Versuch 9. Bestimmung des Auftriebs, der Zirkulation und des Widerstandes für das

Größe: px
Ab Seite anzeigen:

Download "Versuch 9. Bestimmung des Auftriebs, der Zirkulation und des Widerstandes für das"

Transkript

1 Versuch 9 Bestimmung des Auftriebs, der Zirkulation und des Widerstandes für das Tragflächenprofil Gö 818 Strömungsmechanisches Praktikum des Deutschen Zentrums für Luft- und Raumfahrt Georg-August-Universität Göttingen 15. August 2008 Praktikanten Johannes Dörr mail@johannesdoerr.de physik.johannesdoerr.de Jan Schumann-Bischoff jansb.stud@googl .com Durchführung am Betreuer Christoph Wolf

2 2 INHALTSVERZEICHNIS Inhaltsverzeichnis 1 Einleitung 3 2 Theorie Druckmessung Auftriebs- und Widerstandsbeiwert Zirkulation Strömung an der Tragfläche Durchführung 7 4 Auswertung Druckverteilung auf der Flügeloberfläche und Druckbeiwert Auftriebsbeiwert und Zirkulation Diskussion 9

3 3 1 Einleitung Dieser Versuch befasst sich mit dem Phänomen des Auftriebs von Tragflächen. Dazu wird die Druckverteilung an einem Modellflügel gemessen und ausgewertet. 2 Theorie 2.1 Druckmessung Der von uns untersuchte Tragflügel wird von Luft mit der Anströmgeschwindigkeit u umströmt. Der Flügel enthält 36 Bohrungen an der Oberfläche (siehe Abb Abbildung 2.1: Tragflügelprofil mit nummerierten Bohrungen an der Oberfläche zur Druckmessung Von jeder Bohrung geht ein Schlauch auf eine Seite eines mit Wasser gefüllten U- Rohrmanometers. Für u = 0 gibt es keine Druckdifferenz zwischen beiden Seiten des U-Rohres, also ist das Manometer nicht aus der Ruhelage ausgeschlagen ( h = 0. An der Spitze des Flügels gibt es einen Punkt, den Staupunkt, an dem die Strömung zur Ruhe kommt, u = 0. Nehmen wir die Luftströmung als stationär und inkompressibel an, so kann die Umströmung anhand der Bernoulligleichung p ρu2 = const (2.1 beschrieben werden. Dabei hat die Konstante für alle Punkte auf einer Stromlinie den gleichen Wert. In Abb. 2.2 ist ein Flügel dargestellt. Es ist zu erkennen, dass eine Stromlinie praktisch auf der Oberfläche (bzw. kurz darüber entlang läuft. Es gilt also für den Druck p und der Geschwindigkeit u auf einer Stromlinie, welche durch den Staupunkt verläuft, und dem Druck p ges im Staupunkt (Geschwindigkeit im Staupunkt ist Null p ges = p }{{} p stat ρ Wasseru 2 }{{}. (2.2 p dyn Diese Drücke lassen sich wie im Folgenden beschrieben mit dem U-Rohrmanometer bestimmen:

4 4 2 THEORIE Abbildung 2.2: Tragflügel mit eingezeichneten Stromlinien Statischer Druck: Dieser Druck kann direkt aus dem Ausschlag der Manometer berechnet werden. Die eine Seite des U-Rohres ist mit einer Wandbohrung des Flügels verbunden (siehe Abb Abbildung 2.3: Bestimmung des statischen Drucks mittels U-Rohtmanometer Auf der entsprechenden Wasseroberfläche wirkt also der statische Druck p stat des Punktes auf der Flügeloberfläche und der vernachlässigbare Druck der Luftsäule. Auf der anderen Seite wirkt der Referenzdruck p ref (Druck für u = 0 und der Druck der entstandenen Wassersäule, also p stat = p ref + ρ Wasser g h (2.3 Gesamtdruck: Messen wir den Statischen Druck am Staupunkt, so verschwindet dort die Geschwindigkeit und somit ist p dyn = 0. Nach (2.2 enstpricht hier der statische Druck dem Gesamtdruck. Dynamischer Druck: Nach Bernoulli entspricht der Druck am Staupunkt (p ges genau der Konstanten der Stromlinie. Ist dieser bekannt, so kann durch die Messung des statischen Drucks p stat nach (2.2 der dynamische Druck p dyn berechnet werden.

5 2.2 Auftriebs- und Widerstandsbeiwert Auftriebs- und Widerstandsbeiwert Man unterscheidet zwei Arten des Auftriebs: Der statische Auftrieb kommt durch das Archimedische Prinzip zu Stande, das besagt, dass die Auftriebskraft, die ein Körper in einem Medium erfährt, genauso groß ist wie die Gewichtskraft des von ihm verdrängten Mediums. Die Kraft, die ein Flugzeug zum Fliegen bringt, ist hingegen der dynamische Auftrieb. Er entsteht dadurch, dass der Körper, in unserem Fall eine Tragfläche, von dem Medium umströmt wird. Sie errechnet sich aus: F A = 1 2 ρ c A A u 2. (2.4 Dabei ist ρ die Dichte des Mediums, A die Querschnittsfläche des Körpers quer zur Strömungsrichtung, u die Strömungsgeschwindigkeit und c A der (einheitenlose Auftriebsbeiwert der Tragfläche, gegeben durch: pstat p ref x c A = d(. (2.5 p dyn l Dabei ist l die Länge der Tragfläche und x der Ort in Richtung der Profilsehne. Die Auftriebskraft wirkt senkrecht zur Strömungsrichtung. Den Integrand nennt man Druckbeiwert. Eine weitere Kraft, die auf die Tragfläche wirkt, diesmal jedoch der Strömungsrichtung entgegengesetzt, ist die Widerstandskraft, die sich ergibt aus: F W = 1 2 ρ c W A u 2 mit dem (einheitenlosen Widerstandsbeiwert: ( p 1 ges p 1 stat p 1 ges p stat c W = 2 1 p dyn p dyn ( y d l. Dabei markiert die Größen (Drücke, die vor der Tragfläche gemessen werden, und 1 die Werte dahinter. 2.3 Zirkulation Die Zirkulation enthält Informationen über die Rotation in einem System. Sie ist definiert als: Γ = v ds = rot(v da. C Nach dem Satz von Kutta-Joukowski errechnet sich die Auftriebskraft aus der Zikulation über: A F A = ρ u b Γ,

6 6 2 THEORIE wobei b die Breite der Tragfläche ist. Mit (2.4 ergibt sich daraus: Γ = 1 2 c A b u. (2.6 Nach dem Satz von Thomson ist die Zirkulation in einem System örtlich und zeitlich erhalten. 2.4 Strömung an der Tragfläche Bewegt sich die Tragfläche langsam in dem Medium, so fließt letzteres auf der Unterseite am hinteren Ende um die Kante auf die Oberseite, wo es das oben herum anfließende Medium im sogenannten hinteren Staupunkt trifft (siehe Abb Abbildung 2.4: Wirbel bei der langsam umströmten Tragfläche Wird die Geschwindigkeit größer, so lösen sich die auf diese Weise entstehenden Wirbel (Anfahrwirbel ab, da das Medium zu träge ist, um um die untere Kante zu fließen. Auf Grund der Erhaltung der Zirkulation, die vor dem Flügel ja Null ist, muss sich nun ein gegenläufiger Wirbel bilden. Dieser entsteht um die Tragfläche (Abb Er ist jedoch nicht so stark, dass er die Anströmung kompensieren könnte. Er sorgt allerdings dafür, dass die Geschwindigkeit oberhalb der Tragfläche höher ist als unterhalb, was nach dem Gesetz von Bernulli oben zu einem niedrigeren Druck führt. Es resultiert daraus die Auftriebskraft nach oben. Abbildung 2.5: Strömung an der Tragfläche

7 7 3 Durchführung Das Tragflächenmodell (Abb. 2.1 ist in einem Windkanal positioniert. Für verschiedene Anstellwinkel wird bei gleicher Anströmungsgeschwindigkeit die Druckverteilung mit Hilfe der U-Rohr-Manometer gemessen. 4 Auswertung 4.1 Druckverteilung auf der Flügeloberfläche und Druckbeiwert Aus den gemessenen Höhen h der Wassersäulen lassen sich nach (2.3 die statischen Drücke für jede entsprechende Bohrung auf der Flügeloberfläche berechnen. I.A. sind die ermittelten Werte für h unterhalb des Flügels positiv und oberhalb negativ. Dies würde einen größeren Druck oberhalb als unterhalb des Flügels bedeuten, was physikalisch aber nicht zu erwarten ist. Aus Konsistenzgründen haben wir deshalb die Vorzeichen von h für alle Werte umgedreht (vermutlich sind die Schläuche an den U-Rohrmanometern genau anders hermum angeschlossen als von uns beschrieben. Mit den berechneten statischen Drücken lässt sich für jeden Wert mit = p stat p ref p dyn der Druckbeiwert berechnen. Für alle Anstellwinkel sind in Abb über der dimensionslosen Länge x/l des Flügels aufgetragen. l = 40cm ist die tatsächliche Länge des Flügels und x der tatsächliche Abstand einer Bohrung vom linken Ende des Flügels. x kann für jede Bohrung aus Tab. 1 aus dem Versuchsskript (Versuch 9 abgelesen werden. 4.2 Auftriebsbeiwert und Zirkulation Der Auftriebsbeiwert berechnet sich mit (2.5. Die Integration realisieren wir über eine Aufaddierung der im vorigen Abschnitt berechneten Druckbeiwerte multipliziert mit d ( x l ( x l. Dabei berechnen wir n ( x l = x n+1 x n 2l + x n x n 1 2l = x n+1 x n 1 2l wobei wir die Löcher jetzt entgegen des Uhrzeigersinns um die gesamte Tragfläche herum indiziert haben. Die Zirkulation ergibt sich dann mit u = 31.1 m und b = 280mm aus (2.6. s Die Werte für die verschiedenen Anstellwinkel sind in der folgenden Tabelle dargestellt:,

8 8 4 AUSWERTUNG 3,0 2,5 1,0 0 0,7 5 2,0 0,5 0 1,5 0,2 5 1,0 0,5 0,0 0 0,0-0,2 5-0,5-0,5 0 (a -5 Anstellwinkel (b 0 Anstellwinkel 5,0 4,5 4, ,5 5 3,0 2,5 4 2,0 3 1,5 1,0 2 0,5 1 0,0-0,5 0-1,0-1 (c 5 Anstellwinkel (d 10 Anstellwinkel (e 12.5 Anstellwinkel (f 15 Anstellwinkel Abbildung 4.1.1: in Abhängigkeit von x/l für verschiedene Anstellwinkel

9 9 Anstellwinkel Auftriebsbeiwert Zirkulation Dass der Auftriebsbeiwert bei -5 negativ ist, deckt sich mit den Graphen im vorigen Abschnitt, bei denen sichtbar wird, dass die Druckbeiwerte bei diesem Winkel auf der Oberseite größer sind als unten. Bei den übrigen Winkeln ist es anders herum. Dies zeigt, dass bei -5 ein Abtrieb vorhanden ist, bei den anderen hingegen ein Auftrieb. 2,0 1,5 1,0 0,5 0,0-0, Abbildung 4.2.1: Auftriebsbeiwert in Abhängigkeit vom Anstellwinkel 5 Diskussion Die Versuchsdurchführung verlief problemlos und zügig. Bei der Auswertung haben wir eigentlich erwartet, bei 12.5 den maximalen Auftriebsbeiwert zu finden. Dies bestätigt sich jedoch nicht.

Versuch Eichung und Linearisierung eines Hitzdrahtes Wirbelbildung am quer angeströmten Kreiszylinder (Kármánsche Wirbelstraße)

Versuch Eichung und Linearisierung eines Hitzdrahtes Wirbelbildung am quer angeströmten Kreiszylinder (Kármánsche Wirbelstraße) Versuch 7 + 8 Eichung und Linearisierung eines Hitzdrahtes Wirbelbildung am quer angeströmten Kreiszylinder (Kármánsche Wirbelstraße) Strömungsmechanisches Praktikum des Deutschen Zentrums für Luft- und

Mehr

Versuchsvorbereitung: P1-26,28: Aeromechanik

Versuchsvorbereitung: P1-26,28: Aeromechanik Praktikum Klassische Physik I Versuchsvorbereitung: P1-26,28: Aeromechanik Christian Buntin Gruppe Mo-11 Karlsruhe, 18. Januar 2010 Inhaltsverzeichnis Demonstrationsversuche 2 1 Messungen mit dem Staurohr

Mehr

P1-24 AUSWERTUNG VERSUCH AEROMECHANIK

P1-24 AUSWERTUNG VERSUCH AEROMECHANIK P1-24 AUSWERTUNG VERSUCH AEROMECHANIK GRUPPE 19 - SASKIA MEIßNER, ARNOLD SEILER 1. Vorversuche Im folgenden wird eine Rohr- und eine Scheibensonde senkrecht bzw. parallel in einen Luftstrom gebracht. Bei

Mehr

Versuchsauswertung: P1-26,28: Aeromechanik

Versuchsauswertung: P1-26,28: Aeromechanik Praktikum Klassische Physik I Versuchsauswertung: P1-26,28: Aeromechanik Christian Buntin Jingfan Ye Gruppe Mo-11 Karlsruhe, 18. Januar 21 christian.buntin@student.kit.edu JingfanYe@web.de Inhaltsverzeichnis

Mehr

Bionik-Projekt Fliegen wie die Vögel: Auftrieb und Strömungswiderstand

Bionik-Projekt Fliegen wie die Vögel: Auftrieb und Strömungswiderstand Bionik-Projekt Fliegen wie die Vögel: Auftrieb und Strömungswiderstand Fächerübergreifende Unterrichtsthemen und Projekte im technisch-naturwissenschaftlichen Unterricht Experimentierbaukasten zur Aerodynamik

Mehr

Auftrieb am Tragflügel

Auftrieb am Tragflügel von: www.strahl.info (ebenfalls als Flash Präsentation) Auftrieb am Tragflügel TU Braunschweig Institut für Fachdidaktik der Naturwissenschaften Physikdidaktik ALEXANDER STRAHL Kaiserslautern 17. Juni

Mehr

Fliegen - Physik. Die Schüler lernen das Prinzip der Aerodynamik kennen und vertiefen es in Versuchen im virtuellen Windkanal.

Fliegen - Physik. Die Schüler lernen das Prinzip der Aerodynamik kennen und vertiefen es in Versuchen im virtuellen Windkanal. Anleitung Lehrperson Ziel: Die Schüler lernen das Prinzip der Aerodynamik kennen und vertiefen es in Versuchen im virtuellen Windkanal. Arbeitsauftrag: Postenlauf in Einzel oder Gruppenarbeit Material:

Mehr

Übersicht Unterrichtssequenz 2

Übersicht Unterrichtssequenz 2 Übersicht Unterrichtssequenz 2 Arbeitsauftrag Die SuS machen den Postenlauf in Einzel- oder Gruppenarbeit. Ziel Die SuS lernen das Prinzip der Aerodynamik kennen und vertiefen es in Versuchen im virtuellen

Mehr

Aerodynamik (Nr. 1022) Aerodynamik (Nr. 1026) Aerodynamik (Nr. 1030)

Aerodynamik (Nr. 1022) Aerodynamik (Nr. 1026) Aerodynamik (Nr. 1030) Aerodynamik (Nr. 1020) Aerodynamik (Nr. 1021) Aerodynamik (Nr. 1022) Aerodynamik (Nr. 1023) Wie entsteht statischer Auftrieb? (Nr. 1020) (II: dem Verständnis R Archimedisches Prinzip: Ein Körper gewinnt

Mehr

Physik I TU Dortmund WS2017/18 Gudrun Hiller Shaukat Khan Kapitel 7

Physik I TU Dortmund WS2017/18 Gudrun Hiller Shaukat Khan Kapitel 7 1 Ergänzungen zur Hydrodynamik Fluide = Flüssigkeiten oder Gase - ideale Fluide - reale Fluide mit "innerer Reibung", ausgedrückt durch die sog. Viskosität Strömungen von Flüssigkeiten, d.h. räumliche

Mehr

Grund- und Angleichungsvorlesung Fluidkinematik.

Grund- und Angleichungsvorlesung Fluidkinematik. 1 Grund- und Angleichungsvorlesung Physik. Fluidkinematik. SS 18 2. Sem. B.Sc. LM-Wissenschaften Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nichtkommerziell Weitergabe

Mehr

Potentialströmung und Magnuseffekt

Potentialströmung und Magnuseffekt Potentialströmung und Magnuseffekt (Zusammengefasst und ergänzt nach W Albring, Angewandte Strömungslehre, Verlag Theodor Steinkopff, Dresden, 3 Aufl 1966) Voraussetzungen Behandelt werden reibungs und

Mehr

Vorbereitung: Aeromechanik

Vorbereitung: Aeromechanik Vorbereitung: Aeromechanik Marcel Köpke Gruppe 7 03.12.2011 Inhaltsverzeichnis 1 Grundlagen 3 2 Versuche 6 2.1 Demonstrationsversuche............................ 6 2.1.1 D1....................................

Mehr

Praktikum Aerodynamik des Flugzeugs

Praktikum Aerodynamik des Flugzeugs Praktikum Aerodynamik des Flugzeugs 1. Versuch: Sondenmessungen Betreuer: Dipl.-Ing. Anja Kölzsch Dipl.-Ing. Moritz Grawunder Ziel des heutigen Termins Einführung in die Strömungsmesstechnik Messung verschiedener

Mehr

Laborübung der Mess- und Automatisierungstechnik Druckmessung

Laborübung der Mess- und Automatisierungstechnik Druckmessung Laborübung der Mess- und Automatisierungstechnik Druckmessung Versuch III: Druckmessung in einer Rohrströmung Bearbeiter: Betreuer: Dr. Schmidt Übungsgruppe: / C Versuchsdatum: 21. November 2003 Laborübung

Mehr

Einführung in die Strömungsmechanik

Einführung in die Strömungsmechanik Einführung in die Strömungsmechanik Rolf Radespiel Fluideigenschaften Grundlegende Prinzipien und Gleichungen Profile Windkanal und Druckmessungen BRAUNSCHWEIG, 5. JUNI 2002 Was versteht man unter Strömungsmechanik?

Mehr

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und Univ.-Prof. Dr.-Ing. Wolfram Frank 14.10.2005 Lehrstuhl für Fluiddynamik und Strömungstechnik Aufgabe Name:... Matr.-Nr.:... Vorname:... HS I / HS II / IP / WI (Punkte) Frage 1)... Frage 2)... Beurteilung:...

Mehr

AERODYNAMIK DES FLUGZEUGS I

AERODYNAMIK DES FLUGZEUGS I TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Aerodynamik und Strömungsmechanik AERODYNAMIK DES FLUGZEUGS I WS 213/214 Prof. Dr.-Ing. C. Breitsamter 4 Skelett Theorie Lösung Aufgabe 1 1. Nach der Theorie

Mehr

Sinkt ein Körper in einer zähen Flüssigkeit mit einer konstanten, gleichförmigen Geschwindigkeit, so (A) wirkt auf den Körper keine Gewichtskraft (B) ist der auf den Körper wirkende Schweredruck gleich

Mehr

WS 17/18 1. Sem. B.Sc. Catering und Hospitality Services

WS 17/18 1. Sem. B.Sc. Catering und Hospitality Services 2 Physik 1. Fluide. WS 17/18 1. Sem. B.Sc. Catering und Hospitality Services Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nicht-kommerziell Weitergabe unter gleichen Bedingungen

Mehr

Protokoll zum Versuch Druckmessung / III

Protokoll zum Versuch Druckmessung / III Protokoll zum Versuch Druckmessung / III Datum des Versuches:Dezember 2004 Praktikumsgruppe: Mitarbeiter: 1.Aufgabenstellung - an einer Rohrleitung sind systematischen Fehler p des statischen Druckes infolge

Mehr

1 3.4 Polardiagramme enthalten die Beiwerte c a, c w und c m, die für verschiedene Anstellwinkel α dargestellt sind. Die c a = f(w) gilt als eigentliche Polare, wobei diese in unserem Diagramm einen untypischen

Mehr

Inhalt. Verzeichnis der Bilder...3 Verzeichnis der Tabellen...3 Verzeichnis der Diagramme...3 Liste benutzter Symbole...4

Inhalt. Verzeichnis der Bilder...3 Verzeichnis der Tabellen...3 Verzeichnis der Diagramme...3 Liste benutzter Symbole...4 Inhalt Verzeichnis der Bilder...3 Verzeichnis der Tabellen...3 Verzeichnis der Diagramme...3 Liste benutzter Symbole...4 1. Aufgabenstellung...4 2. Grundlagen...5 2.1 Berechnung des Staudruckes q...5 2.2

Mehr

Physik-Vorlesung SS Fluide.

Physik-Vorlesung SS Fluide. Physik Fluide 3 Physik-Vorlesung SS 2016. Fluide. SS 16 2. Sem. B.Sc. Oec. und B.Sc. CH Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nichtkommerziell Weitergabe unter gleichen

Mehr

senkrecht bzw. parallel sprechen, so ist immer die Stellung der Öffnung der Sonde zum Luftstrom gemeint. Druckmessungen mit einer Scheibensonde

senkrecht bzw. parallel sprechen, so ist immer die Stellung der Öffnung der Sonde zum Luftstrom gemeint. Druckmessungen mit einer Scheibensonde Protokoll zum Versuch Aeromechanik (2) Kirstin Hübner Armin Burgmeier Gruppe 15 (P1-26) 21. Januar 28 D Demonstrationsversuche Wenn wir im folgenden von senkrecht bzw. parallel sprechen, so ist immer die

Mehr

Vorlesung Physik für Pharmazeuten PPh Hydrostatik Grenzflächenspannung Hydrodynamik

Vorlesung Physik für Pharmazeuten PPh Hydrostatik Grenzflächenspannung Hydrodynamik Vorlesung Physik für Pharmazeuten PPh - 05 Hydrostatik Grenzflächenspannung Hydrodynamik 21.05.2007 Ruhende lüssigkeiten (Hydrostatik) Der hydrostatische Druck : P = A A [P]=N/m 2 = Pa(scal) 1 bar=10 5

Mehr

Aeromechanik. Versuch: P Vorbereitung - Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert ( )

Aeromechanik. Versuch: P Vorbereitung - Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert ( ) Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 2005/06 Julian Merkert (1229929) Versuch: P1-26 Aeromechanik - Vorbereitung - Vorbemerkung In diesem Versuch geht es darum, die physikalischen

Mehr

Technik. Dieter Kohl - Flight Training 1. Aerodynamik und Fluglehre.ppt. Aerodynamik und Fluglehre

Technik. Dieter Kohl - Flight Training 1. Aerodynamik und Fluglehre.ppt. Aerodynamik und Fluglehre Aerodynamik und Fluglehre Technik Dieter Kohl - Flight Training 1 Grundlagen der Aerodynamik - Themen 1. Bezeichnungen am Tragflügelprofil 2. Auftrieb in der Strömung 3. Druckverteilung am Tragflügelprofil

Mehr

Messung der Druckverteilung am Profil NACA

Messung der Druckverteilung am Profil NACA Gemeinschaftsfachlabor Energietechnik Messung der Druckverteilung am Profil NACA 64-012 Abb. 1: Anliegende und abgerissene Tragflügelströmung. Aufnahmen von Prof. F.N.M. Brown [Quelle: L. Böswirth; S.

Mehr

... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre ρ L0

... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre ρ L0 ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre 03. 08. 007 1. Aufgabe (10 Punkte) Ein mit elium gefüllter Ballon (Volumen V 0 für z = 0) steigt in einer Atmosphäre mit der Gaskonstante R

Mehr

Laborversuche zur Physik 1 I - 4. Untersuchung von Strömungseigenschaften

Laborversuche zur Physik 1 I - 4. Untersuchung von Strömungseigenschaften FB Physik Laborversuche zur Physik 1 I - 4 Hydromechanik Reyher Untersuchung von Strömungseigenschaften Ziele Messungen mit dem Prandtl'schen Staurohr, Überprüfung der Bernoulli'schen Gleichung, Überprüfung

Mehr

Schwimmen und Fliegen ( 2 EH )

Schwimmen und Fliegen ( 2 EH ) Schwimmen und Fliegen ( 2 EH ) 1.) Schwimmen T Gemeinsame Wiederholung des Wesentlichen zum Thema Druck und Auftrieb in ruhenden Flüssigkeiten und Gasen ( siehe auch BW 2, S. 76 ff ). Mache die in den

Mehr

Klausur Aerodynamik I M U S T E R L Ö S U N G E I N S IC H T N A H M E

Klausur Aerodynamik I M U S T E R L Ö S U N G E I N S IC H T N A H M E AERODYNAMISCHES INSTITUT der Rheinisch - Westfälischen Technischen Hochschule Aachen Univ.-Prof. Dr.-Ing. W. Schröder Klausur Aerodynamik I 7. 02. 205 M U S T E R L Ö S U N G E I N S IC H T N A H M E Hinweis:

Mehr

(ii) Die Massedichte ρ(r, t) [siehe Definition (6.1)] ist konstant und diesselbe für alle Fluid-Elemente und alle Zeiten t.

(ii) Die Massedichte ρ(r, t) [siehe Definition (6.1)] ist konstant und diesselbe für alle Fluid-Elemente und alle Zeiten t. Kapitel 7 Das ideale Fluid 7.1 Definition Definition 7.1 Das ideale Fluid ist durch folgende Eigenschaften definiert: (i) Es ist inkompressibel. Ein Tropfen verändert in der Bewegung seine Form nicht.

Mehr

3 Aufgabe: Traglinientheorie (15 Punkte)

3 Aufgabe: Traglinientheorie (15 Punkte) 3 Aufgabe: Traglinientheorie (5 Punkte Die Zirkulationverteilung um eine Tragflügel endlicher Spannweite soll mit Hilfe eines Fourier-Ansatzes beschrieben werden: Γ(ϕ = bu A n sin(nϕ. Nennen und beschreiben

Mehr

Aerodynamik Advanced PPL-Guide Band 2

Aerodynamik Advanced PPL-Guide Band 2 Aerodynamik Advanced PPL-Guide Band 2 AirCademy Ltd. All rights reserved. 2.1 Betrachtung am Profilquerschnitt 2 Strömung am Tragflügel Advanced PPL-Guide Der Querschnitt eines Tragflächenprofils besitzt

Mehr

Unterrichtsmaterialien

Unterrichtsmaterialien Unterrichtsmaterialien Arbeitsblatt Fliegen Lösungen Elementa 2 (Ebene D) 1. Womit beschäftigt sich die Aerodynamik? Mit ihr untersucht und optimiert man die Luftströmungen und Auftriebskräfte an Tragflügelprofilen.

Mehr

A-Theorie Aerodynamik. Aerodynamik. Inhalt. Daniel Naschberger. wohnhaft in Innsbruck. aufgewachsen in der Wildschönau

A-Theorie Aerodynamik. Aerodynamik. Inhalt. Daniel Naschberger. wohnhaft in Innsbruck. aufgewachsen in der Wildschönau Daniel Naschberger wohnhaft in nnsbruck aufgewachsen in der Wildschönau Meteorologie Masterstudent an der Uni nnsbruck Daniel Naschberger Meine Qualifikationen www.naschi.at daniel@naschi.at DHV Ausbildungsteam

Mehr

Jürgen Krahl (Herausgeber) Josef Löffl (Herausgeber) Strömungen

Jürgen Krahl (Herausgeber) Josef Löffl (Herausgeber) Strömungen Jürgen Krahl (Herausgeber) Josef Löffl (Herausgeber) Strömungen https://cuvillier.de/de/shop/publications/7012 Copyright: Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen,

Mehr

Hydromechanik Hausarbeiten 1

Hydromechanik Hausarbeiten 1 Hydromechanik Hausarbeiten 1 Institut für Hydromechanik Dozent: Prof. Gerhard H. Jirka, Ph.D. Assistent: Dr.-Ing. Tobias Bleninger WS 2006/2007 Abgabedatum: Fr. 1.12.06 Dies sind die Hausarbeiten zur Hydromechanik.

Mehr

Klausur Strömungslehre a) Beschreiben Sie kurz in Worten das Prinzip des hydrostatischen Auftriebs nach Archimedes.

Klausur Strömungslehre a) Beschreiben Sie kurz in Worten das Prinzip des hydrostatischen Auftriebs nach Archimedes. ......... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre 20. 08. 2004 1. Aufgabe (11 Punkte) a) Beschreiben Sie kurz in Worten das Prinzip des hydrostatischen Auftriebs nach Archimedes. b) Nennen

Mehr

Flugleistung. Dipl.-Ing.(FH) Kapt.(AG) Wolf Scheuermann. Hamburg, Einleitung 2. 2 Widerstandspolare 2. 3 Leistungspolare 5

Flugleistung. Dipl.-Ing.(FH) Kapt.(AG) Wolf Scheuermann. Hamburg, Einleitung 2. 2 Widerstandspolare 2. 3 Leistungspolare 5 Flugleistung Dipl.-Ing.(FH) Kapt.(AG) Wolf Scheuermann Hamburg, 2015 Contents 1 Einleitung 2 2 Widerstandspolare 2 3 Leistungspolare 5 4 Geschwindigkeitspolare 8 5 Schluß 12 6 Quellen 12 1 1 Einleitung

Mehr

Versuch 6 Aufbau einer Schlierenoptik und Anwendung an einem Überschallfreistrahl

Versuch 6 Aufbau einer Schlierenoptik und Anwendung an einem Überschallfreistrahl Versuch 6 Aufbau einer Schlierenoptik und Anwendung an einem Überschallfreistrahl Strömungsmechanisches Praktikum des Deutschen Zentrums für Luft- und Raumfahrt Georg-August-Universität Göttingen 26. August

Mehr

13 Flüssigkeitsdynamik

13 Flüssigkeitsdynamik 3 Flüssigkeitsdynamik Strömungstypen laminar turbulent Laminare Strömung In einer laminaren Strömung folgt jedes Teilchen einer Strömungslinie. Die Richtung des Geschwindigkeitsektors ist dabei tangential

Mehr

Versuch 1. Bestimmung des Umschlagpunktes laminar-turbulent bei einer Rohrströmung (Reynoldsversuch)

Versuch 1. Bestimmung des Umschlagpunktes laminar-turbulent bei einer Rohrströmung (Reynoldsversuch) Versuch 1 Bestimmung des Umschlagpunktes laminar-turbulent bei einer Rohrströmung (Reynoldsversuch) Strömungsmechanisches Praktikum des Deutschen Zentrums für Luft- und Raumfahrt Georg-August-Universität

Mehr

KLAUSUR STRÖMUNGSLEHRE. Blockprüfung für. Maschinenbau. und. Wirtschaftsingenieurwesen. (3 Stunden)

KLAUSUR STRÖMUNGSLEHRE. Blockprüfung für. Maschinenbau. und. Wirtschaftsingenieurwesen. (3 Stunden) Univ.-Prof. Dr.-Ing. Wolfram Frank 09.10.2003 Lehrstuhl für Fluiddynamik und Strömungstechnik Name:... Vorname:... (Punkte) Matr.-Nr.:... HS I / HS II / IP / WI Aufg. 1)... Aufg. 2)... Beurteilung:...

Mehr

Praktikum Aerodynamik des Flugzeugs

Praktikum Aerodynamik des Flugzeugs Praktikum Aerodynamik des Flugzeugs 1. Versuch: Sonden Ausführungen und Charakteristiken Betreuer: Dipl.-Ing. Anja Kölzsch Ziel des heutigen Termins Einführung in die Strömungsmesstechnik Messung verschiedener

Mehr

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v Hydrodynamik Kontinuitätsgleichung A2, rho2, v2 A1, rho1, v1 Stromröhre Massenerhaltung: ρ } 1 v {{ 1 A } 1 = ρ } 2 v {{ 2 A } 2 m 1 inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms

Mehr

Schweredruck. p S =ρ g h

Schweredruck. p S =ρ g h Schweredruck p S =ρ g h Ein Zylinder ist mit einer Flüssigkeit gefüllit: Wie hoch muss er jeweils mit den folgenden Stoffen gefüllt werden, damit der Bodendruck 1 bar beträgt? (Dichte Tabelle in Kapitel

Mehr

Physik I Mechanik und Thermodynamik

Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik Einführung:. Was ist Physik?. Experiment - Modell - Theorie.3 Geschichte der Physik.4 Physik und andere Wissenschaften.5 Maßsysteme.6 Messfehler und Messgenauigkeit

Mehr

... (Name, Matr.-Nr, Unterschrift) Klausur Technische Strömungslehre

... (Name, Matr.-Nr, Unterschrift) Klausur Technische Strömungslehre ...... (Name, Matr.-Nr, Unterschrift) Klausur Technische Strömungslehre 16. 3. 006 1. Aufgabe (6 Punkte) Eine starre, mit Luft im Umgebungszustand gefüllte Boje hat die Form eines Kegels (Höhe h 0, Radius

Mehr

B e g l e i t m a t e r i a l z u r O n l i n e - V e r s i o n

B e g l e i t m a t e r i a l z u r O n l i n e - V e r s i o n BIONIK: Die Faszination des Fliegens Vom Vogel zum Flugzeug B e g l e i t m a t e r i a l z u r O n l i n e - V e r s i o n L. Griemsmann, M. Krause Version: 01.08.14 Einleitung: Dieses Material soll dich

Mehr

Die Brücke ins Studium. Vorkurs Physik. Dr. Oliver Sternal Dr. Nils-Ole Walliser September 2016

Die Brücke ins Studium. Vorkurs Physik. Dr. Oliver Sternal Dr. Nils-Ole Walliser September 2016 Die Brücke ins Studium Vorkurs Physik Dr. Oliver Sternal Dr. Nils-Ole Walliser 19.-23. September 2016 2. Fluidmechanik 2. Fluidmechanik 2.1 Fluidstatik 2. Fluidmechanik 2.1 Fluidstatik 2.1.1 Druck in ruhenden

Mehr

Ermittlung von aerodynamischen Beiwerten eines PV-Solar-Tracker-Modells im Windkanal

Ermittlung von aerodynamischen Beiwerten eines PV-Solar-Tracker-Modells im Windkanal Ermittlung von aerodynamischen Beiwerten eines PV-Solar-Tracker-Modells im Windkanal LWS-TN-10_74 ASOLT1 Florian Zenger, B.Eng. Prof. Dr.-Ing. Stephan Lämmlein Labor Windkanal/Strömungsmesstechnik Hochschule

Mehr

Tutorium Hydromechanik I und II

Tutorium Hydromechanik I und II Tutorium Hydromechanik I und II WS 2017/2018 12.03.2018 Prof. Dr. rer. nat. M. Koch Vorgelet von: Ehsan Farmani 1 Aufgabe 46 Wie groß ist die relative Änderung (%) vom Druck, wenn a) wir die absolute Temperatur

Mehr

Ergänzungsübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14)

Ergänzungsübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14) Ergänzungsübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14) Prof. W. Meyer Übungsgruppenleiter: A. Berlin & J. Herick (NB 2/28) Ergänzung J Hydrodynamik In der Hydrodynamik beschreibt man die

Mehr

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und Univ.-Prof. Dr.-Ing. Wolfram Frank 01.10.2002 Lehrstuhl für Fluiddynamik und Strömungstechnik Aufgabe Name:... Vorname:... (Punkte) 1)... Matr.-Nr.:... HS I / HS II / IP / WI 2)... 3)... Beurteilung:...

Mehr

Versuch 17: Kennlinie der Vakuum-Diode

Versuch 17: Kennlinie der Vakuum-Diode Versuch 17: Kennlinie der Vakuum-Diode Inhaltsverzeichnis 1 Einleitung 3 2 Theorie 3 2.1 Prinzip der Vakuumdiode.......................... 3 2.2 Anlaufstrom.................................. 3 2.3 Raumladungsgebiet..............................

Mehr

Klausur Strömungsmechanik II

Klausur Strömungsmechanik II ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik II 16. 08. 018 1. Aufgabe (14 Punkte) Das Kräftegleichgewicht in einer ausgebildeten, laminaren Rohrströmung unter Gravitationseinfluss wird

Mehr

Wie ist der Druck p allgemein definiert. Wie groß ist der Luftdruck unter Normalbedingungen ungefähr? Welche Einheit hat er?

Wie ist der Druck p allgemein definiert. Wie groß ist der Luftdruck unter Normalbedingungen ungefähr? Welche Einheit hat er? Wie ist der Druck p allgemein definiert? Welche Einheit hat er? Wie groß ist der Luftdruck unter Normalbedingungen ungefähr? Was kann man sich anschaulich unter dem Stempeldruck in einer Flüssigkeit vorstellen?

Mehr

Versuch 07 Der Adiabatenexponent c p/c V

Versuch 07 Der Adiabatenexponent c p/c V Physikalisches A-Praktikum Versuch 07 Der Adiabatenexponent c p/c V Praktikanten: Julius Strake Niklas Bölter Gruppe: 17 Betreuer: Hendrik Schmidt Durchgeführt: 15. 05. 2012 Unterschrift: Inhaltsverzeichnis

Mehr

I. Mechanik. I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen. Physik für Mediziner 1

I. Mechanik. I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen. Physik für Mediziner 1 I. Mechanik I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen Physik für Mediziner Stromdichte Stromstärke = durch einen Querschnitt (senkrecht zur Flussrichtung) fließende Menge pro Zeit ( Menge

Mehr

Der Papierflieger (6) Stand: 06. Oktober 2014

Der Papierflieger (6) Stand: 06. Oktober 2014 1. Warum kann ein Papierflieger fliegen? Du faltest aus einem Blatt Papier einen Flieger, lässt ihn fliegen und findest heraus, wie Du ihn verändern musst, damit er möglichst weit fliegt. Vor Dir steht

Mehr

Klausur Strömungsmechanik II inkompressibel: ϱ = konst = 0. x + v ρ ( u. y inkompressibel, stationär: u. y = 0

Klausur Strömungsmechanik II inkompressibel: ϱ = konst = 0. x + v ρ ( u. y inkompressibel, stationär: u. y = 0 ...... Name, Matr.-Nr, Unterschrift Klausur Strömungsmechanik II 07. 03. 2012 1. Aufgabe a Vereinfachungen: stationär: t 0, inkompressibel: ϱ konst 2-dimensionales Problem: w 0, z 0, Druck in x-richtung

Mehr

Experimentalphysik. Prof. Karsten Heyne. Fachbereich Physik

Experimentalphysik. Prof. Karsten Heyne. Fachbereich Physik Experimentalphysik Prof. Karsten Heyne Fachbereich Physik Archimedische Prinzip - Auftrieb C15: Aufrieb F1 s1 F4 F3 s2 F2 H 2 O Ist der Auftrieb: F R < 0, dann schwimmt der Körper F R = 0, dann schwebt

Mehr

Übungen zu Physik I für Physiker Serie 10 Musterlösungen

Übungen zu Physik I für Physiker Serie 10 Musterlösungen Übungen zu Physik I für Physiker Serie Musterlösungen Allgemeine Fragen. Was versteht man unter dem Magnuseffekt? Nennen Sie Ihnen bekannte Beispiele, wo man ihn beobachten kann. Als Magnus-Effekt wird

Mehr

Laborklausur-Minimalfragen

Laborklausur-Minimalfragen Laborklausur-Minimalfragen 1. Geben Sie die Bestimmungsformel der Luftdichte anhand der Luftdruckes und der Lufttemperatur bekannt! Geben Sie die Bedeutungen und die Maßeinheiten den Größen, die in der

Mehr

Einführungspraktikum F0 Auswertung und Präsentation von Messdaten

Einführungspraktikum F0 Auswertung und Präsentation von Messdaten Einführungspraktikum F0 Auswertung und Präsentation von Messdaten Julien Kluge 20. Februar 2015 Student: Julien Kluge (564513) Partner: Emily Albert (564536) Betreuer: Pascal Rustige Raum: 217 INHALTSVERZEICHNIS

Mehr

Grundpraktikum M6 innere Reibung

Grundpraktikum M6 innere Reibung Grundpraktikum M6 innere Reibung Julien Kluge 1. Juni 2015 Student: Julien Kluge (564513) Partner: Emily Albert (564536) Betreuer: Pascal Rustige Raum: 215 Messplatz: 2 INHALTSVERZEICHNIS 1 ABSTRACT Inhaltsverzeichnis

Mehr

Klausur Technische Strömungslehre z g

Klausur Technische Strömungslehre z g ...... (Name, Matr.-Nr, Unterschrift) Klausur Technische Strömungslehre 11. 03. 2009 1. Aufgabe (12 Punkte) p a z g Ein Forscher taucht mit einem kleinen U-Boot der Masse m B = 3200kg (Taucher und Boot)

Mehr

ARBEITSBLATT - FLÜGELPROFIL IM VIRTUELLEN WINDKANAL

ARBEITSBLATT - FLÜGELPROFIL IM VIRTUELLEN WINDKANAL ARBEITSBLATT - FLÜGELPROFIL IM VIRTUELLEN WINDKANAL Starte das Applet Foilsim II und wechsle sogleich von 'English Units' zu 'Metric Units' anschließend folge den nachstehenden Anweisungen: 1. Zusammenhang

Mehr

Film: Abhebender Porsche, Petit Le Mans Strömungsbereiche Zweiphasenströmung Tacoma-Brücke. Reibung

Film: Abhebender Porsche, Petit Le Mans Strömungsbereiche Zweiphasenströmung Tacoma-Brücke. Reibung Strömungsbereiche, Reibung, Oberflächenspannung 1. Tafelübung Strömungen in der Technik Dampfabscheider Film: Abhebender BMW, Petit Le Mans Anlagen-Fließschema Gasfraktionierung Film: Abhebender Mercedes,

Mehr

Aufgaben Hydraulik I, 26. August 2010, total 150 Pkt.

Aufgaben Hydraulik I, 26. August 2010, total 150 Pkt. Aufgaben Hydraulik I, 26. August 2010, total 150 Pkt. Aufgabe 1: Luftdichter Behälter (17 Pkt.) Ein luftdichter Behälter mit der Querschnittsfläche A = 12 m 2 ist teilweise mit Wasser gefüllt. Um Wasser

Mehr

Klassenarbeit - Mechanik

Klassenarbeit - Mechanik 5. Klasse / Physik Klassenarbeit - Mechanik Aggregatszustände; Geschwindigkeit; Geradlinige Bewegung; Volumen; Physikalische Größen; Masse; Dichte Aufgabe 1 Welche 3 Arten von Stoffen kennst Du? Nenne

Mehr

Strömende Flüssigkeiten und Gase

Strömende Flüssigkeiten und Gase Strömende Flüssigkeiten und Gase Laminare und turbulente Strömungen Bei laminar strömenden Flüssigkeiten oder Gasen bewegen sich diese in Schichten, die sich nicht miteinander vermischen. Es treten keine

Mehr

Lösungen Aufgabenblatt 10

Lösungen Aufgabenblatt 10 Ludwig Maximilians Universität München Fakultät für Physik Lösungen Aufgabenblatt 1 Übungen E1 Mechanik WS 217/218 Dozent: Prof. Dr. Hermann Gaub Übungsleitung: Dr. Martin Benoit und Dr. Res Jöhr Verständnisfragen

Mehr

Strömungslehre, Gasdynamik

Strömungslehre, Gasdynamik Egon Krause Strömungslehre, Gasdynamik und Aerodynamisches Laboratorium Mit 656 Abbildungen, 42 Tabellen, 208 Aufgaben mit Lösungen sowie 11 ausführlichen Versuchen im Aerodynamischen Laboratorium Teubner

Mehr

Strömung mit Ablösung Eine Grenzschicht, der ein positiver Druckgradient aufgeprägt ist, kann ablösen: z.b.: Strömung in einem Diffusor

Strömung mit Ablösung Eine Grenzschicht, der ein positiver Druckgradient aufgeprägt ist, kann ablösen: z.b.: Strömung in einem Diffusor Strömung mit Ablösung Eine Grenzschicht, der ein positiver Druckgradient aufgeprägt ist, kann ablösen: z.b.: Strömung in einem Diffusor reibungsfreie Strömung: Grenzschicht A(x) u a ρu a x = p x A(x) x

Mehr

BERICHT ZUM LABORPRAKTIKUM

BERICHT ZUM LABORPRAKTIKUM BERICHT ZUM LABORPRAKTIKUM Aerodynamik im Windkanal Mathias Rebholz HS 2010 Labor-Praktikums-Bericht Aerodynamik" 1 BERICHT ZUM LABORPRAKTIKUM Aerodynamik an einem Rechteck-Profil im Windkanal Dolore Dignissim

Mehr

WS 2001/2002 Studienbegleitende Prüfung (DPO 1983)/Studienleistung (DPO 1995)

WS 2001/2002 Studienbegleitende Prüfung (DPO 1983)/Studienleistung (DPO 1995) Universität - Gesamthochschule Kassel Fachgebiet Geohydraulik und Ingenieurhydrologie Prof. Dr. rer. nat. Manfred Koch GhK WS 2001/2002 Studienbegleitende Prüfung (DPO 1983)/Studienleistung (DPO 1995)

Mehr

Wirkung des Luftdrucks

Wirkung des Luftdrucks Wirkung des Luftdrucks Den Luftdruck bemerken wir immer nur dann, wenn er nur auf einer Seite wirkt. Wasser bis ca. 1 cm unter dem Rand Becherglas Messzylinder 1. Wir tauchen das beiderseits offene Kunststoffrohr

Mehr

Praktikum für Flugzeugaerodynamik. 4. Versuch: Induzierter Abwind hinter einem Tragflügel

Praktikum für Flugzeugaerodynamik. 4. Versuch: Induzierter Abwind hinter einem Tragflügel 4. Versuch: Induzierter Abind hinter einem Tragflügel Mark Förster Flügel unendlicher Spanneite (D): Auftrieb und Zirkulation z x + z x Translationsströmung Wirbelströmung V ds C z x U V v Kutta-Joukoski:

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 7: Hydrostatik Dr. Daniel Bick 29. November 2017 Daniel Bick Physik für Biologen und Zahnmediziner 29. November 2017 1 / 27 Übersicht 1 Mechanik deformierbarer

Mehr

Physik I Mechanik und Thermodynamik

Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik 1 Einführung: 1.1 Was ist Physik? 1.2 Experiment - Modell - Theorie 1.3 Geschichte der Physik 1.4 Physik und andere Wissenschaften 1.5 Maßsysteme 1.6 Messfehler und

Mehr

Physik 4 Praktikum Auswertung Hall-Effekt

Physik 4 Praktikum Auswertung Hall-Effekt Physik 4 Praktikum Auswertung Hall-Effekt Von J.W., I.G. 2014 Seite 1. Kurzfassung......... 2 2. Theorie.......... 2 2.1. Elektrischer Strom in Halbleitern..... 2 2.2. Hall-Effekt......... 3 3. Durchführung.........

Mehr

Versuch 15 Dia- und Paramagnetismus

Versuch 15 Dia- und Paramagnetismus Physikalisches A-Praktikum Versuch 15 Dia- und Paramagnetismus Praktikanten: Gruppe: Julius Strake Niklas Bölter B006 Betreuer: Johannes Schmidt Durchgeführt: 07.09.2012 Unterschrift: E-Mail: niklas.boelter@stud.uni-goettingen.de

Mehr

Physik 1 für Chemiker und Biologen 9. Vorlesung

Physik 1 für Chemiker und Biologen 9. Vorlesung "I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics, and the other is the turbulent motion of fluids. And about

Mehr

5 Wechselwirkung zwischen zwei Kugeln

5 Wechselwirkung zwischen zwei Kugeln 7 5.1 Strömungskonfiguration Die Widerstands-, Auftriebs- und Drehmomentenbeiwerte zweier gleich großer feststehender Kugeln in einer gleichförmigen Strömung werden in Abhängigkeit des Partikelabstandes

Mehr

Physikalisches Praktikum 3. Semester

Physikalisches Praktikum 3. Semester Torsten Leddig 3.November 004 Mathias Arbeiter Betreuer: Dr.Hoppe Physikalisches Praktikum 3. Semester - Feldmessung - 1 Aufgaben: 1. Elektrisches Feld 1.1 Nehmen Sie den Potenziallinienverlauf einer der

Mehr

Profilentwurf für ein Tragflächenboot

Profilentwurf für ein Tragflächenboot Profilentwurf für ein Tragflächenboot Zusammenfassung für das Profilentwurfseminar von Datum des Vortrags: 27.01.2014 Matrikelnummer: 2552624 durchgeführt am Institut für Aerodynamik und Gasdynamik der

Mehr

Warum braucht ein Flugzeug eine Start- und Landebahn? Wolfgang Oehme, Jens Gabke, Axel Märcker Fakultät für Physik und Geowissenschaften

Warum braucht ein Flugzeug eine Start- und Landebahn? Wolfgang Oehme, Jens Gabke, Axel Märcker Fakultät für Physik und Geowissenschaften Warum braucht ein Flugzeug eine Start- und Landebahn? Wolfgang Oehme, Jens Gabke, Axel Märcker Fakultät für Physik und Geowissenschaften Wettstreit zwischen Gewicht und Auftrieb U-Boot Wasser in den Tanks

Mehr

Physik I im Studiengang Elektrotechnik

Physik I im Studiengang Elektrotechnik hysik I im Studiengang Elektrotechnik - Mechanik deformierbarer Körper - rof. Dr. Ulrich Hahn WS 015/016 Deformation Starrer Körper: Kraftwirkung Translation alle Massenpunkte: gleiches Rotation alle Massenpunkte:

Mehr

Tragflügel im Windkanal. 1.2 Grundgleichungen von Strömungen idealer, inkompressibler Fluide

Tragflügel im Windkanal. 1.2 Grundgleichungen von Strömungen idealer, inkompressibler Fluide M8 Tragflügel im indkanal Die bhängigkeiten von Druck und Strömungsgeschwindigkeit in einer Luftströmung sowie die Kraftwirkung auf Körper in dieser Luftströmung sollen veranschaulicht werden.. Theoretische

Mehr

Multiple Choice. Testat Hydrostatik MS. Bearbeitungszeit: 10:00 Minuten. Aufgabe 1 Punkte: 1. Welche Aussagen treffen auf den statischen Druck zu?

Multiple Choice. Testat Hydrostatik MS. Bearbeitungszeit: 10:00 Minuten. Aufgabe 1 Punkte: 1. Welche Aussagen treffen auf den statischen Druck zu? Multiple Choice Bearbeitungszeit: 10:00 Minuten Aufgabe 1 Punkte: 1 Welche Aussagen treffen auf den statischen Druck zu? Der statische Druck hat eine Wirkrichtung. Der statische Druck ist eine skalare

Mehr

Wie erklärt man das Fliegen in der Schule?

Wie erklärt man das Fliegen in der Schule? Wie erklärt man das Fliegen in der Schule? Versuch einer Analyse verschiedener Erklärungsmuster Rita Wodzinski 1. Einleitung Obwohl das Fliegen mit dem Flugzeug heute nichts Ungewöhnliches mehr ist, hat

Mehr

Universität Karlsruhe Institut für Hydromechanik

Universität Karlsruhe Institut für Hydromechanik Universität Karlsruhe Institut für Hydromechanik Kaiserstr. 12 D-76128 Karlsruhe Tel.: +49 (0)721/608-2200, -2202 Fax: +49 (0)721/66 16 86 ifh@uni-karlsruhe.de www.ifh.uni-karlsruhe.de lehre@ifh.uka.de

Mehr