Rechnernutzung in der Physik

Größe: px
Ab Seite anzeigen:

Download "Rechnernutzung in der Physik"

Transkript

1 Rechnernutzung in der Physik Teil 3 Statistische Methoden in der Datenanalyse Roger Wolf 15. Dezember 215 INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) PHYSICS FACULTY KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Grundlagen der Wahrscheinlichkeitstheorie, Werkzeuge zur statistischen Datenanalyse Gängige Wahrscheinlichkeitsverteilungen Monte-Carlo Methoden Parameterschätzung Hypothesentests

2 Zusammenfassung Kapiel 3.1: Grundlagen der Wahrscheinlichkeitstheorie Rolle der Statistik in der modernen Physik. Ergebnisraum, Ereignisraum, Wahrscheinlichkeitsverteilung. 2 Bedingte Wahrscheinlichkeit, Satz von der totalen Wahrscheinlichkeit, Unabhägigkeit zweier Ereignisse. Interpretation von (Zufalls-)Experimenten und stochastische Modelle.

3 Zusammenfassung Kapiel 3.2: Werkzeuge zur statistischen Datenanalyse 3 ROOT: C++-Framework zur Datenanalyse: Erste Schritte/Dokumentation. (Software-)Modell zur Datenspeicherung (ROOT-Tree). Darstellung von Daten: Graphen, Histogramme. Funktionen und Anpassung von Funktionen. ROOT-basierte weiterführende Analysepakete. Python Bibliotheken als Alternative zu ROOT.

4 Kapiel 3.3: Charakterisierung von Wahrscheinlichkeitsverteilungen 4

5 Wahrscheinlichkeitsverteilung Eine auf dem Ereignisraum definierte Funktion (1) heißt Wahrscheinlichkeitsverteilung über dem Ergebnisraum die folgenden Eigenschaften erfüllt: 5 Für jedes Ereignis gilt ( Nichtnegativität). Für die Wahrscheinlichkeit zweier disjunkter Ereignisse gilt: ( Linearität). Die Wahrscheinlichkeit (1) Beachte: Interpretation der Wahrscheinlichkeitsverteilung!, wenn sie und ( ) (Normierungsbedingung).

6 Zufallsvariable & Wahrscheinlichkeitsdichte 6 Für unsere weiteren Betrachtungen stellen Sie sich die Erfassung der Körpergröße von 5 männlichen Einwohnern über 18 Jahre in Karlsruhe vor. ist eine (kontinuierlich verteilte) Zufallsvariable, deren Wert jeweils der Ergebnis eines Zufallsexperiments ist. Mit Hilfe der Methoden, die Sie in der letzten Vorlesung kennengelernt haben können sie die Meßreihe in Form von Histogrammen erfassen: (2) Normiert auf 1 und geteilt durch die bin-breite 5 Erfassungen(2) cm in 15 bins

7 Zufallsvariable & Wahrscheinlichkeitsdichte 7 Für unsere weiteren Betrachtungen stellen Sie sich die Erfassung der Körpergröße von 5 männlichen Einwohnern über 18 Jahre in Karlsruhe vor. ist eine (kontinuierlich verteilte) Zufallsvariable, deren Wert jeweils der Ergebnis eines Zufallsexperiments ist. Mit Hilfe der Methoden, die Sie in der letzten Vorlesung kennengelernt haben können sie die Meßreihe in Form von Histogrammen erfassen: (2) Normiert auf 1 und geteilt durch die bin-breite 5 Erfassungen(2) 5 Erfassungen cm in 45 bins cm in 15 bins

8 Zufallsvariable & Wahrscheinlichkeitsdichte 8 Für unsere weiteren Betrachtungen stellen Sie sich die Erfassung der Körpergröße von 5 männlichen Einwohnern über 18 Jahre in Karlsruhe vor. ist eine (kontinuierlich verteilte) Zufallsvariable, deren Wert jeweils der Ergebnis eines Zufallsexperiments ist. Mit Hilfe der Methoden, die Sie in der letzten Vorlesung kennengelernt haben können sie die Meßreihe in Form von Histogrammen erfassen: (2) Normiert auf 1 und geteilt durch die bin-breite 5 Erfassungen(2) 5 Erfassungen cm in 9 bins 5 Erfassungen cm in 45 bins cm in 15 bins

9 Zufallsvariable & Wahrscheinlichkeitsdichte 9 Für unsere weiteren Betrachtungen stellen Sie sich die Erfassung der Körpergröße von 5 männlichen Einwohnern über 18 Jahre in Karlsruhe vor. ist eine (kontinuierlich verteilte) Zufallsvariable, deren Wert jeweils der Ergebnis eines Zufallsexperiments ist. Mit Hilfe der Methoden, die Sie in der letzten Vorlesung kennengelernt haben können sie die Meßreihe in Form von Histogrammen erfassen: 5 Erfassungen(2) 5 Erfassungen cm in 9 bins 5 Erfassungen cm in 45 bins cm in 15 bins Wahrscheinlichkeitsdichte: (2) Normiert auf 1 und geteilt durch die bin-breite Wahrscheinlichkeitsdichte

10 Wahrscheinlichkeitsdichte Ist eine kontinuierliche verteilte Zufallsvariable und die Wahrscheinlichkeitsverteilung über der Ergebnisraum stetig in differenzierbar dann bezeichnen wir: Als Wahrscheinlichkeitsdichtefunktion von. Wahrscheinlichkeitsdichte 1 kumulative Wahrscheinlichkeitsdichte

11 NB: Beachten Sie: die Wahrscheinlichkeit für das Ereignis erhalten Sie nicht als sondern aus den Integral: Wahrscheinlichkeitsdichte 11 kumulative Wahrscheinlichkeitsdichte

12 NB: Beachten Sie: die Wahrscheinlichkeit für das Ereignis erhalten Sie nicht als sondern aus den Integral: NNB: Wahrscheinlichkeitsdichten können kontinuierlich oder diskret verteilt sein. Im diskreten Fall ersetze jedes Integral durch eine Summe über den endlichen Ergebnisraum. Wahrscheinlichkeitsdichte 12 kumulative Wahrscheinlichkeitsdichte

13 Quantilen Zur Charakterisierung der kumulativen Wahrscheinlichkeitsdichte: Quantile(α) 21 Quantil der Ordnung ( -Punkt): (Umkehrfunktion von 2 19 Beispiele: Median ( Rankings von Klausurergebnissen. 18 ). Hypothesen-Tests (z.b. auch in Qualitätskontrollen) α )

14 Lagemaß Charakterisierung der Wahrscheinlichkeitsdichte: p(x) 1 (3) Modus.9 Maximum der Verteilung (= wahrscheinlichster Wert) einfach. Median.8 Modus: Erwartungswert.7 Median ( ): Gleich viele Werte,, größer als auch kleiner als robust ): Abgeschätzt durch das arithmetische Mittel..3 Erwartungswert ( (3) Beispiel: Log-Normalverteilung (siehe Folie XY) Das Beispiel auf der rechten Seite zeigt: diese drei Maße müssen nicht gleich sein. 5 x

15 Erwartungswert Bekannteste Größe zur Charakterisierung der Wahrscheinlichkeitsdichte: (kontinuierlich) Bemerkungen: 15 (diskret) für eine vorgegebene Wahrscheinlichkeitsdichte (-verteilung) ist eine Zahl und keine Funktion von (andere gänige Bezeichnungen auch:, ). Verallgemeinerung: Erwartungswert einer Funktion Erwartungswert ist linear in x:

16 Algebraische Momente - Varianz Verallgemeinerung des Erwartungswertes: n-tes (algebraisches) Moment um Spezialfall: -tes Moment: 1-tes Moment: 2-tes Moment: (Varianz) 16 heißt Standardabweichung.

17 Mehrdimensionale Verteilungen Der Ausgang einer Messung kann durch mehrere Zufallsgrößen charakterisiert sein (z.b. Körpergröße und Alter). In diesem Fall ist auch die Wahrscheinlichkeitsdichte mehrdimensional. : : (4) (Normierung) (kumulativ ) 17 (4) Für diskrete Verteilung ersetze Integrale durch Summen. A B

18 Randverteilungen Ausintegrieren einer der Zufallsvariablen: px (x) (Randverteilung).7.6 (kumulativ ) Ausintegrieren von (manchmal unbekannten) Zufallsgrößen: Marginalisierung. Dimension der Wahrscheinlichkeitsdichte in typischen Problemen (z.b. der Teilchenphysik):..1 py (y).2 Im Englischen: maringal distribution A x Projektion auf x-achse B y Projektion auf y-achse 18

19 Bedingte Wahrscheinlichkeit (2d) Integration in einem Interval : (Bedingte W'dichte) 19 Das Bsp rechts zeigt, daß sich für und verschiedene Wahrscheinlichkeitsdichten ergeben können. Als Verallgemeinerung zum 1-dim Fall gilt für die Randverteilung: Sind die zwei Zufallsvariablen und unabhängig, dann gilt für die Wahrscheinlichkeitsdichte:

20 Kovarianz Zur Beschreibung der Beziehung zweier Variablen zueinander führen wir die Kovarianz analog zur Varianz ein: (Varianz ) (Kovarianz) Bemerkungen: heißt Kovarianzmatrix. 2 is symmetrisch (d.h. es gibt immer eine Hauptachsentransformation ). heißt Korrelationskoeffizient. nimmt Werte in also. (5) Siehe letzte Anmerkung der voherigen Folie. an. Für unabhängige Zufallsvariablen gilt: (5)

21 Korrelation (anschaulich) Positive Korrelation: Negative Korrelation: Welche Korrelation? 21

22 Korrelation (anschaulich) Positive Korrelation: Negative Korrelation: Keine Korrelation!(6) 22 (6) Analog zum Erwartungwert (siehe Tafelbild...).

23 Korrelation (anschaulich) Positive Korrelation: Negative Korrelation: Unkorreliert Korreliert Keine Korrelation! kausal verknüpft! Korrelation kann zufällig sein. möglich. möglich. 23 unabhängig! möglich.

24 Funktionen von Zufallsvariablen Nehmen Sie an die Wahrscheinlichkeitsdichte für die Zufallsvariable bekannt. Wie sieht die Wahrscheinlichkeitsdichte für eine Funktion Beispiel: Sie haben den Durchmesser,, eines Kreises gemessen. Für Wie sieht für die Kreisfläche aus? 24 sei aus? Erhaltung der Wahrscheinlichkeit: haben Sie ein Modell. Absolutbetrag stellt sicher, daß positiv semi-definit ist.

25 Funktionen von Zufallsvariablen Nehmen Sie an die Wahrscheinlichkeitsdichte für die Zufallsvariable bekannt. Wie sieht die Wahrscheinlichkeitsdichte für eine Funktion Beispiel: Sie haben den Durchmesser,, eines Kreises gemessen. Für Wie sieht für die Kreisfläche aus? sei aus? Erhaltung der Wahrscheinlichkeit: haben Sie ein Modell. Absolutbetrag stellt sicher, daß positiv semi-definit ist. Für mehrdimensionale Wahrscheinlichkeitsdichten wird zur Jacobi Matrix: 25

26 Funktionen von Zufallsvariablen Nehmen Sie an die Wahrscheinlichkeitsdichte für die Zufallsvariable bekannt. Wie sieht die Wahrscheinlichkeitsdichte für eine Funktion Beispiel: Sie haben den Durchmesser,, eines Kreises gemessen. Für Wie sieht für die Kreisfläche aus? sei aus? Erhaltung der Wahrscheinlichkeit: haben Sie ein Modell. Absolutbetrag, um sicher zu stellen, daß positiv semi-definit ist. Für mehrdimensional wahrscheinlichkeitsdichten wird zur Jacobi Matrix: 26

27 Gaußsche Fehlerfortpflanzung Nehmen Sie an Sie hätten einen Vektor,, von Zufallsvariablen, deren Wahrscheinlichkeitsdichten Ihnen nicht bekannt sind. Sie kennen jedoch den Vektor der Erwartungwerte,, und die Kovarianzmatrix,. Wie erhalten Sie eine Abschätzung für? Nach Taylor-Entwicklung: (Erwartungswert) (Varianz) Und für einen Vektor von Funktionen erhalten Sie die Korrelationsmatrix entsprechend: (Kovarianz) 27

28 Gaußsche Fehlerfortpflanzung Wichtige Spezialfälle: : (einfacher Fehler von Summen) : (einfacher Fehler von Produkten) Für diese Beispiele haben wir die Annahme gemacht, dass bereits in führender Ordnung durch eine Taylor-Entwicklung beschrieben werden kann. Wenn linear ist ist diese Näherung exakt. Sie wird jedoch immer schlechter, je nicht-linearer das Verhalten von wird (Bsp.: ). Im Zweifel Monte Carlo Methoden besser geignet zur Abschätzung von Unsicherheiten und (v.a.) Korrelationen (oft Methode der Wahl in der Praxis)., : (binomische Fehlerfortpflanzung) Wenn Sie die Fehlerrechnung selbst machen wollen, vergewissern sie sich, daß und unkorreliert sind (was ist ihre jeweilige Bedeutung?). Wenden Sie dann die Fehlerrechnung stur an. Berechnen Sie auch den Korrelationskoeffizienten zwischen und. 28

29 Zusammenfassung Kapiel 3.3: Charakterisierung von Wahrscheinlichkeitsverteilungen 29 Zufallsvariablen und Wahrscheinlichkeitsdichten. Charakterisierung durch Quantilen, Lagemaß. Erwartungswert, algebraische Momente, Varianz. Mehrdimensionale Wahrscheinlickeitsdichten, Kovarianz, Korrelationen. Funktionen von Zufallsvariablen, Gaußsche Fehlerfortpflanzung.

30 Kapiel 3.4: Beispiele gängiger Wahrscheinlichdichteverteilungen 3

31 Uniforme Verteilung Gleichverteilte Zufallszahlen (jeder Wert unabhängig & gleichwertig): U(x).8 [4., 6.] [3., 7.] [2., 8.] [1., 9.].7 (Erwartungswert).6.5 (Varianz).4.3 NB: jede beliebig verteilte Zufallsvariable läßt sich auf eine uniform verteilte Zufallsvariable transformieren (für ) x Jeder Beginn einer Mote Carlo Integration. Allgemeinster prior einer Bayesianischen likelihood Abschätzung.

32 Exponentialverteilung Differenz von Zufallszahlen gleichverteilt (jede Differenz(!) unabhängig & gleichwertig): exp(x, λ) 1 λ=.5.9 λ=1. λ=2..8 (Erwartungswert).7 (Varianz).6 λ=5..5 NB: Klassisches Beispiel: radioaktiver Zerfall. In diesem Bild entspricht der Lebensdauer des Präparats x

33 Exponentialverteilung Differenz von Zufallszahlen gleichverteilt (jede Differenz(!) unabhängig & gleichwertig): exp(x, λ) 1 λ=.5.9 λ=1. λ=2..8 (Erwartungswert).7 (Varianz).6 λ= NB: Klassisches Beispiel: radioaktiver Zerfall. In diesem Bild entspricht der Lebensdauer des Präparats. Alle Differenzen gleich und klein x Alle Differenzen gleich und groß. 33

34 Binomialverteilung Günstige/mögliche Ereignisse (jeder Wert unabhängig aber nicht mehr gleichwertig): B(p, n, k) (Erwartungswert) (Varianz).5 p=.5, n=5 p=.5, n=1 p=.5, n=2 p=.5, n= NB: Verteilung von nicht mehr gleich sondern folgt Wahrscheinlichkeit k

35 Poissonverteilung Günstige/mögliche Ereignisse (jeder Wert unabhängig aber nicht mehr gleichwertig): P(μ, k).3 μ=2. μ=5. μ=1. μ= (Erwartungswert).2 (Varianz).15 NB: entspricht Binomialverteilung im Grenzwert, (Beweis, siehe nächste Folie) k

36 Binomial- Poissonverteilung 36

37 Zentraler Grenzwertsatz Betrachte einen Ereignisraum mit unbabhängigen Zufallsvariablen (=Experimentausgängen) der Länge. Die mögen dabei einer beliebigen(!) identischen Wahrscheinlicheitsverteilung mit endlichem Erwartungswert und endlicher Varianz folgen. Dann folgt die Zufallsvariable für den Grenzübergang und Varianz. 37 einer Normalverteilung mit Erwartungwert

38 .2 Binomialverteilung: P(μ, k) B(p, n, k) Zentraler Grenzwertsatz (in action) B(p, n, k) φ(x=k, μ=1, σ 2=9) P(μ, k) φ(x=k, μ=1, σ 2=1) Poissonverteilung: k k Normalverteilung (universell!) 38

39 Normalverteilung Summe vieler, unabhängiger, identisch verteilter Messungen: φ(x, μ, σ ) 1 μ=., σ =.5 μ=., σ =1. μ=., σ =2. μ=1., σ = (Erwartungswert).7 (Varianz) x

40 Log-Normalverteilung Produkt vieler, unabhängiger, identisch verteilter Messungen: f(x, σ, μ) 1 μ=., σ =.5 μ=., σ =1. μ=., σ =1.5 μ=1., σ = (Erwartungswert).7 (Varianz).6.5 NB: Variablensubstitution: führt Log-Normalverteilung in Normalverteilung über: x

41 -Verteilung Der Logarithmus der Normalverteilung ist (bis auf eine Konstante) χ2 (x, n) (Gammafunktion) (Erwartungswert) (Varianz) verteilt:.5 n=1.45 n=2 n=5.4 n= NB: Die Summe der Quadrate von verteilten Zufallsgrößen.15 normal-.1.5 ist -verteilt. Die Zahl heißt Freiheitsgrad. Sie entspricht der Anzahl unabhängiger Normalverteilungen x

42 Kapiel 3.4: Beispiele gängiger Wahrscheinlichdichteverteilungen 42 Uniforme Verteilung, Exponentialverteilung ( jeder Experimentausgang gleichwertig). Binomialverteilung, Poissonverteilung ( unterscheide günstige/mögliche Experimentausgänge). Normalverteilung, Log-Normalverteilung, -Verteilung ( viele unabhängige Messungen mit einem bestimmten Ausgang, in einem bestimmten Intervall ).

8. Stetige Zufallsvariablen

8. Stetige Zufallsvariablen 8. Stetige Zufallsvariablen Idee: Eine Zufallsvariable X ist stetig, falls ihr Träger eine überabzählbare Teilmenge der reellen Zahlen R ist. Beispiel: Glücksrad mit stetigem Wertebereich [0, 2π] Von Interesse

Mehr

I. Deskriptive Statistik 1

I. Deskriptive Statistik 1 I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................

Mehr

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente...

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente... Inhaltsverzeichnis 0 Einführung 1 1 Zufallsvorgänge und Wahrscheinlichkeiten 5 1.1 Zufallsvorgänge.......................... 5 1.1.1 Ergebnismengen..................... 6 1.1.2 Ereignisse und ihre Verknüpfung............

Mehr

Kapitel VI - Lage- und Streuungsparameter

Kapitel VI - Lage- und Streuungsparameter Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

10. Vorlesung. Grundlagen in Statistik. Seite 291. Martin-Luther-Universität Halle/Wittenberg

10. Vorlesung. Grundlagen in Statistik. Seite 291. Martin-Luther-Universität Halle/Wittenberg . Vorlesung Grundlagen in Statistik Seite 29 Beispiel Gegeben: Termhäufigkeiten von Dokumenten Problemstellung der Sprachmodellierung Was sagen die Termhäufigkeiten über die Wahrscheinlichkeit eines Dokuments

Mehr

Tabellarische und graphie Darstellung von univariaten Daten

Tabellarische und graphie Darstellung von univariaten Daten Part I Wrums 1 Motivation und Einleitung Motivation Satz von Bayes Übersetzten mit Paralleltext Merkmale und Datentypen Skalentypen Norminal Ordinal Intervall Verältnis Merkmalstyp Diskret Stetig Tabellarische

Mehr

Stochastik und Statistik für Ingenieure Vorlesung 4

Stochastik und Statistik für Ingenieure Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Stochastik und Statistik für Ingenieure Vorlesung 4 30. Oktober 2012 Quantile einer stetigen Zufallsgröße Die reelle Zahl

Mehr

Spezielle stetige Verteilungen

Spezielle stetige Verteilungen Spezielle stetige Verteilungen schon bekannt: Die Exponentialverteilung mit Parameter k R, k > 0 hat die Dichte f (x) = ke kx für x 0 und die Verteilungsfunktion F (x) = 1 e kx für x 0. Eigenschaften Für

Mehr

Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure

Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure Von Prof. Hubert Weber Fachhochschule Regensburg 3., überarbeitete und erweiterte Auflage Mit zahlreichen Bildern, Tabellen sowie

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp Datenanalyse (PHY31) Herbstsemester 015 Olaf Steinkamp 36-J- olafs@physik.uzh.ch 044 63 55763 Einführung, Messunsicherheiten, Darstellung von Messdaten Grundbegriffe der Wahrscheinlichkeitsrechnung und

Mehr

Über den Autor 7. Teil Beschreibende Statistik 29

Über den Autor 7. Teil Beschreibende Statistik 29 Inhaltsverzeichnis Über den Autor 7 Einführung Über dieses Buch - oder:»... für Dummies«verpflichtet! Wie man dieses Buch benutzt 22 Wie ich Sie mir vorstelle 22 Wie dieses Buch aufgebaut ist 23 Teil I:

Mehr

Univariates Datenmaterial

Univariates Datenmaterial Univariates Datenmaterial 1.6.1 Deskriptive Statistik Zufallstichprobe: Umfang n, d.h. Stichprobe von n Zufallsvariablen o Merkmal/Zufallsvariablen: Y = {Y 1, Y 2,..., Y n } o Realisationen/Daten: x =

Mehr

Übungsblatt 9. f(x) = e x, für 0 x

Übungsblatt 9. f(x) = e x, für 0 x Aufgabe 1: Übungsblatt 9 Basketball. Ein Profi wirft beim Training aus einer Entfernung von sieben Metern auf den Korb. Er trifft bei jedem Wurf mit einer Wahrscheinlichkeit von p = 1/2. Die Zufallsvariable

Mehr

Keine Panik vor Statistik!

Keine Panik vor Statistik! Markus Oestreich I Oliver Romberg Keine Panik vor Statistik! Erfolg und Spaß im Horrorfach nichttechnischer Studiengänge STUDIUM 11 VIEWEG+ TEUBNER Inhaltsverzeichnis 1 Erstmal locker bleiben: Es längt

Mehr

Kenngrößen von Zufallsvariablen

Kenngrößen von Zufallsvariablen Kenngrößen von Zufallsvariablen Die Wahrscheinlichkeitsverteilung kann durch die sogenannten Kenngrößen beschrieben werden, sie charakterisieren sozusagen die Verteilung. Der Erwartungswert Der Erwartungswert

Mehr

Was ist Physik? Modell der Natur universell es war schon immer so

Was ist Physik? Modell der Natur universell es war schon immer so Was ist Physik? Modell der Natur universell es war schon immer so Kultur Aus was sind wir gemacht? Ursprung und Aufbau der Materie Von wo/was kommen wir? Ursprung und Aufbau von Raum und Zeit Wirtschaft

Mehr

1 Zahlen... 1 1.1 Anzahlen... 1 1.2 Reelle Zahlen... 10 1.3 Dokumentation von Messwerten... 12 1.4 Ausgewählte Übungsaufgaben...

1 Zahlen... 1 1.1 Anzahlen... 1 1.2 Reelle Zahlen... 10 1.3 Dokumentation von Messwerten... 12 1.4 Ausgewählte Übungsaufgaben... Inhaltsverzeichnis 1 Zahlen... 1 1.1 Anzahlen... 1 1.2 Reelle Zahlen... 10 1.3 Dokumentation von Messwerten... 12 1.4 Ausgewählte Übungsaufgaben... 14 2 Beschreibende Statistik... 15 2.1 Merkmale und ihre

Mehr

Statistische Methoden der Datenanalyse

Statistische Methoden der Datenanalyse Statistische Methoden der Datenanalyse Vorlesung im Sommersemester 2002 H. Kolanoski Humboldt-Universität zu Berlin Inhaltsverzeichnis Literaturverzeichnis iii 1 Grundlagen der Statistik 3 1.1 Wahrscheinlichkeit..................................

Mehr

9 Die Normalverteilung

9 Die Normalverteilung 9 Die Normalverteilung Dichte: f(x) = 1 2πσ e (x µ)2 /2σ 2, µ R,σ > 0 9.1 Standard-Normalverteilung µ = 0, σ 2 = 1 ϕ(x) = 1 2π e x2 /2 Dichte Φ(x) = 1 x 2π e t2 /2 dt Verteilungsfunktion 331 W.Kössler,

Mehr

Bachelor BEE Statistik Übung: Blatt 1 Ostfalia - Hochschule für angewandte Wissenschaften Fakultät Versorgungstechnik Aufgabe (1.1): Gegeben sei die folgende Messreihe: Nr. ph-werte 1-10 6.4 6.3 6.7 6.5

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Mathematische und statistische Methoden II Dr. Malte Persike persike@uni-mainz.de lordsofthebortz.de lordsofthebortz.de/g+

Mehr

Statistik. Datenanalyse mit EXCEL und SPSS. Prof. Dr. Karlheinz Zwerenz. R.Oldenbourg Verlag München Wien. Von

Statistik. Datenanalyse mit EXCEL und SPSS. Prof. Dr. Karlheinz Zwerenz. R.Oldenbourg Verlag München Wien. Von Statistik Datenanalyse mit EXCEL und SPSS Von Prof. Dr. Karlheinz Zwerenz R.Oldenbourg Verlag München Wien Inhalt Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt XI XII XII TEIL I GRUNDLAGEN

Mehr

Wahrscheinlichkeitsrechnung und schließende Statistik

Wahrscheinlichkeitsrechnung und schließende Statistik Springer-Lehrbuch Wahrscheinlichkeitsrechnung und schließende Statistik von Karl Mosler, Friedrich Schmid Neuausgabe Wahrscheinlichkeitsrechnung und schließende Statistik Mosler / Schmid schnell und portofrei

Mehr

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion Kapitel 12 Stetige Zufallsvariablen 12.1. Dichtefunktion und Verteilungsfunktion stetig Verteilungsfunktion Trägermenge T, also die Menge der möglichen Realisationen, ist durch ein Intervall gegeben Häufig

Mehr

Vorlesung Wirtschaftsstatistik 2 (FK ) Wiederholungen deskriptive Statistik und Einleitung Normalverteilungsverfahren. Dipl.-Ing.

Vorlesung Wirtschaftsstatistik 2 (FK ) Wiederholungen deskriptive Statistik und Einleitung Normalverteilungsverfahren. Dipl.-Ing. Vorlesung Wirtschaftsstatistik 2 (FK 040637) Wiederholungen deskriptive Statistik und Einleitung Normalverteilungsverfahren Dipl.-Ing. Robin Ristl Wintersemester 2012/13 1 Vorlesungsinhalte Wiederholung:

Mehr

K8 Stetige Zufallsvariablen Theorie und Praxis

K8 Stetige Zufallsvariablen Theorie und Praxis K8 Stetige Zufallsvariablen Theorie und Praxis 8.1 Theoretischer Hintergrund Wir haben (nicht abzählbare) Wahrscheinlichkeitsräume Meßbare Funktionen Zufallsvariablen Verteilungsfunktionen Dichten in R

Mehr

Begriffe aus der Informatik Nachrichten

Begriffe aus der Informatik Nachrichten Begriffe aus der Informatik Nachrichten Gerhard Goos definiert in Vorlesungen über Informatik, Band 1, 1995 Springer-Verlag Berlin Heidelberg: Die Darstellung einer Mitteilung durch die zeitliche Veränderung

Mehr

Diskrete Verteilungen

Diskrete Verteilungen KAPITEL 6 Disrete Verteilungen Nun werden wir verschiedene Beispiele von disreten Zufallsvariablen betrachten. 1. Gleichverteilung Definition 6.1. Eine Zufallsvariable X : Ω R heißt gleichverteilt (oder

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 5 Hilfsmittel aus der Kombinatorik 7 Bedingte

Mehr

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Aufgabe 1 (10 Punkte). 10 Schüler der zehnten Klasse unterziehen sich zur Vorbereitung auf die Abschlussprüfung einem Mathematiktrainingsprogramm.

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne

Mehr

Kapitel 2 Wahrscheinlichkeitsrechnung

Kapitel 2 Wahrscheinlichkeitsrechnung Definition 2.77: Normalverteilung & Standardnormalverteilung Es sei µ R und 0 < σ 2 R. Besitzt eine stetige Zufallsvariable X die Dichte f(x) = 1 2 πσ 2 e 1 2 ( x µ σ ) 2, x R, so heißt X normalverteilt

Mehr

Statistik - Fehlerrechnung - Auswertung von Messungen

Statistik - Fehlerrechnung - Auswertung von Messungen 2013-11-13 Statistik - Fehlerrechnung - Auswertung von Messungen TEIL I Vorbereitungskurs F-Praktikum B (Physik), RWTH Aachen Thomas Hebbeker Literatur Eindimensionaler Fall: Grundbegriffe Wahrscheinlichkeitsverteilungen:

Mehr

Scheinklausur Stochastik 1 für Studierende des Lehramts und der Diplom-Pädagogik

Scheinklausur Stochastik 1 für Studierende des Lehramts und der Diplom-Pädagogik Universität Karlsruhe (TH) Institut für Stochastik Dr. Bernhard Klar Dipl.-Math. oec. Volker Baumstark Name Vorname Matr.-Nr.: Scheinklausur Stochastik für Studierende des Lehramts und der Diplom-Pädagogik

Mehr

Simulationsmethoden in der Bayes-Statistik

Simulationsmethoden in der Bayes-Statistik Simulationsmethoden in der Bayes-Statistik Hansruedi Künsch Seminar für Statistik, ETH Zürich 6. Juni 2012 Inhalt Warum Simulation? Modellspezifikation Markovketten Monte Carlo Simulation im Raum der Sprungfunktionen

Mehr

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten Zufallsgrößen Ergebnisse von Zufallsexperimenten werden als Zahlen dargestellt 0 Einführung Wahrscheinlichkeitsrechnung 2 Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Hypothesentests

Mehr

Übungsaufgaben zu Statistik II

Übungsaufgaben zu Statistik II Übungsaufgaben zu Statistik II Prof. Dr. Irene Prof. Dr. Albrecht Ungerer Die Kapitel beziehen sich auf das Buch: /Ungerer (2016): Statistik für Wirtschaftswissenschaftler Springer Gabler 4 Übungsaufgaben

Mehr

Kapitel 5. Stochastik

Kapitel 5. Stochastik 76 Kapitel 5 Stochastik In diesem Kapitel wollen wir die Grundzüge der Wahrscheinlichkeitstheorie behandeln. Wir beschränken uns dabei auf diskrete Wahrscheinlichkeitsräume Ω. Definition 5.1. Ein diskreter

Mehr

diskrete und kontinuierliche Verteilungen

diskrete und kontinuierliche Verteilungen Vorlesung: Computergestützte Datenauswertung Wahrscheinlichkeit, Günter Quast Fakultät für Physik Institut für Experimentelle Kernphysik diskrete und kontinuierliche Verteilungen SS '16 KIT Die Forschungsuniversität

Mehr

Muster für einen Studienbericht (in Auszügen) im Fach Mathematik LK

Muster für einen Studienbericht (in Auszügen) im Fach Mathematik LK Muster für einen Studienbericht (in Auszügen) im Fach Mathematik LK Name: Zur Vorbereitung verwendetes Hilfsmittel GTR (Modell und Typbezeichnung sind vom Bewerber anzugeben. ) (Modell und Typ sind mit

Mehr

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch 6 Stetige Verteilungen 1 Kapitel 6: Stetige Verteilungen A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch dargestellt. 0.2 6

Mehr

Satz 16 (Multiplikationssatz)

Satz 16 (Multiplikationssatz) Häufig verwendet man die Definition der bedingten Wahrscheinlichkeit in der Form Damit: Pr[A B] = Pr[B A] Pr[A] = Pr[A B] Pr[B]. (1) Satz 16 (Multiplikationssatz) Seien die Ereignisse A 1,..., A n gegeben.

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben:

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben: Korrelationsmatrix Bisher wurden nur statistische Bindungen zwischen zwei (skalaren) Zufallsgrößen betrachtet. Für den allgemeineren Fall einer Zufallsgröße mit N Dimensionen bietet sich zweckmäßiger Weise

Mehr

Biomathematik für Mediziner, Klausur SS 2001 Seite 1

Biomathematik für Mediziner, Klausur SS 2001 Seite 1 Biomathematik für Mediziner, Klausur SS 2001 Seite 1 Aufgabe 1: Von den Patienten einer Klinik geben 70% an, Masern gehabt zu haben, und 60% erinnerten sich an eine Windpockeninfektion. An mindestens einer

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

Statistik II. Statistische Tests. Statistik II

Statistik II. Statistische Tests. Statistik II Statistik II Statistische Tests Statistik II - 12.5.2006 1 Test auf Anteilswert: Binomialtest Sei eine Stichprobe unabhängig, identisch verteilter ZV (i.i.d.). Teile diese Stichprobe in zwei Teilmengen

Mehr

Statistik für Psychologen und Sozialwissenschaftler

Statistik für Psychologen und Sozialwissenschaftler Markus Bühner Matthias Ziegler Statistik für Psychologen und Sozialwissenschaftler Mit über 480 Abbildungen PEARSON Studium Ein Imprint von Pearson Education München Boston San Francisco Harlow, England

Mehr

LEHRPLAN MATHEMATIK SPORT- UND MUSIKKLASSE

LEHRPLAN MATHEMATIK SPORT- UND MUSIKKLASSE LEHRPLAN MATHEMATIK SPORT- UND MUSIKKLASSE STUNDENDOTATION GF EF 3. KLASSE 1. SEM. 4 2. SEM. 4 4. KLASSE 1. SEM. 3 2. SEM. 3 5. KLASSE 1. SEM. 3 2. SEM. 3 6. KLASSE 1. SEM. 3 2 2. SEM. 3 2 7. KLASSE 1.

Mehr

Beispiel: Zweidimensionale Normalverteilung I

Beispiel: Zweidimensionale Normalverteilung I 10 Mehrdimensionale Zufallsvariablen Bedingte Verteilungen 10.6 Beispiel: Zweidimensionale Normalverteilung I Wichtige mehrdimensionale stetige Verteilung: mehrdimensionale (multivariate) Normalverteilung

Mehr

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden Inhaltsverzeichnis Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3 Warum Statistik? 3 Checkpoints 4 Daten 4 Checkpoints 7 Skalen - lebenslang wichtig bei der Datenanalyse

Mehr

Zeit zum Kochen [in min] [10, 20[ [20, 30[ [30, 40[ [40, 50[ [50,60[ [60, 100] Hi

Zeit zum Kochen [in min] [10, 20[ [20, 30[ [30, 40[ [40, 50[ [50,60[ [60, 100] Hi 1. Susi und Fritzi bereiten ein Faschingsfest vor, dazu gehört natürlich ein Faschingsmenü. Ideen haben sie genug, aber sie möchten nicht zu viel Zeit fürs Kochen aufwenden. In einer Zeitschrift fanden

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 9. Dezember 2010 1 Konfidenzintervalle Idee Schätzung eines Konfidenzintervalls mit der 3-sigma-Regel Grundlagen

Mehr

Statistische Methoden der Datenanalyse Wintersemester 2011/2012 Albert-Ludwigs-Universität Freiburg

Statistische Methoden der Datenanalyse Wintersemester 2011/2012 Albert-Ludwigs-Universität Freiburg Statistische Methoden der Datenanalyse Wintersemester 2011/2012 Albert-Ludwigs-Universität Freiburg Prof. Markus Schumacher Physikalisches Institut Westbau 2 OG Raum 008 Telefonnummer 07621 203 7612 E-Mail:

Mehr

Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006

Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006 1 3.34 1.1 Angabe Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006 U sei auf dem Intervall (0, 1) uniform verteilt. Zeigen

Mehr

6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen

6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen 6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Bisher: Diskrete Zufallsvariablen,

Mehr

1 Gemischte Lineare Modelle

1 Gemischte Lineare Modelle 1 Gemischte Lineare Modelle Wir betrachten zunächst einige allgemeine Aussagen für Gemischte Lineare Modelle, ohne zu tief in die mathematisch-statistische Theorie vorzustoßen. Danach betrachten wir zunächst

Mehr

Chi-Quadrat-Verteilung

Chi-Quadrat-Verteilung Chi-Quadrat-Verteilung Die Verteilung einer Summe X +X +...+X n, wobei X,..., X n unabhängige standardnormalverteilte Zufallsvariablen sind, heißt χ -Verteilung mit n Freiheitsgraden. Eine N(, )-verteilte

Mehr

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate Regression ein kleiner Rückblick Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate 05.11.2009 Gliederung 1. Stochastische Abhängigkeit 2. Definition Zufallsvariable 3. Kennwerte 3.1 für

Mehr

die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen

die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen Kapitel 8 Schätzung von Parametern 8.1 Schätzmethoden Gegeben seien Beobachtungen Ü Ü ¾ Ü Ò die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen ¾ Ò auffassen. Die Verteilung

Mehr

Einführung in die Fehlerrechnung und Messdatenauswertung

Einführung in die Fehlerrechnung und Messdatenauswertung Grundpraktikum der Physik Einführung in die Fehlerrechnung und Messdatenauswertung Wolfgang Limmer Institut für Halbleiterphysik 1 Fehlerrechnung 1.1 Motivation Bei einem Experiment soll der Wert einer

Mehr

Diskrete Wahrscheinlichkeitstheorie - Probeklausur

Diskrete Wahrscheinlichkeitstheorie - Probeklausur Diskrete Wahrscheinlichkeitstheorie - robeklausur Sommersemester 2007 - Lösung Name: Vorname: Matrikelnr.: Studiengang: Hinweise Sie sollten insgesamt Blätter erhalten haben. Tragen Sie bitte Ihre Antworten

Mehr

Bedingte Wahrscheinlichkeiten und Unabhängigkeit

Bedingte Wahrscheinlichkeiten und Unabhängigkeit Kapitel 5 Bedingte Wahrscheinlichkeiten und Unabhängigkeit Mitunter erhält man über das Ergebnis eines zufälligen Versuches Vorinformationen. Dann entsteht die Frage, wie sich für den Betrachter, den man

Mehr

Grundprinzipien der Bayes-Statistik

Grundprinzipien der Bayes-Statistik Grundprinzipien der Bayes-Statistik Karl-Rudolf Koch Zusammenfassung: In drei wesentlichen Punkten unterscheidet sich die Bayes-Statistik von der traditionellen Statistik. Zunächst beruht die Bayes-Statistik

Mehr

Übungsrunde 5, Gruppe 2 LVA , Übungsrunde 5, Gruppe 2, Markus Nemetz, TU Wien, 11/2006

Übungsrunde 5, Gruppe 2 LVA , Übungsrunde 5, Gruppe 2, Markus Nemetz, TU Wien, 11/2006 3.. Angabe Übungsrunde 5, Gruppe 2 LVA 07.369, Übungsrunde 5, Gruppe 2, 4.. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, /2006 Betrachten Sie einen Behälter, der Karten mit jeweils einer aufgedruckten

Mehr

Allgemeine Wahrscheinlichkeitsräume

Allgemeine Wahrscheinlichkeitsräume Kapitel 3 Allgemeine Wahrscheinlichkeitsräume 3. Einleitung Wir hatten schon bemerkt, dass der Begriff des diskreten Wahrscheinlichkeitsraums nicht ausreicht, um das unendliche Wiederholen eines Zufallsexperiments

Mehr

Würfel-Aufgabe Bayern LK 2006

Würfel-Aufgabe Bayern LK 2006 Würfel-Aufgabe Bayern LK 2006 Die Firma VEGAS hat ein neues Gesellschaftsspiel entwickelt, bei dem neben Laplace-Würfeln auch spezielle Vegas-Würfel verwendet werden, die sich äußerlich von den Laplace-Würfeln

Mehr

Quantitatives Risikomanagement

Quantitatives Risikomanagement Quantitatives Risikomanagement Korrelation und Abhängigkeit im Risikomanagement: Eigenschaften und Irrtümer von Jan Hahne und Wolfgang Tischer -Korrelation und Abhängigkeit im Risikomanagement: Eigenschaften

Mehr

Wiederholung Hypothesentests Zusammenfassung. Hypothesentests. Statistik I. Sommersemester Statistik I Hypothesentests I (1/36)

Wiederholung Hypothesentests Zusammenfassung. Hypothesentests. Statistik I. Sommersemester Statistik I Hypothesentests I (1/36) Statistik I Sommersemester 2009 Statistik I I (1/36) Wiederholung Grenzwertsatz Konfidenzintervalle Logik des 0.0 0.1 0.2 0.3 0.4 4 2 0 2 4 Statistik I I (2/36) Zum Nachlesen Agresti/Finlay: Kapitel 6+7

Mehr

Schulinternes Curriculum Mathematik SII

Schulinternes Curriculum Mathematik SII Schulinternes Curriculum Mathematik SII Koordinatengeometrie Gerade, Parabel, Kreis Lösen von LGS mithilfe des Gaußverfahrens zur Bestimmung von Geraden und Parabeln 11 Differentialrechnung ganzrationaler

Mehr

Übungsrunde 9, Gruppe 2 LVA 107.369, Übungsrunde 8, Gruppe 2, 12.12. Markus Nemetz, TU Wien, 12/2006

Übungsrunde 9, Gruppe 2 LVA 107.369, Übungsrunde 8, Gruppe 2, 12.12. Markus Nemetz, TU Wien, 12/2006 3.75. Angabe Übungsrunde 9, Gruppe 2 LVA 07.369, Übungsrunde 8, Gruppe 2, 2.2. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 2/2006 X sei eine stetige sg mit Dichte f(x), x R. Ermitteln Sie einen

Mehr

8 Stetige Zufallsvariablen

8 Stetige Zufallsvariablen 2 8 STETIGE ZUFALLSVARIABLEN 8 Stetige Zufallsvariablen 8. Definition von stetigen Zufallsvariablen Idee: Eine Zufallsvariable X heißt stetig, falls zu beliebigen Werten a < b aus dem Träger von X auch

Mehr

Medizinische Biometrie (L5)

Medizinische Biometrie (L5) Medizinische Biometrie (L5) Vorlesung III Wichtige Verteilungen Prof. Dr. Ulrich Mansmann Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie mansmann@ibe.med.uni-muenchen.de

Mehr

Prüfungstutorat: Angewandte Methoden der Politikwissenschaft. Polito Seminar Carl Schweinitz 10.12.2014

Prüfungstutorat: Angewandte Methoden der Politikwissenschaft. Polito Seminar Carl Schweinitz 10.12.2014 Prüfungstutorat: Angewandte Methoden der Politikwissenschaft Polito Seminar Carl Schweinitz 10.12.2014 Übersicht 1. Einheiten und Variablen 2. Skalen und ihre Transformation 3. Deskriptive Statistik 4.

Mehr

Angewandte Wahrscheinlichkeitstheorie

Angewandte Wahrscheinlichkeitstheorie Skript zur Vorlesung Angewandte Wahrscheinlichkeitstheorie SS 04 Georg Hoever Fachbereich Elektrotechnik und Informationstechnik FH Aachen Inhaltverzeichnis i Inhaltsverzeichnis. Grundlagen.. Wahrscheinlichkeiten

Mehr

Monte Carlo Simulationen

Monte Carlo Simulationen Monte Carlo Simulationen Erkenntnisse durch die Erschaffung einer virtuellen Welt Stefan Wunsch 31. Mai 2014 INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK (IEKP) KIT Universität des Landes Baden-Württemberg und

Mehr

Vorläufiger schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik

Vorläufiger schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik Vorläufiger schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Mathematik 2.1.1 ÜBERSICHTSRASTER UNTERRICHTSVORHABEN EINFÜHRUNGSPHASE Unterrichtsvorhaben I: Unterrichtsvorhaben II: Beschreibung

Mehr

1 Grundprinzipien statistischer Schlußweisen

1 Grundprinzipien statistischer Schlußweisen Grundprinzipien statistischer Schlußweisen - - Grundprinzipien statistischer Schlußweisen Für die Analyse zufallsbehafteter Eingabegrößen und Leistungsparameter in diskreten Systemen durch Computersimulation

Mehr

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97.

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97. Aufgabenblock 4 Aufgabe ) Da s = 8. cm nur eine Schätzung für die Streuung der Population ist, müssen wir den geschätzten Standardfehler verwenden. Dieser berechnet sich als n s s 8. ˆ = = =.88. ( n )

Mehr

Aufgaben zu Kapitel 38

Aufgaben zu Kapitel 38 Aufgaben zu Kapitel 38 Aufgaben zu Kapitel 38 Verständnisfragen Aufgabe 38. Welche der folgenden vier Aussagen sind richtig:. Kennt man die Verteilung von X und die Verteilung von Y, dann kann man daraus

Mehr

Statistik II für Betriebswirte Vorlesung 12

Statistik II für Betriebswirte Vorlesung 12 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 12 11. Januar 2013 7.3. Multiple parameterlineare Regression Im Folgenden soll die

Mehr

12 Die Normalverteilung

12 Die Normalverteilung 12 Die Normalverteilung Die Normalverteilung ist eine der wichtigsten Wahrscheinlichkeitsverteilungen in der Praxis, weil aufgrund des sogenannten zentralen Grenzwertsatzes in vielen Situationen angenommen

Mehr

Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es

Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es beim radioaktiven Zerfall, zwischen 100 und 110 Zerfälle

Mehr

Die richtige Wahl von Verteilungen

Die richtige Wahl von Verteilungen Die richtige Wahl von Verteilungen N. Schiering, ZMK GmbH Sachsen-Anhalt Agenda Einleitung Standardmessunsicherheiten Typ A und Typ B Normalverteilung Rechteckverteilung Dreieckverteilung Trapezverteilung

Mehr

Messungen und Messfehler

Messungen und Messfehler Messungen und Messfehler B. Schönfeld LMPT, ETH Zürich September 2007 1 Einleitung Messfehler sind (meistens) keine Fehler, sondern Messunsicherheiten. Was man in Messungen bestimmt, sind Schätzwerte,

Mehr

Operations Research (OR) II

Operations Research (OR) II Operations Research (OR) II Fortgeschrittene Methoden der Wirtschaftsinformatik 27. Juni 2007 Michael H. Breitner, Hans-Jörg von Mettenheim und Frank Köller 27.06.2007 # 1 Stochastische Inputgrößen Stochastische

Mehr

2 Euklidische Vektorräume

2 Euklidische Vektorräume Sei V ein R Vektorraum. 2 Euklidische Vektorräume Definition: Ein Skalarprodukt auf V ist eine Abbildung σ : V V R, (v, w) σ(v, w) mit folgenden Eigenschaften ( Axiome des Skalarprodukts) (SP1) σ ist bilinear,

Mehr

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen.

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen. Dieses Quiz soll Ihnen helfen, Kapitel 2.5-2. besser zu verstehen. Frage Wir betrachten ein Würfelspiel. Man wirft einen fairen, sechsseitigen Würfel. Wenn eine oder eine 2 oben liegt, muss man 2 SFr zahlen.

Mehr

Zentralabitur Mathematik. Beispielaufgaben zum ersten Prüfungsteil. Aufgaben ohne Hilfsmittel

Zentralabitur Mathematik. Beispielaufgaben zum ersten Prüfungsteil. Aufgaben ohne Hilfsmittel QUA-LiS NRW Zentralabitur Mathematik Beispielaufgaben zum ersten Prüfungsteil Aufgaben ohne Hilfsmittel Inhaltsverzeichnis Modellieren mithilfe von Funktionen 3 Interpretation des Integrals 4 3 Funktionseigenschaften

Mehr

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

Fragenkatalog Kapitel 1 Fehleranalyse

Fragenkatalog Kapitel 1 Fehleranalyse Teil 1: Numerik katalog Kapitel 1 Fehleranalyse 1. Zwischen was besteht ein funktionaler Zusammenhang z i? Welche Form hat er? 2. Welche 4 Typen von Fehlerquellen gibt es? Nenne Beispiele! 3. Wie berechnet

Mehr

Peter P. Eckstein. Statistik für. Wirtschaftswissenschaftler. Eine realdatenbasierte. Einführung mit SPSS. 4., aktualisierte und erweitete Auflage

Peter P. Eckstein. Statistik für. Wirtschaftswissenschaftler. Eine realdatenbasierte. Einführung mit SPSS. 4., aktualisierte und erweitete Auflage Peter P. Eckstein Statistik für Wirtschaftswissenschaftler Eine realdatenbasierte Einführung mit SPSS 4., aktualisierte und erweitete Auflage Springer Gabler VII 1 Statistik I 1.1 Historisehe Notizen 2

Mehr

Signalverarbeitung 2. Volker Stahl - 1 -

Signalverarbeitung 2. Volker Stahl - 1 - - 1 - Hidden Markov Modelle - 2 - Idee Zu klassifizierende Merkmalvektorfolge wurde von einem (unbekannten) System erzeugt. Nutze Referenzmerkmalvektorfolgen um ein Modell Des erzeugenden Systems zu bauen

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Prof. Dr. Michael Havbro Faber 28.05.2009 1 Korrektur zur letzten Vorlesung Bsp. Fehlerfortpflanzung in einer Messung c B a 2 2 E c Var c a b A b 2 2 2 n h( x)

Mehr

Simulation von Zufallsvariablen und Punktprozessen

Simulation von Zufallsvariablen und Punktprozessen Simulation von Zufallsvariablen und Punktprozessen 09.11.2009 Inhaltsverzeichnis 1 Einleitung 2 Pseudozufallszahlen 3 Punktprozesse Zufallszahlen Definition (Duden): Eine Zufallszahl ist eine Zahl, die

Mehr

Inhaltsverzeichnis. II. Statistische Modelle und sozialwissenschaftliche Meßniveaus 16

Inhaltsverzeichnis. II. Statistische Modelle und sozialwissenschaftliche Meßniveaus 16 Vorwort 1 1. Kapitel: Der Stellenwert der Statistik für die sozialwissenschaflliche Forschung 1 1. Zur Logik (sozial-)wissenschaftlicher Forschung 1 1. Alltagswissen und wissenschaftliches Wissen 1 2.

Mehr

Bayes sches Lernen: Übersicht

Bayes sches Lernen: Übersicht Bayes sches Lernen: Übersicht Bayes sches Theorem MAP, ML Hypothesen MAP Lernen Minimum Description Length Principle Bayes sche Klassifikation Naive Bayes Lernalgorithmus Teil 5: Naive Bayes + IBL (V.

Mehr

Schulinternes Curriculum Mathematik Sekundarstufe II/Lk. Stand: November 2011

Schulinternes Curriculum Mathematik Sekundarstufe II/Lk. Stand: November 2011 Schulinternes Curriculum Mathematik Sekundarstufe II/Lk Stand: November 2011 Bemerkungen: - Die angegebenen Seitenzahlen beziehen sich auf das eingeführt Lehrwerk Lambacher-Schweizer Leistungskurs aus

Mehr