Größe: px
Ab Seite anzeigen:

Download ""

Transkript

1

2

3

4

5

6 Nichtlebenversicherungsmathematik Aus welchen Teilen besteht eine Prämie Zufallsrisiko, Parameterrisiko, Risikokapital Risikomasse (VaR, ES) Definition von Kohärenz Zusammengesetze Poisson: S(i) CP, was gilt dann für die Summe der S(i)? (mit Beweis) Algorithmus von Panjer im Fall von Poisson erklären, die Konstanten a und b angeben Nicht-Lebenversicherungsmathematik: Prof. A. Gisler (Herbst 2003) - Zuerst musste ich ein Aufgabe aus den Übungen lösen, nämlich die Einführung eines Rabatts bei einer Autohaftpflichtversicherung, im Falle von 3 schadenfreier Jahre (Annahme: Risiken sind bereits über 3 Jahre in Kraft, N~Pois(k) verteilt, die Risiken sind unabhängig) - Selbe Aufgabe, aber mit k= Q eine Zufallsvariable (also N ist nur noch bedingt gegeben Q Poisson verteilt und die Risiken sind nur noch bedingt gegeben Q unabhängig) Nach diesen Aufgaben kamen Theoriefragen: - Was bedeutet Gemischt-Poisson-Verteilung? - Theorem über zusammengesetzte Poisson-Verteilung + Beweisidee - Was ist unter multiplikativer Tarifstruktur gemeint? (Vorteil: Dimensionsreduktion der Parameter) - Aufzählen der behandelten Tarifstrukturen - Welche Methode ist gut für die Modellierung von Schadendurchschnitte? (Die direkte Methode) - Welches stochastische Modell steckt hinter der direkten Methode (Gamma-Verteilung) - Welcher Parameter bleibt in jeder Zelle unverändert? (der Formparameter) - Ist die Gamma-Verteilung geeignet um Grossschäden zu modellieren? (Nein, sie flacht zu schnell ab, unterschätzt folglich die Grossschäden)

7 Nichtleben-Versicherung (SS02) Fragen der mündlichen Prüfung Ausgleich im Kollektiv (Gesetz der grossen Zahlen, zentraler Grenzwertsatz, Verallgemeinerung von Lindberg), Änderung der Grundwahrscheinlichkeiten in der Zeit Versicherungstechnisches Risiko: Zufallsrisiko, Parameter-Risiko Prämienberechnungsprinzipien: Varianzprinzip Numerisches Beispiel: Gegeben Schadensatz, Schadenanzahl (Poisson), Vko. Berechne erwarteten Gesamtschadenaufwand (bzw. schadensatz) und entsprechende Vko Poisson Prozess: Definition, Bedeutung (Ausschluss von Mehrfachschäden), wann sind die Annahmen nicht erfüllt (Kumulereignisse) Verteilung für Kategorien: Poisson-Fall, Negativ-Binomial (Schadenanzahl nicht mehr unabhängig) Zahlenbeispiel: Histogramm mit logarithmierten Daten, die Verteilung ist ungefähr symmetrisch: Was kann man dazu sagen? (Daten Lognormal verteilt) Gisler gibt noch Erwartungswert und Stdabw (oder Vko) der Log-Daten, und fragt nach den entsprechenden Parametern für die Lognormalverteilung (explizite Formel), und dem Spezialfall wenn die Schadenanzahl Poisson ist (vereinfachte Formel) Test der Anpassung: Chi-Quadrat-Anpassungstest GLM: Annahmen für die Verteilung, linearer Prädiktor, Linkfunktion, Zusammenhang mit multiplikativer Tarifstruktur. Fall Log-Link und Gamma (Parameter der Gammaverteilung explizit)

8 Nichtleben-Versicherung (FS08) Prämienbestandteile Risikozuschläge: für welche Risiken? (Zufall- und Parameterrisiko) Welche davon sind abhängig von der Portfoliogrösse? Welche wegdifferenzierbar und welche nicht? Risikomasse: VaR, ES Risikokapital für Teilportefeuilles: wie kann man ein gesamtes Risikokapital herunter brechen? Welche Ansätze? Vorteile und Nachteile von jedem. Definition von zusammengesetzt Poisson; Satz zur Summe von zusammengesetzt Poisson verteilten ZV inkl. Beweis Welchen Algorithmus haben wir gesehen zur Berechnung des Schadenaufwandes (nur Namen Panjer erwähnen, nicht Formeln). Beispiel mit Grossschäden, N Poisson, S_i Pareto: wie schätzt man den Pareto- Parameter alpha? (Maximum-Likelihood -> explizit Formel); Herleitung von Pareto über Exponentialverteilung, mit Dichte und ML-Schätzer = Momentenschätzer; Genauigkeit des alpha-schätzers für Pareto. Erwartungswert von Schäden in einem Layer (a,b): Formel zur Berechnung (aus einem Satz, einfach das Integral hinschreiben mit allgemeiner Verteilungsfunktion F). Nichtleben-Versicherung (FS08) SST, Expected Shortfall, Zielkapital Welche Risiken werden im SST modelliert? Welche Risiken sind diversifizierbar? Grosschäden im SST werden wie modelliert? Satz über Summe zusammengesetzte Poisson sind zusammengesetzt Poisson. Beispiel zur Tarifierung aus den Übungen Aufgabe 6 Serie 3. Wie tarifieren. Welche Methode ist hier gut. Unterscheiden sich Frauen und Männer? Welche statisitischer Test. (Likelihood Ratio Test) GLM Ideen.

9 Nichtleben-Versicherung (FS08) Was ist eine Versicherung? Wieso funktioniert eine Versicherung? Mathematische Grundlagen dahinter? Schwaches Gesetz der grossen Zahlen? Ungleichung von Tschbeychev (inkl. Beweise)? Zentraler Grenzwertsatz? Insbesondere musste ich auch ein Zahlenbeispiel rechnen (in der Art von Aufgabe 1, Serie 1). SST, Expected Shortfall, Zielkapital, implizite Gleichung sowie die vereinfachte Version in der Praxis. Was ist der Minimalbetrag, wie ist er definiert? Was versteht man unter Solvency I? Worin besteht der Unterschied zum SST? (Stichworte Marktnahe Bilanz, Koeffizientenmodell ). Welche Verteilung braucht man für Grossschäden, welche Verteilung für die Schadenanzahl? Satz über die zusammengesetze Poissonverteilung (inkl. Beweis). Panjer-Alogrithmus / Panjer Familie sowie der Spezialfall bei Poissonverteilung. Nichtlebensversicherungsmathe (Gisler): Welche Verteilungen eignen sich für zur modellierung der Schadenanzahl? ->Poisson und gemischte Poisson Spezialfall bei gemischter Poisson? -> Misch-Verteilung Gamma-verteilt Was für ein Prozess gehört zur Poissonverteilung? -> Def. Poissonprzess Welche Eigenschaft ist in der Praxis problematisch? -> Auschluss von Mehrfachschäden Fahrzeughaftpflicht. Anzahl Schäden Poisson. Möchten in Kategorie Sachschäden und Körperschäden unterteilen. Was gilt dann? -> N1 Poisson(p1*lamda), N2 Poisson(p2*lamda), N1, N2 unabh ngig Dito mit N negativbinomial? -> N1 negbin, N2 negbin und N1 N2 positiv korreliert Beweis der positiven Korreliertheit? Zusammengesetzte Negativ-Binomialverteilung? Gegen was konvergiert S/E[S]? -> gegen eine Gammaverteilung. Wie beweist man das? -> mit der Momentenerzeugenden Funktion von S Multiplikative Taristruktur? Sie betrachten Schadendurschnitte, welche Methode eignet sich? -> Methode der Randtotalen, weil Sij=Nij und ist gleich MLsch tzer, falls Nij Poisson. Verallgemeinerte lineare Modelle? -> zuerst lin. Modell, dann allg. mit Linkfunktion und exponentieller Familie.. Gehört Poisson zur exp. Familie? Multiplikatives Tarifmodell. Linkfunktion? -> Logarithmus.

10

11

12

Kreditrisiko bei Swiss Life. Carl-Heinz Meyer, 13.06.2008

Kreditrisiko bei Swiss Life. Carl-Heinz Meyer, 13.06.2008 Kreditrisiko bei Swiss Life Carl-Heinz Meyer, 13.06.2008 Agenda 1. Was versteht man unter Kreditrisiko? 2. Ein Beisiel zur Einführung. 3. Einige kleine Modelle. 4. Das grosse kollektive Modell. 5. Risikoberechnung

Mehr

Anforderungen an Krankenversicherer unter SST und Solvency II. Prüfungskolloquium zum Aktuar SAV Michele Casartelli, 16.

Anforderungen an Krankenversicherer unter SST und Solvency II. Prüfungskolloquium zum Aktuar SAV Michele Casartelli, 16. Anforderungen an Krankenversicherer unter SST und Solvency II Prüfungskolloquium zum Aktuar SAV Michele Casartelli, 16. November 2012 Grundlagen Hauptziele von Solvenzvorschriften: Schutz von Versicherungsnehmern

Mehr

Stochastische Eingangsprüfung, 17.05.2008

Stochastische Eingangsprüfung, 17.05.2008 Stochastische Eingangsprüfung, 17.5.8 Wir gehen stets von einem Wahrscheinlichkeitsraum (Ω, A, P) aus. Aufgabe 1 ( Punkte) Sei X : Ω [, ) eine integrierbare Zufallsvariable mit XdP = 1. Sei Q : A R, Q(A)

Mehr

Die Auswirkung von Rückversicherung auf die Eigenmittelanforderungen unter Solvency II Prof. Dr. Dietmar Pfeifer

Die Auswirkung von Rückversicherung auf die Eigenmittelanforderungen unter Solvency II Prof. Dr. Dietmar Pfeifer Die Auswirkung von Rückversicherung auf die Eigenmittelanforderungen unter Solvency II Prof. Dr. Dietmar Pfeifer xxx 0 Agenda Der Aufbau der Solvenz-Bilanz Zur Begriffsbestimmung des SCR Die Auswirkung

Mehr

Risikoaggregation und allokation

Risikoaggregation und allokation 2. Weiterbildungstag der DGVFM Risikoaggregation und allokation Einführung in das Thema Prof. Dr. Claudia Cottin, FH Bielefeld Dr. Stefan Nörtemann, msg life Hannover, 21. Mai 2015 2. Weiterbildungstag

Mehr

Einführung in Statistik und Messwertanalyse für Physiker

Einführung in Statistik und Messwertanalyse für Physiker Gerhard Böhm, Günter Zech Einführung in Statistik und Messwertanalyse für Physiker SUB Göttingen 7 219 110 697 2006 A 12486 Verlag Deutsches Elektronen-Synchrotron Inhalt sverzeichnis 1 Einführung 1 1.1

Mehr

Ausarbeitung des Seminarvortrags zum Thema

Ausarbeitung des Seminarvortrags zum Thema Ausarbeitung des Seminarvortrags zum Thema Anlagepreisbewegung zum Seminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn von Imke Meyer im W9/10 Anlagepreisbewegung

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

Solvency II und die Standardformel

Solvency II und die Standardformel Fakultät Mathematik und Naturwissenschaften Institut für Mathematische Stochastik Solvency II und die Standardformel Festkolloquium 20 Jahre (neue) Versicherungsmathematik an der TU Dresden Sebastian Fuchs

Mehr

Monte-Carlo-Simulationen mit Copulas. Kevin Schellkes und Christian Hendricks 29.08.2011

Monte-Carlo-Simulationen mit Copulas. Kevin Schellkes und Christian Hendricks 29.08.2011 Kevin Schellkes und Christian Hendricks 29.08.2011 Inhalt Der herkömmliche Ansatz zur Simulation logarithmischer Renditen Ansatz zur Simulation mit Copulas Test und Vergleich der beiden Verfahren Fazit

Mehr

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Dozent: Volker Krätschmer Fakultät für Mathematik, Universität Duisburg-Essen, WS 2012/13 1. Präsenzübung Aufgabe T 1 Sei (Z 1,...,

Mehr

Credit Risk+: Eine Einführung

Credit Risk+: Eine Einführung Credit Risk+: Eine Einführung Volkert Paulsen December 9, 2004 Abstract Credit Risk+ ist neben Credit Metrics ein verbreitetes Kreditrisikomodell, dessen Ursprung in der klassischen Risikotheorie liegt.

Mehr

Teil I Beschreibende Statistik 29

Teil I Beschreibende Statistik 29 Vorwort zur 2. Auflage 15 Vorwort 15 Kapitel 0 Einführung 19 0.1 Methoden und Aufgaben der Statistik............................. 20 0.2 Ablauf statistischer Untersuchungen..............................

Mehr

Klausur zur Vorlesung Stochastische Modelle in Produktion und Logistik im SS 2010

Klausur zur Vorlesung Stochastische Modelle in Produktion und Logistik im SS 2010 Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Klausur zur Vorlesung Stochastische Modelle in Produktion und Logistik im SS

Mehr

Klassische Risikomodelle

Klassische Risikomodelle Klassische Risikomodelle Kathrin Sachernegg 15. Jänner 2008 1 Inhaltsverzeichnis 1 Einführung 3 1.1 Begriffserklärung.................................. 3 2 Individuelles Risikomodell 3 2.1 Geschlossenes

Mehr

13.5 Der zentrale Grenzwertsatz

13.5 Der zentrale Grenzwertsatz 13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle

Mehr

Parametrische Statistik

Parametrische Statistik Statistik und ihre Anwendungen Parametrische Statistik Verteilungen, maximum likelihood und GLM in R Bearbeitet von Carsten F. Dormann 1. Auflage 2013. Taschenbuch. xxii, 350 S. Paperback ISBN 978 3 642

Mehr

Risikokapital Definition und Allokation

Risikokapital Definition und Allokation Risikokapital Definition und Allokation Rolf Stölting Köln Münchener Rück Munich Re Group Einige ragen intern und unserer Kunden Wie viel Kapital benötigen wir für unser Geschäft? Welche unserer Teilportefeuilles

Mehr

2.Tutorium Generalisierte Regression

2.Tutorium Generalisierte Regression 2.Tutorium Generalisierte Regression - Binäre Regression - Moritz Berger: 04.11.2013 und 11.11.2013 Shuai Shao: 06.11.2013 und 13.11.2013 Institut für Statistik, LMU München 1 / 16 Gliederung 1 Erweiterte

Mehr

SST: - In Kraft - Ab 2011 verbindlich - Modellabhängig

SST: - In Kraft - Ab 2011 verbindlich - Modellabhängig Standardmodell oder internes Modell in der Lebensversicherung? Prüfungskolloquium zum Aktuar SAV 2010 Caroline Jaeger, Allianz Suisse Ursprung der Fragestellung Solvency I: - Risikounabhängig - Formelbasiert

Mehr

Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist

Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist Frage Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist k a F (x) =1 k>0,x k x Finden Sie den Erwartungswert und den Median der Dichte für a>1. (Bei

Mehr

Springer-Lehrbuch Masterclass

Springer-Lehrbuch Masterclass Springer-Lehrbuch Masterclass Riccardo Gatto Stochastische Modelle der aktuariellen Risikotheorie Eine mathematische Einführung Riccardo Gatto Universität Bern Institut für Mathematische Statistik und

Mehr

4. Versicherungsangebot

4. Versicherungsangebot 4. Versicherungsangebot Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Versicherungsökonomie (FS 11) Versicherungsangebot 1 / 13 1. Einleitung 1.1 Hintergrund In einem grossen Teil

Mehr

Vergleich von KreditRisk+ und KreditMetrics II Seminar Portfoliokreditrisiko

Vergleich von KreditRisk+ und KreditMetrics II Seminar Portfoliokreditrisiko Vergleich von KreditRisk+ und KreditMetrics II Seminar Portfoliokreditrisiko Jan Jescow Stoehr Gliederung 1. Einführung / Grundlagen 1.1 Ziel 1.2 CreditRisk+ und CreditMetrics 2. Kreditportfolio 2.1 Konstruktion

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

für Nichtleben-Versicherungsunternehmen betreffend die Schätzung der Parameter des SST- Standardmodells

für Nichtleben-Versicherungsunternehmen betreffend die Schätzung der Parameter des SST- Standardmodells WEGLEITUNG für Nichtleben-Versicherungsunternehmen betreffend die Schätzung der Parameter des SST- Standardmodells Ausgabe vom 16. Dezember 2011 Zweck Diese Wegleitung ist eine Arbeitshilfe zur Schätzung

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 7 Lineare Programmierung II 1 Lineare Programme Lineares Programm: Lineare Zielfunktion Lineare Nebenbedingungen (Gleichungen oder Ungleichungen) Spezialfall der konvexen Optimierung

Mehr

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Die Poisson-Verteilung Jianmin Lu RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Ausarbeitung zum Vortrag im Seminar Stochastik (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: In der Wahrscheinlichkeitstheorie

Mehr

Die Anwendung von Generalisierten Linearen Modellen in der Lebensversicherung

Die Anwendung von Generalisierten Linearen Modellen in der Lebensversicherung Die Anwendung von Generalisierten Linearen Modellen in der Lebensversicherung Versicherungsmathematisches Kolloquium der LMU München Dr. Frank Schiller 13. Juli 2009 Pricing und Valuation in der Lebensversicherung

Mehr

Black Jack - Kartenzählen

Black Jack - Kartenzählen Black Jack - Kartenzählen Michael Gabler 24.01.2012 Literatur: N. Richard Werthamer: Risk and Reward - The Science of Casino Blackjack, Springer Black Jack - Kartenzählen 1 Wie zähle ich Karten? Historisches

Mehr

Kapitel 15: Differentialgleichungen

Kapitel 15: Differentialgleichungen FernUNI Hagen WS 00/03 Kapitel 15: Differentialgleichungen Differentialgleichungen = Gleichungen die Beziehungen zwischen einer Funktion und mindestens einer ihrer Ableitungen herstellen. Kommen bei vielen

Mehr

Musterlösung zum Projekt 3: Splice Sites

Musterlösung zum Projekt 3: Splice Sites Statistik für Bioinformatiker SoSe 2003 Rainer Spang Musterlösung zum Projekt 3: Splice Sites Aufgabe 1. In Vorlesung 5 wurde die Donor Frequency Matrix behandelt. Konstruiere eine solche mit Hilfe der

Mehr

Extremwertverteilungen

Extremwertverteilungen Seminar Statistik Institut für Stochastik 12. Februar 2009 Gliederung 1 Grenzwertwahrscheinlichkeiten 2 3 MDA Fréchet MDA Weibull MDA Gumbel 4 5 6 Darstellung von multivariaten, max-stabilen Verteilungsfunktionen

Mehr

Kapitel 4: Binäre Regression

Kapitel 4: Binäre Regression Kapitel 4: Binäre Regression Steffen Unkel (basierend auf Folien von Nora Fenske) Statistik III für Nebenfachstudierende WS 2013/2014 4.1 Motivation Ausgangssituation Gegeben sind Daten (y i, x i1,...,

Mehr

q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678

q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678 Lösungsvorschläge zu Blatt 8 X binomialverteilt mit p = 0. und n = 10: a PX = = 10 q = 1 p = 0.8 0. 0.8 10 = 0, 1,..., 10 PX = PX = 0 + PX = 1 + PX = 10 10 = 0. 0 0.8 10 + 0. 1 0.8 9 + 0 1 10 = 0.8 8 [

Mehr

Einführung in die Mathematik für Volks- und Betriebswirte

Einführung in die Mathematik für Volks- und Betriebswirte Einführung in die Mathematik für Volks- und Betriebswirte Von Prof. Dr. Heinrich Bader und Prof. Dr. Siegbert Fröhlich Mit 45 A bbildungen 8. A uflage R. Oldenbourg Verlag München Wien INHALTSVERZEICHNIS

Mehr

Stackelberg Scheduling Strategien

Stackelberg Scheduling Strategien Stackelberg Scheduling Strategien Von Tim Roughgarden Präsentiert von Matthias Ernst Inhaltsübersicht Einleitung Vorbetrachtungen Stackelberg Strategien Ergebnisse Seminar Algorithmische Spieltheorie:

Mehr

Kern- und Schulcurriculum Mathematik Klasse 9/10. Stand Schuljahr 2009/10

Kern- und Schulcurriculum Mathematik Klasse 9/10. Stand Schuljahr 2009/10 Kern- und Schulcurriculum Mathematik /10 Stand Schuljahr 2009/10 Fett und kursiv dargestellte Einheiten gehören zum Schulcurriculum In allen Übungseinheiten kommt die Leitidee Vernetzung zum Tragen - Hilfsmittel

Mehr

Poisson-Prozesse und ihre Anwendungen

Poisson-Prozesse und ihre Anwendungen Prom. Nr. 2511 Über zusammengesetzte Poisson-Prozesse und ihre Anwendungen in der Unfallversicherung VON DER EIDGENÖSSISCHEN TECHNISCHEN HOCHSCHULE IN ZÜRICH ZUR ERLANGUNG DER WÜRDE EINES DOKTORS DER MATHEMATIK

Mehr

Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006

Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006 1 3.34 1.1 Angabe Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006 U sei auf dem Intervall (0, 1) uniform verteilt. Zeigen

Mehr

Analytische Methoden und die Black-Scholes Modelle

Analytische Methoden und die Black-Scholes Modelle Analytische Methoden und die Black-Scholes Modelle Diplomverteidigung Universität Rostock Institut für Mathematik 20.01.2011 Agenda 1 Das Ornstein-Uhlenbeck Volatilitätsmodell 2 in L 2 (R 2 ) 3 4 Problem

Mehr

P( X µ c) Var(X) c 2. mit. In der Übung wurde eine alternative, äquivalente Formulierung verwendet: P( X µ < c) 1 Var(X)

P( X µ c) Var(X) c 2. mit. In der Übung wurde eine alternative, äquivalente Formulierung verwendet: P( X µ < c) 1 Var(X) Ich habe eine Frage zur Tschebyschew Ungleichung. In der Aufgabe 4 des Übungsblattes 3 benötigt man ja die Ungleichung. In diesem Falle war der Bereich (0, 20) symmetrisch um den Erwartungswert µ = 5.

Mehr

Bundesamt für Privatversicherungen Herr Roland Rusnak Aufsichtsentwicklung Zürich, 20.05.2008 Schwanengasse 2. 3003 Bern

Bundesamt für Privatversicherungen Herr Roland Rusnak Aufsichtsentwicklung Zürich, 20.05.2008 Schwanengasse 2. 3003 Bern Association Suisse des Actuaires Schweizerische Aktuarvereinigung Swiss Association of Actuaries Bundesamt für Privatversicherungen Herr Roland Rusnak Aufsichtsentwicklung Zürich, 20.05.2008 Schwanengasse

Mehr

Statistik im Bachelor-Studium der BWL und VWL

Statistik im Bachelor-Studium der BWL und VWL Max C. Wewel Statistik im Bachelor-Studium der BWL und VWL Methoden, Anwendung, Interpretation Mit herausnehmbarer Formelsammlung ein Imprint von Pearson Education München Boston San Francisco Harlow,

Mehr

Inhaltsverzeichnis. TEIL I: Einführung in EXCEL

Inhaltsverzeichnis. TEIL I: Einführung in EXCEL Inhaltsverzeichnis TEIL I: Einführung in EXCEL 1 Das Tabellenkalkulationsprogramm EXCEL... 1 1.1 Tabellenkalkulation... 1 1.2 Anwendungsgebiete... 1 1.3 Hilfefunktionen... 2 2 Benutzeroberflächen der Versionen

Mehr

Binäre abhängige Variablen

Binäre abhängige Variablen Binäre abhängige Variablen Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Einführung Oft wollen wir qualitative Variablen

Mehr

Ein möglicher Unterrichtsgang

Ein möglicher Unterrichtsgang Ein möglicher Unterrichtsgang. Wiederholung: Bernoulli Experiment und Binomialverteilung Da der sichere Umgang mit der Binomialverteilung, auch der Umgang mit dem GTR und den Diagrammen, eine notwendige

Mehr

Statistische Auswertung der Daten von Blatt 13

Statistische Auswertung der Daten von Blatt 13 Statistische Auswertung der Daten von Blatt 13 Problemstellung 1 Graphische Darstellung der Daten 1 Diskussion der Normalverteilung 3 Mittelwerte und deren Konfidenzbereiche 3 Signifikanz der Behandlung

Mehr

KVG-Solvenztest Update 2013

KVG-Solvenztest Update 2013 KVG-Solvenztest Update 2013 Monika Buholzer, CSS Markus Meier, Azenes Au Premier HB Zürich 22. März 2012 1. Frage: Höhere oder tiefere Reserven? SST Solvency Ratio divided by Solvency 1 Ratio 1.6 1.4 1.2

Mehr

Berichte aus der Statistik. Jens Kahlenberg. Storno und Profitabilität in der Privathaftpflichtversicherung

Berichte aus der Statistik. Jens Kahlenberg. Storno und Profitabilität in der Privathaftpflichtversicherung Berichte aus der Statistik Jens Kahlenberg Storno und Profitabilität in der Privathaftpflichtversicherung Eine Analyse unter Verwendung von univariaten und bivariaten verallgemeinerten linearen Modellen

Mehr

ARCH- und GARCH-Modelle

ARCH- und GARCH-Modelle ARCH- und GARCH-Modelle Thomas Simon Analyse und Modellierung komplexer Systeme 04.11.2009 homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle 04.11.2009 1 / 27 Ausgangssituation

Mehr

6. Bayes-Klassifikation. (Schukat-Talamazzini 2002)

6. Bayes-Klassifikation. (Schukat-Talamazzini 2002) 6. Bayes-Klassifikation (Schukat-Talamazzini 2002) (Böhm 2003) (Klawonn 2004) Der Satz von Bayes: Beweis: Klassifikation mittels des Satzes von Bayes (Klawonn 2004) Allgemeine Definition: Davon zu unterscheiden

Mehr

MatheBasics Teil 1 Grundlagen der Mathematik

MatheBasics Teil 1 Grundlagen der Mathematik Fernstudium Guide Online Vorlesung Wirtschaftswissenschaft MatheBasics Teil 1 Grundlagen der Mathematik Version 2016 Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der Entnahme,

Mehr

Übungen zur Numerischen Mathematik 2 Sommersemester 2014. Übungsblatt 13

Übungen zur Numerischen Mathematik 2 Sommersemester 2014. Übungsblatt 13 Universität Heidelberg Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Prof. Dr. Dres. h.c. Hans Georg Bock Dr. Christian Kirches Dipl.-Phys. Simon Lenz Übungen zur Numerischen Mathematik 2 Sommersemester

Mehr

Kapitel VI - Lage- und Streuungsparameter

Kapitel VI - Lage- und Streuungsparameter Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1

i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1 1. Aufgabe: Der E-Commerce-Umsatz (in Millionen Euro) der fünf größten Online- Shopping-Clubs liegt wie folgt vor: Club Nr. Umsatz 1 120 2 72 3 54 4 30 5 24 a) Bestimmen Sie den Ginikoeffizienten. b) Zeichnen

Mehr

Kalkulation versicherungstechnischer Risiken

Kalkulation versicherungstechnischer Risiken Kalkulation versicherungstechnischer Risiken mit Beispielen aus den Sparten Dr. Arnd Grimmer DBV-Winterthur Lebensversicherung AG Wiesbaden Begriff des Risikos Definition: Risiko bedeutet die Möglichkeit

Mehr

Analyse von Extremwerten

Analyse von Extremwerten Analyse von Extremwerten Interdisziplinäres Seminar: Statistische Verfahren in den Geowissenschaften Anna Hamann betreut durch Prof. Dr. Helmut Küchenhoff, Institut für Statistik Ludwig Maximilians Universität

Mehr

EXCEL in der Wirtschaftsmathematik

EXCEL in der Wirtschaftsmathematik Hans Benker EXCEL in der Wirtschaftsmathematik Anwendung von Tabellenkalkulationsprogrammen für Studenten, Dozenten und Praktiker Springer Vieweg Inhaltsverzeichnis TEIL I: Einführung in EXCEL 1 Das Tabellenkalkulationsprogramm

Mehr

Elektronische Sicherheitssysteme

Elektronische Sicherheitssysteme Josef Börcsök Elektronische Sicherheitssysteme Hardwarekonzepte, Modelle und Berechnung f 2., überarbeitete Auflage Hüthig Verlag Heidelberg Inhaltsverzeichnis 1 Einleitung 1 1.1 Gründlegende Forderungen

Mehr

Die Binomialverteilung

Die Binomialverteilung Fachseminar zur Stochastik Die Binomialverteilung 23.11.2015 Referenten: Carolin Labrzycki und Caroline Kemper Gliederung Einstieg Definition der Binomialverteilung Herleitung der Formel an einem Beispiel

Mehr

Melanie Kaspar, Prof. Dr. B. Grabowski 1

Melanie Kaspar, Prof. Dr. B. Grabowski 1 7. Hypothesentests Ausgangssituation: Man muss sich zwischen 2 Möglichkeiten (=Hypothesen) entscheiden. Diese Entscheidung soll mit Hilfe von Beobachtungen ( Stichprobe ) getroffen werden. Die Hypothesen

Mehr

Nichtparametrische statistische Verfahren

Nichtparametrische statistische Verfahren Nichtparametrische statistische Verfahren (im Wesentlichen Analyse von Abhängigkeiten) Kategorien von nichtparametrischen Methoden Beispiel für Rangsummentests: Wilcoxon-Test / U-Test Varianzanalysen 1-faktorielle

Mehr

29. Mai 2006. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt.

29. Mai 2006. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt. L. Fahrmeir, C. Belitz Department für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik 29. Mai 2006 Hinweise:

Mehr

Zielsetzung. Problematik

Zielsetzung. Problematik Kreditrisiko-Modellierung für Versicherungsunternehmen Tamer Yilmaz 21. November 2007 Zielsetzung Die Ermittlung der Eigenkapitalhinterlegung für das Kreditrisiko, die auf das Versicherungsunternehmen

Mehr

5. Schließende Statistik. 5.1. Einführung

5. Schließende Statistik. 5.1. Einführung 5. Schließende Statistik 5.1. Einführung Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

Schätzer (vgl. Kapitel 1): Stichprobenmittel X N. Stichprobenmedian X N

Schätzer (vgl. Kapitel 1): Stichprobenmittel X N. Stichprobenmedian X N Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 8.1 Schätzer für Lage- und Skalenparameter und Verteilungsmodellwahl Lageparameter (l(x + a) = l(x) + a): Erwartungswert EX Median von X

Mehr

Das Parameterrisiko - Ein häufig vernachlässigtes Risiko in Internen Modellen von Schaden- und Unfallversicherern

Das Parameterrisiko - Ein häufig vernachlässigtes Risiko in Internen Modellen von Schaden- und Unfallversicherern Das Parameterrisiko - Ein häufig vernachlässigtes Risiko in Internen Modellen von Schaden- und Unfallversicherern Dorothea Diers Preprint Series: 2007-19 Fakultät für Mathematik und Wirtschaftswissenschaften

Mehr

Verteilungsmodelle. Verteilungsfunktion und Dichte von T

Verteilungsmodelle. Verteilungsfunktion und Dichte von T Verteilungsmodelle Verteilungsfunktion und Dichte von T Survivalfunktion von T Hazardrate von T Beziehungen zwischen F(t), S(t), f(t) und h(t) Vorüberlegung zu Lebensdauerverteilungen Die Exponentialverteilung

Mehr

Zur Diskontierung der Versicherungsverpflichtungen im SST

Zur Diskontierung der Versicherungsverpflichtungen im SST Association Suisse de s Actuaire s Schweizerische Aktuarvereinigung Swiss Association of Actuaries Zürich, den 21. April 2011 Autoren: Philipp Keller, Alois Gisler, Mario V. Wüthrich Zur Diskontierung

Mehr

1.3 Die Beurteilung von Testleistungen

1.3 Die Beurteilung von Testleistungen 1.3 Die Beurteilung von Testleistungen Um das Testergebnis einer Vp zu interpretieren und daraus diagnostische Urteile ableiten zu können, benötigen wir einen Vergleichsmaßstab. Im Falle des klassischen

Mehr

SST und Solvency II im Vergleich für die Einzellebensversicherung: Kriterien und Auswirkungen

SST und Solvency II im Vergleich für die Einzellebensversicherung: Kriterien und Auswirkungen SST und Solvency II im Vergleich für die Einzellebensversicherung: Kriterien und Dr. Nils Rüfenacht Prüfungskolloquium Aktuar SAV Bern, 1. Juni 2012 1 / 16 Inhalt 1 Entwicklung des SST und Solvency II

Mehr

Name:... Matrikel-Nr.:... 3 Aufgabe Handyklingeln in der Vorlesung (9 Punkte) Angenommen, ein Student führt ein Handy mit sich, das mit einer Wahrscheinlichkeit von p während einer Vorlesung zumindest

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

INTERNE MODELLE IN DER LEBENSVERSICHERUNG. 3. MaRisk-TAGUNG DER BDO

INTERNE MODELLE IN DER LEBENSVERSICHERUNG. 3. MaRisk-TAGUNG DER BDO INTERNE MODELLE IN DER LEBENSVERSICHERUNG 3. MaRisk-TAGUNG DER BDO Dr. Frank Schiller 20.05.2010 Agenda Risikomodelle und Unternehmenssteuerung Biometrische Analysen: Traditioneller Ansatz Biometrische

Mehr

Klausur zur Vorlesung Stochastische Modelle in Produktion und Logistik im SS 09

Klausur zur Vorlesung Stochastische Modelle in Produktion und Logistik im SS 09 Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Klausur zur Vorlesung Stochastische Modelle in Produktion und Logistik im SS

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

Quantilsschätzung als Werkzeug zur VaR-Berechnung

Quantilsschätzung als Werkzeug zur VaR-Berechnung Quantilsschätzung als Werkzeug zur VaR-Berechnung Ralf Lister, Aktuar, lister@actuarial-files.com Zusammenfassung: Zwei Fälle werden betrachtet und die jeweiligen VaR-Werte errechnet. Im ersten Fall wird

Mehr

Elementare Einführung in die Wahrscheinlichkeitsrechnung, Informationstheorie und stochastische Prozesse. Computer-Netzwerke

Elementare Einführung in die Wahrscheinlichkeitsrechnung, Informationstheorie und stochastische Prozesse. Computer-Netzwerke Informationstechnik Klaus-Dieter Thies Elementare Einführung in die Wahrscheinlichkeitsrechnung, Informationstheorie und stochastische Prozesse für Computer-Netzwerke Mit einer wahrscheinlichkeitstheoretischen

Mehr

DLP. Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de ALZAGK SEMINAR. Bremen, den 18. Januar 2011. Fachbereich Mathematik und Informatik 1 / 27

DLP. Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de ALZAGK SEMINAR. Bremen, den 18. Januar 2011. Fachbereich Mathematik und Informatik 1 / 27 DLP Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de Fachbereich Mathematik und Informatik ALZAGK SEMINAR Bremen, den 18. Januar 2011 1 / 27 Inhaltsverzeichnis 1 Der diskrete Logarithmus Definition

Mehr

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung

Mehr

Monte-Carlo Simulation

Monte-Carlo Simulation Monte-Carlo Simulation Sehr häufig hängen wichtige Ergebnisse von unbekannten Werten wesentlich ab, für die man allerhöchstens statistische Daten hat oder für die man ein Modell der Wahrscheinlichkeitsrechnung

Mehr

Das Markowitz Modell zur Bestimmung optimaler Aktienportfolios

Das Markowitz Modell zur Bestimmung optimaler Aktienportfolios Das Markowitz Modell zur Bestimmung optimaler Aktienportfolios Frank Oertel Departement T Mathematik und Physik Zürcher Hochschule Winterthur (ZHW) CH 840 Winterthur 8. Februar 200 Zielsetzung und Modellansätze

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Dr. C.J. Luchsinger 2 Zufallsgrössen Literatur Kapitel 2 * Statistik in Cartoons: Kapitel 4 * Krengel: 3.1 und 3.2 in 3 und (Honours Program) 10 sowie 11.1, 11.2 und 11.3 in

Mehr

Aktuarielle Methoden der Tarifgestaltung in der Schaden- /Unfallversicherung

Aktuarielle Methoden der Tarifgestaltung in der Schaden- /Unfallversicherung Versicherungs- und Finanzmathematik 38 Aktuarielle Methoden der Tarifgestaltung in der Schaden- /Unfallversicherung Bearbeitet von Deutsche Gesellschaft für Versicherungs- u. Finanzmathematik 1. Auflage

Mehr

Technischer Zinssatz (Diskontierungssatz für die Berechnung des Gegenwartswertes zukünftiger Leistungen der Pensionskassen)

Technischer Zinssatz (Diskontierungssatz für die Berechnung des Gegenwartswertes zukünftiger Leistungen der Pensionskassen) Technischer Zinssatz (Diskontierungssatz für die Berechnung des Gegenwartswertes zukünftiger Leistungen der Pensionskassen) Arbeitsgruppe Prüfung des Umwandlungssatzes auf seine technische Grundlagen Hearing

Mehr

Lebensdauer eines x-jährigen

Lebensdauer eines x-jährigen Lebensdauer eines x-jährigen Sabrina Scheriau 20. November 2007, Graz 1 INHALTSVERZEICHNIS 2 Inhaltsverzeichnis 1 Einleitung 3 2 Sterbewahrscheinlichkeiten 4 2.1 Definition und Ermittlung....................

Mehr

Seminar Quantitatives Risikomanagement

Seminar Quantitatives Risikomanagement Seminar Quantitatives Risikomanagement Kreditrisikomanagement II Fabian Wunderlich Mathematisches Institut der Universität zu Köln Sommersemester 2009 Betreuung: Prof. Schmidli, J. Eisenberg Contents 1

Mehr

Oracle Capacity Planning

Oracle Capacity Planning Seminarunterlage Version: 2.03 Version 2.03 vom 8. Juli 2014 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen oder

Mehr

Kursthemen 12. Sitzung. Spezielle Verteilungen: Warteprozesse. Spezielle Verteilungen: Warteprozesse

Kursthemen 12. Sitzung. Spezielle Verteilungen: Warteprozesse. Spezielle Verteilungen: Warteprozesse Kursthemen 12. Sitzung Folie I - 12-1 Spezielle Verteilungen: Warteprozesse Spezielle Verteilungen: Warteprozesse A) Die Geometrische Verteilung (Folien 2 bis 7) A) Die Geometrische Verteilung (Folien

Mehr

Der rasante Einzug der Mathematik in der Nicht-Leben Versicherung: Eine Zeitreise über 40 Jahre

Der rasante Einzug der Mathematik in der Nicht-Leben Versicherung: Eine Zeitreise über 40 Jahre Der rasante Einzug der Mathematik in der Nicht-Leben Versicherung: Eine Zeitreise über 40 Jahre Abschiedsvortrag ETH Zürich 15. Mai 2014 1 / 33 Bemerkung zu diesem oliensatz: die an der Abschiedsvorlesung

Mehr

Über Randeffekte bei der Dichteschätzung räumlich verteilter Daten

Über Randeffekte bei der Dichteschätzung räumlich verteilter Daten Über Randeffekte bei der Dichteschätzung räumlich verteilter Daten Andreas Fröhlich, Thomas Selhorst, Christoph Staubach FLI-Wusterhausen DVG Tagung Graz, September 2008 Institut für Epidemiologie Gliederung

Mehr

Schulinternes Curriculum. Mathematik

Schulinternes Curriculum. Mathematik Gymnasium Zitadelle Schulinternes Curriculum (G 8) Stand: Schuljahr 2012/13 Gymnasium Zitadelle Schulinternes Curriculum Seite 1 EF Eingeführtes Lehrbuch: Lambacher Schweizer 10 Einführungsphase Funktionen

Mehr

3.2 Black-Scholes Analyse

3.2 Black-Scholes Analyse 3.. BLACK-SCHOLES ANALYSE 39 3. Black-Scholes Analyse Allgemeine Vorüberlegungen Eine Aktie ist eine Anlage ähnlich einem Kredit. Der Anleger bekommt eine Verzinsung, da Kapital ein Arbeitsfaktor ist.

Mehr

Die Black-Scholes-Gleichung

Die Black-Scholes-Gleichung Die Black-Scholes-Gleichung Franziska Merk 22.06.2012 Outline Optionen 1 Optionen 2 3 Optionen Eine Kaufoption ist ein Recht, eine Aktie zu einem heute (t=0) festgelegten Preis E an einem zukünftigen Zeitpunkt

Mehr

Irrfahrten. Und ihre Bedeutung in der Finanzmathematik

Irrfahrten. Und ihre Bedeutung in der Finanzmathematik Irrfahrten Und ihre Bedeutung in der Finanzmathematik Alexander Hahn, 04.11.2008 Überblick Ziele der Finanzmathematik Grundsätzliches zu Finanzmarkt, Aktien, Optionen Problemstellung in der Praxis Der

Mehr

Programmiertechnik II

Programmiertechnik II Analyse von Algorithmen Algorithmenentwurf Algorithmen sind oft Teil einer größeren Anwendung operieren auf Daten der Anwendung, sollen aber unabhängig von konkreten Typen sein Darstellung der Algorithmen

Mehr

Eine Anwendung der Block Maxima Methode im Risikomanagement. Diplomarbeit. vorgelegt von Birgit Woeste

Eine Anwendung der Block Maxima Methode im Risikomanagement. Diplomarbeit. vorgelegt von Birgit Woeste Eine Anwendung der Block Maxima Methode im Risikomanagement Diplomarbeit vorgelegt von Birgit Woeste Betreuer: Privatdozent Dr Volkert Paulsen Mathematisches Institut für Statistik Fachbereich Mathematik

Mehr

Evaluation von Risikomodellen

Evaluation von Risikomodellen Evaluation von Risikomodellen Über die Pflicht zum echten Mehrwert Erstellt für: DKF 2015, München 5. Mai 2015 Agenda 1 Vorstellung 2 Motivation 3 Das ideale VaR-Modell 4 Testverfahren 5 Implikationen

Mehr