2. Zentrale Kraftsysteme

Größe: px
Ab Seite anzeigen:

Download "2. Zentrale Kraftsysteme"

Transkript

1 2. Zentrale Kraftsysteme Definition: Ein Kraftsystem, bei dem sich die Wirkungslinien aller Kräfte in einem Punkt schneiden, wird als zentrales Kraftsystem bezeichnet. Die Kräfte dürfen entlang ihrer Wirkungslinie in den gemeinsamen Angriffspunkt verschoben werden. F 4 F 3 F 3 F 1 F 2 F 2 F 4 F 1 Prof. Dr. Wandinger 1. Kräfte und Momente TM

2 2. Zentrale Kraftsysteme Beispiel: Prof. Dr. Wandinger 1. Kräfte und Momente TM

3 2. Zentrale Kraftsysteme 2.1 Zentrale Kraftsysteme in der Ebene 2.2 Zentrale Kraftsysteme im Raum Prof. Dr. Wandinger 1. Kräfte und Momente TM

4 Addition zweier Kräfte: Die resultierende Kraft hat die gleiche Wirkung wie die beiden Einzelkräfte. F 2 F Die Addition erfolgt nach der Parallelogrammregel: F 1 F = F 1 + F 2 Aneinanderfügen der Kraftpfeile führt zum gleichen Ergebnis. F F 2 F 2 F 1 F F 1 Prof. Dr. Wandinger 1. Kräfte und Momente TM

5 Kraftvektoren: Pfeile, für die eine Addition nach der Parallelogrammregel definiert ist, erfüllen die Rechengesetze für Vektoren. Kräfte sind Vektoren, die entlang ihrer Wirkungslinie verschoben werden dürfen. Sie werden daher als linienflüchtige Vektoren bezeichnet. Prof. Dr. Wandinger 1. Kräfte und Momente TM

6 Lageplan: Im Lageplan werden die Kräfte so eingezeichnet, wie sie am Körper angreifen: Kräfteplan: Im Kräfteplan werden die Kräfte zum Kräftepolygon zusammengesetzt: F 2 F F F 2 F 1 F 1 Prof. Dr. Wandinger 1. Kräfte und Momente TM

7 Beispiel: Öse Lageplan: Gegeben: F 1 = 250 N, α 1 = 30 F 2 = 375 N, α 2 = 45 F 1 Gesucht: α 1 Resultierende Kraft F, α α F α 2 F 2 Prof. Dr. Wandinger 1. Kräfte und Momente TM

8 Kräfteplan: Kosinussatz: F 1 F 2 =F 1 2 +F F 1 F 2 cos(α 1 +α 2 ) α 1 α 2 α 1 Sinussatz: β α F F 2 sin(90 α 1 +α) = sin(α 1+α 2 ) F 2 F β=90 α 1 +α cos(α 1 α)= F 2 F sin(α 1+α 2 ) Prof. Dr. Wandinger 1. Kräfte und Momente TM

9 Zahlenwerte: F 2 =250 2 N N N 375 N cos(75 )= N 2 F=393,2 N cos(30 α)= ,2 sin(75 )=0, α=22,90 α=30 22,90 =7,100 Prof. Dr. Wandinger 1. Kräfte und Momente TM

10 Zerlegung von Kräften: Eine Kraft kann eindeutig in ihre Komponenten entlang von zwei vorgegebenen Wirkungslinien zerlegt werden. F 2 F 1 F Kartesische Komponenten: y F = F x + F y F y F F x =F cos(α)=f sin(β) F y =F sin(α)=f cos(β) β F = F x 2 +F y 2, tan(α)= F y F x α F x x Prof. Dr. Wandinger 1. Kräfte und Momente TM

11 Addition in Komponenten: Die Kräfte werden in ihre Komponenten zerlegt. Die Komponenten werden nach dem Kräfteplan addiert. Für die Beträge der Komponenten gilt: F 2 F 2x F 2y y F 1y F 1x F 1 x F x =F 1 x +F 2 x, F y =F 1 y +F 2 y F 2x F 2y Dabei werden Komponenten in Koordinatenrichtung positiv und Komponenten entgegen der Koordinatenrichtung negativ gezählt. F 1x F 1y Prof. Dr. Wandinger 1. Kräfte und Momente TM

12 Einheitsvektoren: Ein Einheitsvektor e ist ein Vektor der Länge eins. Jeder Vektor F lässt sich schreiben als Produkt seines Betrags mit einem Einheitsvektor, der seine Richtung angibt: F =F e e F In einem kartesischen Koordinatensystem gilt: F = F x + F y =F x e x +F y e y Oft wird dafür die Matrix- Schreibweise verwendet: [ F ]= [ F x F y ] e y y e x x Prof. Dr. Wandinger 1. Kräfte und Momente TM

13 Beispiel: Öse Gegeben: F 1 = 250 N, α 1 = 30 F 1 F 2 = 375 N, α 2 = 45 α 1 Gesucht: Resultierende Kraft F, α α F α 2 F 2 Prof. Dr. Wandinger 1. Kräfte und Momente TM

14 Zerlegung der Kräfte in ihre Komponenten: y F 1 x =F 1 sin(α 1 ) F 1 y =F 1 cos(α 1 ) F 1y α 1 F 1 F 2 x =F 2 sin(α 2 ) F 2 y = F 2 cos(α 2 ) F 1x F 2x x F 2y α 2 Resultierende Kraft: F 1 x = 250 N sin(30 ) = 125,0 N F 2 x = 375 N sin(45 ) = 265,2 N F x = 390,2 N F 2 Prof. Dr. Wandinger 1. Kräfte und Momente TM

15 F 1 y = 250 N cos(30 ) = 216,5 N F 2 y = 375 N cos(45 ) = 265,2 N F y = 48,7 N Betrag und Richtung: y F x F = 390, ,7 2 N=393,2 N F y α F x tan(α)= F y = 48,7 = 0,1248 α= 7,114 F x 390,2 Prof. Dr. Wandinger 1. Kräfte und Momente TM

16 Addition mehrerer Kräfte: Zeichnerische Lösung: Lageplan F 3 F 2 F Kräfteplan F 3 F 4 (F 2 ) F (F 3 ) F 4 F 2 F 1 F 1 Die Reihenfolge der Addition ist beliebig. Prof. Dr. Wandinger 1. Kräfte und Momente TM

17 Rechnerische Lösung Zerlegung der Einzelkräfte in x- und y-komponenten (skalare) Addition der einzelnen Komponenten (vektorielle) Addition der Gesamtkomponenten F x = F y = n n F n x F n y } F =F x e x +F y e y Prof. Dr. Wandinger 1. Kräfte und Momente TM

18 Beispiel: Öse Gegeben: F 1 = 600 N, α 1 = 45 F 2 = 800 N, α 2 = 60 F 3 = 450 N, α 3 = 75 Gesucht: Betrag F und Richtung α der resultierenden Kraft F 2 F 3 α 3 y α 2 F 1 α 1 x Prof. Dr. Wandinger 1. Kräfte und Momente TM

19 2.1 Zentrale Kraftsystem in der Ebene Lösung: F 1 x = F 1 cos(α 1 ) = 600 N cos(45 ) = 424,3 N F 2 x = F 2 sin(α 2 ) = 800 N sin(60 ) = 692,8 N F 3 x = F 3 sin(α 3 ) = 450 N sin(75 ) = 434,7 N F x = 703,2 N F 1 y = F 1 sin(α 1 ) = 600 N sin(45 ) = 424,3 N F 2 y = F 2 cos(α 2 ) = 800 N cos(60 ) = 400,0 N F 3 y = F 3 cos(α 3 ) = 450 N cos(75 ) = 116,5 N F y = 707,8 N Prof. Dr. Wandinger 1. Kräfte und Momente TM

20 2.1 Zentrale Kraftsysteme F = F x 2 +F y 2 = 703, ,8 2 N=997,7 N tan(α)= F y = 707,8 = 1,006 α= 45, =134,8 F x 703,2 F y F y α F x x Prof. Dr. Wandinger 1. Kräfte und Momente TM

21 Gleichgewichtsbedingung: Ein zentrales Kraftsystem ist im Gleichgewicht, wenn die Vektorsumme aller Kräfte null ist. Lageplan: Kräfteplan: F 4 F 4 F 5 F = 0 : F 3 F 2 F 5 F 1 F 3 F x =0 F y =0 F 1 F 2 Prof. Dr. Wandinger 1. Kräfte und Momente TM

22 Beispiel: Eine Kugel liegt auf einer glatten schiefen Ebene und wird von einer glatten Wand gehalten. Gegeben: Gewicht G = 100 N Winkel α = 20 Gesucht: Kräfte zwischen Kugel und Wänden α G Prof. Dr. Wandinger 1. Kräfte und Momente TM

23 Schritt 1: Freischneiden der Kugel Die Wände werden entfernt. Die Kräfte, die die Wände auf die Kugel ausüben, werden als unbekannte Kräfte eingetragen. N 1 G α α N 2 Die Die Kraft, Kraft, die die eine eine glatte glatte Wand Wand auf auf einen einen Körper Körper ausübt, ausübt, ist ist senkrecht senkrecht zur zur Wand. Wand. Prof. Dr. Wandinger 1. Kräfte und Momente TM

24 Schritt 2: Gleichgewichtsbedingung Die unbekannten Kräfte werden so bestimmt, dass die Gleichgewichtsbedingung erfüllt ist. Mit Kräfteplan: α N 2 G=N 2 cos(α) N 2 = G cos(α) G N 1 G =tan(α) N 1=G tan(α) N 1 Prof. Dr. Wandinger 1. Kräfte und Momente TM

25 In Komponenten: N 1 F y =0 : G +N 2 cos(α)=0 N 2 = G cos(α) y G α F x =0 : N 1 N 2 sin (α)=0 N 1 =G tan (α) x Zahlenwerte: N 2 N 2 = 100 N cos(20 ) = 100 N 0,9397 =106,4 N N 1 =100 N tan(20 )=100 N 0,3640=36,4 N Prof. Dr. Wandinger 1. Kräfte und Momente TM

26 Wechselwirkungsgesetz: Die Kräfte, die zwei Körper aufeinander ausüben, sind gleich groß, entgegengesetzt gerichtet und haben die gleiche Wirkungslinie. Beispiel: Zwei glatte Kugeln N 3 G G N 1 G N 2 N 3 G N 4 Prof. Dr. Wandinger 1. Kräfte und Momente TM

27 2.2 Zentrale Kraftsysteme im Raum Kräfte im Raum: z F z β F F x α F y x y Prof. Dr. Wandinger 1. Kräfte und Momente TM

28 2.2 Zentrale Kraftsysteme im Raum Mit dem Einheitsvektor [ e ]=[sin(β) cos(α) sin(β)sin(α) cos(β) ] Addition: F x = n F y = n F z = n F nx F ny F nz gilt: F =F e Gleichgewichtsbedingungen: F x =0 F y =0 F z =0 Prof. Dr. Wandinger 1. Kräfte und Momente TM

29 2.2 Zentrale Kraftsysteme im Raum Definition der Wirkungslinie durch zwei Punkte im Raum: cos(β)= z B z A L AB z z B sin(β)= ( x B x A ) 2 + (y B y A ) 2 L AB sin(α)= y B y A ( x B x A ) 2 + (y B y a ) 2 z A y A A y B y e AB β B cos(α)= x B x A ( x B x A ) 2 + (y B y a ) 2 x A α x B x Prof. Dr. Wandinger 1. Kräfte und Momente TM

30 2.2 Zentrale Kraftsysteme im Raum L AB = ( x B x A ) 2 + (y B y A ) 2 + (z B z A ) 2 [ e AB ]=[sin(β)cos(α) sin(β)sin(α) ]= 1 [ L AB cos(β) x B x A ] y B y A z B z A Prof. Dr. Wandinger 1. Kräfte und Momente TM

31 2.2 Zentrale Kraftsysteme im Raum Beispiel: z C S C B O S B h c x a A b y S A Prof. Dr. Wandinger 1. Kräfte und Momente TM

32 2.2 Zentrale Kraftsysteme im Raum Im Punkt O sind drei Seile befestigt, an denen die Kräfte S A, S B und S C angreifen. Gegeben: S A = 400 N, S B = 500 N, S C = 300 N a = 40 cm, b = 30 cm, c = 60 cm, h = 70 cm Gesucht: Komponenten Sx, S y und S z der resultierenden Kraft S Prof. Dr. Wandinger 1. Kräfte und Momente TM

33 2.2 Zentrale Kraftsysteme im Raum Geometrie: tan(α)= a b = 4 3 z C tan(β)= a c = 4 6 = 2 3 O γ β h B tan(γ)= a 2 +b 2 h = = 5 7 x α a A b c y Prof. Dr. Wandinger 1. Kräfte und Momente TM

34 2.2 Zentrale Kraftsysteme im Raum cos(α)= 1 1+tan 2 (α) = 1 1+( a/b = 1 ) 2 1+(4/3) = =0,6 sin(α)=cos(α) tan(α)= = 4 5 =0,8 cos(β)= cos( γ)= 1 1+(2/3) 2 =0,8321, sin(β)= 2 3 0,8321=0, (5/7) 2 =0,8137, sin(γ)= 5 7 0,8137=0,5812 Prof. Dr. Wandinger 1. Kräfte und Momente TM

35 2.2 Zentrale Kraftsysteme im Raum Komponenten der Kräfte: S Ax =S A cos(α) S Ay =S A sin(α) S Az =0 S Bx = S B cos(β) S By =S B sin(β) S Bz =0 z O γ S C β S Cx =S C sin(γ)cos(α) S Cy =S C sin(γ)sin(α) S Cz =S C cos(γ) x α S A S B y Prof. Dr. Wandinger 1. Kräfte und Momente TM

36 2.2 Zentrale Kraftsysteme im Raum Resultierende Kraft: S C sin(γ)=300 N 0,5812=174,4 N S Cz =S C cos(γ)=300 N 0,8137=244,1 N S Ax = 400 N 0,6 = 240,0 N S Bx = 500 N 0,8321 = 416,1 N S Cx = 174,4 N 0,6 = 104,6 N S x = 71,5 N S Ay = 400 N 0,8 = 320,0 N S By = 500 N 0,5547 = 277,4 N S Cy = 174,4 N 0,8 = 139,5 N S y = 736,9 N Prof. Dr. Wandinger 1. Kräfte und Momente TM

37 2.2 Zentrale Kraftsysteme im Raum Beispiel: Eine Last hängt an drei Seilen, die an einem Haken befestigt sind. Die Wirkungslinie der Gewichtskraft geht durch den Haken. A z H C y Gegeben: Koordinaten der Punkte: G B x A= (0, 0, 0 ) m, B= (2, 0,0) m C =(1,2, 0 ) m, H =(1,1, 4 ) m Gesucht: Gewicht G = 10 kn Seilkräfte Prof. Dr. Wandinger 1. Kräfte und Momente TM

38 2.2 Zentrale Kraftsysteme im Raum Richtungen der Seilkräfte: Ein Ein Seil Seil überträgt überträgt nur nur Zugkräfte. Zugkräfte. Die Die Wirkungslinie stimmt stimmt mit mit der der Seilrichtung überein. überein. [ e AH ]= 1 L AH [ x H x A ] y H y A z H z A = 1 18 [ 1 1 4] = 1 [ ] [ e BH ]= 1 L BH [ x H x B ] y H y = 1 [ 1 ] B 1 3 2, [ e CH ]= 1 [ L z H z B 4 CH x H x C ] y H y = 1 [ 0 ] C 1 17 z H z C 4 Prof. Dr. Wandinger 1. Kräfte und Momente TM

39 2.2 Zentrale Kraftsysteme im Raum Kraftvektoren: H [ S A ]= [ S Ax S Ay S Az ] =S A [ e AH ]= S A 3 2 [ 1 1 [ S B ]= [ S Bx S By S Bz] =S B [ e BH ]= S B 4] [ 1 ] z A S A G S C S B B y C x [ S C ]= [ S Cx S Cy S Cz] =S C [ e CH ]= S C [ ] 4 ], [ G ]=G [ 0 0 Prof. Dr. Wandinger 1. Kräfte und Momente TM

40 2.2 Zentrale Kraftsysteme im Raum Gleichgewichtsbedingungen: F x =0 : S 1 A 3 2 S B = 0 (1) F y =0 : S 1 A S 1 B 17 S C = 0 (2) F z =0 : S 4 A S 4 B + 17 S C G = 0 (3) Lösung des Gleichungssystems: Aus Gleichung (1) folgt: S B =S A Addition der ersten beiden Gleichungen liefert: S A 1 17 S C=0 S C = S A Prof. Dr. Wandinger 1. Kräfte und Momente TM

41 2.2 Zentrale Kraftsysteme im Raum Einsetzen in Gleichung (3) ergibt: ( ) S A=G S A=G S A = G Für die anderen beiden Seilkräfte folgt daraus: S B =S A = G, S C= Zahlenwerte: G= 17 8 G S A =2,65 kn, S B =2,65 kn, S C =5,15 kn Prof. Dr. Wandinger 1. Kräfte und Momente TM

3. Allgemeine Kraftsysteme

3. Allgemeine Kraftsysteme 3. Allgemeine Kraftsysteme 3.1 Parallele Kräfte 3.2 Kräftepaar und Moment 3.3 Gleichgewicht in der Ebene Prof. Dr. Wandinger 1. Statik TM 1.3-1 3.1 Parallele Kräfte Bei parallelen Kräften in der Ebene

Mehr

3. Zentrales ebenes Kräftesystem

3. Zentrales ebenes Kräftesystem 3. Zentrales ebenes Kräftesystem Eine ruppe von Kräften, die an einem starren Körper angreifen, bilden ein zentrales Kräftesystem, wenn sich die Wirkungslinien aller Kräfte in einem Punkt schneiden. f

Mehr

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik Aufgaben zur Statik S 1. Seilkräfte 28 0 F 1 = 40 kn 25 0 F 2 = 32 kn Am Mast einer Überlandleitung greifen in der angegebenen Weise zwei Seilkräfte an. Bestimmen Sie die resultierende Kraft. Addition

Mehr

Mechanik 1. Übungsaufgaben

Mechanik 1. Übungsaufgaben Mechanik 1 Übungsaufgaben Universitätsprofessor Dr.-Ing. habil. Jörg Schröder Universität Duisburg-Essen, Standort Essen Fachbereich 10 - Bauwesen Institut für Mechanik Übung zu Mechanik 1 Seite 1 Aufgabe

Mehr

1. Einfache ebene Tragwerke

1. Einfache ebene Tragwerke Die Ermittlung der Lagerreaktionen einfacher Tragwerke erfolgt in drei Schritten: Freischneiden Aufstellen der Gleichgewichtsbedingungen Auflösen der Gleichungen Prof. Dr. Wandinger 3. Tragwerksanalyse

Mehr

1. Ebene gerade Balken

1. Ebene gerade Balken 1. Ebene gerade Balken Betrachtet werden gerade Balken, die nur in der -Ebene belastet werden. Prof. Dr. Wandinger 4. Schnittlasten bei Balken TM 1 4.1-1 1. Ebene gerade Balken 1.1 Schnittlasten 1.2 Balken

Mehr

2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay

2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay ufgabenstellung: Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: Gesucht ist der Punkt П, dessen momentane Geschwindigkeit null ist. Lösung: v Px =x ( y P y ), v Py =y +

Mehr

4. Stoßvorgänge. Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten.

4. Stoßvorgänge. Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten. 4. Stoßvorgänge Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten. Gesucht wird ein Zusammenhang zwischen den Geschwindigkeiten vor dem

Mehr

und der Kosinussatz cos(γ) = a2 + b 2 c 2 2 a b Sinussatz sin(β) = a b

und der Kosinussatz cos(γ) = a2 + b 2 c 2 2 a b Sinussatz sin(β) = a b Blatt Nr 1906 Mathematik Online - Übungen Blatt 19 Dreieck Geometrie Nummer: 41 0 2009010074 Kl: 9X Aufgabe 1911: (Mit GTR) In einem allgemeinen Dreieck ABC sind a = 18782, c = 1511 und β = 33229 gegeben

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Prof. Dr. Wandinger 1. Kinematik des Punktes TM 3 1.2-1 2. Räumliche Bewegung Wenn die Bahn des Punkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort

Mehr

Arbeitsblatt 1 Einführung in die Vektorrechnung

Arbeitsblatt 1 Einführung in die Vektorrechnung Arbeitsblatt Einführung in die Vektorrechnung Allgemein Vektoren sind physikalische Größen und durch ihre Richtung und ihren Betrag festgelegt. Geometrisch wird ein Vektor durch einen Pfeil dargestellt,

Mehr

Kräfte. Vorlesung und Übungen 1. Semester BA Architektur. Institut Entwerfen und Bautechnik, Fachgebiet Bautechnologie/Tragkonstruktionen

Kräfte. Vorlesung und Übungen 1. Semester BA Architektur.  Institut Entwerfen und Bautechnik, Fachgebiet Bautechnologie/Tragkonstruktionen Kräfte Vorlesung und Übungen 1. Semester BA Architektur Institut Entwerfen und Bautechnik, / KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Technische Mechanik. Technische Mechanik. Statik Kinematik Kinetik Schwingungen Festigkeitslehre. Martin Mayr. Martin Mayr. 8.

Technische Mechanik. Technische Mechanik. Statik Kinematik Kinetik Schwingungen Festigkeitslehre. Martin Mayr. Martin Mayr. 8. 44570_Mayr_205x227_44570_Mayr_RZ 03.07.5 3:39 Seite Martin Mayr Das erfolgreiche Lehrbuch ermöglicht Studenten des Maschinenbaus, der Elektrotechnik und der Mechatronik einen leichten Einstieg in die Technische

Mehr

Dynamik Lehre von den Kräften

Dynamik Lehre von den Kräften Dynamik Lehre von den Kräften Physik Grundkurs Stephie Schmidt Kräfte im Gleichgewicht Kräfte erkennt man daran, dass sie Körper verformen und/oder ihren Bewegungszustand ändern. Es gibt Muskelkraft, magnetische

Mehr

1. Haftung. Betrachtet wird ein Klotz auf einer rauen Oberfläche, an dem eine horizontale Kraft F angreift:

1. Haftung. Betrachtet wird ein Klotz auf einer rauen Oberfläche, an dem eine horizontale Kraft F angreift: Das Coulombsche Gesetz: Betrachtet wird ein Klotz auf einer rauen Oberfläche, an dem eine horizontale Kraft F angreift: g m F rau Die Erfahrung zeigt: Solange die Kraft F einen bestimmten Betrag nicht

Mehr

4. Stoßvorgänge. Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten.

4. Stoßvorgänge. Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten. 4. Stoßvorgänge Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten. Gesucht wird ein Zusammenhang zwischen den Geschwindigkeiten vor dem

Mehr

0,6 m. 0,4m. Gegeben seien die obigen drei auf den Balken wirkenden Kräfte mit:

0,6 m. 0,4m. Gegeben seien die obigen drei auf den Balken wirkenden Kräfte mit: Kurs: Statik Thema: Resultierende bestimmen Aufgabe 1) Wo liegt bei der Berechnung der Resultierenden der Unterschied zwischen Kräften mit einem gemeinsamen Angriffspunkt und Kräften mit unterschiedlichen

Mehr

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik S 1. Seilkräfte ufgaben zur Statik 28 0 F 1 = 40 kn 25 0 F 2 = 32 kn m Mast einer Überlandleitung greifen in der angegebenen Weise zwei Seilkräfte an. Bestimmen Sie die resultierende Kraft. S 2: Zentrales

Mehr

52 5 Gleichgewicht des ebenen Kraftsystems. Festlager

52 5 Gleichgewicht des ebenen Kraftsystems. Festlager 52 5 Gleichgewicht des ebenen Kraftsystems Loslager A estlager B BH Einspannung A M A AH A BV AV Abbildung 5.11: Typische Lagerungen eines starren Körpers in der Ebene (oben) und die zugehörigen Schnittskizzen

Mehr

Grundlagen der Physik 1 Lösung zu Übungsblatt 8

Grundlagen der Physik 1 Lösung zu Übungsblatt 8 Grundlagen der Physik 1 Lösung zu Übungsblatt 8 Daniel Weiss 1. Dezember 29 Inhaltsverzeichnis Aufgabe 1 - inhomogener hängender Balken 1 a) Seilkräfte...................................... 1 b) Schwerpunkt....................................

Mehr

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015 Vektorrechnung Fakultät Grundlagen Juli 205 Fakultät Grundlagen Vektorrechnung Übersicht Grundsätzliches Grundsätzliches Vektorbegriff Algebraisierung der Vektorrechnung Betrag 2 Skalarprodukt Vektorprodukt

Mehr

4) ZUSAMMENSETZEN UND ZERLEGEN VON KRAEFTEN IN DER EBENE

4) ZUSAMMENSETZEN UND ZERLEGEN VON KRAEFTEN IN DER EBENE BAULEITER HOCHBAU S T A T I K / F E S T I G K E I T S L E H R E 4) ZUSAMMENSETZEN UND ZERLEGEN VON KRAEFTEN IN DER EBENE 1) Kräfte greifen in einem Punkt an a) Zusammensetzen (Reduktion) von Kräften -

Mehr

1. Bewegungsgleichung

1. Bewegungsgleichung 1. Bewegungsgleichung 1.1 Das Newtonsche Grundgesetz 1.2 Dynamisches Gleichgewicht 1.3 Geführte Bewegung 1.4 Massenpunktsysteme 1.5 Schwerpunktsatz Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik

Mehr

Aufgabe 1. Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = 1). Es gilt det(λa) = (λ) n det(a).

Aufgabe 1. Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = 1). Es gilt det(λa) = (λ) n det(a). Aufgabe Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = Es gilt det(λa = (λ n det(a det I n = n? Nein (außer für n = Es gilt deti n = det(ab = det A det B? Ja det(a =

Mehr

Vektorielle Addition von Kräften

Vektorielle Addition von Kräften Vektorielle Addition von Kräften (Begleitende schriftliche Zusammenfassung zum Online-Video) Was wir bisher betrachtet haben: (a) Kräfte wirken entlang derselben Wirkungslinie (parallel oder antiparallel)

Mehr

Brückenkurs Mathematik. Mittwoch Freitag

Brückenkurs Mathematik. Mittwoch Freitag Brückenkurs Mathematik Mittwoch 5.10. - Freitag 14.10.2016 Vorlesung 4 Dreiecke, Vektoren, Matrizen, lineare Gleichungssysteme Kai Rothe Technische Universität Hamburg-Harburg Montag 10.10.2016 0 Brückenkurs

Mehr

4. Allgemeines ebenes Kräftesystem

4. Allgemeines ebenes Kräftesystem 4. llgemeines ebenes Kräftesystem Eine Gruppe von Kräften, die an einem starren Körper angreifen, bilden ein allgemeines Kräftesystem, wenn sich ihre Wirkungslinien nicht in einem gemeinsamen Punkt schneiden.

Mehr

2. Mehrteilige ebene Tragwerke

2. Mehrteilige ebene Tragwerke Mehrteilige ebene Trgwerke bestehen us mehreren gelenkig miteinnder verbundenen Teiltrgwerken. Zusätzlich zu den Lgerrektionen müssen die Kräfte in den Gelenken bestimmt werden. Prof. Dr. Wndinger 3. Trgwerksnlyse

Mehr

Analytische Geometrie, Vektorund Matrixrechnung

Analytische Geometrie, Vektorund Matrixrechnung Kapitel 1 Analytische Geometrie, Vektorund Matrixrechnung 11 Koordinatensysteme Eine Gerade, eine Ebene oder den Anschauungsraum beschreibt man durch Koordinatensysteme 111 Was sind Koordinatensysteme?

Mehr

4. Verzerrungen. Der Abstand von zwei Punkten ändert sich. Der Winkel zwischen drei Punkten ändert sich

4. Verzerrungen. Der Abstand von zwei Punkten ändert sich. Der Winkel zwischen drei Punkten ändert sich 4. Verzerrungen Wird ein Körper belastet, so ändert sich seine Geometrie. Die Punkte des Körpers ändern ihre Lage. Sie erfahren eine Verschiebung. Ist die Verschiebung für benachbarte Punkte unterschiedlich,

Mehr

3. Seilhaftung und Seilreibung

3. Seilhaftung und Seilreibung 3. Seilhaftung und Seilreibung Prof. Dr. Wandinger 5. Haftung und Reibung TM 1 5.3-1 3. Seilhaftung und Seilreibung 3.1 Haften 3.2 Gleiten Prof. Dr. Wandinger 5. Haftung und Reibung TM 1 5.3-2 Bei einer

Mehr

2 Wirkung der Kräfte. 2.1 Zusammensetzen von Kräften Kräfte mit gemeinsamer Wirkungslinie

2 Wirkung der Kräfte. 2.1 Zusammensetzen von Kräften Kräfte mit gemeinsamer Wirkungslinie 2 Wirkung der Kräfte Kräfte, die auf einen Körper wirken, werden diesen verschieben, wenn kein gleichgroßer Widerstand dagegen wirkt. Dabei wird angenommen, dass die Wirkungslinie der Kraft durch den Schwerpunkt

Mehr

Analytische Geometrie II

Analytische Geometrie II Analytische Geometrie II Rainer Hauser März 212 1 Einleitung 1.1 Geradengleichungen in Parameterform Jede Gerade g in der Ebene oder im Raum lässt sich durch einen festen Punkt auf g, dessen Ortsvektor

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Wenn die Bahn des Massenpunkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort im Raum zu bestimmen. Es muss ein Ortsvektor angegeben werden. Prof.

Mehr

& sind die Vektorkomponenten von und sind die Vektorkoordinaten von. A x. a) Der Betrag eines Vektors

& sind die Vektorkomponenten von und sind die Vektorkoordinaten von. A x. a) Der Betrag eines Vektors Einführu hnung Was ist ein Vektor? In Bereichen der Naturwissenschaften treten Größen auf, die nicht nur durch eine Zahlenangabe dargestellt werden können, wie Kraft oder Geschwindigkeit. Zur vollständigen

Mehr

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2 Vektoren Mit der Vektorrechnung werden oft geometrische Probleme gelöst. Wenn irgendwelche Aufgabenstellungen geometrisch darstellbar sind, z.b. Flugbahnen oder Abstandsberechnungen, dann können sie mit

Mehr

Einführung Vektoralgebra VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen. October 6, 2007

Einführung Vektoralgebra VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen. October 6, 2007 Hochschule Esslingen October 6, 2007 Overview Einführung 1 Einführung 2 Was sind Vektoren? Vektoren werden geometrisch definiert als Pfeilklassen: Strecken mit gleichem Betrag, gleicher Richtung und Orientierung.

Mehr

Übungsaufgaben Statik zentrales Kräftesystem

Übungsaufgaben Statik zentrales Kräftesystem I zentralen Kräftesyste liegen alle Kräfte in derselben Ebene und wirken auf einen geeinsaen Punkt. Lösen Sie alle Aufgaben zeichnerisch und rechnerisch. Kräfte zusaensetzen c) Eierziehen Bei Eierziehen

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Universität Basel Wirtschaftswissenschaftliches Zentrum Vektoren und Matrizen Dr. Thomas Zehrt Inhalt: 1. Vektoren (a) Einführung (b) Linearkombinationen (c) Länge eines Vektors (d) Skalarprodukt (e) Geraden

Mehr

1.1.2 Stabkräfte berechnen

1.1.2 Stabkräfte berechnen 1.1.2 Stabkräfte berechnen Wozu brauche ich dieses Thema? Man braucht die Berechnungsmethoden dieses Themas, um die Kräfte in Fachwerken zu berechnen. Auch Seilkräfte, z.b. im Bridle, können so ermittelt

Mehr

Aufgaben zum Thema Kraft

Aufgaben zum Thema Kraft Aufgaben zum Thema Kraft 1. Ein Seil ist mit einem Ende an einem Pfeiler befestigt und wird reibungsfrei über einen weiteren Pfeiler derselben Höhe im Abstand von 20 m geführt. Das andere Seilende ist

Mehr

Musterlösungen (ohne Gewähr)

Musterlösungen (ohne Gewähr) Herbst 010 Seite 1/0 rage 1 ( Punkte) Ein masseloser Balken der Länge l stützt sich wie skizziert über einen masselosen Stab auf dem Mittelpunkt P einer Rolle ab. Ein horizontal verlaufendes Seil verbindet

Mehr

Geometrie. 1 Vektoren, Vektorielle analytische Geometrie der Ebene

Geometrie. 1 Vektoren, Vektorielle analytische Geometrie der Ebene Geometrie Geometrie W. Kuhlisch Brückenkurs 207. Vektoren, Vektorrechnung und analytische Geometrie der Ebene 2. Vektorrechnung und analytische Geometrie des Raumes 3. Anwendungen in der Geometrie, Lagebeziehungen

Mehr

Grundwissen Abitur Geometrie 15. Juli 2012

Grundwissen Abitur Geometrie 15. Juli 2012 Grundwissen Abitur Geometrie 5. Juli 202. Erkläre die Begriffe (a) parallelgleiche Pfeile (b) Vektor (c) Repräsentant eines Vektors (d) Gegenvektor eines Vektors (e) Welcher geometrische Zusammenhang besteht

Mehr

Vektoren: Grundbegriffe. 6-E Ma 1 Lubov Vassilevskaya

Vektoren: Grundbegriffe. 6-E Ma 1 Lubov Vassilevskaya Vektoren: Grundbegriffe 6-E Ma 1 Lubov Vassilevskaya Parallele Vektoren Abb. 6-1: Vektoren a, b, c und d liegen auf drei zueinander parallelen Linien l, l' und l'' und haben gleiche Richtung Linien l,

Mehr

Impuls/Kraft als Vektor, Impulsbilanz/Grundgesetz, Reibung

Impuls/Kraft als Vektor, Impulsbilanz/Grundgesetz, Reibung TBM, Physik, T. Borer Übung 1-006/07 Übung 1 Mechanik Impuls/Kraft als Vektor, Impulsbilanz/Grundgesetz, Reibung Lernziele - die vektorielle Addition bzw. Zerlegung von Impuls, Impulsstrom und Kraft zur

Mehr

2.4 Stoßvorgänge. Lösungen

2.4 Stoßvorgänge. Lösungen .4 Stoßvorgänge Lösungen Aufgabe 1: a) Geschwindigkeit und Winkel: Für die Wurfhöhe gilt: H = v 0 g sin Die zugehörige x-koordinate ist: x 1 = v 0 g sincos Aus diesen beiden Gleichungen lässt sich die

Mehr

1 Statik. 1.1 Kraft. Folgende Eigenschaften bestimmen eine Kraft: Der Kraftvektor ist damit ein gebundener Vektor: symbolisch F

1 Statik. 1.1 Kraft. Folgende Eigenschaften bestimmen eine Kraft: Der Kraftvektor ist damit ein gebundener Vektor: symbolisch F 1 Statik 1.1 Kraft Folgende Eigenschaften bestimmen eine Kraft: Der Kraftvektor ist damit ein gebundener Vektor: symbolisch F Einheit der Kraft: 1 Newton = 1 N = 1 kg m/s 2 Darstellung: Kraft F mit einem

Mehr

2. Flächenträgheitsmomente

2. Flächenträgheitsmomente . Flächenträgheitsmomente.1 Definitionen. Zusammengesette Querschnitte.3 Hauptachsen Prof. Dr. Wandinger 3. Balken TM 3.-1 .1 Definitionen Flächenträgheitsmomente: Die ur Berechnung der Spannungen eingeführten

Mehr

2. Flächenträgheitsmomente

2. Flächenträgheitsmomente . Flächenträgheitsmomente.1 Definitionen. Zusammengesette Querschnitte.3 Hauptachsen Prof. Dr. Wandinger 3. Balken TM 3.-1 .1 Definitionen Flächenträgheitsmomente: Die ur Berechnung der Spannungen eingeführten

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

Übungsblatt 1: Lösungswege und Lösungen

Übungsblatt 1: Lösungswege und Lösungen Übungsblatt : Lösungswege und Lösungen 5..6 ) Hier geht es weniger um mathematisch-strenge Beweise als darum, mit abstrakten Vektoren ohne Komponenten) zu hantieren und damit die Behauptungen plausibel

Mehr

3. Erweiterung der trigonometrischen Funktionen

3. Erweiterung der trigonometrischen Funktionen 3. Erweiterung der trigonometrischen Funktionen 3.1. Polarkoordinaten 1) Rechtwinklige und Polarkoordinaten Üblicherweise gibt man die Koordinaten eines Punktes in der Ebene durch ein Zahlenpaar vor: P(x

Mehr

Mathematik = x 2 + x 2 = x + x 2 25x = 146 x =

Mathematik = x 2 + x 2 = x + x 2 25x = 146 x = 1 Prof. Dr. Matthias Gerdts Dr. Sven-Joachim Kimmerle Wintertrimester 014 Mathematik 1 + Übung 1 Gleichungen mit Wurzeln Bestimmen Sie alle Lösungen der folgenden Gleichungen. Beachten Sie dabei, dass

Mehr

TM I. Aufgabe 1.1. Aufgabe 1.2. Gegeben sind die Spaltenvektoren. a = 1. , b = 6 7. , d = , c = c z. Man berechne. a) die Summe a + b,

TM I. Aufgabe 1.1. Aufgabe 1.2. Gegeben sind die Spaltenvektoren. a = 1. , b = 6 7. , d = , c = c z. Man berechne. a) die Summe a + b, TM I Aufgabe 1.1 Gegeben sind die Spaltenvektoren 3 2 a = 1, b = 6 7 Man berechne a) die Summe a + b, 2 b) das Skalarprodukt a b,, c = 3 5 c) die Koordinate c z für den Fall, dass a c ist, d) das Kreuzprodukt

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

Lösung zur Übung 3 vom

Lösung zur Übung 3 vom Lösung zur Übung 3 vom 28.0.204 Aufgabe 8 Gegeben ist ein Dreieck mit den nachfolgenden Seiten- und Winkelbezeichnung. Der Cosinussatz ist eine Verallgemeinerung des Satzes des Pythagoras: a) c 2 = a 2

Mehr

Ilja Repin Die Wolgatreidler (1873) Das Skalarprodukt. 1-E Ma 1 Lubov Vassilevskaya

Ilja Repin Die Wolgatreidler (1873) Das Skalarprodukt. 1-E Ma 1 Lubov Vassilevskaya Ilja Repin Die Wolgatreidler (1873) Das Skalarprodukt 1-E Ma 1 Lubov Vassilevskaya Treideln http://www.rheinschifffahrtsgeschichte.de/mainzer%20pano%20dateien/tierer%20treideln.jpg Treideln heißt eine

Mehr

Hochschule Düsseldorf University of Applied Sciences. 27. Oktober 2016 HSD. Physik. Vektoren Bewegung in drei Dimensionen

Hochschule Düsseldorf University of Applied Sciences. 27. Oktober 2016 HSD. Physik. Vektoren Bewegung in drei Dimensionen Physik Vektoren Bewegung in drei Dimensionen y (px) ~x x (px) Spiele-Copyright: http://www.andreasilliger.com/index.php Richtung a b b ~x = a Einheiten in Richtung x, b Einheiten in Richtung y y (px) ~x

Mehr

Die Kraft. Mechanik. Kräfteaddition. Die Kraft. F F res = F 1 -F 2

Die Kraft. Mechanik. Kräfteaddition. Die Kraft. F F res = F 1 -F 2 Die Kraft Mechanik Newton sche Gesetze und ihre Anwendung (6 h) Physik Leistungskurs physikalische Bedeutung: Die Kraft gibt an, wie stark ein Körper auf einen anderen einwirkt. FZ: Einheit: N Gleichung:

Mehr

4. Das Verfahren von Galerkin

4. Das Verfahren von Galerkin 4. Das Verfahren von Galerkin 4.1 Grundlagen 4.2 Methode der finiten Elemente 4.3 Beispiel: Stab mit Volumenkraft Prof. Dr. Wandinger 3. Prinzip der virtuellen Arbeit FEM 3.4-1 4.1 Grundlagen Das Verfahren

Mehr

3 Vektoren. 3.1 Kartesische Koordinaten in Ebene und Raum. Höhere Mathematik 60

3 Vektoren. 3.1 Kartesische Koordinaten in Ebene und Raum. Höhere Mathematik 60 Kartesische Koordinaten in Ebene und Raum 3 Vektoren 3.1 Kartesische Koordinaten in Ebene und Raum In der Ebene (mathematisch ist dies die Menge R 2 ) ist ein kartesisches Koordinatensystem festgelegt

Mehr

Kapitel 2 Kräfte und Momente in der ebenen Statik

Kapitel 2 Kräfte und Momente in der ebenen Statik Kapitel 2 Kräfte und Momente in der ebenen Statik 2 2 2 Kräfte und Momente in der ebenen Statik 2.1 Kräfte in der Ebene mit gemeinsamem Schnittpunkt ihrer Wirkungslinien... 19 2.1.1 Ermittlung der resultierenden

Mehr

Analytische Geometrie Seite 1 von 6. Die Addition von Vektoren kann veranschaulicht werden durch das Aneinanderhängen von Pfeilen.

Analytische Geometrie Seite 1 von 6. Die Addition von Vektoren kann veranschaulicht werden durch das Aneinanderhängen von Pfeilen. Analytische Geometrie Seite 1 von 6 1. Wichtige Formeln AB bezeichnet den Vektor, der die Verschiebung beschreibt, durch die der Punkt A auf den Punkt B verschoben wird. Der Vektor, durch den die Verschiebung

Mehr

3D-Transformationen. Kapitel Translation Skalierung

3D-Transformationen. Kapitel Translation Skalierung Kapitel 13 3D-Transformationen Wie im weidimensionalen Fall, werden die Definitionspunkte der Objekte als Spaltenvektoren mit homogener Koordinate geschrieben. Die notwendigen Transformationen werden wieder

Mehr

Kapitel 2. Kräfte mit gemeinsamem Angriffspunkt

Kapitel 2. Kräfte mit gemeinsamem Angriffspunkt Kapitel 2 Kräfte mit gemeinsamem Angriffspunkt 2 2 Kräfte mit gemeinsamem Angriffspunkt 2.1 Zusammensetzung von Kräften in der Ebene... 21 2.2 Zerlegung von Kräften in der Ebene, Komponentendarstellung...

Mehr

2 Skalarprodukt, Vektorprodukt

2 Skalarprodukt, Vektorprodukt 37 2 Skalarprodukt, Vektorprodukt Es gibt zwei verschiedene Verknüpfungsregeln für das Produkt von Vektoren. Die mechanische Arbeit ist definiert als Produkt aus Kraft und Weg. 1 Vorausgesetzt wird dabei,

Mehr

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64 1/64 VEKTORRECHNUNG Prof. Dr. Dan Eugen Ulmet Hochschule Esslingen März 2011 2/64 Overview Vektoralgebra 1 Vektoralgebra 2 Was sind Vektoren? 3/64 Vektoren werden geometrisch definiert als Pfeilklassen:

Mehr

Lernmaterialblatt Mathematik. Vektorrechnung eine Einführung. Anwendung Mathematik I. Einleitung:

Lernmaterialblatt Mathematik. Vektorrechnung eine Einführung. Anwendung Mathematik I. Einleitung: Vektorrechnung eine Einführung Einleitung: Um beispielsweise das Dreieck ABC in der Abbildung an die Position A'B'C' zu verschieben, muss jeder Punkt um sieben Einheiten nach rechts und drei nach oben

Mehr

1. Prinzip von d'alembert

1. Prinzip von d'alembert 1. Prinzip von d'alembert 1.1 Freiheitsgrade 1.2 Zwangsbedingungen 1.3 Virtuelle Geschwindigkeiten 1.4 Prinzip der virtuellen Leistung Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik 2 5.1-1 1.1

Mehr

Lösung zur Übung 1. In einem Würfel der Kantenlänge a wird ein Methanmolekül so platziert, dass das Kohlenstoffatom. r = a 2. d = 2 a (3) 2 = 2 a (4)

Lösung zur Übung 1. In einem Würfel der Kantenlänge a wird ein Methanmolekül so platziert, dass das Kohlenstoffatom. r = a 2. d = 2 a (3) 2 = 2 a (4) Lösung zur Übung 1 Aufgabe 1 In einem Würfel der Kantenlänge a wird ein Methanmolekül so platziert, dass das Kohlenstoffatom im Zentrum des Würfels liegt. Wie groß ist der Tangens des halben H-C-H Bindungswinkels?

Mehr

Lösungen der Übungsaufgaben III

Lösungen der Übungsaufgaben III Mathematik für die ersten Semester (. Auflage): Lösungen der Übungsaufgaben III C. Zerbe, E. Ossner, W. Mückenheim 6. Man konstruiere die Winkelhalbierende eines beliebigen Winkels analog zur Konstruktion

Mehr

Vorkurs Mathematik-Physik, Teil 7 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 7 c 2016 A. Kersch 1 Kräfte, Drehmoment 1.1 Newton sche Axiome 1.1.1 Wechselwirkungsgesetz Vorkurs Mathematik-Physik, Teil 7 c 2016 A. Kersch Die Newton schen Axiome (oder auch Gesetze) wurden 1687 von Isaac Newton in seinem

Mehr

Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5

Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5 (Stark 7 S. 6ff) Lösungen IV. a) gleichschenklig 0) a) () α = β = 6,7 () β = 7,8 ; γ = 4,4 () α = 4 ; γ = (4) α = β = (80 γ)/ b) 79,6 und 0,8 oder 0, und 0, c) α = β = 64 ; γ = d) gleichschenklig; zwei

Mehr

Vektoren. Mathematik I für Biologen, Geowissenschaftler und Geoökologen. Vektoren. Stefan Keppeler. 21. November 2007.

Vektoren. Mathematik I für Biologen, Geowissenschaftler und Geoökologen. Vektoren. Stefan Keppeler. 21. November 2007. Mathematik I für Biologen, Geowissenschaftler und Geoökologen Vektoren 21. November 2007 Vektoren Vektoren werden zur Darstellung gerichteter Größen verwendet. Man stelle sich also einen Pfeil in eine

Mehr

Komplexe Zahlen. (a, b) + (c, d) := (a + c, b + d) (a, b) (c, d) := (a c b d, a d + b c)

Komplexe Zahlen. (a, b) + (c, d) := (a + c, b + d) (a, b) (c, d) := (a c b d, a d + b c) Komplexe Zahlen Wir betrachten Zahlenpaare (a, b, (c, d R und definieren eine Addition und eine Multiplikation wie folgt: (a, b + (c, d := (a + c, b + d (a, b (c, d := (a c b d, a d + b c Satz: R mit dieser

Mehr

Prüfungsvorbereitung Physik: Bewegungen und Kräfte

Prüfungsvorbereitung Physik: Bewegungen und Kräfte Prüfungsvorbereitung Physik: Bewegungen und Kräfte Theoriefragen: Diese Begriffe müssen Sie auswendig in ein bis zwei Sätzen erklären können. a) Vektor/Skalar b) Woran erkennt man eine Kraft? c) Welche

Mehr

Priv. Doz. Dr. A. Wagner Aachen, 19. September 2016 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2016, RWTH Aachen University

Priv. Doz. Dr. A. Wagner Aachen, 19. September 2016 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2016, RWTH Aachen University Priv. Doz. Dr. A. Wagner Aachen, 9. September 6 S. Bleß, M. Sc. Analysis Übungsaufgaben im Vorkurs Mathematik 6, RWTH Aachen University Intervalle, Supremum und Infimum Für a, b R, a < b nennen wir eine

Mehr

Einführung in das Skalarprodukt

Einführung in das Skalarprodukt Die Homepage von Joachim Mohr Start Mathematik Einführung in das Skalarprodukt in Aufgaben Alle Lektionen und Texte der Delphi-Ecke sind in der gepackten Zip-Datei Delphi-Ecke (ohne Urlaubsbilder) (Stand:

Mehr

Aufgaben zu sin, cos und tan im rechtwinkligen Dreieck

Aufgaben zu sin, cos und tan im rechtwinkligen Dreieck Aufgaben zu sin, cos und tan im rechtwinkligen Dreieck 1) Eine Leiter ist 3m von einer Wand entfernt. Die Leiter ist 5m lang. In welcher Höhe ist die Leiter an die Wand gelehnt und welchen Neigungswinkel

Mehr

(von Punkt A nach Punkt B) gemessen und auch die entsprechenden Zenitwinkel z B

(von Punkt A nach Punkt B) gemessen und auch die entsprechenden Zenitwinkel z B Aufgabe a.1 Verwendet dieses elementare geometrische Verhältnis der Strecken, um die Höhe eines Turmes oder eines sonstigen hohen Gebäudes in eurer Nähe zu bestimmen. Dokumentiert euer Experiment. Wiederholt

Mehr

Baustatik und Holzbau. Übungen Technische Mechanik I

Baustatik und Holzbau. Übungen Technische Mechanik I Prof. Ralf-W. oddenberg austatik und Holzbau Hochschule Wismar Übungen Technische Mechanik I Wintersemester 216/217 Inhalt Inhaltsverzeichnis der Übungsaufgaben 2 Zentrale Kraftsysteme Übungen... 2 2.1

Mehr

Wiederholungsaufgaben Klasse 10

Wiederholungsaufgaben Klasse 10 Wiederholungsaufgaben Klasse 10 (Lineare und quadratische Funktionen / Sinus, Kosinus, Tangens und Anwendungen) 1. In welchem Punkt schneiden sich zwei Geraden, wenn eine Gerade g durch die Punkte A(1

Mehr

Dr. O. Wittich Aachen, 12. September 2017 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2017, RWTH Aachen University

Dr. O. Wittich Aachen, 12. September 2017 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2017, RWTH Aachen University Dr. O. Wittich Aachen,. September 7 S. Bleß, M. Sc. Analysis Übungsaufgaben im Vorkurs Mathematik 7, RWTH Aachen University Intervalle, Beschränktheit, Maxima, Minima Aufgabe Bestimmen Sie jeweils, ob

Mehr

Kräfte und Drehmomente

Kräfte und Drehmomente Kräfte und Drehmomente In diesem Kapitel... Kräfte und Drehmomente Kräfte zerlegen und zusammensetzen Kräftesysteme Körper freimachen D as zentrale Thema der Statik ist die rage, wie ein Körper oder ein

Mehr

Grundwissen 10. Überblick: Gradmaß rπ Länge eines Bogens zum Mittelpunktswinkels α: b = α

Grundwissen 10. Überblick: Gradmaß rπ Länge eines Bogens zum Mittelpunktswinkels α: b = α Grundwissen 0. Berechnungen an Kreis und Kugel a) Bogenmaß Beispiel: Gegeben ist ein Winkel α=50 ; dann gilt: b = b = π 50 0,8766 r r 360 Die (reelle) Zahl ist geeignet, die Größe eines Winkels anzugeben.

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Mathematische Grundlagen Oliver Deussen Mathematische Grundlagen 1 Affine Räume um Zeichenebene bzw. Raum zu beschreiben, muß vorher ein Koordinatensystem festgelegt werden durch geometrische Fragestellungen

Mehr

Technische Mechanik I

Technische Mechanik I Technische Mechanik I m.braun@uni-duisburg.de Wintersemester 2003/2004 Lehrveranstaltung Zeit Hörsaal Beginn Technische Mechanik I V 3 Mi 14:00 15:30 LB 104 15.10.2003 r 08:15 09:45 LB 104 17.10.2003 14tägig

Mehr

1. Bewegungsgleichung

1. Bewegungsgleichung 1. Bewegungsgleichung 1.1 Das Newtonsche Grundgesetz 1.2 Dynamisches Gleichgewicht 1.3 Geführte Bewegung 1.4 Massenpunktsysteme 1.5 Schwerpunktsatz Prof. Dr. Wandinger 2. Kinetik des Massenpunktes TM 3

Mehr

Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759.

Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759. (4) Exponential- und Logarithmusfunktionen Satz Für jedes b > 1 gibt es eine eindeutig bestimmte Funktion exp b : R R + mit folgenden Eigenschaften. exp b (r) = b r für alle r Q Die Funktion exp b ist

Mehr

2 Geometrie und Vektoren

2 Geometrie und Vektoren Geometrie und Vektoren Vorbemerkung: Begriffe wie die folgenden werden hier als bekannt vorausgesetzt: Punkt, Strecke, Strahl, Gerade, Ebene, Kreis, Winkel, rechter Winkel, etc..1 Grundlegende Sätze Satz

Mehr

d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1

d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1 2008/2009 Das Wichtigste in Kürze Klasse 3 Lineare Gleichungssysteme und Determinanten Definiton (Lineare Gleichungssysteme: Lineare Gleichungssysteme löst man entweder mit dem Gauß-Algorithmus oder nach

Mehr

2 Kräfte und ihre Wirkungen

2 Kräfte und ihre Wirkungen 5 Kräfte und ihre Wirkungen Kräfte treten überall auf in der Natur, in der Technik, im Verkehr, im Sport, usw. Ein Getreidehalm wiegt sich im Wind, ebenso wie ein Fernsehturm. Bei Bewegungen sind im Allgemeinen

Mehr

2.3.4 Drehungen in drei Dimensionen

2.3.4 Drehungen in drei Dimensionen 2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1

Mehr

Einführung in die Statik und räumliche Kraftsysteme

Einführung in die Statik und räumliche Kraftsysteme Leseprobe Kirbs Einführung in die Statik und räumliche Kraftsysteme TECHNISCHE MECHANIK Studienbrief 2-050-0904 3. Auflage 2008 HOCHSCHULVERBUND DISTANCE LEARNING Impressum Verfasser: Prof. Dr.-Ing. Jörg

Mehr