Seminar über Algorithmen. Load Balancing. Slawa Belousow Freie Universität Berlin, Institut für Informatik SS 2006

Größe: px
Ab Seite anzeigen:

Download "Seminar über Algorithmen. Load Balancing. Slawa Belousow Freie Universität Berlin, Institut für Informatik SS 2006"

Transkript

1 Semna übe Algothmen Load Balancng Slawa Belousow Fee Unvestät Beln, Insttut fü Infomatk SS Load Balancng was st das? Mt Load Balancng ode Lastvetelung weden Vefahen bescheben, um be de Specheung, dem Tanspot und de Veabetung von Obekten vogegebene Kapaztätsgenzen enzuhalten ode am besten auszunutzen. De Pobleme fü Load Balancng fnden sch n velen Beechen. In de Infomatonsveabetung ode -specheung (Datenbanken müssen de Daten auf veschedene Spechekapaztäten vetelt weden. De Zugffsgeschwndgket und Übeschtlchket haben de höchste Potät be de Lösung dese Pobleme. Lastenvetelung fnden w auch n de Logstk. Dabe handelt es sch mest um de Beladung von Kaftfahzeugen, Schffen und andeen Tanspotmtteln. Hebe muss de vohandene Ladekapaztät so gut we möglch ausgenutzt weden. In de Computetechnk weden umfangeche Beechnungen ode goße Mengen von Anfagen mttels Lastvetelung auf mehee paallel abetende Systeme vetelt. Das können sowohl nebenläufge Pozesse sen, vetelbae algothmsche Beechnungen ode Anfagen auf Webseve. 1.2 Load Balancng von Netzwekvekeh Als Bespel snd he en paa Vefahen fü Load Balancng m Netzwekvekeh aufgefüht. Das enfachste st de DNS-Vaante: Im DNS-Seve snd mehee IP-Adessen fü ene Doman hntelegt. De Clent geft auf desen DNS-Seve zu und bekommt ene IP-Adesse, de de Clent ab dann vewendet. Das Vefahen st echt enfach und ene chtge Lastenvetelung fndet ncht statt, wel ncht kla st, we en Clent enen Seve auslasten wd. Wetehn benötgt ede Seve ene egene IP- Adesse. En andees Vefahen st das Round-Robn-Vefahen :

2 Be desem Vefahen wd vo alle Seve en Load Balance vogeschaltet, de de enzelnen Anfagen auf de Seve vetelt und sch de Seve-Clent Zugehögket mekt. De Votel von desem Vefahen st, dass nu ene IP-Adesse gebaucht wd. De Nachtel st, dass totzdem de Seve vescheden ausgelastet sen können. Desen Nachtel hebt das NAT mt Feedback auf, wo ede Seve dem Load Balance mttelt, we de Seve geade ausgelastet st. Wetee Vefahen snd de URL-basetes Vefahen ode Denst-basetes Vefahen, wobe entwede ganze Odnestuktuen ode Denste (HTTP, HTTPS, FTP auf veschedene Seve vetelt weden. 2 Load Balancng n de Speltheoe Jedes Load Balancng Poblem kann speltheoetsch betachtet weden. Dabe eweten w das Poblem de Lastenvetelung auf de Regeln de Speltheoe und machen en Spel daaus. Im Gunde st edes Load Balancng Poblem, ene Vetelung von N Elementen auf M Elemente. Dabe wd en bestmmtes Optmum de Vetelung gesucht. Speltheoetsch könnte es so aussehen, dass N Spele ene Aufgabe haben und dese auf M Maschnen ausfühen wollen, wobe de Spele mtenande konkueen und fü sch allene das beste Egebns suchen. Dabe untescheden w zwschen zwe Aten de Spele: - dskete (atomae Load Balancng Spele - ncht dskete (ncht atomae Load Balancng Spele. Be de esten Vaante weden de Spele ode he Ressoucen als en unzetennbaes Element angesehen, welches mme als Ganzes betachtet ode behandelt weden muss. Be de zweten Vaante snd de Ressoucen de Spele belebg auftelba. 2.1 Dskete Load Balancng Spele Das Model das w etzt betachten weden, st de Vetelung von Aufgaben de Spele auf Maschnen. De Defnton: n - Spele m - Maschnen p - Aufgabenlastgöße von Spele Ene Abet kann nu auf ene bestmmten Menge von Maschnen ausgefüht weden: S { 1,..., m}

3 A - Ene Menge mt Zuwesungen von Abet zu ene Maschne de ene möglche Lösungen epäsentet: S (, Aus desem Model egbt sch de Belastung ene Maschne : L : = p :(, A Des weteen defneen w ene Funkton, welche de Antwotzet enes Seve ausdückt, be ene bestmmten Beladung mt Aufgaben: ( Das Nash Glechgewcht n desem dsketen System entsteht daduch, dass ken Spele sene Aufgabe auf ene andee Maschne vescheben kann, ohne daduch enen Nachtel n de Antwotzet zu bekommen: A k S, k 2.2 Nash Exstenz ( L k ( Lk + p Das Vohandensen enes dsketen Nash Glechgewcht n edem Load Balancng Spel wd daduch gezegt, dass edes Spel ene Nash Glechgewchtlösung enthält. Dabe gehen w we folgt vo. W staten en Spel mt belebgen Paameten. De Spele können, ene zu ene Zet, de Maschne wechseln, falls se mt dem bshegen Egebns ncht zufeden snd. Wenn es ene Funkton gbt, mt A als Paamete, de mt edem Wechsel abnmmt, dann wd de Pozess gendwann enden und Kese weden vemeden. Wenn ken Spele meh wechseln kann, st das Nash Glechgewcht eecht. 2.3 Nash Kosten n dsketen Load Balancng wost case: max : L > 0 ( L aveage/totale Antwotzet :(, A ( L 2.4 Ncht dskete Load Balancng Spele Ncht dskete Load Balancng Spele untescheden sch von dsketen daduch, dass de Aufgaben de Spele belebg untetelba snd. Das Model fü ncht dskete Load Balancng Spele:

4 {1,...,m} - Menge von Maschnen M (L - Antwotzetfunkton {1,...,n} - Abetstypen p - Gesamtlast fü eden Typ von Abet S M - Maschnenanfodeung fü eden Typ von W suchen Paae x (Abet, Maschne, so das x de Belastung von Abet auf Maschne ausdückt. De Menge dese Paae muss folgende Bedngungen enhalten: De Summe alle x enes Abetstyps st glech de Belastung duch den Abetstyp : x = p S x st mme postv:, x 0 wenn ncht zu de Menge de Maschnenanfodeung des Typs gehöt, dann st x = 0 S x = 0 Als Bespel sehen w uns de Vetelung von 4 Abetsvogängen auf 4 Maschnen an: m1 m2 m3 m4 He wd z.b. de Abet 1 auf Maschne m1 und m2 vetelt. En bespelhafte Lösung des Load Balancng Poblems könnte so aussehen: (1, m1 = 0,7; (1, m2 = 0,3; (2, m1 = 1,0; (3, m3 = 1,0; (4, m1 = 0,4; (4, m4 = 0,6. Alle andeen möglchen Paae snd glech 0: (1, m3 = 0; (1, m4 = 0;.... De Belastung ene Maschne n enem ncht dsketem Load Balancng Spel st de Summe alle Telabeten, de auf dese Maschne ausgefüht weden: L = x Das Nash Glechgewcht fü ncht dskete Load Balancng Spele st elatv enfach. Im Veglech das Nash Glechgewcht fü dskete Spele: Wel w n ncht dsketen Spelen de Aufgaben belebg auftelen können, müssen w nu ( L k ( Lk + p

5 Maschen mt wenge Auslastung suchen:, x > ( k S 0 ( L k ( Lk 3 Mnmeung de maxmalen Antwotzet Exstet mme en Nash Glechgewcht? Das Bewesen w daduch, dass mme en Nash Glechgewcht gefunden weden kann. Bs dahn nähmen w an, es exstet. We gut st es? Theoem: En Nash Glechgewcht m ncht atomaen Load Balancng Spel mnmet de maxmale Antwotzet übe alle Lösungen Bewes: Gehen w vom schlechtesten anzunehmenden Fall aus: max : L > 0 Se x dabe ene konkete Lösung. W fassen etzt alle Maschnen de maxmale Antwotzet haben zusammen, n ene Menge A(x: A( x : = { ( L max} In de Menge B(x kommen alle Abeten, de auf den Maschnen aus A(x laufen: Lemma: In enem Nash Glechgewcht, laufen alle Abeten aus B(x auf den Maschnen aus A(x. B ewes: Folgt aus de Defnton. Annahme, es gbt ene Abet, de auf ene Maschne k außehalb von A(x ausgefüht wd. Dann wäe: k ( Lk < und dass wüde dem Nash Glechgewcht wedespechen, wenn es en k S gäbe mt: k k Folgeung: = max ( L B( x : = { x > 0, A( x} ( L < ( L B(x S A( x De Rest des Beweses de Mnmeung de maxmalen Antwotzet: Now let's compae a Nash to any othe soluton. Ou Nash has assgnments x and loads L, wheeas the othe soluton has assgnments x * and loads L *. But x * stll has all of the load p assgned wthn the goup A(x. Snce the sum of the loads n A n ths soluton B( x must be at least as geat as the sum of the loads n the Nash, thee must be some machne n A such that L * L. In ths case, we know that (L * (L and thus that ths othe soluton s at least as bad as the Nash.

6 4 Das fnden des Nash Glechgewchtes Nähmen w an, das Spele läuft und w haben genden Zwschenegebns. So haben w auch ene maxmale Antwotzet. Jetzt müssen w übepüfen, ob es en bessees Egebns gbt, als. Das wd mt Hlfe enes Netzwek-Fluss Gaphen eecht. Das Model fü unseen Algothmus st we folgt: m - Maschnen n - Abeten - de ehoffte maxmale Antwotzet Jetzt wollen w heausfnden, ob es en max < gbt. Aus den Abeten und Maschnen wd en Netzwek-Fluss konstuet mt zwe zusätzlchen Knoten, den Ausgang alle Abeten und den Empfang de Egebnsse de Maschnen: * * S T Folgende Egenschaften gelten: 2 neue Knoten hnzugefügt S* und T*. De Fluss geht von S* zu T* Jewels enen Knoten fü ene Abet und ene Maschne Kanten von S* zu den Abeten haben de Kapaztät von p Kanten von Abeten zu Maschnen haben de Kapaztät Kanten von den Maschnen zu T* haben de Kapaztät von ( L Den Flusswet den w suchen, st de Summe p Mt de m Max-Flow-Mn-Cut Theoem können w bewesen ob ene bessee Lösung exstet, als de vohe ehoffte maxmale Antwotzet. Nun wenden w den Bnäsuche-Algothmus an und fnden das klenste möglche, dass mme noch ene Lösung des Netzwek-Fluss Gaphen egbt. 5 Ene Lösung n en Nash Glechgewcht bngen Das max des vohegen Algothmus muss ncht mme en Nash Glechgewcht sen. Doch w können en Egebns n das Nash Glechgewcht bngen. Dazu vewenden w den folgenden Algothmus.

7 A(x wd we oben defnet vewendet. Gbt es etzt ene Abet de auf ene Maschne aus A(x ausgefüht wd, abe auch auf ene ncht n A(x? x > 0 A(x k S k A(x Wenn ene solche Abet und ene Maschne k exsteen, dann vestößt das gegen das Nash Glechgewcht. In desem Fall bewegen w enen Tel de Abet von Maschne auf de Maschne k. Geade genug, so dass ncht meh n A(x st und k ncht n A(x enkommt. W wedeholen desen Vogang bs folgendes glt: B( x S A( x Jetzt snd A(x und B(x m Nash Glechgewcht. De Rest wd als Untemenge betachtet und mt dem gleche Algothmus ns Glechgewcht gebacht. Mt Wedeholung des Pozesses, weden alle veblebenen Abeten und Maschnen n das Nash Glechgewcht gebacht.

Funds Transfer Pricing. Daniel Schlotmann

Funds Transfer Pricing. Daniel Schlotmann Danel Schlotmann Fankfut, 8. Apl 2013 Defnton Lqudtät / Lqudtätssko Lqudtät Pesonen ode Untenehmen: snd lqude, wenn se he laufenden Zahlungsvepflchtungen jedezet efüllen können. Vemögensgegenstände: snd

Mehr

Zero-sum Games. Vitali Migal

Zero-sum Games. Vitali Migal Sena Gaphentheoe und Kobnatok Wnteseeste 007/08 Zeo-su Gaes Vtal Mgal 1 Inhaltsvezehns 1. Enletung... 3. Dastellung von Spelen... 3 3. Stategen... 4 4. Spele t unvollständge Infoaton... 9 1. Enletung Als

Mehr

Supply Chain Management

Supply Chain Management 1 Supply Chan Management Supply Chan Metcs - The key to mpovement - Lay Lapde: What About Measung Supply Chan Pefomance? (Potal ode http://www.ascet.com/) http://www.supply-chan.og/ (SCOR Model) Supply

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

VU Quantitative BWL. 1.Teil: Produktion und Logistik [Stefan Rath] 2.Teil: Finanzwirtschaft [Tomáš Sedliačik] Quantitative BWL: Finanzwirtschaft

VU Quantitative BWL. 1.Teil: Produktion und Logistik [Stefan Rath] 2.Teil: Finanzwirtschaft [Tomáš Sedliačik] Quantitative BWL: Finanzwirtschaft VU Quanave BWL.Tel: odukon und Logsk [Sefan Rah] 2.Tel: Fnanzwschaf [Tomáš Sedlačk] Quanave BWL: Fnanzwschaf Ogansaosches De LV beseh aus zwe Telen:. Tel: odukon und Logsk [4.0.203 22..203] Sefan Rah Insu

Mehr

Wärmeübertragung. Grundsätzlich sind drei verschiedene Möglichkeiten der Wärmeübertragung möglich: Wärmeleitung, Konvektion und Strahlung:

Wärmeübertragung. Grundsätzlich sind drei verschiedene Möglichkeiten der Wärmeübertragung möglich: Wärmeleitung, Konvektion und Strahlung: ämeübetgung Unte ämeübetgung vesteht mn sämtlche Eschenungen, e enen äumlchen nspot von äme umfssen. De ämeübegng efolgt mme ufgun enes empetugefälles, un zw mme von e höheen zu neeen empetu (.Huptstz).

Mehr

Trade Barrier Reef. Hindernisse auf Weltmärkten. LISTENREGELN ZUM NPU? Die Pläne der EU-Kommission

Trade Barrier Reef. Hindernisse auf Weltmärkten. LISTENREGELN ZUM NPU? Die Pläne der EU-Kommission Kompaktwssen fü den Außenhandel Ausgabe 4/2013 LISTENREGELN ZUM NPU? De Pläne de EU-Kommsson 6 DOS & DON TS Ogansaton ene Zoll- und Außenwtschaftsabtelung ES KÖNNTE BESSER SEIN! Felx Neugat (DIHK) zu Lage

Mehr

Geld- und Finanzmärkte

Geld- und Finanzmärkte Gel- un Fnanzmärkte Prof. Dr. Volker Clausen akroökonomk 1 Sommersemester 2008 Fole 1 Gel- un Fnanzmärkte 4.1 De Gelnachfrage 4.2 De Bestmmung es Znssatzes I 4.3 De Bestmmung es Znssatzes II 4.4 Zwe alternatve

Mehr

Das Risiko ist jedoch nicht nur vom Risiko der einzelnen Aktien, sondern auch von deren Kovarianz abhängig: Bsp. 2-Aktien-Portfolio.

Das Risiko ist jedoch nicht nur vom Risiko der einzelnen Aktien, sondern auch von deren Kovarianz abhängig: Bsp. 2-Aktien-Portfolio. SBWL GK nanzwtschaft Schedelseke otefeulletheoe Ene Enfühung. akowtz-odell (a) nnahen De Entschedungen de Investoen snd ewels auf ene eode gechtet. Investoen vefügen übe subektve Wahschenlchketsvostellungen

Mehr

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt:

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt: Informatk I 6. Kaptel Raner Schrader Zentrum für Angewandte Informatk Köln 4. Jun 008 Wr haben bsher behandelt: Suchen n Lsten (lnear und verkettet) Suchen mttels Hashfunktonen jewels unter der Annahme,

Mehr

Versicherungstechnischer Umgang mit Risiko

Versicherungstechnischer Umgang mit Risiko Verscherungstechnscher Umgang mt Rsko. Denstlestung Verscherung: Schadensdeckung von für de enzelne Person ncht tragbaren Schäden durch den fnanzellen Ausglech n der Zet und m Kollektv. Des st möglch über

Mehr

TECHNISCHE UNIVERSITÄT DRESDEN Fakultät Wirtschaftswissenschaften

TECHNISCHE UNIVERSITÄT DRESDEN Fakultät Wirtschaftswissenschaften TECHNISCHE UNIVERSITÄT DRESDEN Fakultät Wtschaftswssenschaften Desdne Betäge zu Quanttatven Vefahen N. 58/1 Rato calculand pecul - en analytsche Ansatz zu Bestmmung de Velustvetelung enes Kedtpotfolos

Mehr

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct? We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de

Mehr

Online Algorithmen. k-server randomisiert Teil II

Online Algorithmen. k-server randomisiert Teil II Onlne Algorthmen k-server randomsert Tel II Ausarbetung für das Semnar Onlne Algorthmen Prof. Dr. Ro. Klen Anette Ebbers-Baumann Ansgar Grüne Insttut für Informatk Theorethsche Informatk und formale Methoden

Mehr

4. Energie, Arbeit, Leistung

4. Energie, Arbeit, Leistung 4 43 4. Enege, Abet, Letung Zentale Gößen de Phyk: Bepel: Bechleungung F Annahe: kontante Kaft F Bechleungung: a Enege E, Enhet Joule ( [J] [] [kg / ] zuückgelegte eg: at E gbt zwe gundätzlche Foen on

Mehr

1 BWL 4 Tutorium V vom 15.05.02

1 BWL 4 Tutorium V vom 15.05.02 1 BWL 4 Tutorum V vom 15.05.02 1.1 Der Tlgungsfaktor Der Tlgungsfaktor st der Kehrwert des Endwertfaktors (EWF). EW F (n; ) = (1 + )n 1 T F (n; ) = 1 BWL 4 TUTORIUM V VOM 15.05.02 (1 ) n 1 Mt dem Tlgungsfaktor(TF)

Mehr

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct? We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de

Mehr

ERP Cloud Tutorial. E-Commerce ECM ERP SFA EDI. Backup. Preise erfassen. www.comarch-cloud.de

ERP Cloud Tutorial. E-Commerce ECM ERP SFA EDI. Backup. Preise erfassen. www.comarch-cloud.de ERP Cloud SFA ECM Backup E-Commerce ERP EDI Prese erfassen www.comarch-cloud.de Inhaltsverzechns 1 Zel des s 3 2 Enführung: Welche Arten von Presen gbt es? 3 3 Beschaffungsprese erfassen 3 3.1 Vordefnerte

Mehr

Stereo-Rekonstruktion. Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion

Stereo-Rekonstruktion. Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion Steeo-Rekonstuktion Geometie de Steeo-Rekonstuktion Steeo-Kalibieung Steeo-Rekonstuktion Steeo-Rekonstuktion Kameakalibieung kann dazu vewendet weden, um aus einem Bild Weltkoodinaten zu ekonstuieen, falls

Mehr

Seite 2. Anatomische, physikalische und funktionelle. Modelle des menschlichen Körpers. Delaunay Algorithmus 2D/3D.

Seite 2. Anatomische, physikalische und funktionelle. Modelle des menschlichen Körpers. Delaunay Algorithmus 2D/3D. Anatomsche, physkalsche und funktonelle Modelle des menschlchen Köpes Gundlagen de Modelleung Vsualseung Venetzung Vsualseung Was soll dagestellt weden? Medznsche Blddaten (CT, MT, Photogaphe,...) Anatome

Mehr

Die Ausgangssituation... 14 Das Beispiel-Szenario... 14

Die Ausgangssituation... 14 Das Beispiel-Szenario... 14 E/A Cockpt Für Se als Executve Starten Se E/A Cockpt........................................................... 2 Ihre E/A Cockpt Statusüberscht................................................... 2 Ändern

Mehr

Nomenklatur - Übersicht

Nomenklatur - Übersicht Nomenklatur - Überscht Name der synthetschen Varable Wert der synthetschen Varable durch synth. Varable erklärte Gesamt- Streuung durch synth. Varable erkl. Streuung der enzelnen Varablen Korrelaton zwschen

Mehr

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07 Auswertung von Umfragen und Expermenten Umgang mt Statstken n Maturaarbeten Realserung der Auswertung mt Excel 07 3.Auflage Dese Broschüre hlft bem Verfassen und Betreuen von Maturaarbeten. De 3.Auflage

Mehr

Quant oder das Verwelken der Wertpapiere. Die Geburt der Finanzkrise aus dem Geist der angewandten Mathematik

Quant oder das Verwelken der Wertpapiere. Die Geburt der Finanzkrise aus dem Geist der angewandten Mathematik Quant der das Verwelken der Wertpapere. De Geburt der Fnanzkrse aus dem Gest der angewandten Mathematk Dmensnen - de Welt der Wssenschaft Gestaltung: Armn Stadler Sendedatum: 7. Ma 2012 Länge: 24 Mnuten

Mehr

VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE

VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE Karl Rudolf KOCH Knut RIESMEIER In: WELSCH, Walter (Hrsg.) [1983]: Deformatonsanalysen 83 Geometrsche Analyse und Interpretaton von Deformatonen

Mehr

Gruppe. Lineare Block-Codes

Gruppe. Lineare Block-Codes Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung

Mehr

Kennlinienaufnahme des Transistors BC170

Kennlinienaufnahme des Transistors BC170 Kennlnenufnhme des Trnsstors 170 Enletung polre Trnsstoren werden us zwe eng benchbrten pn-übergängen gebldet. Vorrusetzung für ds Funktonsprnzp st de gegensetge eenflussung beder pn-übergänge, de nur

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Insttut für Stochastk Prof Dr N Bäuerle Dpl-Math S Urban Lösungsvorschlag 6 Übungsblatt zur Vorlesung Fnanzatheatk I Aufgabe Put-Call-Party Wr snd nach Voraussetzung n ene arbtragefreen Markt, also exstert

Mehr

Datenträger löschen und einrichten

Datenträger löschen und einrichten Datenträger löschen und enrchten De Zentrale zum Enrchten, Löschen und Parttoneren von Festplatten st das Festplatten-Denstprogramm. Es beherrscht nun auch das Verklenern von Parttonen, ohne dass dabe

Mehr

Was haben Schüler und Großbanken gemein?

Was haben Schüler und Großbanken gemein? Armn Fügenschuh Aleander Martn Was haben Schüler und Großbanken gemen? Mathematsche Modellerung Analyse und Lösung am Bespel des Rucksackproblems Unter gegebenen Randbedngungen optmale Entschedungen zu

Mehr

Projektmanagement / Netzplantechnik Sommersemester 2005 Seite 1

Projektmanagement / Netzplantechnik Sommersemester 2005 Seite 1 Projektmanagement / Netzplantechnk Sommersemester 005 Sete 1 Prüfungs- oder Matrkel-Nr.: Themenstellung für de Kredtpunkte-Klausur m Haupttermn des Sommersemesters 005 zur SBWL-Lehrveranstaltung Projektmanagement

Mehr

4. Energie, Arbeit, Leistung, Impuls

4. Energie, Arbeit, Leistung, Impuls 34 35 4. Energe, Arbet, Lestung, Ipuls Zentrale Größen der Physk: Energe E, Enhet Joule ( [J] [N] [kg /s ] Es gbt zwe grundsätzlche Foren on Energe: knetsche Energe: entelle Energe: Arbet, Enhet Joule

Mehr

Vorlesung 1. Prof. Dr. Klaus Röder Lehrstuhl für BWL, insb. Finanzdienstleistungen Universität Regensburg. Prof. Dr. Klaus Röder Folie 1

Vorlesung 1. Prof. Dr. Klaus Röder Lehrstuhl für BWL, insb. Finanzdienstleistungen Universität Regensburg. Prof. Dr. Klaus Röder Folie 1 Vorlesung Entschedungslehre h SS 205 Prof. Dr. Klaus Röder Lehrstuhl für BWL, nsb. Fnanzdenstlestungen Unverstät Regensburg Prof. Dr. Klaus Röder Fole Organsatorsches Relevante Informatonen önnen Se stets

Mehr

Pharma-Marktforschung im lnternet

Pharma-Marktforschung im lnternet PhamaMaktfschung m lntenet We Phamafmen vn Netngaphe und OnlneChat pfteen können!, lntnet st längst ene egene Welt, ene llüfmerealtät, de velfältg genutzt wd: als tdm fü Pdukte und Webung, als Ot de ümnunkatn

Mehr

MOBILFUNK: WIE FUNKTIONIERT DAS EIGENTLICH? Informationen rund ums Handy

MOBILFUNK: WIE FUNKTIONIERT DAS EIGENTLICH? Informationen rund ums Handy MOBILFUNK: WIE FUNKTIONIERT DAS EIGENTLICH? rmatonen rund ums Handy INHALT 2 3 4/5 6 7 8 9 10 11 12 Moblfunk: Fakten So werden Funksgnale übertragen So funktonert en Telefonat von Handy zu Handy So wrkt

Mehr

C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!)

C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!) Physkalsh-heshes Praktku für Pharazeuten C. Nahberetungstel (NACH der Versuhsdurhführung lesen!) 4. Physkalshe Grundlagen 4.1 Starke und shwahe Elektrolyte Unter Elektrolyten versteht an solhe heshen Stoffe,

Mehr

ifh@-anwendung ifh@-anwendung Technische Rahmenbedingungen Welche Mindestvoraussetzungen müssen erfüllt sein?

ifh@-anwendung ifh@-anwendung Technische Rahmenbedingungen Welche Mindestvoraussetzungen müssen erfüllt sein? FH@-Anwendung Für de Umsetzung von Strukturfonds-Förderungen st laut Vorgaben der EU de Enrchtung enes EDV- Systems für de Erfassung und Übermttlung zuverlässger fnanzeller und statstscher Daten sowe für

Mehr

Temporäre Stilllegungsentscheidungen mittels stufenweiser E W U F W O R K I N G P A P E R

Temporäre Stilllegungsentscheidungen mittels stufenweiser E W U F W O R K I N G P A P E R Temporäre Stlllegungsentschedungen mttels stufenweser Grenzkostenrechnung E W U F W O R K I N G P A P E R Mag. Dr. Thomas Wala, FH des bf Wen PD Dr. Leonhard Knoll, Unverstät Würzburg Mag. Dr. Stephane

Mehr

9 Phasengleichgewicht in heterogenen Mehrkomponentensystemen

9 Phasengleichgewicht in heterogenen Mehrkomponentensystemen 9 Phasenglechgewcht n heterogenen Mehrkomonentensystemen 9. Gbbs sche Phasenregel α =... ν Phasen =... k Komonenten Y n (α) -Molzahl der Komonente Y n der Phase α. Für jede Phase glt ene Gbbs-Duhem-Margules

Mehr

11 Chemisches Gleichgewicht

11 Chemisches Gleichgewicht 11 Chemsches Glechgewcht 11.1 Chemsche Reaktonen und Enstellung des Glechgewchts Untersucht man den Mechansmus chemscher Reaktonen, so wrd man dese enersets mt enem mkroskopschen oder knetschen Blck auf

Mehr

Donnerstag, 27.11.2014

Donnerstag, 27.11.2014 F ot o: BMW AGMünc hen X Phone nmot on E x ec ut v epr ev ew 2 7.Nov ember2 01 4 BMW Wel tmünc hen Donnerstag, 27.11.2014 14:00 15:00 15:00 16:00 16:00 17:00 17:00 17:45 Apertf Meet & Greet Kaffee & klener

Mehr

Y 1 (rein) Y 2 (rein) Mischphase Bezeichnung (g) (g) (g) Mischung (l) (l) (l) Mischung,Lösung (l) (s) (l) Lösung. (s) (g) (s) Lösung

Y 1 (rein) Y 2 (rein) Mischphase Bezeichnung (g) (g) (g) Mischung (l) (l) (l) Mischung,Lösung (l) (s) (l) Lösung. (s) (g) (s) Lösung 3 Lösungen 3. Mschungen und Lösungen Homogene Phasen, n denen alle Komonenten glechartg behandelt werden, heßen Mschungen. Wenn ene Komonente m Überschuß vorlegt, kann man von Lösungen srechen. Sezfsche

Mehr

Chair of Software Engineering

Chair of Software Engineering 1 2 Enführung n de Programmerung Bertrand Meyer Vorlesung 13: Contaner-Datenstrukturen Letzte Bearbetung 1. Dezember 2003 Themen für dese Vorlesung 3 Contaner-Datenstrukturen 4 Contaner und Genercty Enthalten

Mehr

RICHTLINIEN FÜR DIE GESTALTUNG VON EINTRÄGEN

RICHTLINIEN FÜR DIE GESTALTUNG VON EINTRÄGEN RICHTLINIEN FÜR DIE GESTALTUNG VON EINTRÄGEN Stand Jul 2014 Lebe Vermeter, wr möchten dem Suchenden das bestmöglche Portal beten, damt er be Ihnen bucht und auch weder unser Portal besucht. Um den Ansprüchen

Mehr

MULTIVAC Kundenportal Ihr Zugang zur MULTIVAC Welt

MULTIVAC Kundenportal Ihr Zugang zur MULTIVAC Welt MULTIVAC Kundenportal Ihr Zugang zur MULTIVAC Welt Inhalt MULTIVAC Kundenportal Enletung Errechbarket rund um de Uhr Ihre ndvduellen Informatonen Enfach und ntutv Hlfrech und aktuell Ihre Vortele m Überblck

Mehr

Angeln Sie sich Ihr Extra bei der Riester-Rente. Private Altersvorsorge FONDSGEBUNDENE RIESTER-RENTE

Angeln Sie sich Ihr Extra bei der Riester-Rente. Private Altersvorsorge FONDSGEBUNDENE RIESTER-RENTE Prvate Altersvorsorge FONDSGEBUNDENE RIESTER-RENTE Angeln Se sch Ihr Extra be der Rester-Rente. Rendtestark vorsorgen mt ALfonds Rester, der fondsgebundenen Rester-Rente der ALTE LEIPZIGER. Beste Rendtechancen

Mehr

Mobile Sicherheit durch effiziente Public-Key-Verschlüsselung

Mobile Sicherheit durch effiziente Public-Key-Verschlüsselung Moble cherhet durch effzente ublc-key-verschlüsselung Hagen loog Drk Tmmermann Unverstät Rostock, Insttut für Angewandte Mkroelektronk und Datenverarbetung Rchard-Wagner-tr., 9 Rostock Hagen.loog@un-rostock.de

Mehr

Zinseszinsformel (Abschnitt 1.2) Begriffe und Symbole der Zinsrechnung. Die vier Fragestellungen der Zinseszinsrechnung 4. Investition & Finanzierung

Zinseszinsformel (Abschnitt 1.2) Begriffe und Symbole der Zinsrechnung. Die vier Fragestellungen der Zinseszinsrechnung 4. Investition & Finanzierung Znsesznsformel (Abschntt 1.2) 3 Investton & Fnanzerung 1. Fnanzmathematk Unv.-Prof. Dr. Dr. Andreas Löffler (AL@wacc.de) t Z t K t Znsesznsformel 0 1.000 K 0 1 100 1.100 K 1 = K 0 + K 0 = K 0 (1 + ) 2

Mehr

Leitfaden zu den Volatilitätsindizes der Deutschen Börse

Leitfaden zu den Volatilitätsindizes der Deutschen Börse Letfaden zu den Volatltätsndzes der Deutschen Börse Verson.4 Deutsche Börse AG Verson.4 Letfaden zu den Volatltätsndzes der Deutschen Börse Sete Allgemene Informaton Um de hohe Qualtät der von der Deutsche

Mehr

Stochastik - Kapitel 4

Stochastik - Kapitel 4 Aufgaben ab Sete 5 4. Zufallsgrößen / Zufallsvarablen und hre Vertelungen 4. Zufallsgröße / Zufallsvarable Defnton: Ene Zufallsgröße (Zufallsvarable) X ordnet jedem Versuchsergebns ω Ω ene reelle Zahl

Mehr

IP Kamera 9483 - Konfigurations-Software Gebrauchsanleitung

IP Kamera 9483 - Konfigurations-Software Gebrauchsanleitung IP Kamera 9483 - Konfguratons-Software Gebrauchsanletung VB 612-3 (06.14) Sehr geehrte Kunden......mt dem Kauf deser IP Kamera haben Se sch für en Qualtätsprodukt aus dem Hause RAEMACHER entscheden. Wr

Mehr

Grundlagen der makroökonomischen Analyse kleiner offener Volkswirtschaften

Grundlagen der makroökonomischen Analyse kleiner offener Volkswirtschaften Bassmodul Makroökonomk /W 2010 Grundlagen der makroökonomschen Analyse klener offener Volkswrtschaften Terms of Trade und Wechselkurs Es se en sogenannter Fall des klenen Landes zu betrachten; d.h., de

Mehr

Einführung in die Robotik Selbstlokalisierung. Mohamed Oubbati Institut für Neuroinformatik. Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.

Einführung in die Robotik Selbstlokalisierung. Mohamed Oubbati Institut für Neuroinformatik. Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm. Enführung n de Robotk Selbstlokalserung Mohamed Oubbat Insttut für Neuronformatk Tel.: (+49) 731 / 50 4153 mohamed.oubbat@un-ulm.de 08. 01. 013 Dr. Oubbat, Enführung n de Robotk (Neuronformatk, Un-Ulm)

Mehr

Wie ein Arbeitsverhältnis enden kann

Wie ein Arbeitsverhältnis enden kann We en Arbetsverhältns enden kann Betreb Egenkündgung durch den Arbetgeber Befrstetes Arbetsverhältns Aufhebungsvertrag Betreb vorher Anhörung des Betrebsrates 102 BetrVG Todesfall Beendgungskündgung Frstgerechte

Mehr

5. Transmissionsmechanismen der Geldpolitik

5. Transmissionsmechanismen der Geldpolitik Geldtheore und Geldpoltk Grundzüge der Geldtheore und Geldpoltk Sommersemester 2013 5. Transmssonsmechansmen der Geldpoltk Prof. Dr. Jochen Mchaels Geldtheore und Geldpoltk SS 2013 5. Transmssonsmechansmen

Mehr

Innovative Handelssysteme für Finanzmärkte und das Computational Grid

Innovative Handelssysteme für Finanzmärkte und das Computational Grid Innovatve Handelssysteme für Fnanzmärkte und das Computatonal Grd von Dpl.-Kfm. Mchael Grunenberg Dr. Danel Vet & Dpl.-Inform.Wrt. Börn Schnzler Prof. Dr. Chrstof Wenhardt Lehrstuhl für Informatonsbetrebswrtschaftslehre,

Mehr

Methoden zur Bewertung von Credit Default Swaps

Methoden zur Bewertung von Credit Default Swaps Methoen zur Bewertung von Cret Default Swas Dr. Walter Gruber ( PLUS GmbH); Sylva Lause (Sarasse Hannover) Inhalt Enführung... Moell er Dscounte Sreas... 3 Moell er Ajuste Sreas... 4 Moell von JPMorgan...

Mehr

RAINER MAURER, Pforzheim - 1 - Prof. Dr. Rainer Maure. RAINER MAURER, Pforzheim - 3 - Prof. Dr. Rainer Maure. RAINER MAURER, Pforzheim - 5 -

RAINER MAURER, Pforzheim - 1 - Prof. Dr. Rainer Maure. RAINER MAURER, Pforzheim - 3 - Prof. Dr. Rainer Maure. RAINER MAURER, Pforzheim - 5 - Internatonale Wrtschaftsbezehungen. Internatonale Fnanzmarktkrsen Ergänzung: De Europäsche Schuldenkrse. Internatonale Fnanzmarktkrsen. Internatonale Fnanzmarktkrsen.. De Entstehung spekulatver Blasen..

Mehr

Cloud Computing: Willkommen in der neuen Welt der Geschäftsanwendungen

Cloud Computing: Willkommen in der neuen Welt der Geschäftsanwendungen Cloud Computng: Wllkommen n der neuen Welt der Geschäftsanwendungen Marktforscher und Analysten snd sch eng: Cloud Computng st das IT-Thema der Zukunft. Doch was verbrgt sch genau hnter dem Begrff Cloud

Mehr

Unter der Drehgruppe verstehen wir diegruppe der homogenen linearen Transformationen

Unter der Drehgruppe verstehen wir diegruppe der homogenen linearen Transformationen Darstellunstheore der SO() und SU() Powtschnk Alexander. Defnton Darstellun Ene Darstellun ener Gruppe G st homomorphe Abbldun von deser Gruppe auf ene Gruppe nchtsnulärer lnearer Operatoren auf enem Vektorraum

Mehr

Ertragsmanagementmodelle in serviceorientierten IT- Landschaften

Ertragsmanagementmodelle in serviceorientierten IT- Landschaften Ertragsmanagementmodelle n servceorenterten IT- Landschaften Thomas Setzer, Martn Bchler Lehrstuhl für Internetbaserte Geschäftssysteme (IBIS) Fakultät für Informatk, TU München Boltzmannstr. 3 85748 Garchng

Mehr

5 Branch-and-Bound Verfahren

5 Branch-and-Bound Verfahren 65 5 Branch-and-Bound Verfahren 5.1 Grundstruktur des Branch-and-Bound Verfahrens Das Branch-and-Bound Verfahren st en exaktes Verfahren für dskrete Optmerungsprobleme. Es wurde n den 60zger Jahren vorgestellt

Mehr

Weil so ähnlich nicht dasselbe ist. Besser durch den Winter mit dem smart Original-Service.

Weil so ähnlich nicht dasselbe ist. Besser durch den Winter mit dem smart Original-Service. smart Center Esslngen Compact-Car GmbH & Co. KG Plochnger Straße 108, 73730 Esslngen Tel. 0711 31008-0, Fax 0711 31008-111 www.smart-esslngen.de nfo@smart-esslngen.de Wr nehmen Ihren smart nach velen Klometern

Mehr

Leitliniengerechte psychosoziale Versorgung aus der Sicht des Krankenhausmanagements

Leitliniengerechte psychosoziale Versorgung aus der Sicht des Krankenhausmanagements Unser Auftrag st de aktve Umsetzung der frohen Botschaft Jesu m Denst am Menschen. Ene Herausforderung, der wr täglch neu begegnen. Mt modernster Technk und Kompetenz. Und vor allem mt Menschlchket. Letlnengerechte

Mehr

9 Diskriminanzanalyse

9 Diskriminanzanalyse 9 Dskrmnanzanalyse Zel ener Dskrmnanzanalyse: Berets bekannte Objektgruppen (Klassen/Cluster) anhand hrer Merkmale charakterseren und unterscheden sowe neue Objekte n de Klassen enordnen. Nötg: Lernstchprobe

Mehr

1. Systematisierung der Verzinsungsarten. 2 Jährliche Verzinsung. 5 Aufgaben zur Zinsrechnung. 2.1. Jährliche Verzinsung mit einfachen Zinsen

1. Systematisierung der Verzinsungsarten. 2 Jährliche Verzinsung. 5 Aufgaben zur Zinsrechnung. 2.1. Jährliche Verzinsung mit einfachen Zinsen 1 Systematserung der Verznsungsarten 2 Jährlche Verznsung 3 Unterjährge Verznsung 4 Stetge Verznsung 5 Aufgaben zur Znsrechnung 1. Systematserung der Verznsungsarten a d g Jährlche Verznsung nfache Znsen

Mehr

Ihr geschützter Bereich Organisation Einfachheit Leistung

Ihr geschützter Bereich Organisation Einfachheit Leistung Rev. 07/2012 Ihr geschützter Berech Organsaton Enfachhet Lestung www.vstos.t Ihr La geschützter tua area rservata Berech 1 MyVstos MyVstos st ene nformatsche Plattform für den Vstos Händler. Se ermöglcht

Mehr

Einführungsaufwand von Filesystemen für virtualisierte parallele Datenbanken

Einführungsaufwand von Filesystemen für virtualisierte parallele Datenbanken Enführungsaufwand von Flesystemen für vrtualserte parallele Datenbanken best Systeme GmbH, Unterföhrng Wolfgang Stef stef@best.de Dpl.-Ing. (FH) Systemngeneur Unx 2004-07-08 GIMS Zugsptze 1/17 P Agenda

Mehr

ZUSATZBEITRAG UND SOZIALER AUSGLEICH IN

ZUSATZBEITRAG UND SOZIALER AUSGLEICH IN ZUSAZBEIRAG UND SOZIALER AUSGLEICH IN DER GESEZLICHEN KRANKENVERSICHERUNG: ANREIZEFFEKE UND PROJEKION BIS 2030 Martn Gasche 205-2010 Zusatzbetrag und sozaler Ausglech n der Gesetzlchen Krankenverscherung:

Mehr

Das gratis ebook fur deinen erfolgreichen Blogstart

Das gratis ebook fur deinen erfolgreichen Blogstart Das grats ebook fur denen erfolgrechen Blogstart präsentert von www.pascromag.de DAS ONLINE-MAGAZIN für dene täglche Inspraton aus den Berechen Desgn, Fotografe und Resen. Mt velen wertvollen Tpps. 1.

Mehr

2 Aktivitäten und Haushaltsgeräte i TB: 2 3

2 Aktivitäten und Haushaltsgeräte i TB: 2 3 25 Welt der Technk 1 Geräte n enem modernen Haushalt TB: 1 Ergänze btte de Namen der Geräte und de Artkel. 2. 1. 3. 4. 6. 5. 7. 2 Aktvtäten und Haushaltsgeräte TB: 2 3 Ergänze btte de Tabelle. Aktvtät

Mehr

Finanzmathematik II: Barwert- und Endwertrechnung

Finanzmathematik II: Barwert- und Endwertrechnung D. habl. Bukhad Uech Beufsakademe Thüge Saalche Sudeakademe Sudeabelug Eseach Sudebeech Wschaf Wschafsmahemak Wesemese 004/0 Fazmahemak II: Bawe- ud Edweechug. Bawee ud Edwee vo Zahlugsehe. Effekve Jaheszssaz

Mehr

T3 Compact / T3 IP Compact zum Anschluss an Integral 5

T3 Compact / T3 IP Compact zum Anschluss an Integral 5 T3 Compact / T3 IP Compact zum Anschluss an Integral 5 Benutzerhandbuch User s gude Manual de usuaro Manuel utlsateur Manuale d uso Gebrukersdocumentate Inhalt Inhalt Machen Se sch mt Ihrem Telefon vertraut

Mehr

DIE DYNAMISCHE OPTIMIERUNG BEIM GRADIENTENENTWURF

DIE DYNAMISCHE OPTIMIERUNG BEIM GRADIENTENENTWURF DIE DYNMISCHE OPTIMIERUNG BEIM GRDIENTENENTWURF Wlhelm CSPRY Hansbert HEISTER Walter WELSCH In: CSPRY, Wlhelm / WELSCH, Walter (Hrsg.) [98]: Beträge zur großräumgen Neutrasserung Schrftenrehe des Wssenschaftlchen

Mehr

VDA. Planungsgütemessung im Aftermarket. Version 1.0 vom Mai 2010. Arbeitskreis SCM Aftermarket. Herausgeber: Verband der Automobilindustrie

VDA. Planungsgütemessung im Aftermarket. Version 1.0 vom Mai 2010. Arbeitskreis SCM Aftermarket. Herausgeber: Verband der Automobilindustrie VDA Planungsgütemessung m Aftermarket 9 Verson. vom Ma 2 Arbetskres SCM Aftermarket Herausgeber: Verband der Automoblndustre Copyrght Behrenstraße 5 Nachdruck und jede sonstge Form 7 Berln der Vervelfältgung

Mehr

Clojure. magazin. Java Mag. Quo vadis Clojure 1.6. Zugriff auf relationale Datenbanken. Polyglotte Entwicklung mit Clojure und Java

Clojure. magazin. Java Mag. Quo vadis Clojure 1.6. Zugriff auf relationale Datenbanken. Polyglotte Entwicklung mit Clojure und Java De Tod de Java Application Seve: Sind sie noch zeitgemäß? 55 Java Mag Deutschland 9,80 Östeeich 10,80 Schweiz sf 19,50 Luxembug 11,15 7.2014 magazin Java Achitektuen Web Agile RoboVM SeviceMix ios-apps

Mehr

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit 4 Stak-Effekt Als Anwendung de Stöungstheoie behandeln wi ein Wassestoffatom in einem elektischen Feld. Fü den nichtentateten Gundzustand des Atoms füht dies zum quadatischen Stak-Effekt, fü die entateten

Mehr

Übung zur Einführung in die VWL / Makroökonomie. Teil 7: Das IS-LM-Modell

Übung zur Einführung in die VWL / Makroökonomie. Teil 7: Das IS-LM-Modell Begische Univesität Wuppetal FB B Schumpete School of Economics and Management Makoökonomische Theoie und Politik Übung zu Einfühung in die VWL / Makoökonomie Teil 7: Das IS-LM-Modell Thomas Domeatzki

Mehr

Elektrostatik. Arbeit und potenzielle Energie

Elektrostatik. Arbeit und potenzielle Energie Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld 5. De Satz von Gauß 6. Potenzial und Potenzialdiffeenz i. Abeit im elektischen

Mehr

Kurzgutachten zur Buchpreisbindungsstudie des Office of Fair Trading (OFT)

Kurzgutachten zur Buchpreisbindungsstudie des Office of Fair Trading (OFT) Kurzgutachten zur Buchpresbndungsstude des Offce of Far Tradng (OFT) Dr. Egon Bellgardt 17. November 2008 Inhalt Management Summary...2 0. Gegenstand des Kurzgutachtens...4 1. Stellungnahme zu Enzelaspekten

Mehr

6 Makromoleküle. Π = c i RT [1 + B c i +... ], (6.01) Kapitel 6, Seite 1

6 Makromoleküle. Π = c i RT [1 + B c i +... ], (6.01) Kapitel 6, Seite 1 Kaptel 6, Sete 1 6 Makromoleküle Klene Moleküle bestehen aus zwe oder zumndest wenger als zehn Atomen. Bekannte Vertreter der großen Moleküle snd de Chlorophylle, deren Molmasse noch unter 1000 legt. Makromoleküle

Mehr

T3 Classic / T3 IP Classic zum Anschluss an Integral 5

T3 Classic / T3 IP Classic zum Anschluss an Integral 5 IP Telephony Contact Centers Moblty Servces T3 Classc / T3 IP Classc zum Anschluss an Integral 5 Benutzerhandbuch User s gude Manual de usuaro Manuel utlsateur Manuale d uso Gebrukersdocumentate Inhalt

Mehr

Sitzplatzreservierungsproblem

Sitzplatzreservierungsproblem tzplatzreserverugsproblem Be vele Zugsysteme Europa müsse Passagere mt hrem Zugtcet ee tzplatzreserverug aufe. Da das Tcetsystem Kude ee ezele Platz zuwese muss, we dese e Tcet aufe, ohe zu wsse, welche

Mehr

Vertrieb / CRM. Erfolgreiches Kundenmanagement mit staffitpro WEB

Vertrieb / CRM. Erfolgreiches Kundenmanagement mit staffitpro WEB Vertreb / CRM Erfolgreches Kundenmanagement mt staffitpro WEB Vertreb /CRM Aufgabe des Leadsmoduls Kontaktanbahnung: Enen neuen Lead erfassen Mt dem Leadsmodul halten Se de Kundendaten m Geschäftskontaktemodul

Mehr

Dr. Leinweber & Partner Rechtsanwälte

Dr. Leinweber & Partner Rechtsanwälte Referent: Rechtsanwalt Johannes Rothmund Dr. Lenweber & Partner Rechtsanwälte Lndenstr. 4 36037 Fulda Telefon 0661 / 250 88-0 Fax 0661 / 250 88-55 j.rothmund@lenweber-partner.de Defnton: egenständge Bezechnung

Mehr

Serie EE31. Anleitung. Logger- & Visualisierungssoftware. BA_EE31_VisuLoggerSW_01_de // Technische Änderungen vorbehalten V1.0

Serie EE31. Anleitung. Logger- & Visualisierungssoftware. BA_EE31_VisuLoggerSW_01_de // Technische Änderungen vorbehalten V1.0 Sere EE31 Anletung Logger- & Vsualserungssoftware BA_EE31_VsuLoggerSW_01_de // Technsche Änderungen vorbehalten V1.0 Logger- & Vsualserungssoftware - Sere EE31 ALLGEMEINES De beschrebene Software wurde

Mehr

Backup- und Restore-Systeme implementieren. Technische Berufsschule Zürich IT Seite 1

Backup- und Restore-Systeme implementieren. Technische Berufsschule Zürich IT Seite 1 Modul 143 Backup- und Restore-Systeme mplementeren Technsche Berufsschule Zürch IT Sete 1 Warum Backup? (Enge Zahlen aus Untersuchungen) Wert von 100 MByte Daten bs CHF 1 500 000 Pro Vorfall entstehen

Mehr

Ich habe ein Beispiel ähnlich dem der Ansys-Issue [ansys_advantage_vol2_issue3.pdf] durchgeführt. Es stammt aus dem Dokument Rfatigue.pdf.

Ich habe ein Beispiel ähnlich dem der Ansys-Issue [ansys_advantage_vol2_issue3.pdf] durchgeführt. Es stammt aus dem Dokument Rfatigue.pdf. Ich habe en Bespel ähnlch dem der Ansys-Issue [ansys_advantage_vol_ssue3.pdf durchgeführt. Es stammt aus dem Dokument Rfatgue.pdf. Abbldung 1: Bespel aus Rfatgue.pdf 1. ch habe es manuell durchgerechnet

Mehr

1.6 Energie 1.6.1 Arbeit und Leistung Wird ein Körper unter Wirkung der Kraft F längs eines Weges s verschoben, so wird dabei die Arbeit

1.6 Energie 1.6.1 Arbeit und Leistung Wird ein Körper unter Wirkung der Kraft F längs eines Weges s verschoben, so wird dabei die Arbeit 3.6 Energe.6. Arbe und Lesung Wrd en Körper uner Wrkung der Kraf F längs enes Weges s verschoben, so wrd dabe de Arbe W = F s Arbe = Kraf Weg verrche. In deser enfachen Form gülg, wenn folgende Voraussezungen

Mehr

netbank Ratenkredit Große Flexibilität hohe Sicherheit

netbank Ratenkredit Große Flexibilität hohe Sicherheit netbank Ratenkredt Große Flexbltät hohe Scherhet Beten Se Ihren Kunden mt dem netbank Ratenkredt mehr Frehet für ene schere Investton n de Zukunft. In deser Broschüre fnden Se alle wchtgen Informatonen

Mehr

Quellcode Installationsanweisungen Klickanweisungen

Quellcode Installationsanweisungen Klickanweisungen Quellcode Installatonsanwesungen Klckanwesungen Phase Projektplanung Projektrealserung Qualtätsscherung Projektabschluss Projektdokumentaton Telaufgabe Kundengespräch Durchführung der Ist-Analyse

Mehr

Grundzüge der Geldtheorie und Geldpolitik

Grundzüge der Geldtheorie und Geldpolitik Grundzüge der Geldtheore und Geldpoltk Sommersemester 2012 8. Monetäre Transaktonskanäle Prof. Dr. Jochen Mchaels SoSe 2012 Geldtheore & -poltk 8. De Übertragung monetärer Impulse auf de Gesamtwrtschaft

Mehr

Anwenderhandbuch KALKULATIONSSOFTWARE. NetKalk.Tarife 4.0.101 Strom und Gas. Stand des Handbuchs: 6. Mai 2015

Anwenderhandbuch KALKULATIONSSOFTWARE. NetKalk.Tarife 4.0.101 Strom und Gas. Stand des Handbuchs: 6. Mai 2015 Anwenderhandbuch KALKULATIONSSOFTWARE NetKalk.Tarfe 4.0.101 Strom und Gas Stand des Handbuchs: 6. Ma 2015 INHALTSVERZEICHNIS EINFÜHRUNG 1 Das Programm NetKalk.Tarfe... 5 1.1 Zugrff und Besonderheten...

Mehr

Wächst zusammen, was zusammen gehört? Theorie und Praxis der Netzwerkverschmelzung. Theorie und Praxis der Netzwerkverschmelzung

Wächst zusammen, was zusammen gehört? Theorie und Praxis der Netzwerkverschmelzung. Theorie und Praxis der Netzwerkverschmelzung Wächst zusammen, was zusammen gehört? Theore und Praxs der Netzwerkverschmelzung Theore und Praxs der Netzwerkverschmelzung DDS NetCom AG Chrstan Studer (chrstan.studer@dds.ch) st Gründer und Aktonär der

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

Eine Sonderausgabe des Magazins zum Thema Strukturiertes. Vielfalt bei Strukturierten Produkten Ein Universum voller Möglichkeiten

Eine Sonderausgabe des Magazins zum Thema Strukturiertes. Vielfalt bei Strukturierten Produkten Ein Universum voller Möglichkeiten Ene Sonderausgabe des Magazns zum Thema Strukturertes Velfalt be Strukturerten Produkten En Unversum voller Möglchketen Inhaltsverzechns Kaptalschutz-Zertfkate 04 Be deser Struktur garantert der Emttent,

Mehr

Algorithmische Bioinformatik

Algorithmische Bioinformatik Algorthmche Bonformatk HMM Algorthmen: Forward-Backward Baum-Welch Anwendung m equenzalgnment Ulf Leer Wenmanagement n der Bonformatk Formale Defnton von HMM Defnton Gegeben Σ. En Hdden Markov Modell t

Mehr

Energie, Masse und Information

Energie, Masse und Information Energe, Masse und Informaton Professor Dr. Klaus Hofer De Beschrebung unserer Welt mt Hlfe der ver Naturelemente Feuer, Wasser, Erde, und Luft geht auf den grechschen Naturphlosophen Empedokles (473 v.ch.)

Mehr

Thema Einführung in Teilchenbeschleuniger

Thema Einführung in Teilchenbeschleuniger emnar W 1/ RWTH Moderne Methoden/Expermente der Telchen- und Astrotelchenphysk Thema Enführung n Telchenbeschleunger precher Chrstoph Gehlen Enletung Bedeutung hoher Telchenenergen Kräfte zur Beschleungung

Mehr