Lehrstuhl für Fluiddynamik und Strömungstechnik Prof. Dr.-Ing. W. Frank

Größe: px
Ab Seite anzeigen:

Download "Lehrstuhl für Fluiddynamik und Strömungstechnik Prof. Dr.-Ing. W. Frank"

Transkript

1 Lehrstuhl für Fluiddynmik und Strömungstechnik Prof. Dr.-Ing. W. Frnk 3. Hydro- und Aerodynmik 3. Stromfdentheorie Stromfdentheorie = näherungsweise eindimensionle Untersuchung von zwei- oder dreidimensionlen Strömungen Stromfden: Stromlinien bernden die Querschnitte A und A und bilden die sogennnte Stromröhre. Durch den Mntel der Stromröhre erfolgt kein Mssendurchtritt. Wird der Durchmesser der Stromröhre solnge zusmmengezogen, bis die Zustndsgrößen im Querschnitt A oder A durch einen einzigen Wert drstellbr sind (Grenzübergng: A, A 0), spricht mn von einem Stromfden. In einem Stromfden treten in einem Querschnitt (A, A ) jeweils nur ein Wert für p, c, ρ und T unter der Vorussetzung uf, dss die Änderungen dieser Zustndsgrößen in der Querrichtung sehr viel kleiner ls in der Längsrichtung usfllen. Diese Größen hängen dnn nur von der Bogenlänge s und gegebenenflls von der Zeit t b. 3.. Grundgleichungen der Stromfdentheorie. Kontinuitätsgleichung: D die Mntelfläche der Stromröhre us Stromlinien besteht, knn keine Msse durch diese Mntelfläche ustreten. Der Mssenstrom durch die Flächen A und A muss gleich sein. m = ρ c A = ρ c A = konst.

2 . Kräftegleichgewicht in Richtung des Stromfdens: Aus dem Kräftegleichgewicht n einem infinitesimlen Stromfdenelement in Richtung des Stromfdens folgt die Eulersche Gleichung längs des Stromfdens s dc c c p dz = + c = g dt t s ρ s ds wobei gilt: c = c(s, t); p = p(s, t); ρ = ρ(s, t) In der Eulerschen Gleichung wird ein ideles Fluid, d.h. ohne Zähigkeit, betrchtet. Somit ist die Reibungsfreiheit der Strömung vorusgesetzt! Unter der Vorussetzung sttionärer Strömung, d.h. = 0 und somit t sich die Gleichung zu d = s ds vereinfcht dc dp dz c + +g = 0 ds ρ ds ds Integrtion längs des Stromfdens von unter der Vorussetzung inkompressibler Strömung, d.h. ρ = konstnt, ergibt ρ ρ c + p+ρ g z = c + p +ρ g z = konst. s z g

3 Lösungen zu dem Aufgbenbltt A ufgbe Gegeben: h, H, d, g, p, ρ, D Gesucht: ) c, c, p, p, V b ) c, c, c 3, p, p, p 3, V c) Verluf von c und p bzw. c und p durch ds System Begriffe: - großer Behälter, konstnte Spiegelhöhe c freie Oberfläche, konstnter Außendruck p 0 = p - Wsser ρ = konst. - sttionär = 0 t - reibungsfrei Stromfdentheorie nwenden Bernoulli-Gleichung - Freistrhl, d.h. konstnter Druck der Umgebung p wird dem Fluid (hier: Wsser) ufgeprägt p = p bzw. p 3 = p 3

4 reibungsfrei Stromfdentheorie Verwirbelungen, reibungsbehftete Strömung Strömung nicht mehr eindimensionl Stromfdentheorie verliert Gültigkeit p = p 3 = p ) c, c, p, p,v B ernoulli 0 : p p g ρ ρ + ρ H + c = p + c p 0 0 = 0 c = g H ( vergleiche Toricellische Formel) Kontinuitätsgleichung (Mssenerhltung): m = konst. m = m ρ c A = ρ c A; ρ = konst.; A = A c = c = g H V d V = V = V = c A = π g H Bernoulli 0 : ρ p + ρ g H = p+ + ( ) p = p + ρ g h ρ c > 0 c ρ g H h p = p ρ g ( H h) p < p V

5 b) c, c, c 3, p, p, p 3, V B ernoulli 0 3 : ρ p g H p c = g H (Toricelli) + ρ = + c3 3 V D = π g H > V durch Anbringen des Diffusors wird der Volumenstrom erhöht K ontinuitätsgleichung: m = m = m =ρ c A =ρ c A =ρ c A ρ= konst.; A = A A3 D 3 A d c = c = c = g H > c = c B ernoulli 0 : ρ p + ρ g H = p + ρ g ( H h) + c D p = p + ρ g h ρ g H d > H durch Anbringen des Diffusors n gleicher Position höhere Geschwindigkeit p < p ; p < p durch Anbringen des Diffusors n gleicher Position niedrigerer Druck B ernoulli 0 : ρ p + ρ g H = p + c D p = p + ρ g H d < 0 p < p durch Anbringen des Diffusors n gleicher Position niedrigerer Druck 5

6 c) Verluf von c und p bzw. c und p durch ds System Berechnung des sttischen Druckverlufs und der Geschwindigkeit längs einer Stromlinie von 0 mittels Bernoulli- und Konti-Gleichung: p + ρ g H = p z + ρ c z pz = p + ρ g H z = 0( großer Behälter ) + ρ g z Berechnung des sttischen Druckverlufs und der Geschwindigkeit längs einer Stromlinie von mittels Bernoulli- und Konti-Gleichung: ρ ρ p+ ρg H h + c = p z + c z + ρgz ρ gh ρ c = ρgh p ρg H h + ρg H h = p z + ρgz p z = p ρ gz Berechnung des sttischen Druckverlufs und der Geschwindigkeit längs einer Stromlinie von 0 mittels Bernoulli- und Konti-Gleichung: p + ρ g H = p z + ρ c z pz = p + ρ g H z = 0( großer Behälter ) + ρ g z Berechnung des sttischen Druckverlufs und der Geschwindigkeit längs einer Stromlinie von mittels Bernoulli- und Konti-Gleichung: ρ ρ p + g H h + c = p z + c z + ρ gz ρ D p + ρ g h ρ g H D d ρgh ρ D c = ρ gh d d D p + ρgh p = ( z) + ρgz d D p( z) = p + ρgh ρgz d 6

7 Berechnung des sttischen Druckverlufs und der Geschwindigkeit längs einer Stromlinie von 3 :. Bernoulli-Gleichung: ρ ρ p + c = p x + c x D p + ρ g H D d ρ gh d D D ρ p + ρgh + ρgh p x c x = + d d ρ p( x) = p + ρgh c( x). Konti-Gleichung: π D x π d ρ c( x) = ρ c D gh d π D x D π d c( x) = gh d D c( x) = gh D x c(x) in p(x) eingesetzt: D p( x) = p + ρgh D x 7

8 p p + ρgh p0 = p = p = p0 = p 3 p = p + ρ g h H D = + ρ p p gh d ρ c = ρ gh ρ D c = ρgh d D = + ρ ρ p p gh gh d 0 3 s c D = = c c gh d c = c = c3 = gh c = c s 8

9 Aufgbe Gegeben: Meniskendifferenz h = 36 mm Dichte des Wssers ρ HO = 0 3 kg m -3 Rohrdurchmesser D = 00 mm Lufttempertur t = 6 C Umgebungsdruck p = 09 hp Normdichte der Luft ρ N =,93 kg m -3 (bei 0 C und 03 hp) Erdschwere g = 9,807 m s - Gesucht: c und m Vorrussetzungen: - reibungsfreie Strömung (keine Druckverluste) Stromfdentheorie nwenden Bernoulli-Gleichung - sttionäre Strömung = 0 t - Luft drf in der Düse ls inkompressibel betrchtet werden, d.h. ρ 0 = ρ z 9

10 Bernoulli 0 mit c 0 = 0; z 0 = z ; ρ 0 = ρ ; p 0 = p ρ0 p = p+ c (.) Hydrosttik m U-Rohr-Mnometer: p + ρ g h= p (.) H O mit (.) in (.) ρ 0 ρ g h c HO = (.3) idele Gsgleichung: p0 p0 pn p0 ρn TN = T0 ρ0 ρ = = = 0 ρ0 T 0 ρn TN T0 p (.) N mit (.) in (.3) p0 ρn TN ρho g h= c T p c = 0 ρho g h T 0 p N p 0 ρn N T N p 73,5K 0 C c =,6 m s t 03hP (.5). π m= ρ0 c A = ρ0 c D² (.6) mit (.) und (.5) in (.6). m = 0,8 kg s 0

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v Hydrodynamik Kontinuitätsgleichung A2, rho2, v2 A1, rho1, v1 Stromröhre Massenerhaltung: ρ } 1 v {{ 1 A } 1 = ρ } 2 v {{ 2 A } 2 m 1 inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms

Mehr

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und Univ.-Prof. Dr.-Ing. Wolfram Frank 05.10.2004 Lehrstuhl für Fluiddynamik und Strömungstechnik Aufgabe Name:... Vorname:... (Punkte) Matr.-Nr.:... HS I / HS II / IP / WI Aufg. 1)... Beurteilung:... Platz-Nr.:...

Mehr

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 3

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 3 Übungen zur Vorlesung Physiklische Chemie I Lösungsvorschlg zu Bltt 3 Prof. Dr. Norbert Hmpp 1. Aufgbe ) Die gegebene Verteilung besteht nur us diskreten Werten! Die durchgezogene Linie würde nur bei einer

Mehr

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 2 Wintersemester 2011/2012

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 2 Wintersemester 2011/2012 Prof. Dr. O. Junge, A. Bittrcher Zentrum Mthemtik - M3 Technische Universität München MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT Wintersemester / Tutorübungsufgben (3..-4..) Aufgbe T Seien R und α positiv. Die

Mehr

Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Spannungstensor

Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Spannungstensor Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Rang 2 Dyade }{{} σ, τ,... Spannungstensor Differential-Operatoren Nabla- / x Operator / y in kartesischen / Koordinaten

Mehr

Vorlesung STRÖMUNGSLEHRE Zusammenfassung

Vorlesung STRÖMUNGSLEHRE Zusammenfassung Lehrstuhl für Fluiddynamik und Strömungstechnik Vorlesung STRÖMUNGSLEHRE Zusammenfassung WS 008/009 Dr.-Ing. Jörg Franke Bewegung von Fluiden ( Flüssigkeiten und Gase) - Hydro- und Aerostatik > Druckverteilung

Mehr

IV. Strömungen eines idealen Fluids

IV. Strömungen eines idealen Fluids IV. Strömungen eines idealen Fluids Dieses Kapitel befasst sich mit einigen Lösungen des Systems von Gleichungen (III.8), (III.18) und (III.4) für die Bewegung eines idealen Fluids. Dabei wird angenommen,

Mehr

12. STAMMFUNKTIONEN UND DAS UNBESTIMMTE INTEGRAL

12. STAMMFUNKTIONEN UND DAS UNBESTIMMTE INTEGRAL 98 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Klausur Strömungsmechanik I (Bachelor) & Technische Strömungslehre (Diplom)

Klausur Strömungsmechanik I (Bachelor) & Technische Strömungslehre (Diplom) (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik I (Bachelor) & Technische Strömungslehre (iplom) 1. Aufgabe (10 Punkte) 09. 08. 2013 In einem mit einer Flüssigkeit der ichteρ 1 gefüllten zylindrischen

Mehr

Mathematik: Mag. Schmid Wolfgang & Lehrer/innenTeam ARBEITSBLATT 2-6 GEOMETRISCHE KÖRPER 1) DAS PRISMA

Mathematik: Mag. Schmid Wolfgang & Lehrer/innenTeam ARBEITSBLATT 2-6 GEOMETRISCHE KÖRPER 1) DAS PRISMA . Semester ARBEITSBLATT -6 GEOMETRISCHE KÖRPER 1) DAS PRISMA Definition: Prismen hben deckungsgleiche (kongruente), prllele und eckige Grund- und Deckflächen. Die Seitenknten sind lle gleich lng und zueinnder

Mehr

12. STAMMFUNKTIONEN UND DAS UNBESTIMMTE INTEGRAL

12. STAMMFUNKTIONEN UND DAS UNBESTIMMTE INTEGRAL 98 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Lehrstuhl für Fluiddynamik und Strömungstechnik Prof. Dr.-Ing. W. Frank Aufgabensammlung zur Vorlesung "Strömungslehre"

Lehrstuhl für Fluiddynamik und Strömungstechnik Prof. Dr.-Ing. W. Frank Aufgabensammlung zur Vorlesung Strömungslehre Lehrstuhl für Fluiddynamik und Strömungstechnik Prof. Dr.-Ing. W. Frank Aufgabensammlung zur Vorlesung "Strömungslehre" Lehrstuhl für Fluiddynamik und Strömungstechnik Prof. Dr.-Ing. W. Frank Übungen im

Mehr

Hydrostatik Mechanik von Fluiden im statischen Gleichgewicht. Fluide: Stoffe, die sich unter Einwirkung von Schubspannungen fortlaufend deformieren

Hydrostatik Mechanik von Fluiden im statischen Gleichgewicht. Fluide: Stoffe, die sich unter Einwirkung von Schubspannungen fortlaufend deformieren Hydrostatik Mechanik von Fluiden im statischen Gleichgewicht Fluide: Stoffe, die sich unter Einwirkung von Schubspannungen fortlaufend deformieren in ruhendem Fluid können keine tangentialen Spannungen

Mehr

Kompressible Strömungen

Kompressible Strömungen Kompressible Strömungen Problemstellungen: - Wie lassen sich Überschallströmungen realisieren? - Welche Windkanalgeometrie ist notwendig? - Thermodynamische Beziehungen in Überschallströmungen? - Unterschall

Mehr

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35 Kpitel 0 Integrtion Josef Leydold Mthemtik für VW WS 205/6 0 Integrtion / 35 Flächeninhlt Berechnen Sie die Inhlte der ngegebenen Flächen! f (x) = Fläche: A = f (x) = +x 2 Approximtion durch Treppenfunktion

Mehr

Analysis II (lehramtsbezogen): Rechnen mit Integralen

Analysis II (lehramtsbezogen): Rechnen mit Integralen Anlysis II (lehrmtsbezogen): Rechnen mit Integrlen A. Ppke. November Substitution Wir wiederholen kurz die grundlegende Methode der Substitution und wenden sie im Beispiel n. Stz. (Integrtion durch Substitution).

Mehr

Übungen zu Physik I für Physiker Serie 10 Musterlösungen

Übungen zu Physik I für Physiker Serie 10 Musterlösungen Übungen zu Physik I für Physiker Serie Musterlösungen Allgemeine Fragen. Was versteht man unter dem Magnuseffekt? Nennen Sie Ihnen bekannte Beispiele, wo man ihn beobachten kann. Als Magnus-Effekt wird

Mehr

1. Aufgabe: (ca. 16 % der Gesamtpunkte)

1. Aufgabe: (ca. 16 % der Gesamtpunkte) Institut für Mechnik Prof. Dr.-Ing. hbil. P. Betsch Prof. Dr.-Ing. hbil. Th. Seelig Prüfung in Festigkeitslehre 0. März 05. Aufgbe: (c. 6 % der Gesmtpunkte) ) Wie viele unbhängige Spnnungskomponenten gibt

Mehr

Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS

Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS Musterlösung der Präsenzufgben zu Mthemtik I für ET/IT und ITS WS / Bltt 6. Bestimmen Sie zu vorgegebenem Volumen V > die Dose (Zylinder mit der kleinsten Oberfläche und ds Gls (Zylinder ohne Deckel mit

Mehr

Hydrostatik Mechanik von Fluiden im statischen Gleichgewicht. Fluide: Stoffe, die sich unter Einwirkung von Schubspannungen fortlaufend deformieren

Hydrostatik Mechanik von Fluiden im statischen Gleichgewicht. Fluide: Stoffe, die sich unter Einwirkung von Schubspannungen fortlaufend deformieren Hydrostatik Mechanik von Fluiden im statischen Gleichgewicht Fluide: Stoffe, die sich unter Einwirkung von Schubspannungen fortlaufend deformieren in ruhendem Fluid können keine tangentialen Spannungen

Mehr

1. Querkraftschub in offenen Profilen

1. Querkraftschub in offenen Profilen 1. Querkrftschub in offenen Profilen 1.1 Schubfluss 1.2 Schubmittelpunkt Prof. Dr. Wndinger 5. Dünnwndige Profile TM 2 5.1-1 Geometrie: Die Profilkoordinte s wird entlng der Profilmittellinie gemessen.

Mehr

15 Eindimensionale Strömungen

15 Eindimensionale Strömungen 97 Durch Druckunterschiede entstehen Strömungen, die sich auf unterschiedliche Weise beschreiben lassen. Bei der Lagrange schen oder materiellen Beschreibung betrachtet man das einelne Fluidteilchen, das

Mehr

Die Brücke ins Studium. Vorkurs Physik. Dr. Oliver Sternal Dr. Nils-Ole Walliser September 2016

Die Brücke ins Studium. Vorkurs Physik. Dr. Oliver Sternal Dr. Nils-Ole Walliser September 2016 Die Brücke ins Studium Vorkurs Physik Dr. Oliver Sternal Dr. Nils-Ole Walliser 19.-23. September 2016 2. Fluidmechanik 2. Fluidmechanik 2.1 Fluidstatik 2. Fluidmechanik 2.1 Fluidstatik 2.1.1 Druck in ruhenden

Mehr

Uneigentliche Riemann-Integrale

Uneigentliche Riemann-Integrale Uneigentliche iemnn-integrle Zweck dieses Abschnitts ist es, die Vorussetzungen zu lockern, die wir n die Funktion f : [, b] bei der Einführung des iemnn-integrls gestellt hben. Diese Vorussetzungen wren:

Mehr

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x Wir substituieren x x(t) r sin(t), t [ π, π ]. Dnn ist x (t) r cos(t), lso r x dx π π r π r r sin (t)r cos(t) dt π cos (t) cos(t) dt r π π cos (t) dt Wir integrieren cos mittels prtieller Integrtion: Sei

Mehr

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2 Zum Stz von Tylor Klus-R. Loeffler Inhltsverzeichnis 1 Der verllgemeinerte Stz von Rolle 1 2 Der Stz von Tylor 2 3 Folgerungen, Anwendungen und Gegenbeispiele 4 3.1 Jede gnzrtionle Funktion ist ihr eigenes

Mehr

Klausur Strömungslehre

Klausur Strömungslehre ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre 10. 3. 2005 1. Aufgabe (6 Punkte) Ein Heißluftballon mit ideal schlaffer Hülle hat beim Start ein Luftvolumen V 0. Während er in die Atmosphäre

Mehr

Aufgabe 3.1. Aufgabe 3.2 Man berechne den Schwerpunkt der nebenstehenden Platte aus homogenem Material mit Hilfe der Ergebnisse aus Aufgabe

Aufgabe 3.1. Aufgabe 3.2 Man berechne den Schwerpunkt der nebenstehenden Platte aus homogenem Material mit Hilfe der Ergebnisse aus Aufgabe Institut für ngewndte und Eperimentelle Mechnik Technische Mechnik I ZÜ 3.1 ufgbe 3.1 Bestimmen Sie mit Hilfe der entsprechenden Guldin schen Regel die Höhe der Schwerpunkte von homogenen Blechstücken,

Mehr

Anwendungen der Integralrechnung

Anwendungen der Integralrechnung Anwendungen der Integrlrechnung 8. Flächeninhlt und Flächenschwerpunkt............... 4 8. Kurvenlänge............................. 7 8. Rottionskörper........................... 9 8.3 Whrscheinlichkeitsverteilungen

Mehr

Strömungsmechanik. Eine kompakte Einführung für Physiker und Ingenieure. Hendrik Kuhlmann. 2., aktualisierte Auflage

Strömungsmechanik. Eine kompakte Einführung für Physiker und Ingenieure. Hendrik Kuhlmann. 2., aktualisierte Auflage Strömungsmechanik Eine kompakte Einführung für Physiker und Ingenieure 2., aktualisierte Auflage Hendrik Kuhlmann 4.3 Anwendungen der Bernoulli-Gleichung z p u g x Abb. 4.4: Stromlinien um einen homogen

Mehr

Dispersion, nicht-lineare Effekte, Solitonen

Dispersion, nicht-lineare Effekte, Solitonen Dispersion, nicht-lineare Effekte, Solitonen Als Beispiel für Dispersion und Effekte aufgrund von Nichtlinearität verwenden wir Oberflächenwellen auf Wasser. An der Wasseroberfläche wirken Kräfte aufgrund

Mehr

Einführung in die Strömungsmechanik

Einführung in die Strömungsmechanik Einführung in die Strömungsmechanik Rolf Radespiel Fluideigenschaften Grundlegende Prinzipien und Gleichungen Profile Windkanal und Druckmessungen BRAUNSCHWEIG, 5. JUNI 2002 Was versteht man unter Strömungsmechanik?

Mehr

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen.

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen. Trnsformtionsstz von Sebstin üller Integrtion über Normlgebiete Allgemein knn mn im R n ein Normlgebiet wie folgt definieren: G : { R n 1 b, ϕ 1 ( 1 ) ψ 1 ( 1 ), ϕ ( 1, ) 3 ψ ( 1, ),... ϕ n 1 ( 1,...,

Mehr

Lösungsvorschläge zum 9. Übungsblatt.

Lösungsvorschläge zum 9. Übungsblatt. Übung zur Anlysis II SS 1 Lösungsvorschläge zum 9. Übungsbltt. Aufgbe 33 () A : {(x, y) R : x [ 1, 1] und y oder x und y [ 1, 1]}. (b) A : {(x, y) R : x < y < 1 + x }. (c) A : {(x, y) R : x < y < 1 + x

Mehr

Beispiele: cos(x) dx = sin(x) + c (1) e t dt = e t + c (2)

Beispiele: cos(x) dx = sin(x) + c (1) e t dt = e t + c (2) . Stmmfunktion Definition Stmmfunktion: Gegeen sei eine Funktion f(). Gesucht ist eine Funktion F (), so dss d = f(). Die Funktion F() heisst Stmmfunktion. Schreiweise: F () = f()d. Mn spricht uch vom

Mehr

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( )

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( ) 4. Der Huptstz der Infinitesimlrechnung Huptstz (. orm) I. Newton (64-77), G.. Leiniz (646-76) ür jede im Intervll [,] stetige unktion f sei ( ) = f ( t) dt sogennnte Integrlfunktion dnn gilt: Die Integrlfunktion

Mehr

Tag der Mathematik 2016

Tag der Mathematik 2016 Gruppenwettbewerb Einzelwettbewerb Mthemtische Hürden Aufgben mit en Aufgbe G mit Der römische Brunnen Aufsteigt der Strhl und fllend gießt Er voll der Mrmorschle Rund, Die, sich verschleiernd, überfließt

Mehr

10 Anwendungen der Integralrechnung

10 Anwendungen der Integralrechnung 9 nwendungen der Integrlrechnung Der Inhlt von 9 wren die verschiedenen Verfhren zur Berechnung eines Integrls Der Inhlt von sind die verschiedenen Bedeutungen, die ein Integrl hen knn Die Integrlrechnung

Mehr

Leibniz Universität Hannover Institut für Turbomaschinen und Fluid-Dynamik Prof. Dr.-Ing. J. Seume. Klausur Herbst Strömungsmechanik I

Leibniz Universität Hannover Institut für Turbomaschinen und Fluid-Dynamik Prof. Dr.-Ing. J. Seume. Klausur Herbst Strömungsmechanik I Leibniz Universität Hannover Institut für Turbomaschinen und Fluid-Dynamik Prof. Dr.-Ing. J. Seume Klausur Herbst 008 Strömungsmechanik I Bearbeitungsdauer: 90 min zugelassene Hilfsmittel: - Taschenrechner

Mehr

1. Stegreifaufgabe aus der Physik Lösungshinweise

1. Stegreifaufgabe aus der Physik Lösungshinweise . Stegreifufgbe us der Physik Lösungshinweise Gruppe A Aufgbe Ds.Newtonsche Gesetz lässt sich zum Beispiel so formulieren: Wirkt uf einen Körper keine Krft (oder ist die Summe ller Kräfte null) so bleibt

Mehr

2. Mehrteilige ebene Tragwerke

2. Mehrteilige ebene Tragwerke Mehrteilige ebene Trgwerke bestehen us mehreren gelenkig miteinnder verbundenen Teiltrgwerken. Zusätzlich zu den Lgerrektionen müssen die Kräfte in den Gelenken bestimmt werden. Prof. Dr. Wndinger 3. Trgwerksnlyse

Mehr

Kapitel 2. Schwerpunkt

Kapitel 2. Schwerpunkt Kpitel Schwepunkt Schwepunkt Volumenschwepunkt Fü einen Köpe mit dem Volumen V emittelt mn die Koodinten des Schwepunktes S (Volumenmittelpunkt) us S dv dv z S S z S dv dv z dv dv z S S S Flächenschwepunkt

Mehr

Kurvenintegrale. 17. Juli 2006 (Korrigierte 2. Version) 1 Kurvenintegrale 1. Art (d.h. f ist Zahl, kein Vektor)

Kurvenintegrale. 17. Juli 2006 (Korrigierte 2. Version) 1 Kurvenintegrale 1. Art (d.h. f ist Zahl, kein Vektor) Kurvenintegrle Christin Mosch, Theoretische Chemie, Universität Ulm, christin.mosch@uni-ulm.de 7. Juli 26 (Korrigierte 2. Version Kurvenintegrle. Art (d.h. f ist Zhl, kein Vektor Bei Kurvenintegrlen. Art

Mehr

Klausur Strömungsmechanik 1 Frühjahr März 2013, Beginn 15:00 Uhr

Klausur Strömungsmechanik 1 Frühjahr März 2013, Beginn 15:00 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Klausur Strömungsmechanik 1 Frühjahr 013 06. März 013, Beginn 15:00 Uhr Taschenrechner (nicht programmierbar) TFD-Formelsammlung (ohne handschriftliche

Mehr

Parameterabhängige uneigentliche Integrale.

Parameterabhängige uneigentliche Integrale. Kpitel 9: Integrtion Prmeterbhängige uneigentliche Integrle. F(x) := Beispiel: Die Gmm-Funktion: Γ(x) := Definition: Ds uneigentliche Integrl für x I. e t t x 1 dt. für x I heißt gleichmäßig konvergent,

Mehr

Exponential- und Logarithmusfunktion

Exponential- und Logarithmusfunktion Mthemtik I und II für Ingenieure (IAM) Version.3/..003.0.5 Eponentil- und Logrithmusfunktion Definition.0.0: Sei +, dnn ist die llgemeine Form einer Eponentilfunktion f: + gegeben durch die Funktionsgleichung

Mehr

Geodäten. Mathias Michaelis. 28. Januar 2004

Geodäten. Mathias Michaelis. 28. Januar 2004 Geodäten Mthis Michelis 28. Jnur 2004 1 Vektorfelder Definition 1.1 Sei S 3 eine reguläre Fläche. Ein Vektorfeld uf S ist eine Abbildung v : S 3 so, dss v(p) T n S für lle p S. Ein Vektorfeld ordnet lso

Mehr

Quadratische Funktionen

Quadratische Funktionen Qudrtische Funktionen Die Scheitelpunktform ist eine spezielle Drstellungsform von qudrtischen Funktionen, nhnd der viele geometrische Eigenschften des Funktionsgrphen bgelesen werden können. Abbildung

Mehr

Chemisches Gleichgewicht: Dissoziation von N 2 O 4

Chemisches Gleichgewicht: Dissoziation von N 2 O 4 Stnd: 3/11 I.6.1 Chemisches Gleichgewicht: Dissozition von N O 4 Ziel des Versuches ist die Anwendung des Mssenwirkungsgesetzes uf ds Dissozitionsgleichgewicht von N O 4. Aus der emerturbhängigkeit der

Mehr

Volumen von Rotationskörpern, Bogenlänge und Mantelfläche

Volumen von Rotationskörpern, Bogenlänge und Mantelfläche Modul Integle 3 Volumen von Rottionsköpen, Bogenlänge und Mntelfläche In diesem Modul geht es um einige spezielle Anwendungen de Integlechnung, und Volumin, Längen und Flächen zu estimmen. Fngen wi mit

Mehr

3.3 Biegelinie. Aufgaben

3.3 Biegelinie. Aufgaben Technische Mechnik 2 3.3-1 Prof. Dr. Wndinger ufgbe 1 3.3 iegelinie ufgben Der bgebildete Krgblken mit der konstnten iegesteifigkeit EI y wird m freien Ende durch ds Moment M belstet. Ermitteln Sie die

Mehr

8 Integralrechnung. 8.1 Das Riemann-Integral

8 Integralrechnung. 8.1 Das Riemann-Integral 8 Integrlrechnung Der Integrlbegriff ist wie der Ableitungsbegriff motiviert durch die physiklische Beschreibung von Bewegungsbläufen (Geschwindigkeit, Beschleunigung). Er ist u.. uch von Bedeutung bei

Mehr

Crashkurs - Integration

Crashkurs - Integration Crshkurs - Integrtion emerkung. Wir setzen hier elementre Kenntnisse des Differenzierens sowie der Produktregel, Quotientenregel und Kettenregel vorus (diese werden später in der VO noch usführlich erklärt).

Mehr

Heterogenes chemisches Gleichgewicht

Heterogenes chemisches Gleichgewicht Heterogenes chemisches Gleichgewicht 1 Ziel des Versuches: Es ist ds Mssenwirkungsgesetz uf ds Zersetzungsgleichgewicht eines Nickel-Hexmmin- Komplexes nzuwenden. Aus der Temperturbhängigkeit der Gleichgewichtskonstnten

Mehr

Momentaufnahme Langzeitaufnahme Kurzzeitaufnahme. Vektorbild Stromlinienbild gerichtetes Stromlinienbild

Momentaufnahme Langzeitaufnahme Kurzzeitaufnahme. Vektorbild Stromlinienbild gerichtetes Stromlinienbild Nur für Lehrzwecke Siehe www.tfh-berlin.de/emr/rechtliche Hinweise 006 Darstellung von Teilchenbewegungen SL/Krz Momentaufnahme Langzeitaufnahme Kurzzeitaufnahme Vektorbild Stromlinienbild gerichtetes

Mehr

PC-Übung Nr.2 vom

PC-Übung Nr.2 vom PC-Übung Nr. vo 17.1.8 Sebstin Meiss 31. Oktober 9 1. Ds idele Gs Ein Tucher it eine Lungenvoluen von 6 L tet in 3 Wssertiefe Pressluft unter Ugebungsdruck ein T = 4 C = const.. Auf welches Voluen üsste

Mehr

MC-Serie 12 - Integrationstechniken

MC-Serie 12 - Integrationstechniken Anlysis D-BAUG Dr. Meike Akveld HS 15 MC-Serie 1 - Integrtionstechniken 1. Die Formel f(x) dx = xf(x) xf (x) dx i) ist im Allgemeinen flsch. ii) folgt us der Sustitutionsregel. iii) folgt us dem Huptstz

Mehr

Analysis I. Partielle Integration. f (t)g(t)dt =

Analysis I. Partielle Integration. f (t)g(t)dt = Prof. Dr. H. Brenner Osnbrück WS 3/4 Anlysis I Vorlesung 5 Wir besprechen nun die wesentlichen Rechenregeln, mit denen mn Stmmfunktionen finden bzw. bestimmte Integrle berechnen knn. Sie beruhen uf Ableitungsregeln.

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mthemtik und Nturwissenschften Fchrichtung Mthemtik, Institut für Numerische Mthemtik GRUNDLAGEN MATHEMATIK 5. Integrlrechnung Prof. Dr. Gunr Mtthies Wintersemester 2015/16 G. Mtthies Grundlgen Mthemtik

Mehr

Gasdynamik Die Gasdynamik beschreibt kompressible Strömungen, d.h. Strömungen mit Dichteänderungen:

Gasdynamik Die Gasdynamik beschreibt kompressible Strömungen, d.h. Strömungen mit Dichteänderungen: Gasdynamik Die Gasdynamik beschreibt kompressible Strömungen, d.h. Strömungen mit Dichteänderungen: ρ ρ 0; t x 0;etc. Als Unterscheidungskriterium zwischen inkompressibel und kompressibel wird die Machzahl

Mehr

9.Vorlesung EP WS2009/10

9.Vorlesung EP WS2009/10 9.Vorlesung EP WS2009/10 I. Mechanik 5. Mechanische Eigenschaften von Stoffen a) Deformation von Festkörpern b) Hydrostatik, Aerostatik c) Oberflächenspannung und Kapillarität 6. Hydro- und Aerodynamik

Mehr

Ergänzungsübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14)

Ergänzungsübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14) Ergänzungsübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14) Prof. W. Meyer Übungsgruppenleiter: A. Berlin & J. Herick (NB 2/28) Ergänzung J Hydrodynamik In der Hydrodynamik beschreibt man die

Mehr

Tag der Mathematik 2011

Tag der Mathematik 2011 Zentrum für Mthemtik Tg der Mthemtik 0 Gruppenwettbewerb Einzelwettbewerb Mthemtische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden.

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. Simone Wrzel Mx Lein Husufgben 1. Flächeninhlte Teil 1 TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik Mthemtik 4 für Physik Anlysis 3 Wintersemester 9/1 Lösungsbltt 1.1.9 Wie gross ist der Flächeninhlt

Mehr

Parameterabhängige Integrale, Kurven, Kurvenintegrale Vorlesung

Parameterabhängige Integrale, Kurven, Kurvenintegrale Vorlesung Prmeterbhängige Integrle, Kurven, Kurvenintegrle Vorlesung Mrcus Jung 2.9.21 Inhltsverzeichnis Inhltsverzeichnis 1 Einführung 3 2 Eigenschften Prmeterbhängiger Integrle 3 2.1 Stetigkeit....................................

Mehr

8.4 Integrationsmethoden

8.4 Integrationsmethoden 8.4 Integrtionsmethoden 33 8.4 Integrtionsmethoden Die Integrtion von Funktionen erweist sich in prktischen Fällen oftmls schwieriger ls die Differenzition. Während sich ds Differenzieren durch Anwendung

Mehr

Elektrochemische Kinetik. FU Berlin Constanze Donner / Ludwig Pohlmann

Elektrochemische Kinetik. FU Berlin Constanze Donner / Ludwig Pohlmann Elektrochemische Kinetik FU Berlin Constnze Donner / Ludwig Pohlmnn 21 1 Trnsportprozesse Trnsportprozesse werden geschwindigkeitsbestimmend! Es tritt immer dnn uf, wenn der Ldungsdurchtritt sehr schnell

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 8. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 8. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmnn SS Höhere Mthemtik II für die Fchrichtung Informtik Lösungsvorschläge zum 8. Übungsbltt Aufgbe 9 erechnen

Mehr

Hydrostatik. Im Wasser schwimmender Körper Februar Einleitung Aufgabenstellung Lösungsweg Zusammenfassung

Hydrostatik. Im Wasser schwimmender Körper Februar Einleitung Aufgabenstellung Lösungsweg Zusammenfassung Im Wasser schwimmender Körper 16. Februar 2012 Inhaltsverzeichnis 1 Einleitung 2 Aufgabenstellung 3 Lösungsweg 4 Zusammenfassung Hydrostatisches Grundgesetz Gesetze/Gleichungen: hydrostatisches Grundgesetz

Mehr

10.3 Statische Momente, Schwerpunkte und Trägheitsmomente

10.3 Statische Momente, Schwerpunkte und Trägheitsmomente 1.3 Sttische Momente, Schwerpunkte und Trägheitsmomente Sttisches Moment M g eines Mssenpunktes P (der Msse m) bezüglich einer Gerden g: M g := ml Msse Hebelrm l Abstnd von P zu g g 9 P l Bei n Mssenpunkten

Mehr

3. Seminar Statistik

3. Seminar Statistik Sndr Schlick Seite.Seminr05.doc. Seminr Sttistik 0 Kurztest 5 Präsenttion diskrete Verteilungen Puse 0 Üungen diskrete Verteilungen 5 Präsenttion stetige Verteilungen 0 Üungen stetige Verteilungen Husufgen:

Mehr

4.1 Ebene gerade Balken. Aufgaben

4.1 Ebene gerade Balken. Aufgaben Technische Mechnik 1 4.1-1 Prof. r. Wndinger ufgbe 1 4.1 bene gerde lken ufgben uf dem bgebildeten Sprungbrett steht eine Person mit dem Gewicht G. ) estimmen Sie die Lgerkräfte. b) rmitteln Sie den Verluf

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Darstellung von Ebenen

Darstellung von Ebenen Drstellung von Ebenen. Ebenengleichung in Prmeterform: Sei E eine Ebene. Dnn lässt sich die Ebene drstellen durch eine Gleichung der Form p u x = p + r v u + s v (r, s R). p u v Der Vektor p heißt Stützvektor

Mehr

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Krlsruher Institut für Technologie KIT SS 3 Institut für Anlysis 943 Prof Dr Tobis Lmm Dr Ptrick Breuning Höhere Mthemtik II für die Fchrichtung Physik 3 Übungsbltt Aufgbe Sei K ein Kreis im R vom Rdius

Mehr

Mathematik III. Vorlesung 85. Riemannsche Mannigfaltigkeiten

Mathematik III. Vorlesung 85. Riemannsche Mannigfaltigkeiten Prof Dr H Brenner Osnbrück WS 2010/2011 Mthemtik III Vorlesung 85 Riemnnsche Mnnigfltigkeiten Georg Friedrich Bernhrd Riemnn (1826-1866) Die Kugeloberfläche einer Kugel mit Rdius r besitzt den Flächeninhlt

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Bden-Württemberg: Abitur 014 Whlteil A www.mthe-ufgben.com Huptprüfung Abiturprüfung 014 (ohne CAS) Bden-Württemberg Whlteil Anlysis Hilfsmittel: GTR und Formelsmmlung llgemeinbildende Gymnsien Alexnder

Mehr

Aufgaben zur Analytischen Mechanik SS 2013 Blatt 10 - Lösungen. Aufgabe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte)

Aufgaben zur Analytischen Mechanik SS 2013 Blatt 10 - Lösungen. Aufgabe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte) Aufgben zur Anlytischen Mechnik SS 013 Bltt 10 - en Aufgbe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte Bestimmen Sie Eigenwerte λ 1 und λ sowie die Eigenvektoren v 1 und v der folgenden Mtrix:

Mehr

Aufgabe 30: Periheldrehung

Aufgabe 30: Periheldrehung Aufge 30: Periheldrehung Auf einen Plneten soll zusätzlich zum Grvittionspotentil ds folgende Potentil einwirken U z = η r. (1 Im Folgenden sollen eene Polrkoordinten verwendet werden. Ds können wir mchen,

Mehr

Langzeitverhalten von ODE Lösungen

Langzeitverhalten von ODE Lösungen Euler Verfhren für Systeme von ODEs Bemerkung zum Lngzeitverhlten Häufig ist von Interesse (z.b. in der Klimvorhersge), wie sich Lösungen y(t) der ODE ẏ = F (y) für sehr grosse t qulittiv verhlten, und

Mehr

Versuch D4: Volumenstrommessung

Versuch D4: Volumenstrommessung Versuch D4: Volumenstrommessung 1 Einführung und Grundlagen Bei technischen Prozessabläufen ist die Prozessüberwachung von zentraler Bedeutung für den korrekten Ablauf und für die Sicherheitstechnik. Sollen

Mehr

9.6 Parameterabhängige Integrale

9.6 Parameterabhängige Integrale Kpitel 9: Integrtion 9.6 Prmeterbhängige Integrle Beispiel: Die Gmm-Funktion Γ(x) := f(x, t)dt = e t t x 1 dt. Zunächst: Prmeterbhängige eigentliche Integrle. Sei f : I [, b] R, I R, so dss f für festes

Mehr

Physik I Mechanik und Thermodynamik

Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik Einführung:. Was ist Physik?. Experiment - Modell - Theorie.3 Geschichte der Physik.4 Physik und andere Wissenschaften.5 Maßsysteme.6 Messfehler und Messgenauigkeit

Mehr

Exponentialgleichungen 70 Exponentialgleichungen mit Ergebnissen und ausführlichen Lösungsweg

Exponentialgleichungen 70 Exponentialgleichungen mit Ergebnissen und ausführlichen Lösungsweg Übungen zum Kurs Eponentilgleichungen Eponentilgleichungen 70 Eponentilgleichungen mit Ergebnissen und usführlichen Lösungsweg 7.technisch verbesserte Auflge vom.09.007 (Sonderzeichen wurden teilweise

Mehr

Bernoulligleichung. umax. Bernoulligleichung. Stromfadenvorstellung. Bild 1: Stromfaden als Sonderform der Stromröhre

Bernoulligleichung. umax. Bernoulligleichung. Stromfadenvorstellung. Bild 1: Stromfaden als Sonderform der Stromröhre Bernoulligleichung 1 Bernoulligleichung Stromfadenvorstellung Bild 1: Stromfaden als Sonderform der Stromröhre Im Arbeitsblatt Kontinuitätsgleichung wurde die Stromröhre eingeführt. Sie ist ein Bilanzgebiet

Mehr

2. Flächenberechnungen

2. Flächenberechnungen Anlysis Integrlrechnung. Flächenberechnungen.. Die Flächenfunktion ) Flächenfunktionen ufzeichnen Skizziere zur gegebenen Funktion diejenige Funktion, welche die Fläche unterhlb der Funktionskurve misst.

Mehr

6. Integration 6.1 Das Riemann-Integral

6. Integration 6.1 Das Riemann-Integral 6. Integrtion 6. Ds Riemnn-Integrl 6. Integrtion 6. Ds Riemnn-Integrl Mthemtik für Chemiker 6. Integrtion 6. Ds Riemnn-Integrl Flächenberechnung: Problemstellung und Lösungsidee Sei f : [, b] [0, ) eine

Mehr

Differenzial- und Integralrechnung III

Differenzial- und Integralrechnung III Differenzil- und Integrlrechnung III Riner Huser April 2012 1 Einleitung 1.1 Polynome und Potenzfunktionen Die Polynome oder Polynomfunktionen lssen sich durch die endliche Anzhl von n+1 Prmetern i R in

Mehr

Musterlösungen (ohne Gewähr) Aufgabe 1 ( 7 Punkte) Geben Sie die Koordinaten des Flächenschwerpunktes des dargestellten Querschnitts an!

Musterlösungen (ohne Gewähr) Aufgabe 1 ( 7 Punkte) Geben Sie die Koordinaten des Flächenschwerpunktes des dargestellten Querschnitts an! Seite 1/15 Aufgbe 1 ( 7 Punkte) Geben Sie die Koordinten des lächenschwerpunktes des drgestellten Querschnitts n! 2 Gegeben:. 4 ΣA i = y 2 x Σx i A i = x s = Σy i A i = y s = ΣA i = 8 2 Σx i A i = 13 3

Mehr

8 Variationsprobleme. 8.1 Einführung. 8.2 Klassische Beispiele 86 8 VARIATIONSPROBLEME

8 Variationsprobleme. 8.1 Einführung. 8.2 Klassische Beispiele 86 8 VARIATIONSPROBLEME 86 8 VARIATIONSPROBLEME 8 Vritionsprobleme 8.1 Einführung In der Vritionsrechnung werden Funktionen gesucht, die gewissen Funktionlen einen Extremwert zuordnen (Minimumproblem). Wir betrchten hier Vritionsprobleme,

Mehr

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 8

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 8 Mthemtik für Wirtschftswissenschftler im WS /3 Lösunen zu den Übunsufben Bltt 8 Aufbe 3 Berechnen Sie die folenden Interle durch prtielle Intertion. ) c) e d. (Hinweis: Interieren Sie zweiml prtiell).

Mehr

Pyramidenvolumen. 6 a2. 9 = a

Pyramidenvolumen. 6 a2. 9 = a Prmidenvolumen 1 Die Ecken einer dreiseitigen Prmide hben die Koordinten (0 0 0), ( 0 0), (0 0) und (0 0 ) mit > 0, H ist der Mittelpunkt der trecke [] lle Ergebnisse ls möglichst einfche Terme mit der

Mehr

Zwei Kreise im gleichseitigen Dreieck

Zwei Kreise im gleichseitigen Dreieck -. ein Aufgbe us der pnischen Tempelgeometrie 3. August 006 Gegeben sei ds gleichseitige Dreieck ABC mit der Seitenlänge. Auf der öhenlinie h c = CD befinden sich die Mittelpunkte der Kreise k 1 und k.

Mehr

Kapitel 13. Taylorentwicklung Motivation

Kapitel 13. Taylorentwicklung Motivation Kpitel 13 Tylorentwicklung 13.1 Motivtion Sei D R offen. Sie erinnern sich: Eine in D stetig differenzierbre Funktion f : D R wird durch die linere Funktion g(x) = f() + f ()(x ) in einer Umgebung von

Mehr

Mathematik 1 für Bauwesen 14. Übungsblatt

Mathematik 1 für Bauwesen 14. Übungsblatt Mthemtik für Buwesen Übungsbltt Fchbereich Mthemtik Wintersemester 0/0 Dr Ivn Izmestiev 8/900 Dr Vince Bárány, M Sc Juli Plehnert Gruppenübung Aufgbe G () Berechnen Sie ds Volumen des Rottionskörpers,

Mehr

12.1 Fluideigenschaften

12.1 Fluideigenschaften 79 Als Fluide bezeichnet man Kontinua mit leicht verschieblichen Teilen. Im Unterschied zu festen Körpern setzen sie langsamen Formänderungen ohne Volumenänderung nur geringen Widerstand entgegen. Entsprechend

Mehr

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n Them 13 Integrle, die von einem Prmeter bhängen, Integrle von Funktionen uf Teilmengen von R n Wir erinnern drn, dß eine Funktion h : [, b] R eine Treppenfunktion ist, flls es eine Unterteilung x < x 1

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufge 69. Quizz Integrle. Es sei Höhere Mthemtik für Informtiker II (Sommersemester

Mehr

Höhere Mathematik für Ingenieure , Uhr

Höhere Mathematik für Ingenieure , Uhr Studiengng: Mtrikelnummer: 3 5 6 Z Punkte Note Prüfungsklusur zum Modul Höhere Mthemtik für Ingenieure 0. 7. 05, 8.00 -.00 Uhr Zugelssene Hilfsmittel: A-Blätter eigene, hndschriftliche Ausrbeitungen ber

Mehr

Wie muss x gewählt werden, so dass K 1 anschließend einen geraden Stoß mit K 3 ausführt?

Wie muss x gewählt werden, so dass K 1 anschließend einen geraden Stoß mit K 3 ausführt? ZÜ 2.1 Aufgbe 2.1 Drei Kugeln K 1, K 2 und K 3 Mssen, m 2 und m 3 befinden sich in einer Rille und berühren sich nicht. Die erste Kugel gleitet mit der Geschwindigkeit v1 und stößt vollkommen elstisch

Mehr