D-INFK Analysis I FS 2017 Prof. Dr. Özlem Imamoglu. MC-Fragen Serie 1. Einsendeschluss: Freitag, der :00 Uhr

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "D-INFK Analysis I FS 2017 Prof. Dr. Özlem Imamoglu. MC-Fragen Serie 1. Einsendeschluss: Freitag, der :00 Uhr"

Transkript

1 D-INFK Analysis I FS 2017 Prof. Dr. Özlem Imamoglu MC-Fragen Serie 1 Einsendeschluss: Freitag, der :00 Uhr 1. Welche der folgenden Aussagen sind richtig? (a) Eine divergente Folge ist nicht beschränkt. Falsch. Z.B. ist {( 1) n } n N beschränkt und divergent. Jede beschränkte Folge ist konvergent. Falsch. Z.B. ist {( 1) n } n N beschränkt und divergent. (c) Jede konvergente Folge ist beschränkt. Richtig. Dies folgt direkt aus der Definition der Konvergenz. (d) Eine nicht beschränkte Folge divergiert. Richtig. Das ist die Kontraposition der vorhergehenden Aussage. Sie folgt direkt aus der Definition der Konvergenz. 1

2 2. Welche der folgenden Aussagen sind richtig? (a) Falls lim a 2n = α R, und lim a 2n+1 = α, dann folgt lim a n = α. n n n Da lim n a 2n = α ist, folgt Analog impliziert lim n a 2n+1 = α ɛ > 0 n ɛ N : α a 2n ɛ n n ɛ. ɛ > 0 m ɛ : α a 2n+1 ɛ n m ɛ. Sei p ɛ := 2 max(n ɛ, m ɛ ) + 1. Dann gilt ɛ > 0 : α a n ɛ lim n a n = α. n p ɛ. Somit folgt Sei (an ) n 1 eine konvergente Folge, und σ eine Permutation von {1, 2, 3,... } (d.h. eine Bijektion der Menge {1, 2, 3,... } auf sich selbst). Dann konvergiert auch die Folge (b n ) n 1, b n = a σ(n), n N. Sei α R der Grenzwert der Folge (a n ) n 1. Es gilt ɛ > 0 n ɛ : α a n ɛ n n ɛ. Wir definieren m ɛ = max({k : σ(k) n ɛ }). Es ist m ɛ <, weil n ɛ < und σ eine Bijektion ist. Dann gilt α b n = α a σ(n) ɛ n m ɛ. Somit folgt lim n b n = α. 2

3 3. Gegeben sei die Folge a n = 3n2, n = 1, 2, 3,.... Welche der folgenden 2(n+1) Aussagen sind richtig? (a) Die Folge ist monoton wachsend. Richtig. Es gilt a n+1 a n = (n + 1)2 (n + 1) (n + 2)n 2 = n3 + 3n 2 + 3n + 1 n 3 + 2n 2 > 1. Da alle Folgenglieder positiv sind, folgt a n+1 > a n. Die Folge ist beschränkt. Falsch. Für alle n 1 gilt n n a n = Also ist (a n ) unbeschränkt. (c) Die Folge ist divergent. und damit 3n2 2(n + 1) = 3 2 n n n n. Richtig. Aus der Abschätzung a n 3 4 n folgt, dass lim n a n = gilt und dass folglich (a n ) divergent ist. (d) Die Folge besitzt keinen Limes in R. Richtig. Es gilt lim n a n =. Da der Grenzwert einer Folge eindeutig bestimmt ist, wenn er existiert (egal ob im eigentlichen oder uneigentlichen Sinne), besitzt (a n ) keinen Limes in R. 3

4 4. Eine Nullfolge ist eine Folge, die gegen 0 konvergiert. Welche der folgenden Aussagen gelten? (a) Wenn die Folge (an ) n N konvergiert, dann ist (a n+1 a n ) n N eine Nullfolge. Richtig. Dies folgt z.b. daraus, dass jede konvergente Folge eine Cauchy-Folge ist. Wenn die Folge (a n+1 a n ) n N eine Nullfolge ist, konvergiert (a n ) n N. Falsch. Ein Gegenbeispiel ist a n = n k=1 1/k. Dann ist nämlich (a n+1 a n = 1/(n + 1)) eine Nullfolge, aber (a n ) n N divergiert. (c) Jede beschränkte Folge hat unendlich viele konvergente Teilfolgen. Richtig. Der Satz von Bolzano-Weierstrass sagt, dass jede beschränkte Folge eine konvergente Teilfolge besitzt. Durch Weglassen der ersten Glieder dieser Teilfolge erhält man unendlich viele konvergente Teilfolgen. 5. Die Zahlenfolge ( 1)n (n 2 +2) n 3 2n 2 +n (a) hat zwei verschiedene Häufungspunkte divergiert nach (c) konvergiert mit Grenzwert 0 ( 1) n (n + 2) n 3 2n 2 + n = ( 1)n n 2 (1 + 2 ) n 2 n 3 ( ) = ( 1)n n 2 n , für n. n n 2 n n 2 6. Sei k=1 a k eine reelle Reihe mit k N : a k 0. Die Reihe konvergiert... (a)...genau dann, wenn die Folge der Partialsummen nach unten beschränkt ist....genau dann, wenn (a k ) eine monoton wachsende Nullfolge ist. (c)..., falls ε > 0 n 0 N k n 0 : a k < ε. Hier ist die Folge der Partialsummen monoton fallend. Ist sie zusätzlich noch nach unten beschränkt, dann ist sie konvergent. 4

5 7. Sei ( ) k 2 i eine komplexe Reihe. Diese Reihe besitzt den Grenzwert k=0 (a) 1 + i. 1 2 i. (c) 1 2. (d) i. Die geometrische Reihe Fall den Grenzwert z k konvergiert, falls z < 1 und besitzt in diesem k=0 k=0 Es ist i = 1 2 < 1, also gilt z k = 1 1 z. k=0 ( ) k 2 i = 1 1 ( = 1 + i. i) Die Potenzreihe 2 n n=1 n n zn ist auf dem Rand ihres Konvergenzkreises (a) überall absolut konvergent. (c) überall konvergent, aber nicht überall absolut konvergent. überall konvergent ausser in endlich vielen Punkten. (d) nirgendwo konvergent. ) 2 n+1 (n+1) n+1 ( Nach dem Quotientenkriterium ist der Konvergenzradius lim 2 n / n n n ( = lim 1 (n+1) n+1 ) ( n 2 n n = lim 1 (1 + 1 )3/2) = 1. Für z = 1 ist 2 n n 2 n 2 2 n zn n = 1 n, und die Reihe 1 n n=1 n = 1 n n=1 konvergiert absolut. Also ist (a) n 3/2 richtig. 5

6 9. Es gilt, dass ( 1) n n 1 ableiten, dass n 1 (a) Ja. ( 1) n n nicht absolut konvergiert. Kann man daraus n nicht absolut konvergiert? Die Partialsumme N 2 n=1 1 n enthält die Partialsumme N n=1 1 n. Nein. Die Partialsumme N 2 n=1 1 n enthält die Partialsumme N n=1 1 n 6

7 10. Betrachte die Folge { n, n gerade, a n = n ungerade. 1, n Welche Aussage stimmt? (a) Die Folge hat einen Häufungspunkt. Null ist ein Häufungspunkt. Die Folge hat keinen Häufungspunkt. Null ist ein Häufungspunkt. (c) Die Folge konvergiert. Nein, da die Folge unbeschränkt ist. (d) Die Folge hat eine konvergente Teilfolge. Ja, die Folge b n := a 2n+1 zum Beispiel. (e) Die Folge hat zwei verschiedene konvergente Teilfolgen. Ja, z.b. b n := a 2n+1 und c n := a 4n+1. (f) Die Folge ist nach unten beschränkt. Durch Null z.b. (g) Die Folge ist beschränkt. Nein, da sie nach oben unbeschränkt ist. 7

8 11. Was sagt das Quotientenkriterium über die Konvergenz der Reihe n 1 ( 1)n 1 n aus? (a) Die Reihe konvergiert. Dies stimmt zwar, folgt aber nicht aus dem Quotientenkriterium, da der Quotient zweier benachbarter Folgeglieder gegen Eins strebt. Die Reihe divergiert Der Quotient zweier benachbarter Folgeglieder konvergiert gegen Eins. (c) Nichts. Der Quotient zweier benachbarter Folgeglieder konvergiert gegen Eins. 12. Sei 0 q < 1. Was sagt das Quotientenkriterium über die Konvergenz der Reihe n 1 n1000 q n aus? (a) Die Reihe konvergiert. Der Quotient zweier benachbarter Folgeglieder konvergiert gegen q. Die Reihe divergiert Der Quotient zweier benachbarter Folgeglieder konvergiert gegen q. (c) Nichts. Der Quotient zweier benachbarter Folgeglieder konvergiert gegen q. 8

9 13. Sei q > 0. Betrachten Sie die Folge a n = q n ( n) n. Dann gilt: (a) falls 0 < q < 1, konvergiert an gegen 0. Die Folge n q n konvergiert gegen 0 und die Folge n ( n) n konvergiert gegen e, also konvergiert das Produkt e 0 = 0. falls 0 < q < 1, konvergiert a n gegen e. Die Folge n q n konvergiert nach 0 und die Folge n ( n) n konvergiert gegen e, also konvergiert das Produkt gegen e 0 = 0. (c) falls q > 1, konvergiert a n gegen e. Die Folge n q n ist divergent und die Folge n ( n) n konvergiert gegen e, also ist das Produkt divergent. (d) divergiert falls q > 1. Die Folge n q n ist divergent und die Folge n ( n) n konvergiert gegen e, also ist das Produkt divergent. (e) falls q < 1, ist an beschränkt. Die Folge ist nach 0 konvergent, also bechränkt. 9

10 14. Sei (a n ) n eine Folge in R. Wir definieren b n = a n+n0, wobei N 0 = 100. Wählen Sie die richtigen Antworten. (a) Falls limn a n existiert, existiert lim n b n, und die Grenzwerte müssen zusammenfallen. b n ist eine Teilfolge von a n, und weil a n konvergiert, muss b n nach den gleichen Grenzwert konvergieren. Falls lim n a n existiert, existiert lim n b n, aber es ist nicht nötig, dass die Grenzwerte gleich sind. b n ist eine Teilfolge von a n, und weil a n konvergiert, muss b n gegen den gleichen Grenzwert von (a n ) n konvergieren. (c) limn a n existiert genau dann, wenn lim n b n existiert. Aus der Definition von Konvergenz einer Folge (a n ) n sieht man, dass für jedes N N, der Grenzwert nicht von ersten N Gliedern, also lim n a n = lim n a n+n abhängt. In unserem Fall, N = Sei f : N N eine Permutation der natürlichen Zahlen und sei (a n ) n eine Folge in R. Wir definieren die Folge b n = a f(n). (a) Falls limn a n existiert, existiert lim n b n und es gilt lim n a n = lim n b n. Falls lim n a n existiert, existiert lim n b n aber es muss nicht unbedingt lim n a n = lim n b n sein. Sei α R der Grenzwert der Folge (a n ) n 1. Es gilt ɛ > 0 n ɛ : α a n ɛ n n ɛ. Wir definieren m ɛ = max({k : f(k) n ɛ }). Es ist m ɛ <, weil n ɛ < und f eine Bijektion ist. Dann gilt α b n = α a f(n) ɛ n m ɛ. Somit folgt lim n b n = α. 10

11 16. Sei (a n ) n eine Folge in R und sei H die Menge ihrer Häufungspunkte. (a) Es immer gilt H. Gegenbeispiel: a n = n hat keinen Häufungspunkt. Falls (a n ) n unbeschränkt ist, gilt H =. Gegenbeispiel: a n = { n falls n ungerade, 1/n falls n gerade. Diese Folge ist unbeschränkt weil die ungeraden Glieder nach + divergieren aber 0 ist Häufungspunkt. (c) Falls (an ) n beschränkt ist, ist H. Das ist der Satz von Bolzano-Weierstrass. (d) Falls (a n ) n unbeschränkt ist, ist H immer endlich. Gegenbeispiel: die Folge (a n ) n definiert durch 1, a 1, 1, 2, a 2, a 3, 1, 2, 3, a 3, a 4, a 5 1, 2, 3, 4, a 6, a 7, a 8, a 9, ist so, dass jede natürliche Zahl Häufungspunkt ist. 11

12 17. Der Wert von n=0 ( 3π 4 i) n 1 n! ist: (a) 1 + i i. (c) 1 + i. (d) i. (e) Keine der Aussagen trifft zu. Die Reihe ist die Exponentialreihe bei z = 3π 4 i ausgewertet: ( ) 3π Exp 4 i = n=0 ( ) n 3π 4 i 1 n! Bekanntlich gilt Exp(iα) = cos(α) + i sin(α), also ( ) 3π Exp 4 i = cos ( ) 3π + i sin 4 ( ) 3π = i. 18. Aus dem Cauchy-Kriterium folgt, dass für jede konvergente Reihe n=1 a n und für jedes ɛ > 0 ein N N existiert, sodass für alle n m N die Abschätzung n a k < ɛ gilt. k=m (a) Wahr. Falsch. Aus dem Cauchy-Kriterium folgt die Abschätzung n k=m a k < ɛ mit m, n, ɛ wie oben. Die Aussage oben ist jedoch falsch, die alternierende harmonische Reihe bildet ein Gegenbeispiel. 12

13 19. Welche der folgenden Aussagen sind im Allgemeinen richtig? (a) n=1 a n konvergiert (a n ) n ist eine Nullfolge. Siehe Bemerkung (a n ) n ist eine Nullfolge n=1 a n konvergiert. Die harmonische Reihe ist ein Gegenbeispiel. (c) (a n b n für alle n N und n=1 b n konvergiert) n=1 a n konvergiert. Hier ist ein Gegenbeispiel: Sei b n = 0 für alle n N und a n = 1 für alle n N. Dann konvergiert n=1 b n gegen 0 und a n b n für alle n N. Allerdings divergiert die Reihe n=1 a n. Die Aussage wird richtig, wenn wir zusätzlich annehmen, dass a n 0 für alle n N. (d) n=1 a n konvergiert Die Folge (a n ) n ist monoton fallend. Die alternierende harmonische Reihe ist ein Gegenbeispiel. 20. Sei (a n ) n eine Folge reeller Zahlen. Dann haben die beiden Potenzreihen a n z n und n=1 na n z n 1 n=1 denselben Konvergenzradius. (a) Wahr. Falsch. Das folgt direkt aus dem Wurzelkriterium: 1 lim sup n n na n = 1 lim sup n ( n n n a n ) = 1 lim sup n n a n. 13

Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe. a 0 + a 1 + a 2 +

Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe. a 0 + a 1 + a 2 + 8 Reihen 38 8 Reihen Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe a 0 + a + a 2 + zu bilden. Wir wollen nun erklären, was wir darunter verstehen wollen. Zunächst kann man die

Mehr

4 Reihen. s n = a 1 + a 2 + + a n = Die Folge (s n ) n N der Partialsummen heißt eine (unendliche) Reihe und wird auch als a k. k=1. )n N geschrieben.

4 Reihen. s n = a 1 + a 2 + + a n = Die Folge (s n ) n N der Partialsummen heißt eine (unendliche) Reihe und wird auch als a k. k=1. )n N geschrieben. 4 Reihen Aus Folgen lassen sich durch Aufaddieren weitere Folgen konstruieren. Das sind die sogenannten Reihen, sie spielen in der Finanzmathematik eine wichtige Rolle. Sei (a k ) k N eine Folge. Wir definieren

Mehr

11. Folgen und Reihen.

11. Folgen und Reihen. - Funktionen Folgen und Reihen Folgen Eine Folge reeller Zahlen ist eine Abbildung a: N R Statt a(n) für n N schreibt man meist a n ; es handelt sich also bei einer Folge um die Angabe der Zahlen a, a

Mehr

Kapitel 4. Reihen 4.1. Definition und Beispiele

Kapitel 4. Reihen 4.1. Definition und Beispiele Kapitel 4. Reihen 4.1. Definition und Beispiele Ist (a n ) eine Folge von Zahlen, so heißt der formale Ausdruck a ν = a 0 + a 1 + a 2 +... eine Reihe; die einzelnen a ν sind die Glieder dieser Reihe. Um

Mehr

Konvergenz von Folgen

Konvergenz von Folgen 6 Konvergenz von Folgen Definition 6.1 Eine Folge in C (oder R) ist eine Abbildung f : N C (oder R). Schreibweise: (a n ) n N, (a n ), a 1, a 2... wobei a n = f(n). Beispiele: 1) (1 + 2 n ) n N, 3 2, 5

Mehr

4 Reihen und Finanzmathematik

4 Reihen und Finanzmathematik 4 Reihen und Finanzmathematik 4. Reihen Aus Folgen lassen sich durch Aufaddieren weitere Folgen konstruieren. Das sind die sogenannten Reihen, sie spielen in der Finanzmathematik eine wichtige Rolle. Sei

Mehr

Folgen und Reihen. Beschränkte Folge: Es gibt eine Zahl c = const.

Folgen und Reihen. Beschränkte Folge: Es gibt eine Zahl c = const. Folgen und Reihen Folgen: Def.: Eine Abbildung a N K, n a(n) := a n (K = R C) wird Zahlenfolge genannt. Sie heißt reelle (komplexe) Zahlenfolge, falls K = R(C) ist. Symbole: a n K: Elemente der Folge,

Mehr

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba.

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba. Die Eindeutigkeit nach Satz 3 ergibt schließlich (5). (6) folgt aus (2) und () wegen Aussage (7) ergibt sich aus () und (6). 0 = log b = log b ( a a) = log b a +log ba. 3 Reihen 3. Konvergenz und Divergenz

Mehr

Analysis I. Vorlesung 9. Reihen

Analysis I. Vorlesung 9. Reihen Prof. Dr. H. Brenner Osnabrück WS 20/204 Analysis I Vorlesung 9 Reihen Wir haben in der siebten Vorlesung gesagt, dass man eine Dezimalentwicklung, also eine (unendliche) Ziffernfolge mit Ziffern zwischen

Mehr

2 Stetige Funktionen. 2.1 Grenzwerte von Funktionen. Definition Beispiel

2 Stetige Funktionen. 2.1 Grenzwerte von Funktionen. Definition Beispiel 2 Stetige Funktionen 2. Grenzwerte von Funktionen Definition Sei I R ein Intervall, a I ein innerer Punkt und f eine reellwertige Funktion, die auf I \ {a} (aber eventuell nicht in a) definiert ist. Wir

Mehr

Einführung in die Analysis

Einführung in die Analysis Ergänzungen zur Vorlesung Einführung in die Analysis Christian Schmeiser 1 Vorwort In dieser Vorlesung werden Grundbegriffe der Analysis wie Folgen und Reihen, Konvergenz und Vollständigkeit am Beispiel

Mehr

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen.

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. 2.2. POTENZREIHEN 207 2.2 Potenzreihen. Definitionen Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. Eine Potenzreihe mit Entwicklungspunkt x 0 ist eine Reihe a n x x 0 n. Es gilt: es

Mehr

Übungen zur Vorlesung MATHEMATIK II

Übungen zur Vorlesung MATHEMATIK II Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom

Mehr

Funktionsgrenzwerte, Stetigkeit

Funktionsgrenzwerte, Stetigkeit Funktionsgrenzwerte, Stetigkeit Häufig tauchen in der Mathematik Ausdrücke der Form lim f(x) auf. x x0 Derartigen Ausdrücken wollen wir jetzt eine präzise Bedeutung zuweisen. Definition. b = lim f(x) wenn

Mehr

Mathematik I. Vorlesung 25. Der große Umordnungssatz

Mathematik I. Vorlesung 25. Der große Umordnungssatz Prof. Dr. H. Brenner Osnabrück WS 009/010 Mathematik I Vorlesung 5 Der große Umordnungssatz Satz 5.1. (Großer Umordnungssatz) Es sei a i, i I, eine summierbare Familie von komplexen Zahlen mit der Summe

Mehr

KAPITEL 9. Funktionenreihen

KAPITEL 9. Funktionenreihen KAPITEL 9 Funktionenreihen 9. TaylorReihen............................ 28 9.2 Potenzreihen............................ 223 9.3 Grenzfunktionen von Funktionenfolgen bzw. reihen........ 230 9.4 Anwendungen............................

Mehr

Unendliche Reihen. D.h. Die Summe einer unendlichen Reihe ist der Grenzwert der Folge der Partialsummen.

Unendliche Reihen. D.h. Die Summe einer unendlichen Reihe ist der Grenzwert der Folge der Partialsummen. Unendliche Reihen Wegen der elementaren Eigenschaften der Zahlen ist lar, was unter einer endlichen Summe von Zahlen a + a 2 +... + zu verstehen ist. Vorderhand ist noch nicht erlärt, was unter einer unendlichen

Mehr

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil April (Voll-) Klausur Analysis I für Ingenieure en Rechenteil Aufgabe 7 Punkte (a) Skizzieren Sie die 4-periodische Funktion mit f() = für und f() = für (b) Berechnen Sie für diese Funktion die Fourierkoeffizienten

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen 9 Stetigkeit von Funktionen Definition 9.1 : Sei D R oder C und f : D R, C. f stetig in a D : ε > 0 δ > 0 mit f(z) f(a) < ε für alle z D, z a < δ. f stetig auf D : f stetig in jedem Punkt a D. f(a) ε a

Mehr

Der Abschluss D ist die Menge, die durch Hinzunahme der Intervallränder entsteht, in den obigen Beispielen also

Der Abschluss D ist die Menge, die durch Hinzunahme der Intervallränder entsteht, in den obigen Beispielen also Festlegung Definitionsbereich 11.1 Festlegung Definitionsbereich Festlegung: Wir betrachten Funktionen f : D Ñ R, deren Definitionsbereich eine endliche Vereinigung von Intervallen ist, also z.b. D ra,

Mehr

Thema 4 Limiten und Stetigkeit von Funktionen

Thema 4 Limiten und Stetigkeit von Funktionen Thema 4 Limiten und Stetigkeit von Funktionen Wir betrachten jetzt Funktionen zwischen geeigneten Punktmengen. Dazu wiederholen wir einige grundlegende Begriffe und Schreibweisen aus der Mengentheorie.

Mehr

20. Juni Einige andere wichtige algebraische Verknüpfungen lassen sich besser mit unendlichen

20. Juni Einige andere wichtige algebraische Verknüpfungen lassen sich besser mit unendlichen 20. Juni 200 33 4 Reihen 4. Beispiele von Reihen Bemerkung (Folgen Reihen).. Folgen und ihre Konvergenz lassen sich in beliebigen metrischen Räumen definieren und untersuchen und sind unabhängig von einer

Mehr

8 Konvergenzkriterien und Häufungswerte von Folgen in R

8 Konvergenzkriterien und Häufungswerte von Folgen in R 8 Konvergenzkriterien und Häufungswerte von Folgen in R 8.1 Konvergenz monotoner Folgen 8.2 Die Zahl e 8.3 Existenz monotoner Teilfolgen 8.4 Auswahlprinzip von Bolzano-Weierstraß 8.5 Konvergenzkriterium

Mehr

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen Skript zur Analysis 1 Kapitel 3 Stetigkeit / Grenzwerte von Funktionen von Prof. Dr. J. Cleven Fachhochschule Dortmund Fachbereich Informatik Oktober 2003 2 Inhaltsverzeichnis 3 Stetigkeit und Grenzwerte

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration

Mehr

Es geht nun um spezielle Folgen, deren Glieder durch Summation entstehen. Reihen gibt es spezielle Konvergenzkriterien. n k=1

Es geht nun um spezielle Folgen, deren Glieder durch Summation entstehen. Reihen gibt es spezielle Konvergenzkriterien. n k=1 Kapitel 3 Reihen Es geht nun um spezielle Folgen, deren Glieder durch Summation entstehen. Für diese Reihen gibt es spezielle Konvergenzriterien. 3. Definitionen, Beispiele, Sätze Definition 3.: (Reihen)

Mehr

4 Konvergenz von Folgen und Reihen

4 Konvergenz von Folgen und Reihen 4 KONVERGENZ VON FOLGEN UND REIHEN 4 Konvergenz von Folgen und Reihen 4.1 Konvergenzkriterien für reelle Folgen Definition: Eine reelle Folge(a n ) n N heißt monoton wachsend streng monoton wachsend nach

Mehr

n 1, n N \ {1}, 0 falls x = 0,

n 1, n N \ {1}, 0 falls x = 0, IV.1. Stetige Funktionen 77 IV. Stetigkeit IV.1. Stetige Funktionen Stetige Funktionen R R sind vielen sicher schon aus der Schule bekannt. Dort erwirbt man sich die naive Vorstellung, dass eine stetige

Mehr

27 Taylor-Formel und Taylor-Entwicklungen

27 Taylor-Formel und Taylor-Entwicklungen 136 IV. Unendliche Reihen und Taylor-Formel 27 Taylor-Formel und Taylor-Entwicklungen Lernziele: Konzepte: klein o - und groß O -Bedingungen Resultate: Taylor-Formel Kompetenzen: Bestimmung von Taylor-Reihen

Mehr

Kapitel 7. Reihen. Konvergenz unendlicher Reihen. Konvergenzkriterien. Potenzreihen und Taylorreihen. Anwendungen

Kapitel 7. Reihen. Konvergenz unendlicher Reihen. Konvergenzkriterien. Potenzreihen und Taylorreihen. Anwendungen Kapitel 7 Reihen Konvergenz unendlicher Reihen Konvergenzkriterien Potenzreihen und Taylorreihen Anwendungen Reihen Konvergenz unendlicher Reihen Konvergenz unendlicher Reihen Betrachtet man die unendliche

Mehr

Analysis I. Vorlesung 16. Funktionenfolgen

Analysis I. Vorlesung 16. Funktionenfolgen Prof. Dr. H. Brenner Osnabrück WS 2014/2015 Analysis I Vorlesung 16 Funktionenfolgen Eine (vertikal gestauchte) Darstellung der ersten acht polynomialen Approximationen der reellen Exponentialfunktion

Mehr

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 92

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 92 Kapitel 4 Funktionen und Stetigkeit In diesem Kapitel beginnen wir Funktionen f : Ê Ê systematisch zu untersuchen. Dazu bauen wir auf den Begriff des metrischen Raumes auf und erhalten offene und abgeschlossene

Mehr

5 Reihen. s n := a k. k=0

5 Reihen. s n := a k. k=0 5 Reihen 5. Folgen von Partialsummen Definitionen und Beispiele Ist a. eine beliebige Folge von Zahlen oder Vetoren, so heisst der formale Ausdruc a = a 0 + a + a 2 +... () eine Reihe, die einzelnen a

Mehr

Wir beginnen mit der Definition eines metrischen Raumes, der in diesem Kapitel von zentraler Bedeutung ist. x, y, z X (Dreiecksungleichung).

Wir beginnen mit der Definition eines metrischen Raumes, der in diesem Kapitel von zentraler Bedeutung ist. x, y, z X (Dreiecksungleichung). Kapitel 4 Metrische Räume und Stetigkeit 4.1 Metrische und normierte Räume 4.2 Folgen in metrischen Räumen 4.3 Offene und abgeschlossene Mengen 4.4 Stetige Funktionen 4.5 Grenzwerte von Funktionen 4.6

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

Höhere Mathematik II

Höhere Mathematik II Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Universität der Bundeswehr München Höhere Mathematik II (Beilagen) Univ. Prof. Dr. sc. math. Kurt Marti 2 2 L A TEX-Satz

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

Analysis I. Universität Stuttgart, WS 05/06 M. Griesemer

Analysis I. Universität Stuttgart, WS 05/06 M. Griesemer Analysis I Universität Stuttgart, WS 05/06 M. Griesemer Inhaltsverzeichnis 1 Grundbegriffe 3 1.1 Aussagenlogik................................. 3 1.2 Mengen.................................... 4 1.3 Relationen...................................

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathemati PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathemati für Informatier II (Sommersemester 00) Lösungen zu Aufgabenblatt

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f.

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f. Stetige Funktionen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume), spielen eine zentrale Rolle in der Mathematik. In der Analysis sind Abbildungen

Mehr

λ(a n ) n 1 = (λa n ) n 1. Abbildung 1: Graph einer Folge. b n = arctan(n), f n = cos(nπ), g n = n 2, h n = ( 1) n n.

λ(a n ) n 1 = (λa n ) n 1. Abbildung 1: Graph einer Folge. b n = arctan(n), f n = cos(nπ), g n = n 2, h n = ( 1) n n. Folgen Es sei X eine beliebige Menge. Eine Folge mit Werten in X ist eine Abbildung von N nach X. Es wird also jeder natürlichen Zahl n (dem Index) ein Element a n aus X zugeordnet (das n-te Folgenglied).

Mehr

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert:

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: Beispiel: Wir untersuchen die rekursiv definierte Folge a 0 + auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: ( ) (,, 7, 5,...) Wir können also vermuten, dass die Folge monoton fallend

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

KAPITEL 9. Funktionenreihen. 9.1 Taylor-Reihen Potenzreihen Methoden der Reihenentwicklung Anwendungen...

KAPITEL 9. Funktionenreihen. 9.1 Taylor-Reihen Potenzreihen Methoden der Reihenentwicklung Anwendungen... KAPITEL 9 Funtionenreihen 9. Taylor-Reihen.................................... 74 9.2 Potenzreihen..................................... 77 9.3 Methoden der Reihenentwiclung.......................... 90

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I

Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I Komplexe Zahlen Definition komplexer Zahlen in der Gaußschen Zahlenebene, algebraische Form, trigonometrische Form, exponentielle

Mehr

Lösung der Prüfung Sommer 2009

Lösung der Prüfung Sommer 2009 Prof. D. Salamon Analysis I/II D-MATH, D-PHYS, D-CHAB ETH Zürich. Juni 9 Lösung der Prüfung Sommer 9. Berechnen Sie folgende Grenzwerte: (a) (b) Hinweis: Regel von de l Hospital. ( ( )) lim n n cos n lim

Mehr

Analysis I. Prof. Dr. Andreas Griewank. Wintersemester 2012/2013. Dieses Skript wurde von Alexander Prang in Anlehnung an die Vorlesung erstellt.

Analysis I. Prof. Dr. Andreas Griewank. Wintersemester 2012/2013. Dieses Skript wurde von Alexander Prang in Anlehnung an die Vorlesung erstellt. Analysis I Prof. Dr. Andreas Griewank Wintersemester 2012/2013 Dieses Skript wurde von Alexander Prang in Anlehnung an die Vorlesung erstellt. Es enthält lediglich die Definitionen, Sätze, Lemmata, Korollare

Mehr

Gleichmäßige Konvergenz und Funktionenräume

Gleichmäßige Konvergenz und Funktionenräume Gleichmäßige Konvergenz und Funktionenräume Isabella Lukasewitz und Andreas Brack 07.06.2010 Vortrag zum Proseminar zur Analysis Konvergenz und Funktionenräume INHALTSVERZEICHNIS Bereits in den Vorlesungen

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Mathematik I für Wirtschaftsinformatiker

Mathematik I für Wirtschaftsinformatiker e von Folgen und Reihen 13.11.2008 Allgemeine Folgen Nullfolgen Allgemeine Folgen Erinnerung: Folgen Wird jeder natürlichen Zahl n eine reelle Zahl a n zugeordnet, so spricht man von einer Zahlenfolge

Mehr

Inoffizielles Skriptum zur Vorlesung Höhere Mathematik für Informatiker basierend auf Vorlesungen an der Universität Karlsruhe (TH) 2000 2004

Inoffizielles Skriptum zur Vorlesung Höhere Mathematik für Informatiker basierend auf Vorlesungen an der Universität Karlsruhe (TH) 2000 2004 Höhere Mathεmatik für Informatiker Inoffizielles Skriptum zur Vorlesung Höhere Mathematik für Informatiker basierend auf Vorlesungen an der Universität Karlsruhe (TH) 2 24 ii Inhaltsverzeichnis I Eindimensionale

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

Aufgaben und Lösungen zu Mathematik für Studierende der Ingenieurwissenschaften II. Heinrich Voß

Aufgaben und Lösungen zu Mathematik für Studierende der Ingenieurwissenschaften II. Heinrich Voß Aufgaben und Lösungen zu Mathematik für Studierende der Ingenieurwissenschaften II Heinrich Voß Institut für Angewandte Mathematik der Universität Hamburg 99 Inhaltsverzeichnis Folgen und Reihen 2. Einführende

Mehr

Didaktik der Mathematik der Sekundarstufe II

Didaktik der Mathematik der Sekundarstufe II 1 / 31 Didaktik der Mathematik der Sekundarstufe II 3. Folgen und Grenzwerte H. Rodner, G. Neumann Humboldt-Universität zu Berlin, Institut für Mathematik Sommersemester 2010/11 Internetseite zur Vorlesung:

Mehr

19 Folgen. Grenzwerte. Stetigkeit

19 Folgen. Grenzwerte. Stetigkeit 19 Folgen. Grenzwerte. Stetigkeit Jörn Loviscach Versionsstand: 27. Dezember 2014, 16:35 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.j3l7h.de/videos.html

Mehr

Stetigkeit. Kapitel 4. Stetigkeit. Peter Becker (H-BRS) Analysis Sommersemester / 543

Stetigkeit. Kapitel 4. Stetigkeit. Peter Becker (H-BRS) Analysis Sommersemester / 543 Kapitel 4 Stetigkeit Peter Becker (H-BRS) Analysis Sommersemester 2016 254 / 543 Inhalt Inhalt 4 Stetigkeit Eigenschaften stetiger Funktionen Funktionenfolgen und gleichmäßige Konvergenz Umkehrfunktionen

Mehr

Kapitel 5. Stetige Funktionen 5.1. Stetigkeit

Kapitel 5. Stetige Funktionen 5.1. Stetigkeit Kapitel 5. Stetige Funktionen 5.1. Stetigkeit Reelle Zahlen sind ideale Objekte, die es uns ermöglichen, eine transparente und leistungsfähige Theorie aufzubauen. Ein Computer kann jedoch nur mit Approximationen

Mehr

6.2 Die Regeln von de l Hospital. Ausgangsfrage: Wie berechnet man den Grenzwert. Beispiel: Sei f(x) = x 2 und g(x) = x. Dann gilt. lim.

6.2 Die Regeln von de l Hospital. Ausgangsfrage: Wie berechnet man den Grenzwert. Beispiel: Sei f(x) = x 2 und g(x) = x. Dann gilt. lim. 6.2 Die Regeln von de l Hospital Ausgangsfrage: Wie berechnet man den Grenzwert falls g(x), beide Funktionen gegen Null konvergieren, d.h. = g(x) = 0 beide Funktionen gegen Unendlich konvergieren, d.h.

Mehr

2 Stetigkeit und Differenzierbarkeit

2 Stetigkeit und Differenzierbarkeit 2.1) Sei D R. a) x 0 R heißt Häufungspunkt von D, wenn eine Folge x n ) n N existiert mit x n D,x n x 0 und lim n x n = x 0. D sei die Menge der Häufungspunkte von D. b) x 0 D heißt innerer Punkt von D,

Mehr

Mathematik für Physiker, Informatiker und Ingenieure I Skriptum des WS 2007/08

Mathematik für Physiker, Informatiker und Ingenieure I Skriptum des WS 2007/08 Mathematik für Physiker, Informatiker und Ingenieure I Skriptum des WS 2007/08 Prof. Dr. M. v. Golitschek Institut für Mathematik Universität Würzburg Literatur: Suchen Sie doch hin und wieder die Bibliotheken

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

5 Funktionen und Stetigkeit

5 Funktionen und Stetigkeit 5 Funktionen und Stetigkeit 5. Beispiele von Funktionen Für eine Menge D Ê bezeichnen wir die Abbildungen f : D Ê als Funktionen. D heißt Definitionsbereich, R(f) = f(d) = {y = f() für ein D} heißt Wertebereich

Mehr

2 Folgen und Reihen. 2.1 Folgen. Definition 2.1 (Zahlenfolge). Betrachten Sie folgende Liste von Zahlen:

2 Folgen und Reihen. 2.1 Folgen. Definition 2.1 (Zahlenfolge). Betrachten Sie folgende Liste von Zahlen: 2 Folgen und Reihen 2. Folgen Betrachten Sie folgende Liste von Zahlen:,, 2, 3, 5, 8, 3, 2... Erkennen Sie ein Gesetz, mit dem man die Liste sinnvoll fortsetzen kann? Offenbar können Sie mit diesem Gesetz

Mehr

Taylorentwicklung von Funktionen einer Veränderlichen

Taylorentwicklung von Funktionen einer Veränderlichen Taylorentwicklung von Funktionen einer Veränderlichen 17. Januar 2013 KAPITEL 1. MATHEMATISCHE GRUNDLAGEN 1 Kapitel 1 Mathematische Grundlagen 1.1 Stetigkeit, Differenzierbarkeit und C n -Funktionen Der

Mehr

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C.

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C. Die omplexen Zahlen und Salarprodute Kurze Wiederholung des Körpers der omplexen Zahlen C. Erinnerung an die Definition von exp, sin, cos als Potenzreihen C C Herleitung der Euler Formel Definition eines

Mehr

Folgen und Grenzwerte

Folgen und Grenzwerte Wintersemester 2015/201 Folgen und Grenzwerte von Sven Grützmacher Dieser Vortrag wurde für den (von der Fachschaft organisierten) Vorkurs für die Studienanfänger an der Fakultät für Mathematik und Informatik

Mehr

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen .3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt

Mehr

Analysis I III. Vorlesungsskriptum WS 2005/06 WS 2006/07. Fakultät für Mathematik, Ruhr-Universität Bochum

Analysis I III. Vorlesungsskriptum WS 2005/06 WS 2006/07. Fakultät für Mathematik, Ruhr-Universität Bochum Analysis I III Vorlesungsskriptum WS 2005/06 WS 2006/07 R. Verfürth Fakultät für Mathematik, Ruhr-Universität Bochum Inhaltsverzeichnis Kapitel I. Aufbau des Zahlsystems 5 I.1. Die natürlichen Zahlen

Mehr

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013 Reelle Analysis Vorlesungsskript Enno Lenzmann, Universität Basel 7. November 2013 6 L p -Räume Mit Hilfe der Masstheorie können wir nun die sog. L p -Räume einführen. Diese Räume sind wichtig in vielen

Mehr

Folgen. Kapitel 3. 3.1 Zinsrechnung

Folgen. Kapitel 3. 3.1 Zinsrechnung Kapitel 3 Folgen Eine Folge reeller Zahlen ordnet natürlichen Zahlen jeweils eine reelle Zahl zu. Liegen beispielsweise volkswirtschaftliche Daten quartalsweise vor, so kann man diese als Folge interpretieren.

Mehr

Stetigkeit. Klaus-R. Loeffler. 1 Vorstellung, Definition und Folgerungen Stetigkeitscharakterisierung durch Folgen... 3

Stetigkeit. Klaus-R. Loeffler. 1 Vorstellung, Definition und Folgerungen Stetigkeitscharakterisierung durch Folgen... 3 Stetigkeit Klaus-R. Loeffler Inhaltsverzeichnis 1 Vorstellung, Definition und Folgerungen 1.1 Stetigkeitscharakterisierung durch Folgen......................... 3 Regeln zur Stetigkeit an einer Stelle

Mehr

2. Stetige lineare Funktionale

2. Stetige lineare Funktionale -21-2. Stetige lineare Funktionale Die am Ende von 1 angedeutete Eigenschaft, die ein lineares Funktional T : D(ú) 6 verallgemeinerten Funktion macht, ist die Stetigkeit von T in jedem n 0 0 D(ú). Wenn

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Lösungen der Übungsaufgaben von Kapitel 4

Lösungen der Übungsaufgaben von Kapitel 4 Analysis I Ein Lernbuch für den sanften Wechsel von der Schule zur Uni 1 Lösungen der Übungsaufgaben von Kapitel 4 zu 4.1 4.1.1 Eine Funktion f : R R sei als Nullfunktion für x 0 und als x x für x 0 definiert.

Mehr

Kapitel II. Konvergenz von Folgen und Reihen

Kapitel II. Konvergenz von Folgen und Reihen Kapitel II Konvergenz von Folgen und Reihen 7 Einführende Beispiele und Rechenregeln für konvergente Folgen 8 Konvergenzkriterien und Häufungswerte von Folgen in R 9 Konvergenz und absolute Konvergenz

Mehr

7 Grenzwerte und Stetigkeit

7 Grenzwerte und Stetigkeit 7 Grenzwerte und Stetigkeit 7.1 Zahlenfolgen 7.1.1 Grundbegriffe Definition 7.1. Eine Funktion f : Df) N R heißt reelle Zahlenfolge. Wenn Df) endlich ist, heißt f endliche Zahlenfolge, andernfalls heißt

Mehr

Definition 4.2. Die Menge Q der rationalen Zahlen ist definiert durch. Wir führen jetzt auf Z eine Addition und eine Multiplikation ein durch

Definition 4.2. Die Menge Q der rationalen Zahlen ist definiert durch. Wir führen jetzt auf Z eine Addition und eine Multiplikation ein durch Kapitel 4 Die rationalen Zahlen Wir haben gesehen, dass eine Gleichung a x = b mit a, b Z genau dann eine Lösung x Z besitzt, wenn a b. Zum Beispiel hat 2 x = 1 keine Lösung x Z. Wir wollen nun den Zahlbereich

Mehr

Folgen und endliche Summen

Folgen und endliche Summen Kapitel 2 Folgen und endliche Summen Folgen und ihre Eigenschaften Endliche arithmetische und geometrische Folgen und Reihen Vollständige Induktion Anwendungen Folgen/endliche Summen Eigenschaften Folgen

Mehr

Numerische Ableitung

Numerische Ableitung Numerische Ableitung Die Ableitung kann angenähert werden durch den Differentenquotient: f (x) f(x + h) f(x) h oder f(x + h) f(x h) 2h für h > 0, aber h 0. Beim numerischen Rechnen ist folgendes zu beachten:

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 2. Übungsblatt

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 2. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heio Hoffmann WS 2013/14 Höhere Mathemati I für die Fachrichtung Informati Lösungsvorschläge zum 2. Übungsblatt Aufgabe

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 2 Nichtlineare Gleichungssysteme Problem: Für vorgegebene Abbildung f : D R n R n finde R n mit oder ausführlicher f() = 0 (21) f 1 ( 1,, n ) = 0, f n ( 1,, n ) = 0 Einerseits führt die mathematische

Mehr

Partitionen II. 1 Geometrische Repräsentation von Partitionen

Partitionen II. 1 Geometrische Repräsentation von Partitionen Partitionen II Vortrag zum Seminar zur Höheren Funktionentheorie, 09.07.2008 Oliver Delpy In diesem Vortrag geht es um Partitionen, also um Aufteilung von natürlichen Zahlen in Summen. Er setzt den Vortrag

Mehr

7.8. Die Regel von l'hospital

7.8. Die Regel von l'hospital 7.8. Die Regel von l'hospital Der Marquis de l'hospital (sprich: lopital) war der erste Autor eines Buches über Infinitesimalrechnung (696) - allerdings basierte dieses Werk wesentlich auf den Ausführungen

Mehr

Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen

Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen Kapitel III Stetige Funktionen 14 Stetigkeit und Rechenregeln für stetige Funktionen 15 Hauptsätze über stetige Funktionen 16 Konvergenz von Funktionen 17 Logarithmus und allgemeine Potenz C 1 14 Stetigkeit

Mehr

Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel. dt = lim. = lim = Weiters erhalten wir durch partielle Integration, dass

Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel. dt = lim. = lim = Weiters erhalten wir durch partielle Integration, dass Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel Zuerst wollen wir die Gamma-Funktion definieren, die eine Verallgemeinerung von n! ist. Dazu benötigen wir einige Resultate. Lemma.

Mehr

Arbeitsmaterialien. Analysis I + II

Arbeitsmaterialien. Analysis I + II Arbeitsmaterialien (Bezeichnungen, Definitionen, Sätze, Beispiele, Übungsaufgaben) zur Vorlesung Analysis I + II im SS 2007 und WS 2007/08 (überarbeitete Version des WS 1993/94 und SS 1994) FB Mathem.,

Mehr

Analysis I. 11. Beispielklausur mit Lösungen

Analysis I. 11. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 11. Beispielklausur mit en Aufgabe 1. Definiere die folgenden kursiv gedruckten) Begriffe. 1) Ein angeordneter Körper. ) Eine Folge in

Mehr

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,

Mehr

4 Reihen und Finanzmathematik

4 Reihen und Finanzmathematik 4 Reihen und Finanzmathematik 4.1 Reihen Aus Folgen lassen sich durch Aufaddieren weitere Folgen konstruieren. Das sind die sogenannten Reihen, sie spielen in der Finanzmathematik eine wichtige Rolle.

Mehr

Mathematik für Wirtschaftswissenschaften I Wintersemester 2015/16 Universität Leipzig. Lösungvorschläge Präsenzaufgaben Serien 1-10

Mathematik für Wirtschaftswissenschaften I Wintersemester 2015/16 Universität Leipzig. Lösungvorschläge Präsenzaufgaben Serien 1-10 Mathematik für Wirtschaftswissenschaften I Wintersemester 05/6 Universität Leipzig Lösungvorschläge Präsenzaufgaben Serien -0 Inhaltsverzeichnis Serie Serie 5 3 Serie 8 4 Serie 9 5 Serie 3 6 Serie 6 7

Mehr

Taylor-Entwicklung der Exponentialfunktion.

Taylor-Entwicklung der Exponentialfunktion. Taylor-Entwicklung der Exponentialfunktion. Betrachte die Exponentialfunktion f(x) = exp(x). Zunächst gilt: f (x) = d dx exp(x) = exp(x). Mit dem Satz von Taylor gilt um den Entwicklungspunkt x 0 = 0 die

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} Ganze Zahlen : Aus

Mehr

4.7 Der Taylorsche Satz

4.7 Der Taylorsche Satz 288 4 Differenziation 4.7 Der Taylorsche Satz Die Differenzierbarkeit, also die Existenz der ersten Ableitung einer Funktion, erlaubt bekanntlich, diese Funktion lokal durch eine affine Funktion näherungsweise

Mehr

Kapitel I. Die Objekte der Mathematik

Kapitel I. Die Objekte der Mathematik Kapitel I Die Objekte der Mathematik Objekte der Mathematik sind Zahlen, Punkte, Geraden, Ebenen, Vektoren, Felder, Funktionen,... Neue Objekte werden gebildet, indem man schon bekannte Objekte zu Mengen

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

Vorlesung Analysis I für Informatiker & Statistiker. Universität München, WS 11/12. Prof. Dr. Max v. Renesse mrenesse@math.tu-berlin.

Vorlesung Analysis I für Informatiker & Statistiker. Universität München, WS 11/12. Prof. Dr. Max v. Renesse mrenesse@math.tu-berlin. Vorlesung Analysis I für Informatiker & Statistiker Universität München, WS 11/12 Prof. Dr. Max v. Renesse mrenesse@math.tu-berlin.de Kapitel 1: Grundlagen 1.1 Aussagenlogik Elementare Aussagenlogik Definition

Mehr

Stetigkeit. Im Bildungsplan bis 2004 verpflichtend, jetzt nicht mehr. - Soll Stetigkeit in der Schule behandelt werden? Warum?

Stetigkeit. Im Bildungsplan bis 2004 verpflichtend, jetzt nicht mehr. - Soll Stetigkeit in der Schule behandelt werden? Warum? 1 Nr.4-12.05.2016 Stetigkeit Im Bildungsplan bis 2004 verpflichtend, jetzt nicht mehr. - Soll Stetigkeit in der Schule behandelt werden? Warum? 1. Das ist ein ganz einfach zu verstehender Begriff, der

Mehr