41531 Klassische Produktionsfunktionen. Produktionstheorie. a) Von welchen Annahmen geht die klassische Produktionsfunktion aus?

Größe: px
Ab Seite anzeigen:

Download "41531 Klassische Produktionsfunktionen. Produktionstheorie. a) Von welchen Annahmen geht die klassische Produktionsfunktion aus?"

Transkript

1 Produktionstheorie Vgl. März 003 Aufgabe 5 a) Von welchen Annahmen geht die klassische Produktionsfunktion aus? b) Skizzieren Sie den Verlauf der klassischen Produktionsfunktion und beschreiben Sie ausführlich die spezifischen Eigenschaften der einzelnen Phasen. c) Nehmen Sie Stellung zur empirischen Geltung der klassischen Produktionsfunktion. d) Beschreiben Sie die inhaltlichen Unterschiede zwischen der klassischen Produktionsfunktion und der neoklassischen Produktionsfunktion von COBB-DOUGLAS. Rolf Baumanns/ Kai SS 006 Seite 1 von 8

2 Lösung a) KE 3 Seite Annahmen über den ertragsgesetzlichen Verlauf von Produktionsfunktionen Die für die Herstellung einer bestimmten Ausbringungsmenge erforderlichen Produktionsfaktoren (peripher oder alternativ) substituierbar sind Bei vermehrtem Einsatz eines Faktors und konstanten Einsatzmengen aller übrigen Faktoren zunächst steigende und dann fallende Grenzerträge ( Ertragszuwächse) auftreten, d.h. dass sich an einem Bereich zunehmender Grenzproduktivitäten ein Bereich abnehmender Grenzproduktivitäten anschliesst. Des weiteren ist in der ertragsgesetzlichen Produktionsfunktion vorausgesetzt, dass Die Produktionsdauer konstant bleibt, also keine zeitliche Anpassung der Faktoren möglich ist Die Faktoreinsatzmengen beliebig teilbar bzw. variierbar sind Ein qualitativ gleich bleibendes Produkt hergestellt wird,. d..h. ein Einproduktunternehmen vorliegt b) KE3 Seite 3 Rolf Baumanns/ Kai SS 006 Seite von 8

3 Phasen KE 3 Seite 4 c) KE 4 Seite 18 ff / 30 Widerspruchsfreiheit ja Allgemeingültigkeit Empirischer Gehalt ja ja Faktische Überprüfbarkeit gering Bewährungsgrad Geltungsbereich Axiomatisierung bisher keine Gültigkeit klein ja (Wittmann) d) KE3 Seite 9 Neoklassische Produktionsfunktionen zeichnen sich dadurch aus, dass bei ihnen bei partieller Faktorvariation von Anfang an das Gesetz der abnehmenden Ertragszuwächse gilt d.h. es existieren keine Bereiche zunehmender Grenzerträge und dass die Grenzproduktivität jedes Faktors über den gesamten Variationsbereich seiner Einsatzmenge positiv ist. Neoklassische Produktionsfunktionen können insofern als Sonderfälle klassischer Produktionsfunktionen ausgefasst werden, da für sie nur ein Verlauf wie in den Phasen II und III der klassischen Produktionsfunktion zulässig ist.sie sind formal gekennzeichnet durch x x r,...,r = 1 m dx > 0 für 0 ri < dr i x < 0 für 0 r < i r i { } x 0 r 0 i 1,...,m i Rolf Baumanns/ Kai SS 006 Seite 3 von 8

4 Vgl. September 004 Aufgabe 1 Produktionstheorie Für ein Unternehmen, das durch den Einsatz der Faktormengen r 1 und r zweier Produktionsfaktoren 1 und die Menge x eines Endproduktes herstellt, gelte die Produktionsfunktion: x= f ( r,r 1 ) = rr 1 + rr 1 + rr a) Ist diese Produktionsfunktion homogen? Falls ja, welchen Homogenitätsgrad weist die Produktionsfunktion auf? b) Skizzieren Sie in dem ( r;x 1 ) -Diagramm auf Lösungsbogen für den 0 r 60 den Verlauf der Ertragsfunktion f ( r,r ), die sich Bereich 1 1 ergibt, wenn die Faktoreinsatzmenge des zweiten Faktors auf dem konstanten Niveau r = 0 festgehalten wird. Besitzt die Ertragsfunktion in diesem Bereich lokale Maxima oder Minima und/oder Wendepunkte? c) Zeigen Sie verbal und formal auf, um welchen Typ von Produktionsfunktion es sich hierbei handelt. Rolf Baumanns/ Kai SS 006 Seite 4 von 8

5 Lösung Eine eventuell vorhandene Homogenitätseigenschaft der Produktionsfunktion lässt sich durch Einsetzen von λ r1 und λ r für r 1 bzw. r in die Gleichung der Produktionsfunktion überprüfen: f ( λr, 1 λr) = ( λr1) ( λr) + ( λr1) ( λr) + ( λr1)( λr) = λ + λ + λ λ t rr 1 rr 1 rr 1 f r,r 1 Demnach ist die Produktionsfunktion f inhomogen. Für die weiteren Untersuchungsschritte ist es zweckmäßig, zunächst die Ertragsfunktion f ( rr 1, ) für das vorgegebene Einsatzniveau r = 0 des zweiten Faktors anzugeben: x= f ( r,r 1 = 0) = r1 0 + r1 0 + r10 = r1 + r1 + r Berechnung der lokalen Extremstelle: Mittels Differentiation dieser Ertragsfunktion nach der Einsatzmenge r 1 des ersten Faktors erhält man die Funktion der (partiellen) Grenzproduktivität des ersten Faktors: f ( r,r 1 ) = r1 + r1+ = Die Funktionsvorschrift, ein Polynom zweiten Grades mit einem negativen Koeffizienten vor dem quadratischen Glied, lässt erkennen, dass der zugehörige Graph eine nach unten offene Parabel ist. Da die Grenzproduktivität bei minimalem Faktoreinsatz r 1 = 0 wegen f ( r,r 1 = 0) = = > positiv ist, leuchtet zudem unmittelbar ein, dass die (nach unten offene) Parabel die Abszisse eines ( r1; f r1) -Diagramms im ökonomisch sinnvollen Bereich ( r 1 0 ) höchstens einmal schneiden und entsprechend die Grenzproduktivität im ökonomisch relevanten Bereich auch nur einmal das Vorzeichen wechseln kann, denn der zweite Abszissenschnittpunkt der Parabel muss zwangsläufig im ökonomisch irrelevanten Bereich ( r 1 < 0 ) liegen. Die Nullstelle der Funktion der Grenzproduktivität des Faktors 1, bei deren Überschreiten das Vorzeichen der Grenz- Rolf Baumanns/ Kai SS 006 Seite 5 von 8

6 produktivität im ökonomisch relevanten Bereich von positiv auf negativ wechselt, ergibt sich aus f ( r,r 1 = 0) = r1 + r1+ = r 40r 500= r 40r + 400= ( r ) 1 0 = 900 r 1 =± 30+ 0= 50 ( 10) f 50,r = 100 Zur Ermittlung der Faktoreinsatzmenge r ) 1, bei der die Grenzproduktivität des Faktors 1 maximal wird, differenziert man die Funktion der Grenzproduktivität nach r 1 und setzt die Ableitung gleich null: 3 6 f ( r,r 1 ) = r1+ = f 50,r = 018, < 0, somit lokales Maximum. Zur Berechnung des Wendepunktes: 3 6 f ( r,r 1 ) = r1+ = r 1 = 0 f 0,r = 46 Dass es sich hierbei tatsächlich um eine Maximalstelle handelt, folgt unmittelbar aus dem generell negativen Vorzeichen der zweiten Ableitung der Grenzproduktivität nach der Faktoreinsatzmenge r 1 und dem hiermit verbundenen streng konkaven Kurvenverlauf des zugehörigen Graphen. Im Ergebnis steigt also die Grenzproduktivität des Faktors 1 wegen mit zunehmendem Faktoreinsatz r 1 an, ) erreicht bei r 1 = 0 ihren Maximalwert Dividiert man die Ertragsfunktion f ( rr 1, = 0) durch die Faktoreinsatzmenge r 1, so erhält man die Funktion der Produktivität des ersten Faktors, die an der unteren Grenze ihres Definitionsbereichs offensichtlich positiv ist f ( r,r 1 = 0) ) = r1 + r1 + > 0 r 1 = 30 r Rolf Baumanns/ Kai SS 006 Seite 6 von 8

7 Der Funktionsgraph ist wiederum eine nach unten offene Parabel, deren Maximum sich aus der 1.Ableitung der Produktivität errechnet. Wegen Wert der 1.Ableitung größer 0 steigt die Produktivität des ersten Faktors im Bereich 0 r1 < 30 mit zunehmendem Faktoreinsatz r 1 an und fällt nach dem ) Überschreiten des Maximums bei r 1 = 30 wieder streng monoton ab. Dabei verläuft der zugehörige Funktionsgraph aufgrund von über den gesamten Definitionsbereich streng konkav. Rein rechnerisch können die Funktionswerte bei Überschreiten der Nullstelle sogar negativ werden, jedoch sind negative Produktivitäten ökonomisch nicht sinnvoll interpretierbar und werden folglich aus der Betrachtung ausgeschlossen. x Max ( 50100, ) Wendepunkt ( 0, 46) r 1 Bei der vorliegenden Produktionsfunktion handelt es sich um eine ertragsgesetzliche Produktionsfunktion. Diese Art von Produktionsfunktion ist gekennzeichnet durch zunächst steigende und dann abnehmende Grenzerträge. Rolf Baumanns/ Kai SS 006 Seite 7 von 8

8 f 0,r = 46 ist die lokale Extremstelle der Funktion der Grenzproduktivität x f ( r,r 1 ) = = r1 + r1+ bei f ( 0,r ) = 7,. Wegen r f ( r,r 1 ) = handelt es sich um ein lokales Maximum. Somit für 500 Werte von r1 = 0 steigen somit die Werte der Funktion der Grenzproduktivität an bis zum Maximum, für Werte von r 1? 0 fallen die Werte der Funktion der Grenzproduktivität wieder. Wendepunkt der Ertragsfunktion bei f 0,r = 15, f 10,r = 4, f 0,r = 7, f 30,r = 4, f 40,r = 15, Somit steigende Grenzerträge bis r 1 = 0, danach fallenden Grenzerträge. Rolf Baumanns/ Kai SS 006 Seite 8 von 8

Produktionswirtschaft Kostentheorie und Minimalkostenkombination. 9 / 96 Aufgabe 2 (Kostentheorie) 20 Punkte

Produktionswirtschaft Kostentheorie und Minimalkostenkombination. 9 / 96 Aufgabe 2 (Kostentheorie) 20 Punkte Produktionswirtschaft 450 Kostentheorie und Minimalkostenkombination 9 / 96 Aufgabe (Kostentheorie) 0 Punkte Entspricht Aufgabe 4. im Übungsbuch, Seite 4ff. Gegeben sei folgende Produktionsfunktion: (

Mehr

Produktion und Organisation VL 8: Produktion Die neoklassische Produktionsfunktion

Produktion und Organisation VL 8: Produktion Die neoklassische Produktionsfunktion JProf. Dr. T. Kilian [kilian@uni-koblenz.de] Produktion und Organisation VL 8: Produktion Die neoklassische Produktionsfunktion WS 00/0 JProf. Dr. T. Kilian 0 Inhalt I. Grundbegriffe II. Produktionsfunktionen

Mehr

Produktionswirtschaft Substitutionale Produktionsfunktion MKK

Produktionswirtschaft Substitutionale Produktionsfunktion MKK Produktionswirtschaft 50 - Substitutionale Produktionsfunktion MKK Klausur 0/0 A Ein Unternehmen fertigt unter Einsatz dreier Faktoren i, i =,,, mit den Faktoreinsatzmengen r i gemäß der Produktionsfunktion

Mehr

Produktivität. Definieren Sie die folgenden produktionstheoretischen Grundbegriffe formal und erläutern Sie diese: Partielles Grenzprodukt

Produktivität. Definieren Sie die folgenden produktionstheoretischen Grundbegriffe formal und erläutern Sie diese: Partielles Grenzprodukt Produktivität Definieren Sie die folgenden produktionstheoretischen Grundbegriffe formal und erläutern Sie diese: Partielles Grenzprodukt Definieren Sie die folgenden produktionstheoretischen Grundbegriffe

Mehr

Produktion und Organisation VL 7: Produktion Produktionstheorie

Produktion und Organisation VL 7: Produktion Produktionstheorie JProf. Dr. T. Kilian [kilian@uni-koblenz.de] Produktion und Organisation VL 7: Produktion Produktionstheorie WS 2010/2011 JProf. Dr. T. Kilian 0 Inhalt I. Grundbegriffe II. Produktionsfunktionen Eigenschaften

Mehr

Polynome. Ein Term der Form. mit n und a 0 heißt Polynom. Die Zahlen a, a, a,... heißen Koeffizienten des Polynoms.

Polynome. Ein Term der Form. mit n und a 0 heißt Polynom. Die Zahlen a, a, a,... heißen Koeffizienten des Polynoms. Polynome Ein Term der Form a x + a x + a x + a x +... + a x + a x + a n n 1 n 2 n 3 2 1 2 3 4 n 2 n 1 n mit n und a 0 heißt Polynom. 1 Die Zahlen a, a, a,... heißen Koeffizienten des Polynoms. 1 2 3 Als

Mehr

AUFGABENTEIL. Modul-Abschlussklausur zum. B-Modul Nr , Theorie der Leistungserstellung. 29. März 2012, 9:00 bis 11:00 Uhr

AUFGABENTEIL. Modul-Abschlussklausur zum. B-Modul Nr , Theorie der Leistungserstellung. 29. März 2012, 9:00 bis 11:00 Uhr Fakultät für Wirtschaftswissenschaft AUFGABENTEIL Modul-Abschlussklausur zum B-Modul Nr. 31531, Theorie der Leistungserstellung Termin: Prüfer: 29. März 2012, 9:00 bis 11:00 Uhr Prof. Dr. Dr. h. c. Günter

Mehr

Kurvendiskussion von Polynomfunktionen

Kurvendiskussion von Polynomfunktionen Kurvendiskussion von Polynomfunktionen Theorie: Für die weiteren Berechnungen benötigen wie die 1. f (x) und 2. f (x) Ableitung der zu untersuchenden Funktion f (x). Wir werden viele Gleichungen lösen

Mehr

Eigenschaften von Funktionen

Eigenschaften von Funktionen Eigenschaften von Funktionen Mag. Christina Sickinger HTL v 1 Mag. Christina Sickinger Eigenschaften von Funktionen 1 / 48 Gegeben sei die Funktion f (x) = 1 4 x 2 1. Berechnen Sie die Steigung der Funktion

Mehr

Funktionen untersuchen

Funktionen untersuchen Funktionen untersuchen Mögliche Fragestellungen Definition: lokale und globale Extrema Monotonie und Extrema Notwendige Bedingung für Extrema Hinreichende Kriterien, Vergleich Krümmungsverhalten Neumann/Rodner

Mehr

Aufgabe zum Thema: Gebrochen - rationale Funktionen

Aufgabe zum Thema: Gebrochen - rationale Funktionen Aufgabe zum Thema: Gebrochen - rationale Funktionen Eine gebrochen-rationale Funktion Z (x) hat als Zähler- N (x) funktion Z (x) eine lineare Funktion und als Nennerfunktion N (x) eine ganz-rationale Funktion

Mehr

Differentialrechnung. Mathematik W14. Christina Sickinger. Berufsreifeprüfung. v 1 Christina Sickinger Mathematik W14 1 / 79

Differentialrechnung. Mathematik W14. Christina Sickinger. Berufsreifeprüfung. v 1 Christina Sickinger Mathematik W14 1 / 79 Mathematik W14 Christina Sickinger Berufsreifeprüfung v 1 Christina Sickinger Mathematik W14 1 / 79 Die Steigung einer Funktion Wir haben bereits die Steigung einer linearen Funktion kennen gelernt! Eine

Mehr

Da der Nenner immer positiv ist, folgt. g (x) > 0 2x(2 x) > 0 0 < x < 2 g (x) < 0 2x(2 x) < 0 x < 0 oder x > 2

Da der Nenner immer positiv ist, folgt. g (x) > 0 2x(2 x) > 0 0 < x < 2 g (x) < 0 2x(2 x) < 0 x < 0 oder x > 2 Da der Nenner immer positiv ist, folgt g (x) > 0 x( x) > 0 0 < x < g (x) < 0 x( x) < 0 x < 0 oder x > Also ist g auf (0,) streng monoton wachsend sowie auf (,0) und auf (, ) strengmonotonfallend.außerdemistg

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 6. (n+1)!. Daraus folgt, dass e 1/x < (n+

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 6. (n+1)!. Daraus folgt, dass e 1/x < (n+ D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger Lösung - Serie 6 1. MC-Aufgaben (Online-Abgabe) 1. Für alle ganzen Zahlen n 1 gilt... (a) e 1/x = o(x n ) für x 0 + (b) e 1/x = o(x n ) für x 0 + (c)

Mehr

III.2 Die Unternehmensanalyse der Neoklassik

III.2 Die Unternehmensanalyse der Neoklassik III.2 Die Unternehmensanalyse der Neoklassik III.2.2.1 Handlungsergebnis (I): Partialanalytische Ermittlung des gewinnoptimalen Faktoreinsatzes (Faktoreffizienz) (1)Formulierung der Aufgabenstellung (2)Notationen

Mehr

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x.

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x. Skripten für die Oberstufe Kurvendiskussion x 3 f (x) x f (x)dx = e x H. Drothler 0 www.drothler.net Kurvendiskussion Zusammenfassung Seite Um Funktionsgraphen möglichst genau zeichnen zu können, werden

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 4

Technische Universität München Zentrum Mathematik. Übungsblatt 4 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 4 Hausaufgaben Aufgabe 4. Gegeben sei die Funktion f : D R mit f(x) :=

Mehr

Monotonie, Konkavität und Extrema

Monotonie, Konkavität und Extrema Kapitel 8 Monotonie, Konkavität und Extrema Josef Leydold Auffrischungskurs Mathematik WS 2017/18 8 Monotonie, Konkavität und Extrema 1 / 55 Monotonie Eine Funktion f heißt monoton steigend, falls x 1

Mehr

Monotonie, Konkavität und Extrema

Monotonie, Konkavität und Extrema Kapitel 8 Monotonie, Konkavität und Extrema Josef Leydold Auffrischungskurs Mathematik WS 2017/18 8 Monotonie, Konkavität und Extrema 1 / 55 Monotonie Eine Funktion f heißt monoton steigend, falls x 1

Mehr

Beispielklausur für zentrale Klausuren Mathematik Unterlagen für die Lehrkraft - Modelllösungen

Beispielklausur für zentrale Klausuren Mathematik Unterlagen für die Lehrkraft - Modelllösungen ZK M A (mit CAS) Seite von 5 Nr. Beispielklausur für zentrale Klausuren Mathematik Unterlagen für die Lehrkraft - Modelllösungen Punkte a Nullstellen von f: f ( = 0 x = x = x = + Lokale Extrempunkte:,7

Mehr

Einführung in die BWL Teil 1

Einführung in die BWL Teil 1 Fernstudium Guide Einführung in die BWL Teil 1 Version vom 03.06.2016 Dieses Werk ist urheberrechtlich geschützt. Alle Rechte vorbehalten. Fernstudium Guide 2008-2016 1 Was haben wir vor? Einführung in

Mehr

Gleichung einer quadratischen Funktion*

Gleichung einer quadratischen Funktion* Gleichung einer quadratischen Funktion* Aufgabennummer: 1_341 Aufgabentyp: Typ 1 T Typ 2 Aufgabenformat: halboffenes Format Grundkompetenz: FA 3.1 Im nachstehenden Koordinatensystem ist der Graph einer

Mehr

a,b,c a,b,d a,d,e b,c,e c,d,e ( ) ( ) ( ) ( ) ( )

a,b,c a,b,d a,d,e b,c,e c,d,e ( ) ( ) ( ) ( ) ( ) Klausur, Mathematik, Juli 2012, A 1 [ 1 ] Bestimmen Sie Y und C in dem makroökonomischen Modell Y = C + Ī C = a + by mit a = 300, b = 0.7 und Ī = 600. Y = C = [ 2 ] Die folgenden Aussagen befassen sich

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr

R. Brinkmann Seite

R. Brinkmann   Seite R. Brinkmann http://brinkmann-du.de Seite 1 1.08.016 Kurvendiskussion Vorbetrachtungen Um den Graphen einer Funktion zeichnen und interpretieren zu können, ist es erforderlich einiges über markante Punkte

Mehr

Lösungserwartung und Lösungsschlüssel zur prototypischen Schularbeit für die 7. Klasse (Autor: Gottfried Gurtner)

Lösungserwartung und Lösungsschlüssel zur prototypischen Schularbeit für die 7. Klasse (Autor: Gottfried Gurtner) Lösungserwartung und Lösungsschlüssel zur prototypischen Schularbeit für die 7. Klasse (Autor: Gottfried Gurtner) Teil : Mathematische Grundkompetenzen ) Es muss (ausschließlich) die richtige Antwortmöglichkeit

Mehr

Quadratische Funktionen Arbeitsblatt 1

Quadratische Funktionen Arbeitsblatt 1 Quadratische Funktionen Arbeitsblatt 1 Spezielle quadratische Funktion Die Funktionsgleichung einer speziellen quadratischen Funktion hat die Form y = 3 x 2. Der dazugehörige Graph heißt Parabel. Bei einer

Mehr

Mathematik für Betriebswirte II (Analysis) 1. Klausur Sommersemester

Mathematik für Betriebswirte II (Analysis) 1. Klausur Sommersemester Mathematik für Betriebswirte II (Analysis). Klausur Sommersemester 04 5.07.04 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:................................................................... Vorname:....................................................................

Mehr

AUFGABENTEIL MODUL-ABSCHLUSSKLAUSUR ZUM B-MODUL NR THEORIE DER LEISTUNGSERSTELLUNG 17. SEPTEMBER 2009, UHR

AUFGABENTEIL MODUL-ABSCHLUSSKLAUSUR ZUM B-MODUL NR THEORIE DER LEISTUNGSERSTELLUNG 17. SEPTEMBER 2009, UHR FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT AUFGABENTEIL MODUL-ABSCHLUSSKLAUSUR ZUM B-MODUL NR. 31531 THEORIE DER LEISTUNGSERSTELLUNG TERMIN: PRÜFER: 17. SEPTEMBER 2009, 09 00 11 00 UHR PROF. DR. DR. H.C. G.

Mehr

Die Cobb-Douglas-Produktionsfunktion

Die Cobb-Douglas-Produktionsfunktion Universität Ulm 89069 Ulm Germany Dipl.-WiWi Michael Alpert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Übung 2 Die Cobb-Douglas-Produktionsfunktion

Mehr

5.5. Prüfungsaufgaben zur graphischen Integration und Differentiation

5.5. Prüfungsaufgaben zur graphischen Integration und Differentiation 5.5. Prüfungsaufgaben zur graphischen Integration und Differentiation Aufgabe : Verschiebung und Streckung trigonometrischer Funktionen (5) a) Bestimmen Sie die Periode p sowie die Nullstellen der Funktion

Mehr

Extrema multivariater Funktionen

Extrema multivariater Funktionen Extrema multivariater Funktionen Ist f (x ) ein Minimum (Maximum) einer stetig differenzierbaren skalaren Funktion f auf einer Umgebung U von x, so gilt grad f (x ) = (0,..., 0) t. Extrema multivariater

Mehr

Grundlagen der Leistungserstellung Teil 2

Grundlagen der Leistungserstellung Teil 2 Fernstudium Guide Grundlagen der Leistungserstellung Teil 2 Version vom 0.03.207 Dieses Werk ist urheberrechtlich geschützt. Alle Rechte vorbehalten. Fernstudium Guide 2008-207 Grundlagen Leistungserstellung

Mehr

Wirtschaftsmathematik - Übungen SS 2017

Wirtschaftsmathematik - Übungen SS 2017 Wirtschaftsmathematik - Übungen SS 017 Blatt 4: Funktionen von einer Variablen 1. Gegeben sind die Mengen M 1 = {0, 1,, 3, 4, 5, 6, 7, 8, 9} und M = { 1, 0, 1, } sowie die Zuordnungsvorschrift f : M 1

Mehr

1 Polynome III: Analysis

1 Polynome III: Analysis 1 Polynome III: Analysis Definition: Eine Eigenschaft A(x) gilt nahe bei a R, falls es ein δ > 0 gibt mit A(x) gilt für alle x (a δ, a + δ)\{a} =: U δ (a) Beispiele: x 2 5 nahe bei 0 (richtig). Allgemeiner:

Mehr

Einiges zu den Potenzfunktionen. Exponentialfunktionen

Einiges zu den Potenzfunktionen. Exponentialfunktionen Einiges zu den Potenzfunktionen Es sind zunächst zwei Arten der Potenzfunktionen zu unterscheiden. Erstens die eigentlichen Potenzfunktionen, bei denen die Variable x als Basis von Potenzen vorkommt. Diese

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 7 Anwendungen der Differentialrechnung 7.1 Maxima und Minima einer Funktion................. 141 7.2 Mittelwertsatz............................ 144 7.3 Kurvendiskussion..........................

Mehr

Was versteht man unter Konsumenten- und Produzentenrente? Zeigen Sie diese Größen in einem Preis-Mengen-Diagramm.

Was versteht man unter Konsumenten- und Produzentenrente? Zeigen Sie diese Größen in einem Preis-Mengen-Diagramm. Klausuraufgaben für das Mikro 1 Tutorium Sitzung 1 WS 03/04 Aufgabe 1 Was versteht man unter Konsumenten- und Produzentenrente? Zeigen Sie diese Größen in einem Preis-Mengen-Diagramm. WS 04/05 Aufgabe

Mehr

4. Anwendung der Differentialrechnung: Kurvendiskussion 4.1. Maxima und Minima einer Funktion.

4. Anwendung der Differentialrechnung: Kurvendiskussion 4.1. Maxima und Minima einer Funktion. 4. Anwendung der Differentialrechnung: Kurvendiskussion 4.1. Maxima und Minima einer Funktion. Definition 4.3. Es sei f : R D R eine auf D erklarte Funktion. Die Funktion f hat in a D eine globales oder

Mehr

9. Übungsblatt zur Vorlesung Mathematik I für Informatik

9. Übungsblatt zur Vorlesung Mathematik I für Informatik Fachbereich Mathematik Prof. Dr. Thomas Streicher Dr. Sven Herrmann Dipl.-Math. Susanne Pape 9. Übungsblatt zur Vorlesung Mathematik I für Informatik Wintersemester 2009/2010 8./9. Dezember 2009 Gruppenübung

Mehr

Arbeitsblatt 4: Kurvendiskussion - Von Skizzen zu Extremstellen-Bedingungen

Arbeitsblatt 4: Kurvendiskussion - Von Skizzen zu Extremstellen-Bedingungen Arbeitsblatt 4: Kurvendiskussion - Von Skizzen zu Etremstellen-Bedingungen Häufig sind Ableitungsfunktionsterme leichter zu handhaben als die Terme der Ausgangsfunktonen, weil sie niedrigere Eponenten

Mehr

Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker

Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker Übungsblatt Musterlösung Fachbereich Rechts- und Wirtschaftswissenschaften Wintersemester 06/7 Aufgabe (Definitionsbereiche) Bestimme

Mehr

Wirtschaftsmathematik - Übungen WS 2017/18

Wirtschaftsmathematik - Übungen WS 2017/18 Wirtschaftsmathematik - Übungen WS 17/18 Blatt 4: Funktionen von einer Variablen 1. Gegeben sind die Mengen M 1 = {, 1,, 3, 4, 5, 6, 7, 8, 9} und M = { 1,, 1, } sowie die Zuordnungsvorschrift f : M 1 æ

Mehr

Mathematik I Herbstsemester 2018 Kapitel 4: Anwendungen der Differentialrechnung

Mathematik I Herbstsemester 2018 Kapitel 4: Anwendungen der Differentialrechnung Mathematik I Herbstsemester 2018 Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 55 4. Anwendungen der Differentialrechnung Monotonie Krümmung Linearisierung einer Funktion Extremwerte

Mehr

Übung 5, Analytische Optimierung

Übung 5, Analytische Optimierung Übung 5, 5.7.2011 Analytische Optimierung Aufgabe 5.1 Bei der Herstellung von Konserven werden für Boden und Deckel bzw. für den Konservenmantel verschiedene Materialien verwendet, die g 1 = bzw. g 2 =

Mehr

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf.

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Arbeitsblätter zur Vergleichsklausur EF Arbeitsblatt I.1 Nullstellen Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Beachte den Satz: Ein Produkt wird null, wenn einer der

Mehr

Mathematik Semester 3 / Arbeitsblatt f (x) = x x 3 4 x. 5 x 3 20 x. x 2 1

Mathematik Semester 3 / Arbeitsblatt f (x) = x x 3 4 x. 5 x 3 20 x. x 2 1 9.2 Aufgaben Aufgabe 16.39 aus dem Buch. 1. f (x) = x4 + 1 x 3 + x 4. f (x) = x4 1 2 x 3 8 x 2. f (x) = x3 + 1 x 3 4 x 5. f (x) = x5 + 1 5 x 3 20 x 3. f (x) = 4 x2 x 2 + 1 6. f (x) = x2 2 x 2 7. f (x)

Mehr

1. Aufgabe Niederschlag Diagramm I

1. Aufgabe Niederschlag Diagramm I 1. Aufgabe Niederschlag Diagramm I a) Die Gesamtmenge entspricht der Fläche zwischen Graphen und x-achse. Diese kann durch entweder durch Kästchenzählen ermittelt werden oder durch ein Dreieck angenähert

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Wirtschatsmathematik ür die Betriebswirtschatslehre (B.Sc.) Sommersemester 017 Dr. rer. nat. habil. E-mail: adam-georg.balogh@h-da.de 1 Kurvendiskussion / Analyse von Funktionen Anwendung der Dierentialrechnung

Mehr

Aufgaben zum Aufstellen von Funktionen aus gegebenen Bedingungen

Aufgaben zum Aufstellen von Funktionen aus gegebenen Bedingungen Augaben zum Austellen von Funktionen aus gegebenen Bedingungen 1. Die Parabel Gp ist der Graph der quadratischen Funktion p(. Diese Parabel schneidet die x-achse im Punkt N(6/0). Ihr Scheitelpunkt S(/yS)

Mehr

bestimmt werden. Allein die Regel (5.4) würde wegen g(x) = 2, folglich erhalten wir den korrekten lim

bestimmt werden. Allein die Regel (5.4) würde wegen g(x) = 2, folglich erhalten wir den korrekten lim bestimmt werden. Allein die Regel (5.4) würde wegen f (x) lim x g (x) = lim 2e 2x = lim x e x x 2ex = 0 dengrenzwert0für(5.5)liefern.dasistaberfalsch,dennwegen lim 0 ist lim x g(x) = 2, folglich erhalten

Mehr

Abitur 2011 G8 Musterabitur Mathematik Infinitesimalrechnung

Abitur 2011 G8 Musterabitur Mathematik Infinitesimalrechnung Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 211 G8 Musterabitur Mathematik Infinitesimalrechnung I Teilaufgabe 1 (3 BE) Bestimmen Sie die Nullstellen der Funktion f : x (e x 2) (x 3 2x ) mit Definitionsbereich

Mehr

Pflichtteilaufgaben zu Funktionenkompetenz. Baden-Württemberg

Pflichtteilaufgaben zu Funktionenkompetenz. Baden-Württemberg Pflichtteilaufgaben zu Funktionenkompetenz Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com September 016 1 Übungsaufgaben: Ü1: Die Abbildung zeigt

Mehr

1.2 Weisen Sie rechnerisch nach, dass das Schaubild der Funktion mit 4P! bei 1 einen Sattelpunkt aufweist.

1.2 Weisen Sie rechnerisch nach, dass das Schaubild der Funktion mit 4P! bei 1 einen Sattelpunkt aufweist. Aufgabe A1 1.1 Erläutere anhand einer Skizze, ob das Integral 3P größer, kleiner oder gleich Null ist. 1.2 Für eine Funktion gilt: (1) 0 für 2 und 1 (2) 23 (3) 13 (4) 2 (5) 1 6 Welche Aussagen lassen sich

Mehr

Staatsexamen Herbst 2017 Differential- und Integralrechnung, Thema I

Staatsexamen Herbst 2017 Differential- und Integralrechnung, Thema I Staatsexamen Herbst 17 Differential- und Integralrechnung, Thema I 1. a) Die Aussage ist wahr! Sei s R der Reihenwert der Reihe k=1 Da a n = s n s n 1 für n, ist also b) Die Aussage ist falsch! a k, also

Mehr

Zusammenfassung der Kurvendiskussion

Zusammenfassung der Kurvendiskussion Zusammenfassung der Kurvendiskussion Diskussionspunkte 1 Größtmögliche Definitionsmenge D f 2 Symmetrieeigenschaften des Graphen G f 3 Nullstellen, Polstellen, Schnittpunkte mit der y-achse, Vielfachheit

Mehr

Differentialrechnung Taschenrechner Differenzialrechnung Üben Ermitteln von Funktionsgleichungen. Mathematik W15. Mag. Rainer Sickinger LMM, BR

Differentialrechnung Taschenrechner Differenzialrechnung Üben Ermitteln von Funktionsgleichungen. Mathematik W15. Mag. Rainer Sickinger LMM, BR Mathematik W15 Mag. Rainer Sickinger LMM, BR v 1 Mag. Rainer Sickinger Mathematik W15 1 / 27 Wendetangente Wir wissen: Grafisch betrachtet handelt es sich bei einem Wendepunkt um einen Punkt, an dem der

Mehr

streng monoton steigend. streng monoton fallend. Ist f eine in einem Intervall stetige und im Innern des Intervalls differenzierbare Funktion mit

streng monoton steigend. streng monoton fallend. Ist f eine in einem Intervall stetige und im Innern des Intervalls differenzierbare Funktion mit 3. Anwendungen ================================================================= 3.1 Monotonie Eine Funktion f heißt in ihrem Definitionsbereich D monoton steigend, wenn für alle x 1, x 2 D mit x 1 < x

Mehr

( 0 ( x) d) Die Funktionsgleichung der Funktion 1 lautet: f( Für x 2 = 0 : Wähle die Werte -1 und 1. Überprüfe x1 = 1,

( 0 ( x) d) Die Funktionsgleichung der Funktion 1 lautet: f( Für x 2 = 0 : Wähle die Werte -1 und 1. Überprüfe x1 = 1, Differentialrechnung IV (Wendepunkte) (Kap 7) (Haben Sie Probleme bei der Bearbeitung dieser Aufgaben versuchen Sie diese in Ihrer Kleingruppe mit Hilfe des Arbeitsbuchs Mathematik zu klären Führt dies

Mehr

Ertrag Kartoffeln (dt/ha) Einsatz Stickstoff

Ertrag Kartoffeln (dt/ha) Einsatz Stickstoff An der Erzeugung von Speisekartoffeln (Y) seien zwei variable Produktionsfaktoren (Düngemittel) Stickstoff (N) und Phosphor (P) beteiligt. Die Beziehung zwischen Faktoreinsatz (N und P) und der Produktmenge

Mehr

Mathematische Grundlagen der Ökonomie Übungsblatt 11

Mathematische Grundlagen der Ökonomie Übungsblatt 11 Mathematische Grundlagen der Ökonomie Übungsblatt 11 Abgabe Donnerstag 1. Januar, 10:15 in H3 3+4+8+5 = 0 Punkte Mit Lösungshinweisen zu einigen Aufgaben 43. Die Funktion f sei auf einem Intervall I R

Mehr

6 Die Bedeutung der Ableitung

6 Die Bedeutung der Ableitung 6 Die Bedeutung der Ableitung 24 6 Die Bedeutung der Ableitung Wir wollen in diesem Kapitel diskutieren, inwieweit man aus der Kenntnis der Ableitung Rückschlüsse über die Funktion f ziehen kann Zunächst

Mehr

Fit in Mathe. Mai Klassenstufe 11. Funktionsuntersuchungen. b) c) d) e)

Fit in Mathe. Mai Klassenstufe 11. Funktionsuntersuchungen. b) c) d) e) Thema a) Musterlösungen 1 Funktionsuntersuchungen b) c) d) e) Das Steigungsverhalten von Funktionsgraphen kann mit den Begriffen (1) (streng) monoton steigend / fallend. () rechtsgekrümmt oder konkav bzw.

Mehr

Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 11. und 12. Übung

Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 11. und 12. Übung TU Bergakademie Freiberg Vorl. Frau Prof. Dr. Swanhild Bernstein Übung Dipl.-Math. Daniel Lorenz Freiberg, WS 017/18 Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 11. und 1. Übung

Mehr

Vorkurs Mikroökonomik

Vorkurs Mikroökonomik Vorkurs Mikroökonomik Produktionstheorie Harald Wiese Universität Leipzig Harald Wiese (Universität Leipzig) Produktionstheorie 1 / 17 Gliederung Einführung Haushaltstheorie Unternehmenstheorie Produktionstheorie

Mehr

Einführung. Ablesen von einander zugeordneten Werten

Einführung. Ablesen von einander zugeordneten Werten Einführung Zusammenhänge zwischen Größen wie Temperatur, Geschwindigkeit, Lautstärke, Fahrstrecke, Preis, Einkommen, Steuer etc. werden mit beschrieben. Eine Zuordnung f, die jedem x A genau ein y B zuweist,

Mehr

Analysis: Klausur Analysis

Analysis: Klausur Analysis Analysis Klausur zu Ableitung, Extrem- und Wendepunkten, Interpretation von Graphen von Ableitungsfunktionen, Tangenten und Normalen (Bearbeitungszeit: 90 Minuten) Gymnasium J Alexander Schwarz www.mathe-aufgaben.com

Mehr

Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 2012 Mathematik

Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 2012 Mathematik Seite 1 von 1 Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 01 Mathematik 1. Aufgabenart Analysis. Aufgabenstellung Aufgabe 1: Untersuchung ganzrationaler Funktionen Aufgabe

Mehr

Höhere Mathematik I für Ingenieurinnen und Ingenieure Beispiele zur 11. Übung

Höhere Mathematik I für Ingenieurinnen und Ingenieure Beispiele zur 11. Übung TU Bergakademie Freiberg Vorl. Frau Prof. Dr. Swanhild Bernstein Übung Dipl.-Math. Daniel Lorenz Freiberg, 06. Dezember 06 Höhere Mathematik I für Ingenieurinnen und Ingenieure Beispiele zur. Übung In

Mehr

Arbeitsblätter Förderplan EF

Arbeitsblätter Förderplan EF Arbeitsblätter Förderplan EF I.1 Nullstellen bestimmen Lösungen I.2 Parabeln: Nullstellen, Scheitelpunkte,Transformationen Lösungen I.3 Graphen und Funktionsterme zuordnen Lösungen II.1 Transformationen

Mehr

Analysis 8.

Analysis 8. Analysis 8 www.schulmathe.npage.de Aufgaben Gegeben sind die Funktionen f a durch f a (x) = a x x + (x R x ; a R a ) a) Geben Sie die Koordinaten der Schnittpunkte der Graphen der Funktionen f a mit den

Mehr

1 Höhere Ableitungen 2. 2 Mittelwertsatz und Monotonie 3. 3 Konvexe und konkave Funktionen 5. 4 Lokale und globale Extremalstellen 7

1 Höhere Ableitungen 2. 2 Mittelwertsatz und Monotonie 3. 3 Konvexe und konkave Funktionen 5. 4 Lokale und globale Extremalstellen 7 Universität Basel 4 Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematik 1 Dr. Thomas Zehrt Kurvendiskussionen Inhaltsverzeichnis 1 Höhere Ableitungen 2 2 Mittelwertsatz und

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius Mittelpunktswinkel : Länge des Kreisbogens gilt für einen Kreissektor mit Fläche des Kreissektors Das Bogenmaß eines Winkels ist die Länge des

Mehr

Kurvendiskussion von Funktionsscharen

Kurvendiskussion von Funktionsscharen Kurvendiskussion von Funktionsscharen Die Untersuchung von Funktionsscharen unterscheidet sich nicht von der Untersuchung von normalen Funktionen. Einzig die Bestimmung der Ortskurven von Extremstellen

Mehr

Funktionen. Mathematik-Repetitorium

Funktionen. Mathematik-Repetitorium Funktionen 4.1 Funktionen einer reellen Veränderlichen 4.2 Eigenschaften von Funktionen 4.3 Die elementaren Funktionen 4.4 Grenzwerte von Funktionen, Stetigkeit Funktionen 1 4. Funktionen Funktionen 2

Mehr

Vorkurs Mathematik für Ingenieur Innen WS 2018/2019 Übung 7

Vorkurs Mathematik für Ingenieur Innen WS 2018/2019 Übung 7 Prof. Dr. J. Pannek Dynamics in Logistics Vorkurs Mathematik für Ingenieur Innen WS 018/019 Übung 7 Aufgabe 1 : Etremwerte Der Ellipse + y = 1 ist ein Rechteck mit Seitenlängen p, q, dessen Seiten parallel

Mehr

Vorkurs Mathematik für Ingenieure WS 2015/2016 Übung 6

Vorkurs Mathematik für Ingenieure WS 2015/2016 Übung 6 Prof. Dr. J. Pannek Dynamics in Logistics Vorkurs Mathematik für Ingenieure WS 015/016 Übung 6 Aufgabe 1 : Differentialrechnung (a Berechnen Sie die Ableitung nachstehender Funktionen an der Stelle 0 und

Mehr

Quadratische Funktionen

Quadratische Funktionen Quadratische Funktionen Mag. DI Rainer Sickinger HTL v 2 Mag. DI Rainer Sickinger Quadratische Funktionen 1 / 33 Definition Quadratische Funktion Definition (Quadratische Funktion) Sei D R und f : D R

Mehr

Tiefpunkt = relatives Minimum hinreichende Bedingung:

Tiefpunkt = relatives Minimum hinreichende Bedingung: R. Brinkmann http://brinkmann-du.de Seite 1 0.0.01 Kurvendiskussion Vorbetrachtungen Um den Graphen einer Funktion zeichnen und interpretieren zu können, ist es erforderlich einiges über markante Punkte

Mehr

Klausur Mathematik, 1. Oktober 2012, A

Klausur Mathematik, 1. Oktober 2012, A Klausur, Mathematik, Oktober 2012, Lösungen, A 1 Klausur Mathematik, 1. Oktober 2012, A Die Klausureinsicht ist Do, 8.11.2012 um 18:00 in MZG 8.136. Die Klausur ist mit 30 Punkten bestanden. Falls Sie

Mehr

ARBEITSBLATT 6-5. Kurvendiskussion

ARBEITSBLATT 6-5. Kurvendiskussion ARBEITSBLATT 6-5 Kurvendiskussion Die mathematische Untersuchung des Graphen einer Funktion heißt Kurvendiskussion. Die Differentialrechnung liefert dabei wichtige Dienste. Intuitive Erfassung der Begriffe

Mehr

(3D-)Extrema unter Nebenbedingungen. Problemstellung (lokale Optimierung)

(3D-)Extrema unter Nebenbedingungen. Problemstellung (lokale Optimierung) (3D-)Extrema unter Nebenbedingungen Wir beschränken uns wieder (meistens) auf Funktionen von zwei Variablen x, y. Bei drei oder mehr Variablen x 1,..., x n sind die gleichen Techniken analog anwendbar,

Mehr

stellt eine fallende Gerade dar mit Nullstelle bei x = 5/3. 1/3

stellt eine fallende Gerade dar mit Nullstelle bei x = 5/3. 1/3 Aufgabe 4) Gegeben sind die Funktionen f mit f (x)= 4 x2 + 2 x+ 4 und g mit 3 g ( x)= 4 x2 + 5 2 x 3 4. a) Weisen Sie rechnerisch nach, dass der Graph Gf folgende Eigenschaften besitzt: Der Scheitelpunkt

Mehr

Neoklassische Produktions- und Kostenfunktion Mathematische Beschreibung zu einer Modellabbildung mit Excel

Neoklassische Produktions- und Kostenfunktion Mathematische Beschreibung zu einer Modellabbildung mit Excel Neoklassische Produktions- und Kostenfunktion Mathematische Beschreibung zu einer Modellabbildung mit Excel Dieses Skript ist die allgemeine Basis eines Modells zur Simulation der ökonomischen Folgen technischer

Mehr

Aufgabe A2 1.1 Die Funktion ist gegeben durch 3P 21 mit Berechne die Gleichung der Tangente an das Schaubild von im Schnittpunkt mit der -Achse. 1.2 E

Aufgabe A2 1.1 Die Funktion ist gegeben durch 3P 21 mit Berechne die Gleichung der Tangente an das Schaubild von im Schnittpunkt mit der -Achse. 1.2 E Aufgabe A1 1.1 Erläutere anhand einer Skizze, ob das Integral 3P größer, kleiner oder gleich Null ist. 1.2 Für eine Funktion gilt: (1) 0 für 2 und 1 (2) 23 (3) 13 (4) 2 (5) 1 6 Welche Aussagen lassen sich

Mehr

Übungen zur Vorlesung Mathematik im Querschnitt Lösungsvorschlag

Übungen zur Vorlesung Mathematik im Querschnitt Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner WS 06/7 Blatt 4 5..06 Übungen zur Vorlesung Mathematik im Querschnitt Lösungsvorschlag 3. Die gegebene Polynomfunktion f : R R, f(x, y) =

Mehr

Gebrochen rationale Funktionen

Gebrochen rationale Funktionen Gebrochen rationale Funktionen Anmerkung: Auf dieser Seite wurden LaTeX Formeln mit MathJa eingebaut die nötigen Formatierungen werden über einen eternen Server (cdn.mathja.org) bezogen. Keine Garantie,

Mehr

Serie 4: Flächeninhalt und Integration

Serie 4: Flächeninhalt und Integration D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr. Ana Cannas Serie 4: Flächeninhalt und Integration Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom. und 4. Oktober.. Das Bild zeigt

Mehr

Exemplar für Prüfer/innen

Exemplar für Prüfer/innen Exemplar für Prüfer/innen Kompensationsprüfung zur standardisierten kompetenzorientierten schriftlichen Reifeprüfung AHS Juni 2015 Mathematik Kompensationsprüfung 14 Angabe für Prüfer/innen Hinweise zur

Mehr

Mathematik für Studierende der Biologie Wintersemester 2017/18. Grundlagentutorium 4 Lösungen

Mathematik für Studierende der Biologie Wintersemester 2017/18. Grundlagentutorium 4 Lösungen Mathematik für Studierende der Biologie Wintersemester 207/8 Grundlagentutorium 4 Lösungen Sebastian Groß Termin Mittwochs 5:45 7:45 Großer Hörsaal Biozentrum (B00.09) E-Mail gross@bio.lmu.de Sprechzeiten

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius gilt für einen Kreissektor mit Mittelpunktswinkel : Länge des Kreisbogens Fläche des Kreissektors = = 360 360 Das Bogenmaß eines Winkels ist

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius gilt für einen Kreissektor mit Mittelpunktswinkel : Länge des Kreisbogens Fläche des Kreissektors = 2 = 360 360 Das Bogenmaß eines Winkels ist

Mehr

SBP Mathe Grundkurs 2 # 0 by Clifford Wolf. SBP Mathe Grundkurs 2

SBP Mathe Grundkurs 2 # 0 by Clifford Wolf. SBP Mathe Grundkurs 2 SBP Mathe Grundkurs 2 # 0 by Clifford Wolf SBP Mathe Grundkurs 2 # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das

Mehr

Präsenzveranstaltung B-Modul Theorie der Leistungserstellung. Thomas Solga. Hagen, 17. Februar 2014

Präsenzveranstaltung B-Modul Theorie der Leistungserstellung. Thomas Solga. Hagen, 17. Februar 2014 Präsenzveranstaltung B-Modul Theorie der Leistungserstellung Thomas Solga Hagen, 17. Februar 2014 2014 FernUniversitän Hagen, Fakultät für Wirtschaftswissenschaft Das Werk ist urheberrechtlich geschützt.

Mehr

Check-out: Klausurvorbereitung Selbsteinschätzung

Check-out: Klausurvorbereitung Selbsteinschätzung Check-out: Klausurvorbereitung Selbsteinschätzung Checkliste Ganzrationale Funktionen. Ich kann zu einem Funktionsgraphen den Graphen seiner Ableitungsfunktion skizzieren.. Ich kann Extrempunkte von Graphen

Mehr

Die Cobb-Douglas-Produktionsfunktion

Die Cobb-Douglas-Produktionsfunktion Dipl.-WiWi Michael Alpert Wintersemester 2006/2007 Institut für Wirtschaftspolitik Helmholtzstr. 20, Raum E 03 Tel. 0731 50 24264 UNIVERSITÄT DOCENDO CURANDO ULM SCIENDO Fakultät für Mathematik und Wirtschaftswissenschaften

Mehr

Ableitungs- und Stammfunktion*

Ableitungs- und Stammfunktion* Ableitungs- und Stammfunktion* Aufgabennummer: 1_57 Aufgabentyp: Typ 1 T Typ Aufgabenformat: Multiple Choice ( aus 5) Grundkompetenz: AN 3.1 Es sei f eine Polynomfunktion und F eine ihrer Stammfunktionen.

Mehr