h a 2 b 1 h a1 b 2 h a1 b 1 h a1. h a 2. h.b1 h ij h 11 h 12 h 21 a b h. j h 1. h 2. h.1 a b h i. =h i1 h i2... h i m h. j =h 1j h 2j... h k j h.

Größe: px
Ab Seite anzeigen:

Download "h a 2 b 1 h a1 b 2 h a1 b 1 h a1. h a 2. h.b1 h ij h 11 h 12 h 21 a b h. j h 1. h 2. h.1 a b h i. =h i1 h i2... h i m h. j =h 1j h 2j... h k j h."

Transkript

1 Kotigeztabelle / Kreuztabelle für 2 diskrete /omialskalierte Variable ethält: 1. absolute gemeisame Häufigkeite h 11 h 12 h 21 für Kombiatioe vo zwei Merkmale / Variable a b steht also für mit jeweils beliebig viele Auspräguge i j h a1 b 1 h a1 b 2 h a 2 b 1 2. Radhäufigkeite h 1. h 2. h.1 eier Merkmalsausprägug i j steht also für eier eizele Variable a b die "weggelassee" Variable wird dabei durch eie Pukt ersetzt h a1. h a 2. h.b1 Zeilesumme eier Merkmalsausprägug vo a Spaltesumme eier Merkmalsausprägug vob h i1 h i2... h i m h 1j h 2j... h k j Variatioe der Variable y b b mit i1 b2 b3... bm Radhäufigkeite der Variatioe vo a a1 h 11 h 12 h h 1m h 1. Variatioe der Variable a a2 h 21 h 22 h h 2m h 2. a3 h 31 h 32 h h 3m h ak h k1 h k2 h k3... h km h k. Radhäufikeite der Variatioe vo y b h.1 h.2 h.3... h. m

2 Beispiel: Positio i der Familie (Mutter, Vater, Soh, Tochter) y bevorzugte Farbe (blau, gelb, rot) y (b) blau gelb rot Mutter 3 Mutter/blau 6 Mutter/gelb 3 Mutter/rot Mutter (a) Vater 5 Vater/blau 4 Vater/gelb 6 Vater/rot Vater Soh 6 Soh/blau 5 Soh/gelb 2 Soh/rot Soh Tochter 2 Tochter/blau 3 Tochter/gelb 5 Tochter/rot Tochter blau gelb rot

3 berechet werde ka damit die 3. relative gemeisame Häufigkeit absolute gemeisame Häufigkeit eier Merkmalskombiatio Azahl aller Kombiatioe 4. relative Radhäufigkeit f i. f. j absolute Radhäufigkeit eier Merkmalsausprägug Azahl aller Kombiatioe f i. f. j 5. bedigte relative Häufigkeit fy b j /a i f a i /b j relative Häufigkeit f f eier bestimmte Merkmalsausprägug der Variable y bzw. y b j a i uter der Bedigug, / / dass die adere Variable bzw. y eie bestimmte Merkmalsausprägug beibehält y a i b j für eie Ausprägug vo y (b) uter der Bedigug (z.b.) a a1 gemeisame absolute Häufigkeit der Merkmalskombiatio Radhäufigkeit der etsprechede Zeile hier :a 1 für eie Ausprägug vo (a) uter der Bedigug (z.b.) b b1 gemeisame absolute Häufigkeit der Merkmalskombiatio Radhäufigkeit der etsprechede Spalte hier :b 1 fy b j /a i : f a i /b j :

4 Beispiel: Rechewege, Zusammehäge, Iterpretatio y (b) blau gelb rot (a) Mutter Vater Soh Tochter Verteilug vo (a) uter y(b) blau / 0,06 6/ 0,12 3/ 0,06 fy b j /a i Verteilug vo y(b) uter (a) Mutter f a i /b j f a i /b j f a i /b j f i. 3/12 0,25 25% der Mütter bevorzuge die Farbe blau 3/16 0,19 19% der Farbe blau etfalle auf die Mütter 6/12 0,5 % der Mütter bevorzuge die Farbe gelb 3/12 0,25 25% der Mütter bevorzuge die Farbe rot 6/18 0,33 3/16 0, / 0,1 4/ 0,08 6/ 0,12 fy b j /a i 5/15 0,33 4/15 0,27 6/15 0,4 5/16 0,31 31% der Farbe blau etfalle auf die Väter 4/18 0,22 6/16 0, / 0,12 5/ 0,1 2/ 0,04 fy b j /a i 6/13 0,46 5/13 0,39 2/13 0,15 6/16 0,375 37,5% der Farbe blau etfalle auf die Söhe 5/18 0,28 2/16 0, / 0,04 3/ 0,06 5/ 0,1 fy b j /a i 2/10 0,2 3/10 0,3 5/10 0,5 2/16 0,125 12,5% der Farbe blau etfalle auf die Töchter 3/18 0,17 5/16 0, / 0,24 0,06 +0,12 +0,06 15/ 0,3 0,1 +0,08 +0,12 13/ 0,26 0,12 +0,1 +0,04 10/ 0,2 0,04 +0,06 +0,1 f. j / 0,32 0,06+0,1+0,12+0,04 18/ 0,36 0,12+0,08+0, / 0,32 0,06+0,12+0,04+0,1 die Zeilesumme vo fy ergebe jeweils 1 die Spaltesummer vo f ergebe jeweils 1

5 6. Aussage zum Zusammehag zwische de Variable: zu erwartede gemeisame Häufigkeit --> bei empirischer Uabhägigkeit der beide Variable? Gibt es eie Zusammehag zwische de Variable? Radhäufigkeit Zeile Radhäufigkeit Spalte Azahl aller Kombiatioe keie Zusammehäge --> Uabhägigkeit da gilt: gemeisame Häufigkeit Radhäufigkeit Spalte Radhäufigkeit Zeile Azahl aller Kombiatioe Zusammehäge --> Abhägigkeit Beispiel (icht empirisch uabhägige Variable) y (b) b g r M 3 3,84 6 4,32 3 3,84 3,84+4,32 +3,84 12 (a) V ,8 4 5,4 6 4,8 S ,16 5 4,68 2 4,16 T ,2 3 3,6 5 3, ,84+4,8+4,16+3,

6 7. Chi-Quadrat / -Koeffiziet Messug des Zusammehags zwische de Variable über die quadrierte ud ormierte "Abweichug vo der zu erwartede gemeisame Häufigkeit" 2 2 k 2 i1 m 2 j1 Normierug gemeisame Häufigkeit zu erwartede Häufigkeit 2 gemeisame Häufigkeit zu erwartede Häufigkeit 2... zu erwartede Häufigkeit zu erwartede Häufigkeit k i1 m... j1 heißt: die Zahle für i ud j müsse i alle Kombiatioe auftrete (alle iere Felder der Kotigeztabelle werde so "abgearbeitet") a1b1 a1b2 a1b3 a2b1 a2b2 a2b3 a3b1 a3b2 a3b3 - keie Aussage zur Richtug (je mehr, desto mehr/weiger) des Zusammehags! - auch bei tatsächlich völliger Uabhägigkeit gilt i der Regel icht ² O aufgrud vo Zufallsschwakuge - mit Azahl der Werte (Stichprobeumfag) steigt der Wert vo ² -> sivoll iterpretierbar ur im Vergleich mit ² eier Stichprobe ähliche Umfags ² eier adere Merkmalskombiatio "I Stichprobe 1 gibt es eie höhere/gerigere Zusammehag zwische a u. b als i Stichprobe 2..." "Der Zusammehag zwische a ud b ist kleier/größer als der Zusammehag zwische a ud c..."

7 Beispiel y (b) a1b1 3 3,84 a1b2 6 4,32 a1b3 3 3,84 (a) 3 3,84 2 3,84 6 4, ,84 2 0,184 4,32 0,653 3,84 0,184 a2b1 5 4,8 4 5,4 6 4,8 5 4,8 2 4,8 4 5, ,8 2 0,008 5,4 0,363 4,8 0, ,16 5 4,68 2 4,16 6 4,16 2 4,16 5 4, ,16 2 0,814 4,68 0,022 4,16 0, ,2 3 3,6 5 3,2 2 3,2 2 3,2 3 3, ,2 2 0,45 3,6 0,1 3,2 0,45 2 0,184 0,653 0,184 0,008 0,363 0,008 0,814 0,022 0,814 0,45 0,1 0,45 3,236

8 8. Kotigezkoeffiziet "ormierter" Chi²-Koeffiziet K K 3,236 3, ,76 K zu iterpretiere im Vergleich mit K ma m 1 m ,82 K ma M 1 M M der kleiere der beide Werte k oder m k Azahl der Auspräguge vo m Azahl der Auspräguge vo y korrigierter Kotigezkoeffiziet festgelegt auf de Wertebereich 0 bis 1 K * K K ma K * 0,76 0,82 0,93! - keie Aussage zur Richtug (je mehr, desto mehr/weiger) des Zusammehags - Vergleichsmaß! eideutige Iterpretatio ur bei K1 (da wäre i der Kotigeztafel pro Zeile ur eie Spalte besetzt...)

14 Statistische Beziehungen zwischen nomi nalen Merkmalen

14 Statistische Beziehungen zwischen nomi nalen Merkmalen 14 Statistische Beziehuge zwische omi ale Merkmale 14.1 Der Chi Quadrat Test auf Uabhägigkeit für Vier Feldertafel 14.2 Der Chi Quadrat Test auf Uabhägigkeit für r s Kotigeztafel 14.3 Zusammmehagsmaße

Mehr

(a) Richtig, die Varianz ist eine Summe quadratischer Größen.

(a) Richtig, die Varianz ist eine Summe quadratischer Größen. Aufgabe 1 (10 Pukte) Welche der folgede Aussage sid richtig? (a) Richtig, die Variaz ist eie Summe quadratischer Größe. (b) Falsch, die Abweichug ordialer Merkmale vom Media ist icht defiiert - also auch

Mehr

Beispiel: p-wert bei Chi-Quadrat-Anpassungstest (Grafik) Auftragseingangsbeispiel, realisierte Teststatistik χ 2 = , p-wert: 0.

Beispiel: p-wert bei Chi-Quadrat-Anpassungstest (Grafik) Auftragseingangsbeispiel, realisierte Teststatistik χ 2 = , p-wert: 0. 8 Apassugs- ud Uabhägigkeitstests Chi-Quadrat-Apassugstest 8.1 Beispiel: p-wert bei Chi-Quadrat-Apassugstest (Grafik) Auftragseigagsbeispiel, realisierte Teststatistik χ 2 = 12.075, p-wert: 0.0168 f χ

Mehr

Korrelationsanalyse zwischen kategorischen Merkmalen. Kontingenztabellen. Chi-Quadrat-Test

Korrelationsanalyse zwischen kategorischen Merkmalen. Kontingenztabellen. Chi-Quadrat-Test Kotigeztabelle. Chi-Quadrat-Test Korrelatiosaalyse zwische kategorische Merkmale Beispiel 1 ohe Frau 8 75 1 Ma 48 49 97 76 14? Häufigkeitstabelle (Kotigeztabelle): eie tabellarische Darstellug der gemeisame

Mehr

h i :=h a i f i = h a i n Absolute Häufigkeit: Relative Häufigkeit: h 2 h 4 h 6 :=h der Elemente mit der Ausprägung i=6 zu der Anzahl n aller Werte

h i :=h a i f i = h a i n Absolute Häufigkeit: Relative Häufigkeit: h 2 h 4 h 6 :=h der Elemente mit der Ausprägung i=6 zu der Anzahl n aller Werte . Wer Rechtschreibfehler fidet, darf sie behalte. Rechefehler werde zurückgeomme. Absolute Häufigkeit: h Wie viele Elemete weise diese bestimmte Wert (= diese bestimmte Ausprägug) auf? > Azahl h der Elemete

Mehr

Harmonisches Mittel. Streuungsmaße. Die mittlere Abweichung. Die Standardabweichung. Die Varianz. Statistik 3. Vorlesung, März 11, ,...

Harmonisches Mittel. Streuungsmaße. Die mittlere Abweichung. Die Standardabweichung. Die Varianz. Statistik 3. Vorlesung, März 11, ,... Statistik. Vorlesug, März, 9 Harmoisches Mittel xh = w wk +... + x x k Wobei w, w,... w k sid die gewichte (w + w + w +...+ w k = Beispiel: wir habe km mit eier Geschwidigkeit vo km/h, ud eie adere km

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meihardt 6. Stock, Taubertsberg R. 06-06 (Persike) R. 06-31 (Meihardt) Sprechstude jederzeit ach Vereibarug Forschugsstatistik I Dr. Malte Persike persike@ui-maiz.de http://psymet03.sowi.ui-maiz.de/

Mehr

s xy x i x y i y s xy = 1 n i=1 y 2 i=1 x 2 s 1 n x n i Streudiagramme empirische Kovarianz x=5,5 y=7,5

s xy x i x y i y s xy = 1 n i=1 y 2 i=1 x 2 s 1 n x n i Streudiagramme empirische Kovarianz x=5,5 y=7,5 Streudiagramme für metrisch skalierte Variable paarweise Messwerte (x,y) x 5 7 y 7 5 7 5 5 7 Aussage zu Zusammehäge. empirische Kovariaz Stadardabweichug der WertPAARE x i x y Wert x Mittelwert aller x

Mehr

Beispiel: p-wert bei Chi-Quadrat-Anpassungstest (Grafik) Auftragseingangsbeispiel, realisierte Teststatistik χ 2 = , p-wert: 0.

Beispiel: p-wert bei Chi-Quadrat-Anpassungstest (Grafik) Auftragseingangsbeispiel, realisierte Teststatistik χ 2 = , p-wert: 0. 8 Apassugs- ud Uabhägigkeitstests Chi-Quadrat-Apassugstest 81 Beispiel: p-wert bei Chi-Quadrat-Apassugstest (Grafik) Auftragseigagsbeispiel, realisierte Teststatistik χ 2 = 12075, p-wert: 00168 f χ 2 (4)

Mehr

3 Kritischer Bereich zum Niveau α = 0.10: K = (χ 2 k 1;1 α, + ) = (χ2 5;0.90, + ) = (9.236, + ) 4 Berechnung der realisierten Teststatistik:

3 Kritischer Bereich zum Niveau α = 0.10: K = (χ 2 k 1;1 α, + ) = (χ2 5;0.90, + ) = (9.236, + ) 4 Berechnung der realisierten Teststatistik: 8 Apassugs- ud Uabhägigkeitstests Chi-Quadrat-Apassugstest 81 Beispiel: p-wert bei Chi-Quadrat-Apassugstest (Grafik) Auftragseigagsbeispiel, realisierte Teststatistik χ 2 1275, p-wert: 168 8 Apassugs-

Mehr

Übungen mit dem Applet erwartungstreu

Übungen mit dem Applet erwartungstreu Übuge mit dem Applet erwartugstreu Visualisierug vo erwartugstreu Begriffe ud statischer Hitergrud. Visualisieruge mit dem Applet..3. Zufallsstreuug der Eizelwerte...3. Mittelwerte 3.3 Variaz. 4.4 Variaz

Mehr

Tests für beliebige Zufallsvariable

Tests für beliebige Zufallsvariable Kapitel 10 Tests für beliebige Zufallsvariable 10.1 Der Chi-Quadrat-Apassugstest Sei x eie gaz beliebige Zufallsvariable, dere Dichtefuktio icht oder icht geau bekat ist. Beispiel: Es seie z.b. mittels

Mehr

Kontingenztabellen. Chi-Quadrat-Test. Korrelationsanalyse zwischen kategorischen Merkmalen. 1. Unabhängigkeitstest

Kontingenztabellen. Chi-Quadrat-Test. Korrelationsanalyse zwischen kategorischen Merkmalen. 1. Unabhängigkeitstest Kotigeztabelle. Chi-Quadrat-Test KAD 1.11. 1. Uabhägigkeitstest. Apassugstest. Homogeitätstest Beispiel 1 ohe Frau 8 75 1 Ma 48 49 97 76 14? Korrelatiosaalyse zwische kategorische Merkmale Häufigkeitstabelle

Mehr

2.3 Kontingenztafeln und Chi-Quadrat-Test

2.3 Kontingenztafeln und Chi-Quadrat-Test 2.3 Kotigeztafel ud Chi-Quadrat-Test Die Voraussetzuge a die Date i diesem Kapitel sid dieselbe, wie im voragegagee Kapitel, ur dass die Stichprobe hier aus Realisieruge vo kategorielle Zufallsvariable

Mehr

Univariate Verteilungen

Univariate Verteilungen (1) Aalyse: "deskriptive Statistike" Aalysiere -> deskriptive Statistike -> deskriptive Statistik Keie tabellarische Darstellug der Häufigkeitsverteilug () Aalyse: "Häufigkeitsverteilug" Aalysiere -> deskriptive

Mehr

3 Vergleich zweier unverbundener Stichproben

3 Vergleich zweier unverbundener Stichproben 3 Vergleich zweier uverbudeer Stichprobe 3. Der Zweistichprobe t-test Es wird vorausgesetzt, dass die beide Teilstichprobe x, x,..., x ud y, y,..., y jeweils aus (voeiader uabhägige) ormalverteilte Grudgesamtheite

Mehr

Lineare Transformationen

Lineare Transformationen STAT 4 FK Herleituge Lieare Trasformatioe Sei eie lieare Trasformatio vo, so gilt Allgemei: a b, () Lieare Trasformatio des arithmetische Mittels y a+b x i () Da a eie additiv verküpfte Kostate ist, ka

Mehr

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt 2.4.5 Gauss-Test ud t-test für verbudee Stichprobe 2.4.5.8 Zum Begriff der verbudee Stichprobe Verbudee Stichprobe: Vergleich zweier Merkmale X ud Y, die jetzt a deselbe Persoe erhobe werde. Vorsicht:

Mehr

2. Repetition relevanter Teilbereiche der Statistik

2. Repetition relevanter Teilbereiche der Statistik . Repetitio Statistik Ökoometrie I - Peter Stalder. Repetitio relevater Teilbereiche der Statistik (Maddala Kapitel ) Zufallsvariable ud Wahrscheilichkeitsverteiluge Zufallsvariable X (stochastische Variable)

Mehr

Kennwerte Univariater Verteilungen

Kennwerte Univariater Verteilungen Kewerte Uivariater Verteiluge Kewerte Beschreibug vo Verteiluge durch eie (oder weige) Werte Werde auch als Parameter oder Maße vo Verteiluge bezeichet Ma uterscheidet: Lagemaße oder auch Maße der zetrale

Mehr

Kreuztabellenanalyse und Assoziationsmaße

Kreuztabellenanalyse und Assoziationsmaße FB 1 W. Ludwig-Mayerhofer Statistik 1 Herzlich willkomme zur Vorlesug Statistik Zusammehäge zwische omiale (ud/oder ordiale) Merkmale: aalyse ud FB 1 W. Ludwig-Mayerhofer Statistik 2 eige sich zur Darstellug

Mehr

Konzentration und Disparität

Konzentration und Disparität Begleitede Uterlage zur Übug Deskriptive Statistik Michael Westerma Uiversität Esse Ihaltsverzeichis 6 Kozetratios- ud Disparitätsmessug................................ 2 6.1 Begriff ud Eileitug.......................................

Mehr

Übungen mit dem Applet Taylor-Entwickung von Funktionen

Übungen mit dem Applet Taylor-Entwickung von Funktionen Taylor-Etwickug vo Fuktioe Übuge mit dem Applet Taylor-Etwickug vo Fuktioe Ziele des Applets... Mathematischer Hitergrud... 3 Vorschläge für Übuge... 3 3. Siusfuktio si(...3 3. Cosiusfuktio cos(...4 3.3

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Empirische Wirtschaftsforschug ud Ökoometrie Dr. Rolad Füss Statistik II: Schließede Statistik SS 2007 6. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug

Mehr

Formelsammlung Statistik 29. Januar 2019

Formelsammlung Statistik 29. Januar 2019 Formelsammlug Statistik Seite 1 Formelsammlug Statistik 9. Jauar 019 Witersemester 018/19 Adreas Löpker, HTW Dresde 1. Deskriptive Statistik (F1) Stichprobe x vom Umfag, Stichprobe y vom Umfag m x = (x

Mehr

Parameter von Häufigkeitsverteilungen

Parameter von Häufigkeitsverteilungen Kapitel 3 Parameter vo Häufigkeitsverteiluge 3. Mittelwerte Mo Der Modus (:= häufigster Wert, Abk.: Mo) ist der Merkmalswert mit der größte Häufigkeit, falls es eie solche gibt. Er sollte ur bei eigipflige

Mehr

8. Regressionsanalyse

8. Regressionsanalyse 8. Regressiosaalyse Beschreibug der Abhägigkeit zweier Merkmale Gegebe eie Stichprobe (X ; Y ) : : : (X ; Y ) zur Grudgesamtheit (X; Y ), = corr(x; Y ) Korrelatioskoe ziet, R empirischer Korrelatioskoe

Mehr

Umrechnung einer tatsächlichen Häufigkeitsverteilung in eine prozentuale Häufigkeitsverteilung

Umrechnung einer tatsächlichen Häufigkeitsverteilung in eine prozentuale Häufigkeitsverteilung .3. Prozetuale Häufigkeitsverteilug (HV) Die prozetuale Häufigkeitsverteilug erlaubt de Vergleich vo Auswertuge, dee uterschiedliche Stichprobegröße zugrude liege. Es köe auch uterschiedliche Stichprobegröße

Mehr

und wird als n-dimensionaler (reeller) Vektorraum bezeichnet. heißt der von v 1,..., v k aufgespannte Unterraum des R n.

und wird als n-dimensionaler (reeller) Vektorraum bezeichnet. heißt der von v 1,..., v k aufgespannte Unterraum des R n. Reeller Vektorraum Kapitel Vektorräume Die Mege aller Vektore x mit Kompoete bezeiche wir mit x R =. : x i R, i x ud wird als -dimesioaler (reeller) Vektorraum bezeichet. Defiitio Ei Vektorraum V ist eie

Mehr

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft Wisseschaftliches Arbeite Studiegag Eergiewirtschaft - Auswerte vo Date - Prof. Dr. Ulrich Hah WS 01/013 icht umerische Date Tet-Date: Datebak: Name, Eigeschafte, Matri-Tabelleform Spalte: übliche Aordug:

Mehr

Statistik Einführung // Beschreibende Statistik 2 p.2/61

Statistik Einführung // Beschreibende Statistik 2 p.2/61 Statistik Eiführug Beschreibede Statistik Kapitel Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Beschreibede Statistik

Mehr

6 Vergleich mehrerer unverbundener Stichproben

6 Vergleich mehrerer unverbundener Stichproben 6 Vergleich mehrerer uverbudeer Stichprobe 6.1 Die eifaktorielle Variazaalyse Die eifaktorielle Variazaalyse diet der Utersuchug des Eiflusses eier kategorieller (bzw. ichtmetrischer) Variable, die die

Mehr

,,, xn. 3. Intervallschätzungen Zufallsstichproben und Stichprobenfunktionen Zufallsstichproben. Zufallsvariablen mit

,,, xn. 3. Intervallschätzungen Zufallsstichproben und Stichprobenfunktionen Zufallsstichproben. Zufallsvariablen mit 3. Itervallschätzuge 3.1. Zufallsstichprobe ud Stichprobefuktioe 3.1.1 Zufallsstichprobe 1 Sei eie Zufallsvariable ud seie gemeisamer Verteilug,,,, Zufallsvariable mit - da heiße 1,,, Zufallsstichprobe

Mehr

Kapitel 5: Schließende Statistik

Kapitel 5: Schließende Statistik Kapitel 5: Schließede Statistik Statistik, Prof. Dr. Kari Melzer 5. Schließede Statistik: Typische Fragestellug ahad vo Beispiele Beispiel Aus 5 Messwerte ergebe sich für die Reißfestigkeit eier Garsorte

Mehr

Kapitel VI. Einige spezielle diskrete Verteilungen

Kapitel VI. Einige spezielle diskrete Verteilungen Kapitel VI Eiige spezielle diskrete Verteiluge D 6 (Hypergeometrische Verteilug) Eie Zufallsvariable X heißt hypergeometrisch verteilt, we sie folgede Wahrscheilichkeitsfuktio besitzt: M N M P ( X ) p

Mehr

Kombinatorik. Permutationen Permutationen eines Kollektivs

Kombinatorik. Permutationen Permutationen eines Kollektivs Kombiatorik Permutatioe Permutatioe eies Kollektivs Kombiatorik Die Fuktio P perm_a gibt die kombiatorische Azahl der mögliche Aorduge oder Permutatioe a, die sich bei der Umordug der atürliche gaze Zahle,,...

Mehr

Anwendungen der Wahrscheinlichkeit II. Markovketten

Anwendungen der Wahrscheinlichkeit II. Markovketten Aweduge der Wahrscheilichkeit II 1. Fragestelluge Markovkette Markovkette sid ei häufig verwedetes Modell zur Beschreibug vo Systeme, dere Verhalte durch eie zufällige Übergag vo eiem Systemzustad zu eiem

Mehr

Kennwerte eindimensionaler Häufigkeitsverteilungen Einführung

Kennwerte eindimensionaler Häufigkeitsverteilungen Einführung Kewerte eidimesioaler Häufigkeitsverteiluge Eiführug Statistische Kewerte vo Verteiluge sid umerische Maße mit der Fuktio, zusammefassed eie Eidruck vo 1) dem Schwerpukt, ) der Variabilität ud 3) der Form

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Has Walser Mathematik 2 für Naturwisseschafte 2 3 3 4 6 4 5 0 0 5 6 5 20 5 6 Modul 209 Tabelle Has Walser: Modul 209, Tabelle ii Ihalt Fakultäte... 2 Biomialkoeffiziete... 2 3 Biomische Verteilug... 3

Mehr

Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte.

Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte. Statistik Vorlesug,. ärz, Statistische aßzahle Iformatio zu verdichte, Besoderheite hervorzuhebe ittelwerte Aufgabe: die Lage der Verteilug auf der Abszisse zu zeige. Der odus: derjeige Wert, der im Häufigste

Mehr

SBP Mathe Aufbaukurs 1. Absolute und relative Häufigkeit. Das arithmetische Mittel und seine Eigenschaften. Das arithmetische Mittel und Häufigkeit

SBP Mathe Aufbaukurs 1. Absolute und relative Häufigkeit. Das arithmetische Mittel und seine Eigenschaften. Das arithmetische Mittel und Häufigkeit SBP Mathe Aufbaukurs 1 # 0 by Clifford Wolf # 0 Atwort Diese Lerkarte sid sorgfältig erstellt worde, erhebe aber weder Aspruch auf Richtigkeit och auf Vollstädigkeit. Das Lere mit Lerkarte fuktioiert ur

Mehr

3.2 Wilcoxon Rangsummentest

3.2 Wilcoxon Rangsummentest 3. Wilcoxo Ragsummetest Wir gehe davo aus, dass zwei Teilstichprobe x 1, x,..., x 1 ud y1, y,..., y vorliege, wobei die erste Teilstichprobe aus Realisieruge vo uabhägig ud idetisch stetig verteilte Zufallsvariable

Mehr

Aufgaben zur Übung und Vertiefung

Aufgaben zur Übung und Vertiefung Aufgabe zur Übug ud Vertiefug ARITHMETISCHE ZAHLENFOLGEN Berufliches Gymasium / Uterstufe () Stelle Sie fest, welche der gegebee Folge arithmetisch sid: Bestimme Sie zuächst die erste füf Folgeglieder,

Mehr

Kovarianz und Korrelation

Kovarianz und Korrelation Kapitel 2 Kovariaz ud Korrelatio Josef Leydold c 2006 Mathematische Methode II Kovariaz ud Korrelatio 1 / 41 Lerziele Mathematische ud statistische Grudlage der Portfoliotheorie Kovariaz ud Korrelatio

Mehr

Kleine Formelsammlung Beschreibende Statistik

Kleine Formelsammlung Beschreibende Statistik Kleie Formelsammlug Beschreibede Statistik Prof. Dr. Philipp Sibbertse Wirtschaftswisseschaftliche Fakultät Leibiz Uiversität Haover Ihaltsverzeichis 1 Lage- ud Streuugsmaße 2 1.1 Der Media...................................

Mehr

Normalverteilung. Voraussetzung und verwandte Themen. Einführung. Ziel und Nutzen. Grundlagen

Normalverteilung. Voraussetzung und verwandte Themen. Einführung. Ziel und Nutzen. Grundlagen h Normalverteilug Voraussetzug ud verwadte Theme Für diese Beschreibuge sid Grudlage der Statistik ud isbesodere der statistische Verteiluge vorteilhaft. Weiterführede Theme sid: www.versuchsmethode.de/verteilugstests.pdf

Mehr

Pflichtlektüre: Kapitel 10 Grundlagen der Inferenzstatistik

Pflichtlektüre: Kapitel 10 Grundlagen der Inferenzstatistik Pflichtlektüre: Kapitel 10 Grudlage der Iferezstatistik Überblick der Begriffe Populatio Iferezstatistik Populatiosparameter Stichprobeverteiluge Auch Stichprobekewerteverteiluge Wahrscheilichkeitstheorie

Mehr

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5 Vl Statistische Prozess- ud Qualitätskotrolle ud Versuchsplaug Übug 5 Aufgabe ) Sei p = P(A) die Wahrscheilichkeit für ei Ereigis A, dh., es gilt 0 p. Bereche Sie das Maximum der Fuktio f(p) = p(-p). Aufgabe

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Has Walser Mathematik für Naturwisseschafte 00 180 160 Fraue 140 10 100 80 80 100 10 140 160 180 00 Mäer Modul 08 Teste vo Hypothese Has Walser: Modul 08, Teste vo Hypothese ii Ihalt 1 Ma-Whitey-U-Test

Mehr

Fundamentale Prinzipien der Kombinatorik und elementare Abzählkoeffizienten Wolfram Koepf

Fundamentale Prinzipien der Kombinatorik und elementare Abzählkoeffizienten Wolfram Koepf Fudametale Prizipie der Kombiatori ud elemetare Abzähloeffiziete Wolfram Koepf Die abzählede Kombiatori beschäftigt sich vor allem mit der Auswahl eier Teilmege, die ma häufig eie Stichprobe et (aus Wahrscheilicheitsrechug

Mehr

3. Grundbegrie der Schätztheorie

3. Grundbegrie der Schätztheorie Statistik, Abschitt 3. 3. Grudbegrie der Schätztheorie I der kormatorische Statistik will ma uter aderem auf Grud eier Stichprobe vom Umfag Iformatioe über ubekate Parameter θ der Verteilug F der zugrudeliegede

Mehr

Besprechung: S. 1/1

Besprechung: S. 1/1 Übug 8 Aufgabe 8.1 Sei P R ei Polytop mit P Z =vert(p ). Zeige Sie, dass vert(p ) 2. Aufgabe 8.2 Sei P V ei ratioales Polyeder. Zeige Sie, dass P ebefalls ei ratioales Polyeder ist. Aufgabe 8.3 Sei u 1,...,u

Mehr

2.2.1 Lagemaße. Exkurs: Quantile. und n. p n

2.2.1 Lagemaße. Exkurs: Quantile. und n. p n Ekurs: Quatile Ausgagspukt : Geordete Urliste Jeder Wert p, mit 0 < p

Mehr

Abschlussprüfung 2012 an den Realschulen in Bayern

Abschlussprüfung 2012 an den Realschulen in Bayern Prüfugsdauer: 150 Miute Abschlussprüfug 01 a de Realschule i Bayer Mathematik II Aufgabe B 1 Haupttermi B 1.0 Die Parabel p verläuft durch die Pukte P( 5 19) ud Q(7 5). Sie hat eie Gleichug der Form y

Mehr

Der Modus. Lageparameter. Beispiel (Einrichtungen) Beispiel (Lieblingsfarben) Modus. Untersuchungseinheiten U 1,...,U n. Merkmal X

Der Modus. Lageparameter. Beispiel (Einrichtungen) Beispiel (Lieblingsfarben) Modus. Untersuchungseinheiten U 1,...,U n. Merkmal X Lageparameter Der Modus Utersuchugseiheite U,...,U Modus mod Mermal X Urliste,..., geordete Urliste (),..., () Es gilt i.allg.: ( ), i, K i i, Mermalsauspräguge a,..., a wird auch Modalwert oder häufigster

Mehr

Streuungsmaße. Prof. Dr. Paul Reuber. Institut für Geographie. Seminar Methoden der empirischen Humangeographie

Streuungsmaße. Prof. Dr. Paul Reuber. Institut für Geographie. Seminar Methoden der empirischen Humangeographie Streuugsmaße Istitut für Geographie Streuugswerte (Streuugsmaße) Die Diskussio um die Mittelwerte hat die Vorteile dieser statistische Kewerte gezeigt, aber bereits, isbesodere beim arithmetische Mittel,

Mehr

Kapitel 3: Bedingte Wahrscheinlichkeiten und Unabhängigkeit

Kapitel 3: Bedingte Wahrscheinlichkeiten und Unabhängigkeit - 18 - (Kapitel 3 : Bedigte Wahrscheilichkeite ud Uabhägigkeit) Kapitel 3: Bedigte Wahrscheilichkeite ud Uabhägigkeit Wird bei der Durchführug eies stochastische Experimets bekat, daß ei Ereigis A eigetrete

Mehr

Statistik. 5. Schließende Statistik: Typische Fragestellung anhand von Beispielen. Kapitel 5: Schließende Statistik

Statistik. 5. Schließende Statistik: Typische Fragestellung anhand von Beispielen. Kapitel 5: Schließende Statistik Statistik Kapitel 5: Schließede Statistik 5. Schließede Statistik: Typische Fragestellug ahad vo Beispiele Beispiel 1» Aus 5 Messwerte ergebe sich für die Reißfestigkeit eier Garsorte der arithmetische

Mehr

KORRELATION VON ORDINALDATEN Rangkorrelation nach Spearman Terminologie Berechnung Signifikanzprüfung

KORRELATION VON ORDINALDATEN Rangkorrelation nach Spearman Terminologie Berechnung Signifikanzprüfung KORRELATION VON ORDINALDATEN Ragkorrelatio ach Spearma Termiologie Berechug Sigifikazprüfug Ziel: Ei Maß für de Zusammehag zweier ordialskalierter Variable ermittel Beispiele: Messug vo Kameradschaftlichkeit

Mehr

Zusammenhangsmaß Korrelation (Pearsons Produkt-Moment-Korrelation r)

Zusammenhangsmaß Korrelation (Pearsons Produkt-Moment-Korrelation r) Ergäzede Hiweise zur Iterpretatio Zusammehagsmaß Korrelatio (Pearsos Produkt-Momet-Korrelatio r) Thürigeweite Kompeteztests 3 Dipl.-Psych. Ulf Kröhe, Dr. Christof Nachtigall Lehrstuhl für Methodelehre

Mehr

( ), der genau auf der Geraden ( ) 2 ( ) #( ) 8. Lineare Regression. = f i. Nach der Summe der kleinsten. mx i

( ), der genau auf der Geraden ( ) 2 ( ) #( ) 8. Lineare Regression. = f i. Nach der Summe der kleinsten. mx i 8. Lieare Regressio 8.1. Die Methode der kleiste Quadrate Regressiosgerade bzw. Ausgleichsgerade sid eie Auswertug vo statistische Messdate. Ziel dieses Verfahres ist es, Beziehuge zwische zwei Merkmale

Mehr

Vl Statistische Prozess und Qualitätskontrolle und Versuchsplanung Übung 3

Vl Statistische Prozess und Qualitätskontrolle und Versuchsplanung Übung 3 Vl Statistische Prozess ud Qualitätskotrolle ud Versuchsplaug Übug 3 Aufgabe ) Die Schichtdicke X bei eier galvaische Beschichtug vo Autoteile sei ormalverteilt N(μ,σ ). 4 Teile werde galvaisch beschichtet.

Mehr

Empirische Verteilungsfunktion

Empirische Verteilungsfunktion KAPITEL 3 Empirische Verteilugsfuktio 3.1. Empirische Verteilugsfuktio Seie X 1,..., X uabhägige ud idetisch verteilte Zufallsvariable mit theoretischer Verteilugsfuktio F (t) = P[X i t]. Es sei (x 1,...,

Mehr

38 Normen und Neumannsche Reihe

38 Normen und Neumannsche Reihe 168 V. Lieare Algebra 38 Norme ud Neumasche Reihe Wir erier zuächst a (vgl. 15.6) 38.1 Normierte Räume. Es sei E ei Vektorraum über K = R oder K = C. Eie Abbildug : E [0, ) heißt Norm auf E, falls gilt

Mehr

Tests statistischer Hypothesen

Tests statistischer Hypothesen KAPITEL 0 Tests statistischer Hypothese I der Statistik muss ma oft Hypothese teste, z.b. muss ma ahad eier Stichprobe etscheide, ob ei ubekater Parameter eie vorgegebee Wert aimmt. Zuerst betrachte wir

Mehr

Beispiel 4 (Die Urne zu Fall 4 mit Zurücklegen und ohne Beachten der Reihenfolge ) das Sitzplatzproblem (Kombinationen mit Wiederholung) Reihenfolge

Beispiel 4 (Die Urne zu Fall 4 mit Zurücklegen und ohne Beachten der Reihenfolge ) das Sitzplatzproblem (Kombinationen mit Wiederholung) Reihenfolge 1 Beispiel 4 (Die Ure zu Fall 4 mit Zurücklege ud ohe Beachte der Reihefolge ) das Sitzplatzproblem (Kombiatioe mit Wiederholug) 1. Übersicht Ziehugsmodus ohe Zurücklege des gezogee Loses mit Zurücklege

Mehr

Prof. Dr. Roland Füss Statistik II SS 2008

Prof. Dr. Roland Füss Statistik II SS 2008 1. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug ergibt sich aus de Grezwertsätze. Grezwertsätze sid Aussage über eie Zufallsvariable für de Fall, dass die Azahl

Mehr

Lösungsvorschlag Probeklausur zur Elementaren Wahrscheinlichkeitsrechnung

Lösungsvorschlag Probeklausur zur Elementaren Wahrscheinlichkeitsrechnung Prof. Dr. V. Schmidt WS 200/20 G. Gaiselma, A. Spettl 7.02.20 Lösugsvorschlag Probeklausur zur Elemetare Wahrscheilichkeitsrechug Hiweis: Der Umfag ud Schwierigkeitsgrad dieser Probeklausur muss icht dem

Mehr

Variiert man zusätzlich noch die Saatstärke (z.b. 3 Stärkearten), würde man von einer zweifaktoriellen Varianzanalyse sprechen.

Variiert man zusätzlich noch die Saatstärke (z.b. 3 Stärkearten), würde man von einer zweifaktoriellen Varianzanalyse sprechen. 3. Variazaalyse Die Variazaalyse mit eier quatitative abhägige Variable ud eier oder mehrerer qualitativer uabhägiger Variable wird auch als ANOVA (Aalysis of Variace) bezeichet. Mit eier Variazaalyse

Mehr

V. Tests bez. zweier Verteilungsfunktionen

V. Tests bez. zweier Verteilungsfunktionen 7 V. Tests bez. zweier Verteilugsfuktioe Seie X ud Y zwei uabhägige oralverteilte Zufallsvariable, für die zwei kokrete Stichprobe x, x,..., x bzw. y, y,..., y it de Ufäge bzw vorliege. a) X ud Y seie

Mehr

h i Deskriptive Statistik 1-dimensionale Daten Daten und Häufigkeiten Seite 1 Nominal Ordinal Metrisch (Kardinal) Metrisch - klassiert

h i Deskriptive Statistik 1-dimensionale Daten Daten und Häufigkeiten Seite 1 Nominal Ordinal Metrisch (Kardinal) Metrisch - klassiert Deskriptive Statistik dimesioale Date Date ud Häufigkeite Seite Nomial Ordial Metrisch (Kardial Metrisch klassiert Beschreibug: Date habe keie atürliche Reihefolge. Bsp: Farbe, Religio, Geschlecht, Natioalität...

Mehr

Determinante und Resultante Azadeh Pasandi

Determinante und Resultante Azadeh Pasandi Determiate ud Resultate 07.01.2009 Azadeh Pasadi Defiitio ud Grudeigeschafte: sei U, V, W ud Vektor-Raum über Körper F ud beachte eie Abbildug f ( u,v ) vo kartesische Produkt: f: U x V W Diese Abbildug

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR MATHEMATISCHE STOCHASTIK WS 005/06 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Klausur Wahrscheilichkeitstheorie ud Statistik vom 9..006 Musterlösuge Aufgabe A: Gegebe sei eie Urliste

Mehr

Kapitel 2: Stochastische Prozesse. Copyright M. Gross, ETH Zürich 2006, 2007

Kapitel 2: Stochastische Prozesse. Copyright M. Gross, ETH Zürich 2006, 2007 Kaitel 2: Coyright M. Gross, ETH Zürich 2006, 2007 Bedigte Verteiluge Ebeso a die Verbudwahrscheilicheit vo Zufallsvariable über bedigte Wahrscheilicheite ausgedrüct werde i i,, i,, Wiederum ommt eie Produtregel

Mehr

Skript zum Modul Statistik

Skript zum Modul Statistik Skript zum Modul 4 - Statistik 5 Kozetratiosmaße Zusätzlich zu de Lageparameter (Sitzug 3), die markate Pukte (z.b. Media, Modus, Mittelwert) beschreibe ud de Streuugsparameter (Sitzug 4), die de Charakter

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik ud Wahrscheilichkeitsrechug Statistik ud Wahrscheilichkeitsrechug Übug 9 1 Ihalt der heutige Übug Statistik ud Wahrscheilichkeitsrechug Iformatioe zur Testatprüfug Besprechug der der Hausübug

Mehr

3 Grenzwerte. 3.1 Grenzwerte von Folgen

3 Grenzwerte. 3.1 Grenzwerte von Folgen 03-grezwerte.cdf 3 Grezwerte 3. Grezwerte vo Folge Kovergez Mache Folge zeige ei spezielles Verhalte, we der Idex sehr groß wird. Sie äher sich eier bestimmte Zahl. Betrachte wir zum Beispiel die Folge

Mehr

Reader Teil 1: Beschreibende Statistik

Reader Teil 1: Beschreibende Statistik Dr. Katharia Best Sommersemester 2011 14. April 2011 Reader Teil 1: Beschreibede Statistik WiMa-Praktikum Um Date darzustelle ud eie Übersicht über die Struktur der Date zu erstelle, stellt die beschreibede

Mehr

Zählterme (Seite 1) Aufgabe: Wie viele Nummernschilder kann es theoretisch im Raum Dresden geben? Wann müsste die 4.Ziffer eingeführt werden?

Zählterme (Seite 1) Aufgabe: Wie viele Nummernschilder kann es theoretisch im Raum Dresden geben? Wann müsste die 4.Ziffer eingeführt werden? Bemerkug: I Mathematik sollte ma keie Fahrpläe verwede, i der Stochastik erst recht icht. Zitat vo S.L. Das Baumdiagramm ist aber fast immer ei geeigetes Hilfsmittel. Produktregel Aufgabe: Wie viele Nummerschilder

Mehr

Vorkurs Mathematik für Informatiker Folgen

Vorkurs Mathematik für Informatiker Folgen Vorkurs Mathematik für Iformatiker -- 9 Folge -- 6.1.215 1 Folge: Defiitio Eie (uedliche) Folge im herkömmliche Sie etsteht durch Hitereiaderschreibe vo Zahle 1,2,3,4,5, Dabei ist die Reihefolge wichtig,

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meihardt Methodelehre Mathematische ud statistische Methode I Sprechstude jederzeit ach Vereibarug ud ach der Vorlesug Wallstr. 3, 6. Stock, Raum 06-206 Dr. Malte Persike persike@ui-maiz.de

Mehr

Praktikum Vorbereitung Fertigungsmesstechnik Statistische Qualitätskontrolle

Praktikum Vorbereitung Fertigungsmesstechnik Statistische Qualitätskontrolle Praktikum Vorbereitug Fertigugsmesstechik Statistische Qualitätskotrolle Bei viele Erzeugisse ist es icht möglich jedes Werkstück zu prüfe, z.b.: bei Massefertigug. Hier ist es aus ökoomische Grüde icht

Mehr

Statistik und Biometrie. Deskriptive Statistik I

Statistik und Biometrie. Deskriptive Statistik I Statistik ud Biometrie Deskriptive Statistik I Spruch des Tages Traue keier Statistik, die du icht selbst gefaelscht hast Wiederholug Merkmale Beobachtugseiheite sid Träger vo Merkmale Wiederholug Die

Mehr

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy. Vo der relative Häufigkeit zur Wahrscheilichkeit Es werde 20 Schüler befragt, ob sie ei Hady besitze. Das Ergebis der Umfrage lautet: Vo 20 Schüler besitze 99 ei Hady. Ereigis E: Schüler besitzt ei Hady

Mehr

10. Testen von Hypothesen Seite 1 von 6

10. Testen von Hypothesen Seite 1 von 6 10. Teste vo Hypothese Seite 1 vo 6 10.1 Eiführug i das Teste vo Hypothese Eie Hypothese ist eie Vermutug bzw. Behauptug über die Wahrscheilichkeit eies Ereigisses. Mit Hilfe eies geeigete Tests (=Testverfahre)

Mehr

Kapitel XI - Korrelationsrechnung

Kapitel XI - Korrelationsrechnung Istitut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökoometrie ud Statistik Kapitel XI - Korrelatiosrechug Deskriptive Statistik Prof. Dr. W.-D. Heller Hartwig Seska Carlo Siebeschuh Aufgabe der Korrelatiosrechug

Mehr

Musterlösung für die Klausur zur Vorlesung Stochastik I im WiSe 2014/2015

Musterlösung für die Klausur zur Vorlesung Stochastik I im WiSe 2014/2015 Musterlösug für die Klausur zur Vorlesug Stochastik I im WiSe 204/205 Teil I wahr falsch Aussage Gilt E[XY ] = E[X]E[Y ] für zwei Zufallsvariable X ud Y mit edlicher Variaz, so sid X ud Y uabhägig. Für

Mehr

Ulrich Stein Fehlerrechnung

Ulrich Stein Fehlerrechnung Fehlerrechug Verteilug vo Messwerte Mittelwert Stadardabweichug Stadardfehler Rude vo Messwerte Darstellug vo Messwerte (Stellezahl) Fehlerfortpflazug Messergebisse Messug physikalische Realität Messgerät,

Mehr

a) Histogramm der Verteilung: Zunächst werden die gegebenen Messwerte in aufsteigender Reihenfolge sortiert:

a) Histogramm der Verteilung: Zunächst werden die gegebenen Messwerte in aufsteigender Reihenfolge sortiert: D Lösug zu Aufgabe 2: Histogra a) Histogra der Verteilug: Zuächst werde die gegebee Messwerte i aufsteigeder Reihefolge sortiert: i 2 3 4 5 6 7 8 9 2 3 4 5 4,574 4,589 4,593 4,599 4,6 4,67 4,68 4,69 4,6

Mehr

Schätzen von Populationswerten

Schätzen von Populationswerten Schätze vo Populatioswerte SS00 7.Sitzug vom.06.00 Schätze vo Populatioswerte Ziel: Ermöglichug vo Aussage über die Grudgesamtheit ahad vo Stichprobedate Logische Methode: Iduktiosschluß Grudlage des Iduktiosschlusses:

Mehr

Musterlösung zu Blatt 8 der Vorlesung Analysis I WS08/09

Musterlösung zu Blatt 8 der Vorlesung Analysis I WS08/09 Musterlösug zu Blatt 8 der Vorlesug Aalysis I WS08/09 Schriftliche Aufgabe Aufgabe. Voraussetzuge: Für alle N setze a : +2 ud b : ( 2. [Amerkug: I der Aufgabestellug heiÿe die Reihe beide gleich. Es steht

Mehr

Analysis I - Zweite Klausur

Analysis I - Zweite Klausur Aalysis I - Zweite Klausur Witersemester 2004-2005 Vorame: Name: Aufgabe Aufgabe 2 Aufgabe 3 Aufgabe 4 Aufgabe 5 Aufgabe 6 Aufgabe 7 Aufgabe 8 Aufgabe 9 Summe Aufgabe 4 Pukte Bestimme Sie (mit Beweis)

Mehr

Quantenmechanik I. Musterlösung 12.

Quantenmechanik I. Musterlösung 12. Quatemechaik I. Musterlösug 1. Herbst 011 Prof. Reato Reer Übug 1. Ster-Gerlach (19). Ei Strahl aus ugeladee Teilche mit Spi s = 1 läuft etlag der x-achse ud durchquert ei i z-richtug stark ihomogees Magetfeld.

Mehr

Parameterschätzung. Kapitel Schätzfunktionen

Parameterschätzung. Kapitel Schätzfunktionen Kapitel 8 Parameterschätzug 8.1 Schätzfuktioe Def. 8.1.1: Es seie X 1,X,...,X uabhägige ZV, die alle die gleiche Verteilug besitze. θ sei ei ubekater Parameter dieser Verteilug. X 1,X,...,X ist als eie

Mehr

Kapitel 10 VERTEILUNGEN

Kapitel 10 VERTEILUNGEN Kapitel 0 VERTEILUNGEN Fassug vo 3. Februar 2006 Prof. Dr. C. Porteier Prof. Dr. W. Groes Matheati für Huabiologe ud Biologe 39 0. Zufallsvariable 0. Zufallsvariable Häu g wird statt des Ergebisses! 2

Mehr

Für eine n n-matrix A müssen wir die Gleichung. lösen. Falls (A λi) invertierbar ist, dann ist. Dann ist aber λ kein Eigenwert.

Für eine n n-matrix A müssen wir die Gleichung. lösen. Falls (A λi) invertierbar ist, dann ist. Dann ist aber λ kein Eigenwert. Geschlossees Leotief-Modell Ei Leotief-Modell für eie Volkswirtschaft heißt geschlosse, we der Kosum gleich der Produktio ist, d.h. we Kapitel 5 Eigewerte V x = x Es hadelt sich dabei um eie Spezialfall

Mehr

Konfidenzintervall_fuer_pi.doc Seite 1 von 6. Konfidenzintervall für den Anteilswert π am Beispiel einer Meinungsumfrage

Konfidenzintervall_fuer_pi.doc Seite 1 von 6. Konfidenzintervall für den Anteilswert π am Beispiel einer Meinungsumfrage Kofidezitervall_fuer_pi.doc Seite 1 vo 6 Kofidezitervall für de Ateilswert π am Beispiel eier Meiugsumfrage Nach eier Meiugsumfrage der Wochezeitug Bezirksblatt vom März 005, ei halbes Jahr vor de Ladtagswahle

Mehr