine Kontrolle über die Chamäleon-Hashfunktion. Dies kann ihm aber evtl. beim Fälschen helfen! Echter Angreifer könnten eigene CH-Fkt. erstellen & verwenden B. Kaidel Digitale Signaturen: GHR- und Chamäleon-Signaturen

26 Angriff bei DLog-CH-Fkt. (Skript) Angenommen, A könnte CH-Fkt. beim Signieren selbst wählen: Es wird die DLog-CH-Fkt. verwendet. A erhält ch = (g, h) vom Challenger B. Kaidel Digitale Signaturen: GHR- und Chamäleon-Signaturen

27 Angriff bei DLog-CH-Fkt. (Skript) Angenommen, A könnte CH-Fkt. beim Signieren selbst wählen: Es wird die DLog-CH-Fkt. verwendet. A erhält ch = (g, h) vom Challenger. A generiert ch A = (g a, h), a = 1 selbst gewählt Dies ist eine gültige CH-Fkt.! A lässt m mit ch A signieren und erhält Signatur σ = (σ, r) B. Kaidel Digitale Signaturen: GHR- und Chamäleon-Signaturen

28 Angriff bei DLog-CH-Fkt. (Skript) Dann gilt: 1 = Vfy(pk, m, σ = (σ, r), ch A ) = Vfy (pk, ch A (m, r), σ ) = Vfy (pk, ch(a m, r), σ ) = Vfy(pk, a m, σ, ch) B. Kaidel Digitale Signaturen: GHR- und Chamäleon-Signaturen

29 Angriff bei DLog-CH-Fkt. (Skript) Dann gilt: 1 = Vfy(pk, m, σ = (σ, r), ch A ) = Vfy (pk, ch A (m, r), σ ) = Vfy (pk, ch(a m, r), σ ) = Vfy(pk, a m, σ, ch) Da a = 1 gilt auch m = a m. Somit ist (a m, σ) eine gültige Fälschung bzgl. ch! Anm.: Bei der RSA-CH-Fkt. ist ein ähnlicher Angriff möglich B. Kaidel Digitale Signaturen: GHR- und Chamäleon-Signaturen

30 EUF-CMA für Chamäleon-Signaturen 2 (Skript) C EUF-CMA (pk, sk) Gen(1 k ) (ch, τ) Gen CH (1 k ) σ i Sign(sk, m i, ch) EUF-CMA Variante 1 A pk, ch m i σ i Anfragen nacheinander q = q(k) Anfragen q Polynom m, σ Vfy(pk, m, σ, ch) = 1? m / {m 1,..., m q }? A gewinnt, falls Vfy(pk, m, σ, ch) = 1 und m / {m 1,..., m q } B. Kaidel Digitale Signaturen: GHR- und Chamäleon-Signaturen

31 EUF-CMA für Chamäleon-Signaturen 2 (Skript) C EUF-CMA (pk, sk) Gen(1 k ) (ch, τ) Gen CH (1 k ) σ i Sign(sk, m i, ch i ) EUF-CMA Variante 2 A pk, ch m i, ch i σ i Anfragen nacheinander q = q(k) Anfragen q Polynom m, σ Vfy(pk, m, σ, ch) = 1? m / {m 1,..., m q }? A gewinnt, falls Vfy(pk, m, σ, ch) = 1 und m / {m 1,..., m q } B. Kaidel Digitale Signaturen: GHR- und Chamäleon-Signaturen

32 EUF-CMA Im Folgenden beschränken wir uns auf Variante 1! Variante 2 auch erreichbar, ist aber etwas schwieriger B. Kaidel Digitale Signaturen: GHR- und Chamäleon-Signaturen

33 CH-Sig: Sicherheit Theorem 45: Für jeden PPT-Angreifer A(pk, ch), der die EUF-CMA-Sicherheit von Σ bricht in Zeit t A mit Erfolgswahrscheinlichkeit ɛ A, existiert ein PPT-Angreifer B, der in Zeit t B t A läuft und entweder die Kollisionsresistenz von ch bricht mit Wkt. ɛ ch ɛ A 2, oder die EUF-naCMA-Sicherheit von Σ bricht mit Wkt. ɛ ɛ A B. Kaidel Digitale Signaturen: GHR- und Chamäleon-Signaturen

34 Chamäleon-Signaturen: Beweis EUF-CMA: Seien m 1,..., m q die Anfragen, σ i = (σ i, r i) die Antworten und (m, σ = (σ, r )) die Ausgabe von A B. Kaidel Digitale Signaturen: GHR- und Chamäleon-Signaturen

35 Chamäleon-Signaturen: Beweis EUF-CMA: Seien m 1,..., m q die Anfragen, σ i = (σ i, r i) die Antworten und (m, σ = (σ, r )) die Ausgabe von A. Zwei Ereignisse: E 0 : Es existiert i mit ch(m i, r i ) = ch(m, r ). E 1 : Für alle i {1,..., q} gilt ch(m i, r i ) = ch(m, r ) B. Kaidel Digitale Signaturen: GHR- und Chamäleon-Signaturen

36 Chamäleon-Signaturen: Beweis EUF-CMA: Seien m 1,..., m q die Anfragen, σ i = (σ i, r i) die Antworten und (m, σ = (σ, r )) die Ausgabe von A. Zwei Ereignisse: E 0 : Es existiert i mit ch(m i, r i ) = ch(m, r ). E 1 : Für alle i {1,..., q} gilt ch(m i, r i ) = ch(m, r ). A ruft E 0 oder E 1 hervor, also gilt ɛ A Pr[E 0 ] + Pr[E 1 ] Pr[E 0 ] ɛ A /2 oder Pr[E 1 ] ɛ A / B. Kaidel Digitale Signaturen: GHR- und Chamäleon-Signaturen

37 Chamäleon-Signaturen: Beweis E 0 : Reduktion auf Kollisionsresistenz von CH Standard, Vorgehen wie immer E 1 : Reduktion auf EUF-naCMA-Sicherheit von Σ Details: siehe Tafel B. Kaidel Digitale Signaturen: GHR- und Chamäleon-Signaturen

38 Socrative: Chamäleon-Signaturen B. Kaidel Digitale Signaturen: GHR- und Chamäleon-Signaturen Room: SIGNATUREN Warum sind Chamäleon-Signaturen abstreitbar? Warum ist der Empfänger von einer CH-Sig. überzeugt? Welche Sicherheitseigenschaft hat die CH-Sig.? Wie werden im Beweis die adaptiven Anfragen von A auf eine einzige nicht-adaptive Anfrage übersetzt?

Digitale Signaturen. GHR-und Chamäleon-Signaturen Björn Kaidel. FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK

Digitale Signaturen. GHR-und Chamäleon-Signaturen Björn Kaidel.   FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK Digitale Signaturen GHR-und Chamäleon-Signaturen Björn Kaidel FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 2017-12-15 B. Kaidel Digitale Signaturen: GHR- und Chamäleon-Signaturen KIT

Mehr

Digitale Signaturen. Sicherheitsdefinitionen Gunnar Hartung, Björn Kaidel. FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK

Digitale Signaturen. Sicherheitsdefinitionen Gunnar Hartung, Björn Kaidel.  FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK Digitale Signaturen Sicherheitsdefinitionen Gunnar Hartung, Björn Kaidel FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 2016-10-28 B. Kaidel Digitale Signaturen: Sicherheitsdefinitionen

Mehr

Digitale Signaturen. Einmalsignaturen Gunnar Hartung, Björn Kaidel. FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK

Digitale Signaturen. Einmalsignaturen Gunnar Hartung, Björn Kaidel.  FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK Digitale Signaturen Einmalsignaturen Gunnar Hartung, Björn Kaidel FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 2016-11-04 B. Kaidel Digitale Signaturen: Einmalsignaturen KIT Die Forschungsuniversität

Mehr

Digitale Signaturen. Anwendung von Einmalsignaturen Gunnar Hartung, Björn Kaidel.

Digitale Signaturen. Anwendung von Einmalsignaturen Gunnar Hartung, Björn Kaidel. Digitale Signaturen Anwendung von Einmalsignaturen Gunnar Hartung, Björn Kaidel FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 2016-11-18 G. Hartung Digitale Signaturen: Anwendung von

Mehr

Digitale Signaturen. Sicherheitsdefinitionen Björn Kaidel. FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK

Digitale Signaturen. Sicherheitsdefinitionen Björn Kaidel.  FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK Digitale Signaturen Sicherheitsdefinitionen Björn Kaidel FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 2017-10-27 B. Kaidel Digitale Signaturen: Sicherheitsdefinitionen KIT Die Forschungsuniversität

Mehr

Digitale Signaturen. seuf-cma & Pairings Björn Kaidel. FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK

Digitale Signaturen. seuf-cma & Pairings Björn Kaidel.  FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK Digitale Signaturen seuf-cma & Pairings Björn Kaidel FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 2018-01-19 B. Kaidel Digitale Signaturen: seuf-cma & Pairings KIT Die Forschungsuniversität

Mehr

Asymmetrische Verschlüsselungsverfahren

Asymmetrische Verschlüsselungsverfahren Asymmetrische Verschlüsselungsverfahren Einmalsignaturen Björn Kaidel (Vertretung für Prof. Müller-Quade) FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 2018-02-01 B. Kaidel Asymmetrische

Mehr

Digitale Signaturen. RSA-FDH & das Random Oracle Model Jiaxin Pan (Slides from Björn Kaidel and Gunnar Hartung)

Digitale Signaturen. RSA-FDH & das Random Oracle Model Jiaxin Pan (Slides from Björn Kaidel and Gunnar Hartung) Digitale Signaturen RSA-FDH & das Random Oracle Model Jiaxin Pan (Slides from Björn Kaidel and Gunnar Hartung) FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 2018-10-26 B. Kaidel Digitale

Mehr

Digitale Signaturen. seuf-cma & Pairings Gunnar Hartung, Björn Kaidel. FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK

Digitale Signaturen. seuf-cma & Pairings Gunnar Hartung, Björn Kaidel.  FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK Digitale Signaturen seuf-cma & Pairings Gunnar Hartung, Björn Kaidel FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 2017-01-20 B. Kaidel Digitale Signaturen: seuf-cma & Pairings KIT Die

Mehr

Digitale Signaturen. RSA-FDH & das Random Oracle Model Björn Kaidel (mit Folien von Gunnar Hartung)

Digitale Signaturen. RSA-FDH & das Random Oracle Model Björn Kaidel (mit Folien von Gunnar Hartung) Digitale Signaturen RSA-FDH & das Random Oracle Model Björn Kaidel (mit Folien von Gunnar Hartung) FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 2017-12-01 B. Kaidel Digitale Signaturen:

Mehr

Digitale Signaturen. Wiederholung Gunnar Hartung, Björn Kaidel. FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK

Digitale Signaturen. Wiederholung Gunnar Hartung, Björn Kaidel.  FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK Digitale Signaturen Wiederholung Gunnar Hartung, Björn Kaidel FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 2017-02-10 G. Hartung Digitale Signaturen: Wiederholung KIT Die Forschungsuniversität

Mehr

Asymmetrische Verschlüsselungsverfahren

Asymmetrische Verschlüsselungsverfahren Asymmetrische Verschlüsselungsverfahren Digitale Signaturen Prof. Jörn Müller-Quade mit Folien von G. Hartung und B. Kaidel FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 2018-01-25 J.

Mehr

Asymmetrische Verschlüsselungsverfahren

Asymmetrische Verschlüsselungsverfahren Asymmetrische Verschlüsselungsverfahren Digitale Signaturen Björn Kaidel - Vertretung für Prof. Müller-Quade FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 2017-01-19 B. Kaidel Asymmetrische

Mehr

Digitale Signaturen. Einführung Gunnar Hartung, Björn Kaidel. FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK

Digitale Signaturen. Einführung Gunnar Hartung, Björn Kaidel.  FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK Digitale Signaturen Einführung Gunnar Hartung, Björn Kaidel FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 2016-10-21 G. Hartung, B. Kaidel Digitale Signaturen: Einführung KIT Die Forschungsuniversität

Mehr

Digitale Signaturen. Einführung Björn Kaidel. FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK

Digitale Signaturen. Einführung Björn Kaidel.  FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK Digitale Signaturen Einführung Björn Kaidel FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 2017-10-20 B. Kaidel Digitale Signaturen: Einführung KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Mehr

Digitale Signaturen. Anwendung von Einmalsignaturen Björn Kaidel (mit Folien von Gunnar Hartung)

Digitale Signaturen. Anwendung von Einmalsignaturen Björn Kaidel (mit Folien von Gunnar Hartung) Digitale Signaturen Anwendung von Einmalsignaturen Björn Kaidel (mit Folien von Gunnar Hartung) FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 2017-11-24 B. Kaidel Digitale Signaturen:

Mehr

Vorlesung Digitale Signaturen im Wintersemester 2017/-18. Socrative-Fragen aus der Vorlesung vom

Vorlesung Digitale Signaturen im Wintersemester 2017/-18. Socrative-Fragen aus der Vorlesung vom Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade Dozenten: Björn Kaidel Vorlesung Digitale Signaturen im Wintersemester 2017/-18 Socrative-Fragen aus der Vorlesung vom 17.11.2017 1 Quiz 1:

Mehr

Digitale Signaturen. Anwendung von Einmalsignaturen Gunnar Hartung, Björn Kaidel.

Digitale Signaturen. Anwendung von Einmalsignaturen Gunnar Hartung, Björn Kaidel. Digitale Signaturen Anwendung von Einmalsignaturen Gunnar Hartung, Björn Kaidel FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 2016-11-15 G. Hartung Digitale Signaturen: Anwendung von

Mehr

Digitale Signaturen. Parameterwahl & RSA-PSS Björn Kaidel (mit Folien von Gunnar Hartung)

Digitale Signaturen. Parameterwahl & RSA-PSS Björn Kaidel (mit Folien von Gunnar Hartung) Digitale Signaturen Parameterwahl & RSA-PSS Björn Kaidel (mit Folien von Gunnar Hartung) FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 2016-11-15 B. Kaidel Digitale Signaturen: RSA-PSS

Mehr

Vorlesung Digitale Signaturen im Wintersemester 2016/-17. Socrative-Fragen aus der Vorlesung vom

Vorlesung Digitale Signaturen im Wintersemester 2016/-17. Socrative-Fragen aus der Vorlesung vom Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade Dozenten: Gunnar Hartung, Björn Kaidel Vorlesung Digitale Signaturen im Wintersemester 2016/-17 Socrative-Fragen aus der Vorlesung vom 25.11.2016

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Jörn Müller-Quade ITI, KIT basierend auf den Folien von Dennis Hofheinz, Sommersemester 2014 23.05.2016 1 / 32 Überblick 1 Symmetrische Authentifikation von Nachrichten Ziel Konstruktionen MACs

Mehr

Übung zur Vorlesung. Sicherheit Übungsblatt 5 Björn Kaidel

Übung zur Vorlesung. Sicherheit Übungsblatt 5 Björn Kaidel Übung zur Vorlesung Sicherheit 30.06.2016 Übungsblatt 5 Björn Kaidel bjoern.kaidel@kit.edu https://b.socrative.com/login/student/ Room: SICHERHEIT Bitte gleich einloggen! 1 / 55 Evaluation (siehe Evaluations-PDF)

Mehr

Übung zur Vorlesung Sicherheit Übungsblatt 3. Björn Kaidel 1 / 52

Übung zur Vorlesung Sicherheit Übungsblatt 3. Björn Kaidel 1 / 52 Übung zur Vorlesung Sicherheit 21.05.2014 Übungsblatt 3 Björn Kaidel bjoern.kaidel@kit.edu 1 / 52 Kummerkasten Bitte helleren Laserpointer verwenden. Sind die Skriptlinks vertauscht? Nein! Wegen allgemeiner

Mehr

Homomorphe Verschlüsselung

Homomorphe Verschlüsselung Homomorphe Verschlüsselung Definition Homomorphe Verschlüsselung Sei Π ein Verschlüsselungsverfahren mit Enc : G G für Gruppen G, G. Π heißt homomorph, falls Enc(m 1 ) G Enc(m 2 ) eine gültige Verschlüsselung

Mehr

Voll homomorpe Verschlüsselung

Voll homomorpe Verschlüsselung Voll homomorpe Verschlüsselung Definition Voll homomorphe Verschlüsselung Sei Π ein Verschlüsselungsverfahren mit Enc : R R für Ringe R, R. Π heißt voll homomorph, falls 1 Enc(m 1 ) + Enc(m 2 ) eine gültige

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Jörn Müller-Quade ITI, KIT basierend auf den Folien von Dennis Hofheinz, Sommersemester 2014 18.05.2015 1 / 30 Überblick 1 Asymmetrische Authentifikation von Nachrichten Erinnerung

Mehr

Asymmetrische Verschlüsselungsverfahren

Asymmetrische Verschlüsselungsverfahren Asymmetrische Verschlüsselungsverfahren Vorlesung 4 Alexander Koch (Vertretung) FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 2016-11-10 Alexander Koch Asymmetrische Verschlüsselungsverfahren

Mehr

Homomorphe Verschlüsselung

Homomorphe Verschlüsselung Homomorphe Verschlüsselung Definition Homomorphe Verschlüsselung Sei Π ein Verschlüsselungsverfahren mit Enc : G G für Gruppen G, G. Π heißt homomorph, falls Enc(m 1 ) G Enc(m 2 ) eine gültige Verschlüsselung

Mehr

RSA Full Domain Hash (RSA-FDH) Signaturen

RSA Full Domain Hash (RSA-FDH) Signaturen RSA Full Domain Hash (RSA-FDH) Signaturen Signatur RSA-FDH Sei H : {0, 1} Z N ein Random-Oracle. 1 Gen: (N, e, d) GenRSA(1 n ) mit pk = (N, e) und sk = (N, d). 2 Sign: Für eine Nachricht m {0, 1} berechne

Mehr

Asymmetrische Verschlüsselungsverfahren

Asymmetrische Verschlüsselungsverfahren Asymmetrische Verschlüsselungsverfahren Vorlesung 4 Alexander Koch (Vertretung) FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 KIT 2015-11-12 Universität desalexander Landes Baden-Württemberg

Mehr

Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade. Nachklausur Hinweise

Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade. Nachklausur Hinweise Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade Stammvorlesung Sicherheit im Sommersemester 2016 Nachklausur 12.10.2016 Vorname: Nachname: Matrikelnummer: Hinweise - Für die Bearbeitung

Mehr

Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade. Nachklausur. Lösung Hinweise

Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade. Nachklausur. Lösung Hinweise Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade Stammvorlesung Sicherheit im Sommersemester 2016 Nachklausur Lösung 12.10.2016 Vorname: Nachname: Matrikelnummer: Hinweise - Für die Bearbeitung

Mehr

Institut für Theoretische Informatik Prof. Dr. D. Hofheinz. Stammvorlesung Sicherheit im Sommersemester Klausur. Lösung

Institut für Theoretische Informatik Prof. Dr. D. Hofheinz. Stammvorlesung Sicherheit im Sommersemester Klausur. Lösung Institut für Theoretische Informatik Prof. Dr. D. Hofheinz Stammvorlesung Sicherheit im Sommersemester 2017 Klausur Lösung 02.08.2017 Vorname: Nachname: Matrikelnummer: Klausur-ID: Hinweise - Schreiben

Mehr

RSA Full Domain Hash (RSA-FDH) Signaturen

RSA Full Domain Hash (RSA-FDH) Signaturen RSA Full Domain Hash (RSA-FDH) Signaturen Signatur RSA-FDH Sei H : {0, 1} Z N ein Random-Oracle. 1 Gen: (N, e, d) GenRSA(1 n ) mit pk = (N, e) und sk = (N, d). 2 Sign: Für eine Nachricht m {0, 1} berechne

Mehr

Privacy-Preserving Authentication 2 Kryptografische Bausteine WS 2015/2016

Privacy-Preserving Authentication 2 Kryptografische Bausteine WS 2015/2016 Privacy-Preserving Authentication 2 Kryptografische Bausteine WS 2015/2016 Sven Schäge, Fakultät für Mathematik, Ruhr-Universität Bochum Übersicht 1 Vorteil und Sicherheit 2 Hash Funktionen 3 Digitale

Mehr

https://b.socrative.com/login/student/

https://b.socrative.com/login/student/ Übung zur Vorlesung Sicherheit 23.06.2016 Übungsblatt 4 Björn Kaidel bjoern.kaidel@kit.edu https://b.socrative.com/login/student/ Room: SICHERHEIT Bitte gleich einloggen! 1 / 62 Feedback: Kummerkasten/Feedback

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 30.04.2018 1 / 35 Überblick 1 Hashfunktionen Motivation Formalisierung Die Merkle-Damgård-Konstruktion (Weitere) Angriffe auf Hashfunktionen Zusammenfassung

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 23.06.2014 1 / 26 Überblick 1 Zero-Knowledge-Protokolle Erinnerung Beispiel für Zero-Knowledge-Protokoll Analyse des Beispiel-Zero-Knowledge-Protokolls Proof-of-Knowledge-Eigenschaft

Mehr

https://b.socrative.com/login/student/

https://b.socrative.com/login/student/ Übung zur Vorlesung Sicherheit 23.06.2016 Übungsblatt 4 Björn Kaidel bjoern.kaidel@kit.edu https://b.socrative.com/login/student/ Room: SICHERHEIT Bitte gleich einloggen! 1 / 62 Feedback: Kummerkasten/Feedback

Mehr

Beliebige Anzahl von Signaturen

Beliebige Anzahl von Signaturen Beliebige Anzahl von Signaturen Algorithmus Signaturketten Sei Π = (Gen, Sign, Vrfy) ein Einwegsignaturverfahren. 1 Gen : (pk 1, sk 1 ) Gen(1 n ) 2 Sign : Signieren der Nachricht m i. Verwende gemerkten

Mehr

Ziel: Zertifiziere Pfad von Wurzel zu m mittels Signaturen. Signieren Public-Keys auf Pfad inklusive der Nachbarknoten.

Ziel: Zertifiziere Pfad von Wurzel zu m mittels Signaturen. Signieren Public-Keys auf Pfad inklusive der Nachbarknoten. Merkle-Baum Idee: Konstruktion von Merkle-Bäumen Ersetze Signaturkette durch Baum (sogenannter Merkle-Baum). Verwenden Baum der Tiefe n für Nachrichten der Länge n. Die Wurzel erhält Label ɛ. Die Kinder

Mehr

Ich bedanke mich bei Florian Böhl, Benny Fuhry, Gunnar Hartung, Jan Holz, Björn Kaidel, Eike Kiltz, Evgheni Kirzner, Jessica Koch, Julia Rohlfing,

Ich bedanke mich bei Florian Böhl, Benny Fuhry, Gunnar Hartung, Jan Holz, Björn Kaidel, Eike Kiltz, Evgheni Kirzner, Jessica Koch, Julia Rohlfing, Digitale Signaturen Tibor Jager tibor.jager@rub.de Horst Görtz Institut für IT-Sicherheit Lehrstuhl für Netz- und Datensicherheit Ruhr-Universität Bochum Letzte Aktualisierung: 6. Oktober 2015 Ich bedanke

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 12.05.2014 1 / 26 Überblick 1 Hashfunktionen Erinnerung Angriffe auf Hashfunktionen Zusammenfassung Hashfunktionen 2 Asymmetrische Verschlüsselung Idee Beispiel:

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 15.05.2017 1 / 25 Überblick 1 Hashfunktionen Angriffe auf Hashfunktionen Zusammenfassung Hashfunktionen 2 Asymmetrische Verschlüsselung Idee Beispiel: RSA

Mehr

VIII. Digitale Signaturen

VIII. Digitale Signaturen VIII. Digitale Signaturen Bob Eve Eve möchte - lauschen - ändern - personifizieren Alice 1 Aufgaben - Vertraulichkeit - Lauschen - Authentizität - Tauschen des Datenursprungs - Integrität - Änderung der

Mehr

Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade. Klausur Hinweise

Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade. Klausur Hinweise Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade Stammvorlesung Sicherheit im Sommersemester 2015 Klausur 21.07.2015 Vorname: Nachname: Matrikelnummer: Hinweise - Für die Bearbeitung stehen

Mehr

Definition Message Authentication Code (MAC) Ein Message Authentication Code (MAC) bzgl. des Nachrichtenraumen M besteht aus den ppt Alg.

Definition Message Authentication Code (MAC) Ein Message Authentication Code (MAC) bzgl. des Nachrichtenraumen M besteht aus den ppt Alg. Message Authentication Code (MAC) Szenario: Integrität und Authentizität mittels MACs. Alice und Bob besitzen gemeinsamen Schlüssel k. Alice berechnet für m einen MAC-Tag t als Funktion von m und k. Alice

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz IKS, KIT 29.04.2013 1 / 22 Überblick 1 Zusammenfassung und Korrektur Zusammenfassung Korrektur Definition semantische Sicherheit 2 Hashfunktionen Motivation Formalisierung

Mehr

Übung zur Vorlesung Sicherheit Übungsblatt 2. Alexander Koch Björn Kaidel

Übung zur Vorlesung Sicherheit Übungsblatt 2. Alexander Koch Björn Kaidel Übung zur Vorlesung Sicherheit 07.05.2014 Übungsblatt 2 Alexander Koch alexander.koch@kit.edu Björn Kaidel bjoern.kaidel@kit.edu 1 / 39 Werbung: KASTEL-Zertifikat Nachweis für Spezialisierung in IT-Sicherheit

Mehr

Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade. Nachklausur. Lösungsvorschlag Hinweise

Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade. Nachklausur. Lösungsvorschlag Hinweise Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade Stammvorlesung Sicherheit im Sommersemester 2015 Nachklausur Lösungsvorschlag 29.09.2015 Vorname: Nachname: Matrikelnummer: Hinweise - Für

Mehr

Sicherheit von Merkle Signaturen

Sicherheit von Merkle Signaturen Sicherheit von Merkle Signaturen Algorithmus Angreifer A für die Einwegsignatur EINGABE: pk, Zugriff auf eine Anfrage an Orakel Sign sk ( ) 1 Berechne (pk (i), sk (i) ) Gen(1 n ) für i = 1,...,l. Wähle

Mehr

Institut für Theoretische Informatik Prof. Dr. Dennis Hofheinz Übungsleiter: Thomas Agrikola. Stammvorlesung Sicherheit im Sommersemester 2017

Institut für Theoretische Informatik Prof. Dr. Dennis Hofheinz Übungsleiter: Thomas Agrikola. Stammvorlesung Sicherheit im Sommersemester 2017 Institut für Theoretische Informatik Prof. Dr. Dennis Hofheinz Übungsleiter: Thomas Agrikola Stammvorlesung Sicherheit im Sommersemester 2017 Übungsblatt 4 Aufgabe 1. Wir instanziieren das ElGamal-Verschlüsselungsverfahren

Mehr

Übung zur Vorlesung Sicherheit Übungsblatt 2. Alexander Koch Björn Kaidel

Übung zur Vorlesung Sicherheit Übungsblatt 2. Alexander Koch Björn Kaidel Übung zur Vorlesung Sicherheit 07.05.2014 Übungsblatt 2 Alexander Koch alexander.koch@kit.edu Björn Kaidel bjoern.kaidel@kit.edu 1 / 32 Kummerkasten In der Übung lauter und deutlicher sprechen: Wir geben

Mehr

Übung zur Vorlesung Sicherheit Übungsblatt 2. Alexander Koch Björn Kaidel

Übung zur Vorlesung Sicherheit Übungsblatt 2. Alexander Koch Björn Kaidel Übung zur Vorlesung Sicherheit 07.05.2014 Übungsblatt 2 Alexander Koch alexander.koch@kit.edu Björn Kaidel bjoern.kaidel@kit.edu 1 / 32 Kummerkasten In der Übung lauter und deutlicher sprechen: Wir geben

Mehr

Digitale Signaturen. Kapitel 8

Digitale Signaturen. Kapitel 8 Digitale Signaturen Kapitel 8 Handschriftliche vs. digitale Unterschrift digitalisieren mp3 Unterschrift digitale Unterschrift von D.H. für mp3? (Scannen und als Bitmap anhängen z.b. zu leicht zu fälschen)

Mehr

Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz. Stammvorlesung Sicherheit im Sommersemester Nachklausur

Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz. Stammvorlesung Sicherheit im Sommersemester Nachklausur Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz IKS Institut für Kryptographie und Sicherheit Stammvorlesung Sicherheit im Sommersemester 2013 Nachklausur 07.10.2013 Vorname: Nachname:

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 26.06.2017 1 / 41 Überblick 1 Identifikationsprotokolle Erinnerung Sicherheitsmodell Ein sicheres Protokoll Noch ein sicheres Protokoll 2 Zero-Knowledge-Protokolle

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz IKS, KIT 13.05.2013 1 / 16 Überblick 1 Asymmetrische Verschlüsselung Erinnerung Andere Verfahren Demonstration Zusammenfassung 2 Symmetrische Authentifikation von Nachrichten

Mehr

Hashfunktionen und Kollisionen

Hashfunktionen und Kollisionen Hashfunktionen und Kollisionen Definition Hashfunktion Eine Hashfunktion ist ein Paar (Gen, H) von pt Algorithmen mit 1 Gen: s Gen(1 n ). Gen ist probabilistisch. 2 H: H s berechnet Funktion {0, 1} {0,

Mehr

Asymmetrische Verschlüsselungsverfahren

Asymmetrische Verschlüsselungsverfahren Asymmetrische Verschlüsselungsverfahren Björn Kaidel - Vertretung für Prof. J. Müller-Quade (Folien von A. Koch) FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 17.11.2016 Björn Kaidel

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Jörn Müller-Quade ITI, KIT basierend auf den Folien von Dennis Hofheinz, Sommersemester 2014 02.05.2016 1 / 22 Überblick 1 Hashfunktionen Erinnerung Formalisierung Die Merkle-Damgård-Konstruktion

Mehr

Übung zur Vorlesung Sicherheit Übungsblatt 2. Alexander Koch Björn Kaidel

Übung zur Vorlesung Sicherheit Übungsblatt 2. Alexander Koch Björn Kaidel Übung zur Vorlesung Sicherheit 07.05.2014 Übungsblatt 2 Alexander Koch alexander.koch@kit.edu Björn Kaidel bjoern.kaidel@kit.edu 1 / 39 Werbung: KASTEL-Zertifikat Nachweis für Spezialisierung in IT-Sicherheit

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 26.05.2014 1 / 32 Überblick 1 Hinweis 2 Asymmetrische Authentifikation von Nachrichten Erinnerung RSA als Signaturschema ElGamal-Signaturen Hash-Then-Sign

Mehr

Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz. Klausur Hinweise

Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz. Klausur Hinweise Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz Stammvorlesung Sicherheit im Sommersemester 2014 Klausur 22.07.2014 Vorname: Nachname: Matrikelnummer: Hinweise - Für die Bearbeitung stehen

Mehr

Digitale Unterschriften. Angriffe und Sicherheitsmodelle. Bemerkungen. Angriffe und Sicherheitsmodelle

Digitale Unterschriften. Angriffe und Sicherheitsmodelle. Bemerkungen. Angriffe und Sicherheitsmodelle Digitale Unterschriften Auch digitale Signaturen genannt. Nachrichten aus Nachrichtenraum: M M. Signaturen aus Signaturenraum: σ S. Schlüssel sind aus Schlüsselräumen: d K 1, e K 2. SignierungsverfahrenS

Mehr

Blinde Signaturen, geheime Abstimmungen und digitale Münzen

Blinde Signaturen, geheime Abstimmungen und digitale Münzen Blinde Signaturen, geheime Abstimmungen und digitale Münzen Claus Diem Im Wintersemester 2017 / 18 Crypto 1982 Geheime Abstimmungen Eine geheime Abstimmung Problem. Eine Gruppe von Personen will per Brief

Mehr

Übung zur Vorlesung Sicherheit Übungsblatt 4. Björn Kaidel 1 / 70

Übung zur Vorlesung Sicherheit Übungsblatt 4. Björn Kaidel 1 / 70 Übung zur Vorlesung Sicherheit 18.06.2015 Übungsblatt 4 Björn Kaidel bjoern.kaidel@kit.edu 1 / 70 RSA: Warnung! Mehrere Nachfragen nach der letzten Übung: Wir wollen zu e ein d berechnen mit e d = 1 mod

Mehr

Einführung in digitale Signaturen

Einführung in digitale Signaturen Einführung in digitale Signaturen Hannes Thalheim Universität Leipzig 8. Januar 2018 Zusammenfassung Für eine sichere Kommunikation im Web ist die Geheimhaltung von Nachrichten so wichtig wie das Wissen,

Mehr

Bemerkungen. Orientierung. Digitale Unterschriften. Angriffe und Sicherheitsmodelle

Bemerkungen. Orientierung. Digitale Unterschriften. Angriffe und Sicherheitsmodelle Orientierung Haben bisher im Public-Key Bereich nur Verschlüsselung betrachtet. Haben dafür geeignete mathematische Strukturen und ihre Eigenschaften diskutiert. RSA, Rabin: Restklassenringe modulo n,

Mehr

Digitale Unterschriften Grundlagen der digitalen Unterschriften Hash-Then-Sign Unterschriften Public-Key Infrastrukturen (PKI) Digitale Signaturen

Digitale Unterschriften Grundlagen der digitalen Unterschriften Hash-Then-Sign Unterschriften Public-Key Infrastrukturen (PKI) Digitale Signaturen Sommersemester 2008 Digitale Unterschriften Unterschrift von Hand : Physikalische Verbindung mit dem unterschriebenen Dokument (beides steht auf dem gleichen Blatt). Fälschen erfordert einiges Geschick

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz IKS, KIT 06.05.2013 1 / 25 Überblick 1 Hashfunktionen Erinnerung Angriffe auf Hashfunktionen Zusammenfassung Hashfunktionen 2 Asymmetrische Verschlüsselung Idee Beispiel:

Mehr

Hybride Verschlüsselungsverfahren

Hybride Verschlüsselungsverfahren Hybride Verschlüsselungsverfahren Ziel: Flexibilität von asym. Verfahren und Effizienz von sym. Verfahren. Szenario: Sei Π = (Gen, Enc, Dec) ein PK-Verschlüsselungsverfahren und Π = (Gen, Enc, Dec ) ein

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Jörn Müller-Quade ITI, KIT basierend auf den Folien von Dennis Hofheinz, Sommersemester 2014 08.06.2015 1 / 34 Überblick 1 Schlüsselaustauschprotokolle Erinnerung Weitere Schlüsselaustauschtypen

Mehr

Hardcore-Prädikat. Definition Hardcore-Prädikat. Ziel: Destilliere Komplexität des Invertierens auf ein Bit.

Hardcore-Prädikat. Definition Hardcore-Prädikat. Ziel: Destilliere Komplexität des Invertierens auf ein Bit. Hardcore-Prädikat Ziel: Destilliere Komplexität des Invertierens auf ein Bit. Definition Hardcore-Prädikat Sei Π f eine Einwegfunktion. Sei hc ein deterministischer pt Alg mit Ausgabe eines Bits hc(x)

Mehr

Kryptographie II Asymmetrische Kryptographie

Kryptographie II Asymmetrische Kryptographie Kryptographie II Asymmetrische Kryptographie Christopher Wolf Fakultät für Mathematik Ruhr-Universität Bochum Sommersemester 2010 Krypto II - Vorlesung 01-14.04.2010 () Schlüsselverteil-Center, Diffie-Hellman

Mehr

Ununterscheidbarkeit von Chiffretexten

Ununterscheidbarkeit von Chiffretexten Ununterscheidbarkeit von Chiffretexten Spiel Ununterscheidbarkeit von Chiffretexten PrivK eav A,Π (n) Sei Π ein Verschlüsselungsverfahren und A ein Angreifer. 1 (m 0, m 1 ) A. 2 k Gen(1 n ). 3 Wähle b

Mehr

Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz. Übungsblatt 5. pk = (g, y) und sk = (g, x). ? = y H(t m) t. g s

Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz. Übungsblatt 5. pk = (g, y) und sk = (g, x). ? = y H(t m) t. g s Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz Stammvorlesung Sicherheit im Sommersemester 2014 Übungsblatt 5 Hinweis: Übungsblätter können freiwillig bei Jessica Koch, Raum 256, Geb.

Mehr

Ununterscheidbarkeit von Chiffretexten

Ununterscheidbarkeit von Chiffretexten Ununterscheidbarkeit von Chiffretexten Spiel Ununterscheidbarkeit von Chiffretexten PrivK eav A,Π (n) Sei Π ein Verschlüsselungsverfahren und A ein Angreifer. (m 0, m ) A. 2 k Gen( n ). 3 Wähle b R {0,

Mehr

Merkle-Damgard Transformation

Merkle-Damgard Transformation Merkle-Damgard Transformation Ziel: Konstruiere H : {0, 1} {0, 1} l aus h : {0, 1} 2l {0, 1} l. Algorithmus Merkle-Damgard Konstruktion Sei (Gen, h) eine kollisionsresistente Hashfunktion mit h : {0, 1}

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 6.2 Digitale Signaturen 1. Sicherheitsanforderungen 2. RSA Signaturen 3. ElGamal Signaturen Wozu Unterschriften? Verbindliche Urheberschaft von Dokumenten Unterschrift

Mehr

CPA-Sicherheit ist ungenügend

CPA-Sicherheit ist ungenügend CPA-Sicherheit ist ungenügend Definition CCA CCA (=Chosen Ciphertext Attack) ist ein Angriff, bei dem der Angreifer sich Chiffretext seiner Wahl entschlüsseln lassen kann. Beispiele in denen CPA nicht

Mehr

Ununterscheidbarkeit von Chiffretexten

Ununterscheidbarkeit von Chiffretexten Ununterscheidbarkeit von Chiffretexten Spiel Ununterscheidbarkeit von Chiffretexten PrivK eav A,Π (n) Sei Π ein Verschlüsselungsverfahren und A ein Angreifer. 1 (m 0, m 1 ) A. 2 k Gen(1 n ). 3 Wähle b

Mehr

Übungsblatt 3. Stammvorlesung Sicherheit im Sommersemester Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade

Übungsblatt 3. Stammvorlesung Sicherheit im Sommersemester Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade Stammvorlesung Sicherheit im Sommersemester 2015 Übungsblatt 3 Aufgabe 1. Beurteilen Sie für die folgenden Konstruktionen jeweils, ob es sich

Mehr

Signaturtransformationen

Signaturtransformationen Signaturtransformationen Ruhr-Universität Bochum Christian Mainka 25. Januar 2011 Inhaltsverzeichnis 1 Einleitung 3 2 Grundlagen 5 2.1 Definitionen.................................. 5 2.1.1 Signatur................................

Mehr

Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz. Stammvorlesung Sicherheit im Sommersemester Klausur

Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz. Stammvorlesung Sicherheit im Sommersemester Klausur Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz IKS Institut für Kryptographie und Sicherheit Stammvorlesung Sicherheit im Sommersemester 2013 Klausur 26.07.2013 Vorname: Nachname:

Mehr

Sicherer MAC für Nachrichten beliebiger Länge

Sicherer MAC für Nachrichten beliebiger Länge Sicherer MAC für Nachrichten beliebiger Länge Korollar Sicherer MAC für Nachrichten beliebiger Länge Sei F eine Pseudozufallsfunktion. Dann ist Π MAC2 für Π = Π MAC sicher. Nachteile: Für m ({0, 1} n 4

Mehr

Sicherheit von ElGamal

Sicherheit von ElGamal Sicherheit von ElGamal Satz CPA-Sicherheit ElGamal ElGamal Π ist CPA-sicher unter der DDH-Annahme. Beweis: Sei A ein Angreifer auf ElGamal Π mit Erfolgsws ɛ(n) := Ws[PubK cpa A,Π (n) = 1]. Wir konstruieren

Mehr

In beiden Fällen auf Datenauthentizität und -integrität extra achten.

In beiden Fällen auf Datenauthentizität und -integrität extra achten. Stromchiffren Verschlüsseln eines Stroms von Daten m i (Bits/Bytes) mithilfe eines Schlüsselstroms k i in die Chiffretexte c i. Idee: Im One-Time Pad den zufälligen Schlüssel durch eine pseudo-zufällige

Mehr

Digitale Signaturen. Proseminar Kryptographie und Datensicherheit SoSe Sandra Niemeyer

Digitale Signaturen. Proseminar Kryptographie und Datensicherheit SoSe Sandra Niemeyer Digitale Signaturen Proseminar Kryptographie und Datensicherheit SoSe 2009 Sandra Niemeyer 24.06.2009 Inhalt 1. Signaturgesetz 2. Ziele 3. Sicherheitsanforderungen 4. Erzeugung digitaler Signaturen 5.

Mehr

Übungsblatt 4. Stammvorlesung Sicherheit im Sommersemester Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade

Übungsblatt 4. Stammvorlesung Sicherheit im Sommersemester Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade Stammvorlesung Sicherheit im Sommersemester 2015 Übungsblatt 4 Aufgabe 1. Wir instanziieren das ElGamal-Verschlüsselungsverfahren aus der

Mehr

VII. Hashfunktionen und Authentifizierungscodes

VII. Hashfunktionen und Authentifizierungscodes VII. Hashfunktionen und Authentifizierungscodes Bob Eve Eve möchte - lauschen - ändern - personifizieren Alice 1 Aufgaben - Vertraulichkeit Lauschen - Authentizität Tauschen des Datenursprungs - Integrität

Mehr

Existenz von Einwegfunktionen

Existenz von Einwegfunktionen Existenz von Einwegfunktionen Satz Einweg-Eigenschaft von f FO Unter der Faktorisierungsannahme ist f FO eine Einwegfunktion. Beweis: f FO ist mittels FACTOR-ONEWAY effizient berechenbar. z.z.: Invertierer

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz IKS, KIT 17.06.2013 1 / 33 Überblick 1 Zero-Knowledge-Protokolle Erinnerung Analyse des Beispiel-Zero-Knowledge-Protokolls Proof-of-Knowledge-Eigenschaft Beziehung

Mehr

Kap. 2: Fail-Stop Unterschriften

Kap. 2: Fail-Stop Unterschriften Stefan Lucks 2: Fail-Stop Unterschriften 17 Digital Unterschreiben und Bezahlen Kap. 2: Fail-Stop Unterschriften Digitale Unterschriften (Synomym: Digitale Signaturen ): Fälschen mutmaßlich hart (RSA-Wurzeln,

Mehr

Verteilte Kyroptographie

Verteilte Kyroptographie Verteilte Kyroptographie Klassische kryptographische Verfahren Kryptographische Hash-Funktionen Public-Key-Signaturen Verteilte Mechanismen Schwellwert-Signaturen Verteilt generierte Zufallszahlen Verteilte

Mehr

ElGamal Verschlüsselungsverfahren (1984)

ElGamal Verschlüsselungsverfahren (1984) ElGamal Verschlüsselungsverfahren (1984) Definition ElGamal Verschlüsselungsverfahren Sei n ein Sicherheitsparameter. 1 Gen : (q, g) G(1 n ), wobei g eine Gruppe G der Ordnung q generiert. Wähle x R Z

Mehr

Algorithmische Methoden für schwere Optimierungsprobleme

Algorithmische Methoden für schwere Optimierungsprobleme Algorithmische Methoden für schwere Optimierungsprobleme Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr