Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v

Größe: px
Ab Seite anzeigen:

Download "Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v"

Transkript

1 Hydrodynamik Kontinuitätsgleichung A2, rho2, v2 A1, rho1, v1 Stromröhre Massenerhaltung: ρ } 1 v {{ 1 A } 1 = ρ } 2 v {{ 2 A } 2 m 1 inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v }{{} 1 A 1 = v }{{} 2 A 2 Q 1 1 m 2 Q 2 Massenfluss Volumenstrom

2 Hydrodynamik Beispiel Rohrströmung: A = konst geschlossene Stromröhre Wasserstrahl m 2 m 1 m geschlossenes Kontrollvolumen m 1 = m 2 + m 3 2

3 Kontinuität WICHTIG: In der 1-dimensionalen Kontinuitätsgleichung ist v ein Mittelwert der Geschwindigkeit. In Wirklichkeit ist v nicht konstant wegen Reibungseffekten, Wirbeln,...! h y x Realität v = v(y) v ist konstant in der Kontinuitätsgleichung Der Massenstrom muß der Gleiche sein ρv(y)dy = ρ vh 3

4 Bernoulli 2.Newton sches Gesetz: Masse Beschleunigung = Summe der äußeren Kräfte m d v dt = F a Bewegungsgleichung für ein infinitesimales Element entlang einer Stromlinie g Druck Reibung z s ρ d v dt = p s ρgdz ds R Trägheit Gravitation 4

5 Bernoulli entlang einer Stromlinie: v = v(s, t) totale (substantielle) d v dt = v Beschleunigung eines Partikels d v = v v dt + t s ds t + ds dt v s = v t + v v s lokale Beschleunigung konvektive Beschleunigung 5

6 Beispiel Rohrströmung A ρ Diffusor v(x v1(t) v2(t) A,ρ = konst v 1 (t) = v 2 (t) nur lokale Beschleunigung v0 = konst nur konvektive Beschleunigung 6

7 Beispiel Annahmen: inkompressibel (ρ = konst) reibungsfrei (R = 0) stationär t = 0 konstante Gravitation ( g = konst) ] ρ[ v t + v v s = p s ρgdz ds R = 0 = 0 f(s) s = d ds 1 2 ρ dv2 ds = dp ds ρgdz ds ρ 2 v2 + p + ρgz = konst 7

8 Druckmessung statischer Druck: p (Index: 1, 2, a, ) p p Totaldruck (Pitotrohr): p 0, p 01, p 02, p t p 0 = p ρv2 + ρgh bei konstanter Höhe h = 0 p 0 = p ρv2 8

9 Druckmessung Potentialdruck: p pot = ρgh dynamischer Druck: p dyn = 1 2 ρv2 h die kinetische Energie wird umgewandelt, wenn die Strömung auf v = 0 verzögert wird 9

10 6.4 Aus einem großen Überdruckbehälter strömt Wasser ins Freie. Zwischen den Querschnitten A 1 und A 2 wird die Druckdifferenz p gemessen. A 1 = 0, 3 m 2, A 2 = 0, 1 m 2, A 3 = 0, 2 m 2, h = 1 m, ρ = 10 3 kg/m 3, p a = 10 5 N/m 2, p = 0, N/m 2 g = 10 m/s 2 Bestimmen Sie a) die Geschwindigkeiten v 1, v 2, v 3, b) die Drücke p 1, p 2, p 3 und den Druck p über dem Wasserspiegel! 10

11 6.4 Druckbehälter mit Düse p B h = konst. z gut gerundeter Einlass Venturidüse 11

12 6.4 Erhaltung der Gesamtenergie entlang einer Stromlinie (qualitativ) p 1/2 rho v3**2 rho g h 1/2 rho v2**2 p B 1/2 rho v1**2 p 1 p2 p 3 = p a s Bernoulli: p 0 = p B + ρgh = p i ρv2 i 12

13 6.4 Kontinuität (Massenbilanz): = = ṁ = ρ Q = konst. ρ = konst = v 1 A 1 = v 2 A 2 = v 3 A 3 = A = v = p a) gemessen p = p 1 p 2 Bernoulli: p 1 + ρ 2 v2 1 = p 2 + ρ 2 v2 2 = p = p 1 p 2 = ρ 2 (v2 2 v2 1 ) > 0 v 1 = v 2 A 2 A 1 p = ρ 2 [ 1 A2 2 A 2 1 ] v 2 2 v 2 = 2 ρ p ( ( ) ) = 12 1 A2 2 A 1 m s v 1 = v 2 A 2 A 1 = 4 m s v 3 = v 2 A 2 A 3 = 6 m s 13

14 6.4 Die Venturidüse dient zur Massen- und Volumenstrommessung! Q = va = v 2 A 2 Prinzip: Messung von p Berechnung von v 2 Berechnung von Massen- und Volumenstrom 14

15 6.4 b) Berechnung der Drücke p B,p 1,...,p 3 p 0 stellt die Energie dar, die in kinetische Energie umgewandelt werden kann. p 0 = p B + ρgh = p 1 + ρ 2 v2 1 = p 2 + ρ 2 v2 2 = p 3 + ρ 2 v2 3 Wenn ein Druck bekannt ist, können die anderen mithilfe der Bernoulli- Gleichung berechnet werden. p 3 im Austrittsquerschnitt Annahme: parallele Stromlinien am scharfkantigen Austritt

16 Bewegungsgleichung für ein Element x p(x+dx)da g z p(x)da Bewegungsgleichung in x-richtung für ein mitbewegtes Kontrollvolumen dadx (enthält immer die gleichen Partikel) 16

17 Bewegungsgleichung für ein Element m du dt = ẍρdadx = p(x)da p(x + dx)da ẍρdadx = p(x)da Annahme: parallele Stromlinien ( p + p x dx ) da ρẍ = p x ẋ = 0 Geschwindigkeit u = dx dt = ẋ notwendige Bedingung: ẍ = 0 p x = 0 = der Druck im Austrittsquerschnitt ist eine Funktion von y Strömung in Luft: dp dy = ρg Vern. der pot. Energie von Luft p Austritt = p Umgebung = konst. 17

18 6.4 p 3 = p a Bemerkung: Bernoulli: 0 3 p B + ρgh = p a ρv2 3 offener Behälter p B = p a v 3 = 2ρ (p B p a + ρgh) v 3 = 2gh f(a 3 ) Theorem von Torricelli (15.Okt Okt. 1647) 18

19 erweiterter Bernoulli A rho = const. A 1 2 v 1 v 2 Verengung Delta h ~ Delta p Theoretischer Volumenstrom: Q th für reibungsfreie Strömung 1. Bernoulli: p 1 + ρ 2 v2 1 = p 2 + ρ 2 v Kontinuität: v 1 A 1 = v 2 A 2 19

20 erweiterter Bernoulli Verhältnis der Querschnitte: m = A 2 A 1 : Konti v 1 = v 2 m Bernoulli: p 1 ρ v2 2 m2 = p 2 ρ v2 2 v 2 2 v 2 = ( 1 m 2) = 2 p 1 p 2 ρ 2 p ρ(1 m 2 ) 2 p Q th = A 2 ρ(1 m 2 ) = 2 p ρ 20

21 erweiterter Bernoulli (Forts.) In der Realität entstehen Verluste durch Dissipation, Wirbel,... Die Reibung muss berücksichtigt werden. Die Verluste und die Kontraktion werden in der Durchflusszahl α zusammengefasst. Q real = αa 2 2 p ρ α aus Experimenten Wirbel, Dissipation Die Strömung in Rohren kann ebenfalls so bestimmt werden. 21

22 erweiterter Bernoulli (Forts.) Druckverluste durch Rohrreibung (Durchmesser D, Länge L): p v = λd L in Einbauten (Krümmer, Verengung,...): p v = ζ 12 ρv2 12 ρv2 Rohrreibungsbeiwert: λ = p v 1 D 2 ρv2 L = Verlustbeiwert: ζ = p v 1 2 ρv2 = Druckverlust dynamischer Druck Druckverlust dynamischer Druck D L 22

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v Hydrodynamik Kontinuitätsgleichung A2, rho2, v2 A1, rho1, v1 Stromröhre Massenerhaltung: ρ } 1 v {{ 1 A } 1 = ρ } 2 v {{ 2 A } 2 m 1 inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms

Mehr

Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Spannungstensor

Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Spannungstensor Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Rang 2 Dyade }{{} σ, τ,... Spannungstensor Differential-Operatoren Nabla- / x Operator / y in kartesischen / Koordinaten

Mehr

15 Eindimensionale Strömungen

15 Eindimensionale Strömungen 97 Durch Druckunterschiede entstehen Strömungen, die sich auf unterschiedliche Weise beschreiben lassen. Bei der Lagrange schen oder materiellen Beschreibung betrachtet man das einelne Fluidteilchen, das

Mehr

Klausur Strömungsmechanik 1 Frühjahr März 2013, Beginn 15:00 Uhr

Klausur Strömungsmechanik 1 Frühjahr März 2013, Beginn 15:00 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Klausur Strömungsmechanik 1 Frühjahr 013 06. März 013, Beginn 15:00 Uhr Taschenrechner (nicht programmierbar) TFD-Formelsammlung (ohne handschriftliche

Mehr

Klausur Strömungsmechanik I (Bachelor) & Technische Strömungslehre (Diplom)

Klausur Strömungsmechanik I (Bachelor) & Technische Strömungslehre (Diplom) (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik I (Bachelor) & Technische Strömungslehre (iplom) 1. Aufgabe (10 Punkte) 09. 08. 2013 In einem mit einer Flüssigkeit der ichteρ 1 gefüllten zylindrischen

Mehr

Bernoulligleichung. umax. Bernoulligleichung. Stromfadenvorstellung. Bild 1: Stromfaden als Sonderform der Stromröhre

Bernoulligleichung. umax. Bernoulligleichung. Stromfadenvorstellung. Bild 1: Stromfaden als Sonderform der Stromröhre Bernoulligleichung 1 Bernoulligleichung Stromfadenvorstellung Bild 1: Stromfaden als Sonderform der Stromröhre Im Arbeitsblatt Kontinuitätsgleichung wurde die Stromröhre eingeführt. Sie ist ein Bilanzgebiet

Mehr

Einführung in die Strömungsmechanik

Einführung in die Strömungsmechanik Einführung in die Strömungsmechanik Rolf Radespiel Fluideigenschaften Grundlegende Prinzipien und Gleichungen Profile Windkanal und Druckmessungen BRAUNSCHWEIG, 5. JUNI 2002 Was versteht man unter Strömungsmechanik?

Mehr

Ergänzungsübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14)

Ergänzungsübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14) Ergänzungsübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14) Prof. W. Meyer Übungsgruppenleiter: A. Berlin & J. Herick (NB 2/28) Ergänzung J Hydrodynamik In der Hydrodynamik beschreibt man die

Mehr

Die Brücke ins Studium. Vorkurs Physik. Dr. Oliver Sternal Dr. Nils-Ole Walliser September 2016

Die Brücke ins Studium. Vorkurs Physik. Dr. Oliver Sternal Dr. Nils-Ole Walliser September 2016 Die Brücke ins Studium Vorkurs Physik Dr. Oliver Sternal Dr. Nils-Ole Walliser 19.-23. September 2016 2. Fluidmechanik 2. Fluidmechanik 2.1 Fluidstatik 2. Fluidmechanik 2.1 Fluidstatik 2.1.1 Druck in ruhenden

Mehr

Klausur Strömungslehre

Klausur Strömungslehre ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre 10. 3. 2005 1. Aufgabe (6 Punkte) Ein Heißluftballon mit ideal schlaffer Hülle hat beim Start ein Luftvolumen V 0. Während er in die Atmosphäre

Mehr

Vorlesung STRÖMUNGSLEHRE Zusammenfassung

Vorlesung STRÖMUNGSLEHRE Zusammenfassung Lehrstuhl für Fluiddynamik und Strömungstechnik Vorlesung STRÖMUNGSLEHRE Zusammenfassung WS 008/009 Dr.-Ing. Jörg Franke Bewegung von Fluiden ( Flüssigkeiten und Gase) - Hydro- und Aerostatik > Druckverteilung

Mehr

Versuch D4: Volumenstrommessung

Versuch D4: Volumenstrommessung Versuch D4: Volumenstrommessung 1 Einführung und Grundlagen Bei technischen Prozessabläufen ist die Prozessüberwachung von zentraler Bedeutung für den korrekten Ablauf und für die Sicherheitstechnik. Sollen

Mehr

I. Mechanik. I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen. Physik für Mediziner 1

I. Mechanik. I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen. Physik für Mediziner 1 I. Mechanik I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen Physik für Mediziner Stromdichte Stromstärke = durch einen Querschnitt (senkrecht zur Flussrichtung) fließende Menge pro Zeit ( Menge

Mehr

Klausur Strömungslehre a) Beschreiben Sie kurz in Worten das Prinzip des hydrostatischen Auftriebs nach Archimedes.

Klausur Strömungslehre a) Beschreiben Sie kurz in Worten das Prinzip des hydrostatischen Auftriebs nach Archimedes. ......... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre 20. 08. 2004 1. Aufgabe (11 Punkte) a) Beschreiben Sie kurz in Worten das Prinzip des hydrostatischen Auftriebs nach Archimedes. b) Nennen

Mehr

lokaler und globaler konvektiver Wärmeübergang (Oberflächentemperatur T s = const.)

lokaler und globaler konvektiver Wärmeübergang (Oberflächentemperatur T s = const.) lokaler und globaler konvektiver Wärmeübergang (Oberflächentemperatur T s = const.) Temperaturgrenzschicht Geschwindigkeitsgrenzschicht Vergleich von Geschwindigkeits- und Temperaturgrenzschicht laminare

Mehr

Vergleich von experimentellen Ergebnissen mit realen Konfigurationen

Vergleich von experimentellen Ergebnissen mit realen Konfigurationen Ähnlichkeitstheorie Vergleich von experimentellen Ergebnissen mit realen Konfigurationen Verringerung der Anzahl der physikalischen Größen ( Anzahl der Experimente) Experimentelle Ergebnisse sind unabhängig

Mehr

IV. Strömungen eines idealen Fluids

IV. Strömungen eines idealen Fluids IV. Strömungen eines idealen Fluids Dieses Kapitel befasst sich mit einigen Lösungen des Systems von Gleichungen (III.8), (III.18) und (III.4) für die Bewegung eines idealen Fluids. Dabei wird angenommen,

Mehr

Kompressible Strömungen

Kompressible Strömungen Kompressible Strömungen Problemstellungen: - Wie lassen sich Überschallströmungen realisieren? - Welche Windkanalgeometrie ist notwendig? - Thermodynamische Beziehungen in Überschallströmungen? - Unterschall

Mehr

Gasdynamik Die Gasdynamik beschreibt kompressible Strömungen, d.h. Strömungen mit Dichteänderungen:

Gasdynamik Die Gasdynamik beschreibt kompressible Strömungen, d.h. Strömungen mit Dichteänderungen: Gasdynamik Die Gasdynamik beschreibt kompressible Strömungen, d.h. Strömungen mit Dichteänderungen: ρ ρ 0; t x 0;etc. Als Unterscheidungskriterium zwischen inkompressibel und kompressibel wird die Machzahl

Mehr

Leibniz Universität Hannover Institut für Turbomaschinen und Fluid-Dynamik Prof. Dr.-Ing. J. Seume. Klausur Herbst Strömungsmechanik I

Leibniz Universität Hannover Institut für Turbomaschinen und Fluid-Dynamik Prof. Dr.-Ing. J. Seume. Klausur Herbst Strömungsmechanik I Leibniz Universität Hannover Institut für Turbomaschinen und Fluid-Dynamik Prof. Dr.-Ing. J. Seume Klausur Herbst 008 Strömungsmechanik I Bearbeitungsdauer: 90 min zugelassene Hilfsmittel: - Taschenrechner

Mehr

Physik I Mechanik und Thermodynamik

Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik Einführung:. Was ist Physik?. Experiment - Modell - Theorie.3 Geschichte der Physik.4 Physik und andere Wissenschaften.5 Maßsysteme.6 Messfehler und Messgenauigkeit

Mehr

Klausur Strömungsmechanik 1 WS 2009/2010

Klausur Strömungsmechanik 1 WS 2009/2010 Klausur Strömungsmechanik 1 WS 2009/2010 03. März 2010, Beginn 15:00 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Taschenrechner (nicht programmierbar) TFD-Formelsammlung (ohne handschriftliche

Mehr

Zur Erinnerung. Stichworte aus der 15. Vorlesung:

Zur Erinnerung. Stichworte aus der 15. Vorlesung: Zur Erinnerung Stichworte aus der 5. Vorlesung: Kinetische Gastheorie: Modell des idealen Gases Rückführung makroskopischer Effekte auf mikroskopische Ursachen Druck, Temperatur Druck Impulsübertrag an

Mehr

Praktikum Aerodynamik des Flugzeugs

Praktikum Aerodynamik des Flugzeugs Praktikum Aerodynamik des Flugzeugs 1. Versuch: Sondenmessungen Betreuer: Dipl.-Ing. Anja Kölzsch Dipl.-Ing. Moritz Grawunder Ziel des heutigen Termins Einführung in die Strömungsmesstechnik Messung verschiedener

Mehr

12.1 Fluideigenschaften

12.1 Fluideigenschaften 79 Als Fluide bezeichnet man Kontinua mit leicht verschieblichen Teilen. Im Unterschied zu festen Körpern setzen sie langsamen Formänderungen ohne Volumenänderung nur geringen Widerstand entgegen. Entsprechend

Mehr

Besprechung am /

Besprechung am / PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert WS 016/17 Übungsblatt 9 Übungsblatt 9 Besprechung am 10.01.017 / 1.01.017 Aufgabe 1 Dakota Access Pipeline. Die Dakota Access Pipeline ist eine

Mehr

Experimentalphysik I: Mechanik

Experimentalphysik I: Mechanik Ferienkurs Experimentalphysik I: Mechanik Wintersemester 15/16 Probeklausur - Lösung Technische Universität München 1 Fakultät für Physik 1. Wilhelm Tell (13 Punkte) Wilhelm Tell will mit einem Pfeil (m

Mehr

σ ½ 7 10-8 cm = 7 10-10 m σ ½ 1 nm

σ ½ 7 10-8 cm = 7 10-10 m σ ½ 1 nm Zahlenbeispiele mittlere freie Weglänge: Λ = 1 / (σ n B ) mittlere Zeit zwischen Stößen τ = Λ / < v > Gas: Stickstoff Druck: 1 bar = 10 5 Pa Dichte n = 3 10 19 cm -3 σ = 45 10-16 cm 2 σ ½ 7 10-8 cm = 7

Mehr

Soweit: starre Körper, imkompressibel, in Wirklichkeit sind alle Körper kompressibel (zusammendrückbar)

Soweit: starre Körper, imkompressibel, in Wirklichkeit sind alle Körper kompressibel (zusammendrückbar) I.12 Elastizität Soweit: starre Körper, imkompressibel, in Wirklichkeit sind alle Körper kompressibel (zusammendrückbar) Beispiele: Feder Balken Torsion Durch äußere Kraft wird Körper deformiert, nach

Mehr

Zusammenfassung 23.10.2006, 0. Einführung

Zusammenfassung 23.10.2006, 0. Einführung Zusammenfassung 23.10.2006, 0. Einführung - Umrechnung der gebräuchlichen Einheiten - Teilung/Vervielfachung von Einheiten - Kenngrößen des reinen Wassers (z.b. Dichte 1000 kg/m 3 ) Zusammenfassung 30.10.2006,

Mehr

Physik 1 MW, WS 2014/15 Aufgaben mit Lösung 7. Übung (KW 05/06)

Physik 1 MW, WS 2014/15 Aufgaben mit Lösung 7. Übung (KW 05/06) 7. Übung KW 05/06) Aufgabe 1 M 14.1 Venturidüse ) Durch eine Düse strömt Luft der Stromstärke I. Man berechne die Differenz der statischen Drücke p zwischen dem weiten und dem engen Querschnitt Durchmesser

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 8: Hydrodynamik, Grenzflächen Dr. Daniel Bick 01. Dezember 2017 Daniel Bick Physik für Biologen und Zahnmediziner 01. Dezember 2017 1 / 33 Übersicht 1 Mechanik

Mehr

Aufgaben Hydraulik I, 26. August 2010, total 150 Pkt.

Aufgaben Hydraulik I, 26. August 2010, total 150 Pkt. Aufgaben Hydraulik I, 26. August 2010, total 150 Pkt. Aufgabe 1: Luftdichter Behälter (17 Pkt.) Ein luftdichter Behälter mit der Querschnittsfläche A = 12 m 2 ist teilweise mit Wasser gefüllt. Um Wasser

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #7 28/10/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Mechanik Teil 3 - Versuche M1 Dichte und Hydrodynamik: Bestimmung der Dichte eines zylindrischen

Mehr

Physik für Mediziner Flüssigkeiten II

Physik für Mediziner  Flüssigkeiten II Modul Physikalische und physiologische Grundlagen der Medizin I Physik für Mediziner http://www.mh-hannover.de/physik.html Flüssigkeiten II Andre Zeug Institut für Neurophysiologie zeug.andre@mh-hannover.de

Mehr

1. Bernoulli - Gleichung für ideale Flüssigkeiten (reibungsfrei) und ohne Energiezu- und -abfuhr

1. Bernoulli - Gleichung für ideale Flüssigkeiten (reibungsfrei) und ohne Energiezu- und -abfuhr Bernoulli - Gleichung. Bernoulli - Gleichung für ideale Flüssigkeiten (reibungsfrei) und ohne Energiezu- und -abfuhr Sie sagt aus, dass jedes Teilchen in einer Stromröhre denselben Wert der spezifischen

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Arbeit, Skalarprodukt, potentielle und kinetische Energie Energieerhaltungssatz Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 4. Nov.

Mehr

Kontinuitätsgleichung

Kontinuitätsgleichung Kontinuitätsgleichung Bilanzierungen Kontinuitätsgleichungen stellen Massenbilanzen dar M an spricht von der Kontinuitätsgleichung und stellt sie je nach Art der Massenbilanz unterschiedlich dar Bilanzierungen

Mehr

Bild 2: Anwendung des Trägheitsprinzips auf eine Strömung, links zulässig, rechts unzulässig

Bild 2: Anwendung des Trägheitsprinzips auf eine Strömung, links zulässig, rechts unzulässig Impulssatz 1 Impulssatz Trägheitsprinzip Die Gleichungen der Strömungslehre gehen auf die klassische Mechanik von Isaac Newton zurück. In seinen Philosophiae Naturalis Principia Mathematica (Mathematische

Mehr

Strömungsmechanik. Eine kompakte Einführung für Physiker und Ingenieure. Hendrik Kuhlmann. 2., aktualisierte Auflage

Strömungsmechanik. Eine kompakte Einführung für Physiker und Ingenieure. Hendrik Kuhlmann. 2., aktualisierte Auflage Strömungsmechanik Eine kompakte Einführung für Physiker und Ingenieure 2., aktualisierte Auflage Hendrik Kuhlmann 4.3 Anwendungen der Bernoulli-Gleichung z p u g x Abb. 4.4: Stromlinien um einen homogen

Mehr

Übungsblatt 1 (13.05.2011)

Übungsblatt 1 (13.05.2011) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 11 Übungsblatt 1 (13.5.11) 1) Wasserstrahl Der aus einem Wasserhahn senkrecht nach unten ausfließende Wasserstrahl verjüngt

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

1.9. Hydrodynamik Volumenstrom und Massenstrom Die Strömungsgeschwindigkeit

1.9. Hydrodynamik Volumenstrom und Massenstrom Die Strömungsgeschwindigkeit 1.9.1. Volumenstrom und Massenstrom 1.9. Hydrodynamik Strömt eine Flüssigkeit durch ein Gefäss, so bezeichnet der Volumenstrom V an einer gegebenen Querschnittsfläche das durchgeströmte Volumen dv in der

Mehr

Klausur Strömungsmechanik 1 Frühjahr März 2016, Beginn 16:00 Uhr

Klausur Strömungsmechanik 1 Frühjahr März 2016, Beginn 16:00 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfstel sind: Klausur Strömungsmechanik Frühjahr 206 0. März 206, Beginn 6:00 Uhr Taschenrechner nicht programmierbar) Lineal und Schreibmaterial nur dokumentenecht

Mehr

Übungen zu Experimentalphysik 1 für MSE

Übungen zu Experimentalphysik 1 für MSE Physik-Department LS für Funktionelle Materialien WS 2014/15 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Daniel Moseguí González, Pascal Neibecker, Nitin

Mehr

Physik 1 für Chemiker und Biologen 9. Vorlesung

Physik 1 für Chemiker und Biologen 9. Vorlesung Physik 1 für Chemiker und Biologen 9. Vorlesung 19.12.2016 "I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics,

Mehr

3 Grundlegende strömungstechnische und thermodynamische Voraussetzungen

3 Grundlegende strömungstechnische und thermodynamische Voraussetzungen 3 Grundlegende strömungstechnische und thermodynamische Voraussetzungen 3.1 Stationär durchströmte offene Systeme - Grundlegende Beziehungen - nergiesatz stationär durchströmter offener Systeme - nwendung

Mehr

uda V t dt 1 5. Technische Durchflussmessung

uda V t dt 1 5. Technische Durchflussmessung 5. Technische Durchflussmessung 5.1 Einleitung und Grundbegriffe Definition: Der Durchfluss bzw. der Volumenstrom ist die pro Zeiteinheit durch eine Fläche A hindurch strömendes Fluidvolumen. V& u. dv

Mehr

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9 I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall

Mehr

c ) Wie verhält sich die Enthalpieänderung, wenn das Wasser in einer Düse beschleunigt wird?

c ) Wie verhält sich die Enthalpieänderung, wenn das Wasser in einer Düse beschleunigt wird? Aufgabe 4 An einer Drosselstelle wird ein kontinuierlich fließender Strom von Wasser von p 8 bar auf p 2 2 bar entspannt. Die Geschwindigkeiten vor und nach der Drosselung sollen gleich sein. Beim des

Mehr

Fluidmechanik. Thema Erfassung der Druckverluste in verschiedenen Rohrleitungselementen. -Laborübung- 3. Semester. Namen: Datum: Abgabe:

Fluidmechanik. Thema Erfassung der Druckverluste in verschiedenen Rohrleitungselementen. -Laborübung- 3. Semester. Namen: Datum: Abgabe: Strömungsanlage 1 Fachhochschule Trier Studiengang Lebensmitteltechnik Fluidmechanik -Laborübung-. Semester Thema Erfassung der Druckverluste in verschiedenen Rohrleitungselementen Namen: Datum: Abgabe:

Mehr

Strömungen. Kapitel 10

Strömungen. Kapitel 10 Kapitel 10 Strömungen In Kapitel 9 behandelten wir die statistische Bewegung einzelner Moleküle in einem Gas, aber noch keine makroskopische Bewegung des Mediums. Der Mittelwert der Impulse aller Teilchen

Mehr

1. Die Wellengleichung

1. Die Wellengleichung 1. Die Wellengleichung Die Wellengleichung ist eine partielle Differenzialgleichung für das Schallfeld. Sie lässt sich durch Linearisierung aus der Massenbilanz, der Impulsbilanz und der Energiebilanz

Mehr

Aufgaben Hydraulik I, 21. August 2009, total 150 Pkt.

Aufgaben Hydraulik I, 21. August 2009, total 150 Pkt. Aufgaben Hydraulik I, 21. August 2009, total 150 Pkt. Aufgabe 1: Klappe (13 Pkt.) Ein Wasserbehälter ist mit einer rechteckigen Klappe verschlossen, die sich um die Achse A-A drehen kann. Die Rotation

Mehr

Physik 1 für Chemiker und Biologen 9. Vorlesung

Physik 1 für Chemiker und Biologen 9. Vorlesung Physik 1 für Chemiker und Biologen 9. Vorlesung 19.12.2016 "I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics,

Mehr

1 Lagrange sche Gleichung 1. Art

1 Lagrange sche Gleichung 1. Art 1 Lagrange sche Gleichung 1. Art 1.1 Einführung und Beispiel Bewege sich ein Massepunkt auf einer Geraden (G) im Raum, so hat dieser einen Freiheitsgrad, d.h. es müssen 2 Zwangsbedingungen für ihn gelten.

Mehr

Mechanik der Flüssigkeiten und Gase

Mechanik der Flüssigkeiten und Gase BIBLIOTHEK DES TECHNIKERS UXMT Mechanik der Flüssigkeiten und Gase Technische Physik von Horst Herr VERLAG EUROPA-LEHRMITTEL Nourney, Vollmer GmbH & Co. KLEINER WERTH 50 POSTFACH 201815 5600 WUPPERTAL

Mehr

Übungen zu Physik I für Physiker Serie 10 Musterlösungen

Übungen zu Physik I für Physiker Serie 10 Musterlösungen Übungen zu Physik I für Physiker Serie Musterlösungen Allgemeine Fragen. Was versteht man unter dem Magnuseffekt? Nennen Sie Ihnen bekannte Beispiele, wo man ihn beobachten kann. Als Magnus-Effekt wird

Mehr

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II Physik Schwingungen II Ort, Geschwindigkeit, Beschleunigung x(t) = cos! 0 t v(t) =ẋ(t) =! 0 sin! 0 t t a(t) =ẍ(t) =! 2 0 cos! 0 t Energie In einem mechanischen System ist die Gesamtenergie immer gleich

Mehr

Übungen zu Experimentalphysik 1 für MSE

Übungen zu Experimentalphysik 1 für MSE Physik-Department LS für Funktionelle Materialien WS 215/16 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Dr. Neelima Paul, Nitin Saxena, Daniel Moseguí

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Newtonsche Axiome, Kräfte, Arbeit, Skalarprodukt, potentielle und kinetische Energie Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html

Mehr

Änderungen der kinetischen Energien sind ausschließlich in der Düse zu berücksichtigen.

Änderungen der kinetischen Energien sind ausschließlich in der Düse zu berücksichtigen. Thermodynamik II - Lösung 3 Aufgabe 5: Auf den windreichen Kanarischen Inseln ist eine Kühlanlage geplant, die Kaltwasser (Massenstrom ṁ w = 5 kg/s) von t aus = 18 C liefern soll. Das Wasser wird der Umgebung

Mehr

Aufgaben Hydraulik I, 10. Februar 2011, total 150 Pkt.

Aufgaben Hydraulik I, 10. Februar 2011, total 150 Pkt. Aufgaben Hydraulik I, 10. Februar 2011, total 150 Pkt. Aufgabe 1: Hydrostatik (13 Pkt.) Eine senkrechte Wand trennt zwei mit unterschiedlichen Flüssigkeiten gefüllte Behälter der selben Grundfläche (Breite

Mehr

Hydraulik I. Roman Stocker. Gerinneströmung (ohne Reibung)

Hydraulik I. Roman Stocker. Gerinneströmung (ohne Reibung) Hydraulik I Roman Stocker Gerinneströmung (ohne Reibung) Begriffe der Gerinneströmung (1) z o = Sohlhöhe h = Wassertiefe v 2 /(2g) = Geschwindigkeitshöhe (Annahme: α = 1) H E = Energiehöhe H 0 = spezifische

Mehr

Klassische Theoretische Physik I WS 2013/2014

Klassische Theoretische Physik I WS 2013/2014 Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 213/214 Prof. Dr. J. Schmalian Blatt 6 Dr. P. P. Orth bgabe und Besprechung 6.12.213 1. Vektoranalysis I (2

Mehr

Inhaltsverzeichnis. Gerd Junge. Einführung in die Technische Strömungslehre ISBN: Weitere Informationen oder Bestellungen unter

Inhaltsverzeichnis. Gerd Junge. Einführung in die Technische Strömungslehre ISBN: Weitere Informationen oder Bestellungen unter Inhaltsverzeichnis Gerd Junge Einführung in die Technische Strömungslehre ISBN: 978-3-446-42300-8 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-42300-8 sowie im Buchhandel.

Mehr

3.5.6 Geschwindigkeitsprofil (Hagen-Poiseuille) ******

3.5.6 Geschwindigkeitsprofil (Hagen-Poiseuille) ****** 3.5.6 ****** 1 Motivation Bei der Strömung einer viskosen Flüssigkeit durch ein Rohr ergibt sich ein parabolisches Geschwindigkeitsprofil. 2 Experiment Abbildung 1: Versuchsaufbau zum Der Versuchsaufbau

Mehr

Hydrodynamik y II - Viskosität

Hydrodynamik y II - Viskosität Physik A VL9 (..0) Hydrodynamik y II - Viskosität Die Viskosität ität Das Gesetz on Hagen-Poiseuille Die Stokes sche Reibung Die Reynolds-Zahl Viskose Fluide Viskosität bisher: Kräfte zwischen dem strömenden

Mehr

Masse, Kraft und Beschleunigung Masse:

Masse, Kraft und Beschleunigung Masse: Masse, Kraft und Beschleunigung Masse: Seit 1889 ist die Einheit der Masse wie folgt festgelegt: Das Kilogramm ist die Einheit der Masse; es ist gleich der Masse des Internationalen Kilogrammprototyps.

Mehr

Messsonde Für die Luft- und Klimatechnik Typ A2G-FM

Messsonde Für die Luft- und Klimatechnik Typ A2G-FM Special Für die Luft- und Klimatechnik Typ A2G-FM WIKA Datenblatt SP 69.10 Anwendungen Volumenstrommessung in runden Lüftungsrohren Volumenstrommessung in rechteckigen Lüftungskanälen Leistungsmerkmale

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2017 Vorlesung 1 (mit freundlicher Genehmigung von Merlin Mitschek und Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis

Mehr

12. Gasrohrleitungen Aufgabe 12.1 [5]

12. Gasrohrleitungen Aufgabe 12.1 [5] 12-1 12. Gasrohrleitungen Aufgabe 12.1 [5] Beweise, daß ein Druckverlust p V ( quasi-inkompressible Strömung) exergetisch umso schwerer wiegt, je niedriger der Druckpegel im fraglichen Bereich des betrachteten,

Mehr

Druckgleichung nach Daniel Bernoulli (Bernoulligleichung)

Druckgleichung nach Daniel Bernoulli (Bernoulligleichung) HTW Dresden V-SL1 Lehrgebiet Strömungslehre 1. Vorbetrachtung Druckgleichung nach Daniel Bernoulli (Bernoulligleichung) In ruhenden und bewegten Flüssigkeiten gilt, wie in der Physik allgemein, das Gesetz

Mehr

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik II - Lösung 04. Aufgabe 6: (1): p 1 = 1 bar, t 1 = 15 C.

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik II - Lösung 04. Aufgabe 6: (1): p 1 = 1 bar, t 1 = 15 C. Aufgabe 6: 2) 3) ): p = bar, t = 5 C 2): p 2 = 5 bar ) 3): p 3 = p 2 = 5 bar, t 3 = 5 C Die skizzierte Druckluftanlage soll V3 = 80 m 3 /h Luft vom Zustand 3) liefern. Dazu wird Luft vom Zustand ) Umgebungszustand)

Mehr

Grundlagen der Hydraulik

Grundlagen der Hydraulik Horst-W. Grollius Grundlagen der Hydraulik 7., aktualisierte Auflage 18 2 Physikalisches Basiswissen Bei der Bewegung des Kolbens 1umden Weg s 1 nach unten wird das Volumen V 1 ¼ A 1 s 1 verdr ngt, wodurch

Mehr

Messung des Strömungswiderstandes in Rohrbögen

Messung des Strömungswiderstandes in Rohrbögen Messung 6 Messung es Strömungswierstanes in Rohrbögen 1. EINLEITUNG In er Ingenieurpraxis ist er Großteil er vorkommenen Strömungen Rohrströmung - man enke z.b. an Wasserleitungen, Abwasserkanäle, Eröl-

Mehr

2.1. Durchflussgleichung, Kontinuitätsgleichung, Bernoulligleichung, Verluste in Rohrleitungen

2.1. Durchflussgleichung, Kontinuitätsgleichung, Bernoulligleichung, Verluste in Rohrleitungen 36.. Durchflussgleichung, Kontinuitätsgleichung, Bernoulligleichung, Verluste in Rohrleitungen Fundamentale strömungsmechanische Zusammenhänge sind ohne Kenntnisse der Durchflussgleichung und der Kontinuitätsgleichung

Mehr

Thermodynamik I PVK - Tag 2. Nicolas Lanzetti

Thermodynamik I PVK - Tag 2. Nicolas Lanzetti Thermodynamik I PVK - Tag 2 Nicolas Lanzetti Nicolas Lanzetti 05.01.2016 1 Heutige Themen Carnot; Wirkungsgrad/Leistungsziffer; Entropie; Erzeugte Entropie; Isentroper Wirkungsgrad; Isentrope Prozesse

Mehr

Hyperbolische Erhaltungsgleichungen und die Wellengleichung

Hyperbolische Erhaltungsgleichungen und die Wellengleichung Hyperbolische Erhaltungsgleichungen und die Wellengleichung Stefanie Günther Universität Trier 11.November 2010 Stefanie Günther (Universität Trier) Seminar Numerik 1/29 11.November 2010 1 / 29 Inhaltsverzeichnis

Mehr

Fluidmechanik II. Fluidmechanik II, N. A. Adams

Fluidmechanik II. Fluidmechanik II, N. A. Adams Fluidmechanik II Wintersemester 2013/2014 Vorlesung: Zeit: Montag17:00-18:30 Ort: MW 0001 Übung (ab 21.10.) Zeit: Montag18:35-19:20 Ort: MW 0001 Gruppenübung siehe Web Manuskript und Übungsunterlagen:

Mehr

Physik I Mechanik und Thermodynamik

Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik 1 Einführung: 1.1 Was ist Physik? 1.2 Experiment - Modell - Theorie 1.3 Geschichte der Physik 1.4 Physik und andere Wissenschaften 1.5 Maßsysteme 1.6 Messfehler und

Mehr

Nach Prüfungsordnung 1989

Nach Prüfungsordnung 1989 Fachprüfung: Prüfer: Kolben und Strömungsmaschinen Hauptstudium II Prof. Dr. Ing. H. Simon Prof. Dr. Ing. P. Roth Tag der Prüfung: 10.08.2001 Nach Prüfungsordnung 1989 Vorgesehene Punkteverteilung: Strömungsmaschinen:

Mehr

Kurzfragen (24 Punkte)

Kurzfragen (24 Punkte) Kurzfragen (24 Punkte) Kurzfrage a Gegeben sei ein Bernoulli-Diffusor. Die Wandreibung sei vernachlässigbar, das Fluid sei inkompressibel. Gegeben: A 1, A 2, c 1, l Diffusor, h, ρ Ka1) Leiten Sie eine

Mehr

3. Berechnen Sie auch die Beschleunigung a als Funktion der Zeit t. 4. Erstellen Sie ein SIMULINK Modell, das x(t) numerisch berechnet.

3. Berechnen Sie auch die Beschleunigung a als Funktion der Zeit t. 4. Erstellen Sie ein SIMULINK Modell, das x(t) numerisch berechnet. unit 1 / Seite 1 Einführung Differenzialgleichungen In physikalischen Anwendungen spielt oft eine Messgrösse in Abhängigkeit von der Zeit die Hauptrolle. Beispiele dafür sind Druck p, Temperatur T, Geschwindigkeit

Mehr

Lösungen: reale Körper und Hydrodynamik

Lösungen: reale Körper und Hydrodynamik Lösungen: reale Körper und Hydrodynamik Christoph Buhlheller, Rebecca Saive, David Franke Florian Hrubesch, Wolfgang Simeth, Wolfhart Feldmeier 13. März 2009 1. In einem wasserdurchströmten Venturi-Rohr

Mehr

9.4 Stationäre kompressible Strömungen in Rohren oder Kanälen konstanten Querschnitts

9.4 Stationäre kompressible Strömungen in Rohren oder Kanälen konstanten Querschnitts 9.4 Stationäre kompressible Strömungen in Rohren oder Kanälen konstanten Querschnitts Die Strömung tritt mit dem Zustand 1 in die Rohrleitung ein. Für ein aus der Rohrstrecke herausgeschnittenes Element

Mehr

Strömungstypen. laminar. turbulent

Strömungstypen. laminar. turbulent Crash Kurs 3.3.00, Großer Hörsaal Physik 9- Uhr Klausur 0.3.00, Großer Hörsaal Physik 9- Uhr Hilfsmittel Taschenrechner, Din A5 Blatt, handbeschrieben Chrysopelea Paradisi 3 Hydrodynamik Strömungstypen

Mehr

Brownsche Bewegung Seminar - Weiche Materie

Brownsche Bewegung Seminar - Weiche Materie Brownsche Bewegung Seminar - Weiche Materie Simon Schnyder 11. Februar 2008 Übersicht Abbildung: 3 Realisationen des Weges eines Brownschen Teilchens mit gl. Startort Struktur des Vortrags Brownsches Teilchen

Mehr

1. Aufgabe (26 Punkte) a) Massen in den Kammern. m 1 = p 0V 0. = m 1. b) Kraft in der Kolbenstange (Freischnitt System I): System I

1. Aufgabe (26 Punkte) a) Massen in den Kammern. m 1 = p 0V 0. = m 1. b) Kraft in der Kolbenstange (Freischnitt System I): System I Musterlösung WS08 1. Aufgabe (26 Punkte) a) Massen in den Kammern b) Kraft in der Kolbenstange (Freischnitt System I): c) Gleichungssystem m 1 = p 0V 0, m 2 = p 0/4 2V 0 = m 1 RT 0 RT 0 2 F = M g Gleichgewicht:

Mehr

Dynamik des Massenpunktes

Dynamik des Massenpunktes Dynamik des Massenpunktes Dynamik: Beschreibt die Bewegung von Körpern unter Berücksichtigung der auf die Körper wirkenden Kräfte. Damit versucht die Dynamik, Ursachen für die Bewegung von Körpern zu beschreiben.

Mehr

Erstellung von Simulationsmodellen In MATLAB/Simulink Christian Müller

Erstellung von Simulationsmodellen In MATLAB/Simulink Christian Müller Erstellung von Simulationsmodellen In MATLAB/Simulink Christian Müller Vorlesung AFS, 06.06.007 1 Letzte Woche: Auslegung der Klimaanlage durch stationäre Gleichungen Berechnung des Gleichgewichtszustand

Mehr

Turbulente Strömung. Benedikt Urbanek. 15. Dezember 2012

Turbulente Strömung. Benedikt Urbanek. 15. Dezember 2012 Turbulente Strömung Benedikt Urbanek 15. Dezember 2012 Inhaltsverzeichnis 1 Herleitung der Navier-Stokes-Gleichung 2 1.1 Mathematische Grundlage - Die Substantielle Ableitung.... 2 1.2 Die Kontinuitätsgleichung....................

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2016 Vorlesung 1 (mit freundlicher Genehmigung von Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 1 Mathematische

Mehr

df Druck p 1.5 Fluide: Mechanik der Flüssigkeiten und Gase 1.5.1 Ruhende Flüssigkeiten und Gase 1.5.1.1 Druck

df Druck p 1.5 Fluide: Mechanik der Flüssigkeiten und Gase 1.5.1 Ruhende Flüssigkeiten und Gase 1.5.1.1 Druck .5 Fluide: Mechanik der Flüssigkeiten und Gase Wir haben im Kaitel Mechanik bisher behandelt: ) Masseunkte ) Feste Körer (Starre Körer, elastische Körer siehe Vorl. techn. Mechanik!) Feste Körer haben

Mehr

Hydrostatik Mechanik von Fluiden im statischen Gleichgewicht. Fluide: Stoffe, die sich unter Einwirkung von Schubspannungen fortlaufend deformieren

Hydrostatik Mechanik von Fluiden im statischen Gleichgewicht. Fluide: Stoffe, die sich unter Einwirkung von Schubspannungen fortlaufend deformieren Hydrostatik Mechanik von Fluiden im statischen Gleichgewicht Fluide: Stoffe, die sich unter Einwirkung von Schubspannungen fortlaufend deformieren in ruhendem Fluid können keine tangentialen Spannungen

Mehr

11.6 Laval - Düse Grundlagen

11.6 Laval - Düse Grundlagen 11.6-1 11.6 Laval - Düse 11.6.1 Grundlagen Beim Ausströmen eines gas- oder dampfförmigen Mediums aus einem Druckbehälter kann die Austrittsgeschwindigkeit höchstens den Wert der Schallgeschwindigkeit annehmen.

Mehr

Formelsammlung - Stand: Größe SI-Einheit Abkürzung

Formelsammlung - Stand: Größe SI-Einheit Abkürzung Formelsammlung - Stand: 20.04.2010 1 1 Messung 1.1 physikalische Größen und Einheiten Basisgrößen mit SI-Einheiten Größe SI-Einheit Abkürzung Länge Meter m Masse Kilogramm kg Zeit Sekunden s elektrische

Mehr

Lehrstuhl für Fluiddynamik und Strömungstechnik Prof. Dr.-Ing. W. Frank Aufgabensammlung zur Vorlesung "Strömungslehre"

Lehrstuhl für Fluiddynamik und Strömungstechnik Prof. Dr.-Ing. W. Frank Aufgabensammlung zur Vorlesung Strömungslehre Lehrstuhl für Fluiddynamik und Strömungstechnik Prof. Dr.-Ing. W. Frank Aufgabensammlung zur Vorlesung "Strömungslehre" Lehrstuhl für Fluiddynamik und Strömungstechnik Prof. Dr.-Ing. W. Frank Übungen im

Mehr

Sinkt ein Körper in einer zähen Flüssigkeit mit einer konstanten, gleichförmigen Geschwindigkeit, so (A) wirkt auf den Körper keine Gewichtskraft (B) ist der auf den Körper wirkende Schweredruck gleich

Mehr