1,2,3,4,5,... Dabei ist die Reihenfolge wichtig, jede Zahl hat also ihre feste Position. Die Folge 2,1,4,3,... ist eine andere als 1,2,3,4,...

Größe: px
Ab Seite anzeigen:

Download "1,2,3,4,5,... Dabei ist die Reihenfolge wichtig, jede Zahl hat also ihre feste Position. Die Folge 2,1,4,3,... ist eine andere als 1,2,3,4,..."

Transkript

1 9 Folgen Eine (unendliche) Folge im herkömmlichen Sinn entsteht durch Hintereinanderschreiben von Zahlen, z.b.: 1,2,3,4,5,... Dabei ist die Reihenfolge wichtig, jede Zahl hat also ihre feste Position. Die Folge 2,1,4,3,... ist eine andere als 1,2,3,4,... Mathematisch können wir eine Folge deshalb als Abbildung N R auffassen: jederpositionwirdeinezahlzugeordnet.dieabbildungf : n 2ngeneriert demnach die Folge der geraden Zahlen 2,4,6,8,10,... Die Schreibweise f : n f(n) ist für Folgen eher nicht gebräuchlich. Eher benutzt man die Indexschreibweise f : n f n. Meist aber einfach (f n ) n N oder noch kürzer (f n ). Die Klammern vermeiden Verwechslungen mit f n, was das n-te Glied der Folge (f n ) bezeichnet. Oft ist es praktischer, nicht die Folgenglieder f n explizit aufzuschreiben, sondern die Differenz s n := f n f n 1 zwischen benachbarten Folgengliedern. Man spricht dann von einer Reihe mit Reihengliedern (s n ) und den Partialsummen f n := n s k = (f n f n 1 )+(f n 1 f n 2 )+...+(f 1 0) (f 0 := 0). k=1 (Man beachte, dass sich aus der Definition für den Folgenanfang f 1 = s 1 ergibt.) Speziell in der Informatik treten (bei Kostenanalysen) oft rekursiv definierte Folgen auf, bei denen jede Zahl f n nach einer festen Vorschrift aus dem Vorgänger f n 1 (oder weiteren Vorgängern) berechnet wird. Wichtig: Festlegen der Anfangs(Start)-Werte, damit die Folge überhaupt eindeutig definiertist.einfachesbeispielistz.b.dasverdoppeln:dievorschriftf n = 2f n 1 führt auf die Folge 1,2,4,8,16,32,..., sofern man vorher festgelegt hat, dass f 1 = 1 sein soll. Die Vorschrift f n = nf n 1, f 1 = 1 liefert dagegen die Folge 1,2,6,24,..., also f n = n!.

2 Eine typische Anwendung von Folgen in der Informatik: die Laufzeit eines Programms für verschiedene Eingaben; etwa die Folge (a n ) der Anzahl der Vergleiche, die ein Sortierprogramm zum Sortieren von n Zahlen höchstens durchführt (Insert-Sort). Bei Laufzeitvergleichen ist insbesondere interessant, wie sich die Laufzeiten für immer größere n verhalten. Wachsen? Fallen? Wie stark? Entsprechend sind folgende Eigenschaften von Folgen von praktischer Bedeutung: Ein Folge heißt monoton wachsend, wenn jedes Element größer oder gleich seinem Vorgänger ist, also f n f n 1 für jedes n 2. Folgen mit f n > f n 1 heißen streng monoton wachsend Ein Folge heißt entsprechend monoton fallend bzw. streng monoton fallend, wenn die Elemente kleiner werden, also f n f n 1 bzw. f n < f n 1. Mindest- oder Maximallaufzeiten sind wichtig, daher sind wir an oberen/unteren Schranken für unsere Folgenelemente interessiert: Gibt es eine Zahl C R mit C f n für alle n, dann nennt man C eine obere Schranke. Alle Zahlen, die größer als C sind, sind natürlich erst recht obere Schranken; am interessantesten ist daher eine kleinste obere Schranke, die heißt dann Supremum: supf n. Entsprechend heißt ein c R mit c f n für alle n eine untere Schranke, besonders interessant ist hier eine größte untere Schranke, die heißt Infimum: inff n. Hat eine Folge sowohl eine obere als auch eine untere Schranke, dann nennt man sie beschränkt < inf f k f n sup f k < für n = 1,2,... k=1,2,... k=1,2,... Bei Folgen (und mithin auch bei Reihen) interessiert oft, was mit den Folgengliedern f n im Grenzwert sehr großer n passiert. Der gutmütige Fall dabei ist, dass die Folge gegen eine Grenzwert y konvergiert, d.h., dass für hinreichend großes n alle Folgenglieder beliebig nahe an y liegen: ε > 0 : n 0 (ε) N : n n 0 (ε) f n y < ε

3 Zur Erklärung: definiere die ε-umgebung einer Zahl y R U ε (y) := {x R : x y < ε} Beliebig nahe an y heißt nun, dass für jedes (noch so kleine) ε > 0 die Folgenglieder ab einem n 0 (ε) in U ε (y) liegen. Es dürfen also insbesondere nur endlich viele Folgenglieder außerhalb von U ε liegen! Für kleineres ε muss man dann meist ein größeres n 0 (ε) nehmen. Konvergenz heißt also: y R : ε > 0 : n 0 (ε) N : n n 0 (ε) : f n U ε (y). In diesem Fall heißt y der Grenzwert der Folge: 1 Beispiele: lim zu 1+ 1 n 1), lim y = lim f n. n+1 + 1), lim n n = 0 (wähle n 0(ε) := 1 ε n+( 1) n = 1 ( ( 1) n n = 1 n n 0) Ein nützlicher Satz zur Konvergenz: = 1 (umformen Eine beschränkte und monotone (d.h. monoton wachsende oder monoton fallende) Folge reeller Zahlen ist konvergent. Die Folge (f n ) mit f n := ( 1) n + 1 n konvergiert nicht gegen einen Grenzwert, aber die Werte 1 und 1 haben ähnliche Eigenschaften wie ein Grenzwert. In jeder Umgebung sind unendlich viele Folgenglieder enthalten, aber eben für beide Werte! Einen Wert mit dieser Eigenschaft (in jeder Umgebung sind unendlich viele Folgeglieder enthalten) nennt man Häufungspunkt der Folge. Man beachte den Unterschied zwischen nur endlich viele Folgenglieder sind außerhalb der Umgebung (Grenzwert) und unendlich viele Folgenglieder sind in der Umgebung (Häufungspunkt).

4 Eine beschränkte Folge reeller Zahlen besitzt immer wenigstens einen Häufungspunkt. Beweis durch Intervallschachtelung: man betrachtet das Intervall zwischen einer unteren und einer oberen Schranke, halbiert es, überlegt sich, dass in wenigstens einer Hälfte noch unendlich viele Folgenglieder liegen müssen, halbiert diese Hälfte,...Daher erzeugen wir auf diese Art und Weise eine geschachtelte Folge immer kleinerer Intervalle, deren Obergrenzen eine monoton fallende, beschränkte, also konvergente Folge bilden. Grenzwert dieser Folge ist ein Häufungspunkt! Von besonderem Interesse bei beschränkten Folgen ist der größte Häufungspunkt, oder Limes superior der Folge. Dazu betrachten wir zunächst zu einer beschränkten Folge (f n ) die Folge (g n ) mit g n := supf m. m n Wegen der Beschränktheit von (f n ) ist auch (g n ) beschränkt, weiter ist (g n ) monoton fallend (warum?), mithin konvergent und der Grenzwert lim supf n := lim g n = lim supf m m n ist der größte Wert, für den in jeder Umgebung unendlich viele f n liegen: der größte Häufungspunkt. Zum Beweis sind zwei Eigenschaften zu zeigen: In jeder Umgebung liegen unendlich viele Folgenglieder. Kein größerer Wert hat diese Eigenschaft. Dazu überlegen wir uns, dass für C := limsupx n einer beschränkten Folge (x n ) gilt, dass für jedes ε > 0 nur endlich viele x n größer als C +ε sind. Wären unendlich viele Glieder größer als C +ε, so könnte man daraus eine unendliche Folge definieren mit Häufungspunkt! Was passiert, wenn keine Konvergenz vorliegt? Divergenz: y R : ε > 0 : n 0 (ε) N : n n 0 (ε) : f n U ε (y). In diesem Fall heißt die Folge divergent. Es gibt zwei verschiedene Formen der Divergenz:

5 Divergenz als Konvergenz gegen Unendlich (+ oder ) lim f n = : C R : n 0 (C) N : n n 0 (C) : f n > C lim f n = : C R : n 0 (C) N : n n 0 (C) : f n < C. Divergenz durch mehr als einen Häufungspunkt: f n := ( 1) n ( 1 und 1) oder g n = n ( 1) n (+ und ) Die O-Notation (O wie in Oh!, nicht 0 wie in 1 1 = 0) ist ein Werkzeug, um Folgen nach ihrem Wachstumsverhalten zu klassifizieren. Für eine Folge f = (f n ) wird die Klasse O(f) alle Folgen enthalten, die bis auf einen konstanten Faktor nicht schneller wachsen als f. Wir schreiben eine Folge (f n ) jetzt kurz und einfach z.b. als n 2 an Stelle von n n 2. In einer Klasse von Folgen O(n 2 ) wollen wir Folgen zusammenfassen, mit einem bestimmten Divergenzverhalten, z.b.: n, weil n n 2, 16n 2, weil uns ein konstanter Faktor 16 nicht stört (nach wie vor gilt, dass sich mit doppeltem n das f n vervierfacht: in diesem Sinn wachsen n 2 und 16n 2 gleich schnell), n 2 +n+1, weil das kleiner ist als 3n 2, Aber nicht 2 n, weil man für jedes C R ein n finden kann mit 2 n > C n 2 Mathematisch sieht das so aus: f n O(g n ) : C > 0,n 0 N : n > n 0 : f n C g n (9.1) Neu ist das n 0 : Die Ungleichung muss nicht für alle Glieder gelten, sondern erst ab einem bestimmten Index (also für sehr große n); endlich viele Ausnahmen sind erlaubt. Endlich viele Ausnahmen könnte man auch versuchen durch größeres n zuzulassen. Geht aber nicht für g n = 0. Unter der Voraussetzung n : g n > 0 kann man (9.1) umschreiben zu f n O(g n ) : C > 0,n 0 N : n > n 0 : f n g n C In dieser Form ist das n 0 überflüssig: die Folge f n /g n muss beschränkt sein.

6 Sollte man an einem möglichst kleinen C interessiert sein (normalerweise ist man das nicht), kann man sich auf die Suche nach dem größten Häufungspunkt der (beschränkten) Folge f n /g n begeben: wenn man den noch um ein beliebiges ε > 0 vergrößert, hat man ja eine Zahl C, für die nur endlich viele der Quotienten größer sind. Eine Menge heißt abgeschlossen, wenn sie alle ihre Häufungspunkte enthält. Beispiel: nicht abgeschlossen: Q, ]0, 1[ ; abgeschlossen: R, [0, 1] Eine Menge kann abgeschlossen werden, indem man all ihre Häufungspunkte hinzunimmt: Q R Aufgaben 9.1 Berechne die ersten Partialsummen der Reihe mit Gliedern s n = 9 10 n und bestimme deren kleinste obere Schranke. 9.2 Gib eine Bedingung an die Reihenglieder s k an, wann eine Reihe f n = s k streng monoton wachsend bzw. fallend ist (im Fall einer Reihe beziehen sich Attribute wie monoton wachsend auf die Partialsummen, nicht auf die Reihenglieder). 9.3 Zeige: für 0 < x < 1 ist die geometrische Reihe f n := n k=0 x k beschränkt und monoton, mithin konvergent. Was ist der Grenzwert der Reihe? (Tipp: die Summe kennen wir schon...) 9.4 Zeige, dass die harmonische Reihe mit Reihengliedern s n := 1 keine obere n Schranke besitzt (die Partialsummen also beliebig groß werden). 9.5 Zeige, dass eine Folge höchstens einen Grenzwert besitzen kann! Nimm dazu an, es gebe y 1 y 2, die beide die Grenzwertbedingung erfüllen und führe das zum Widerspruch durch Angabe eines ε, mit dem die weitere Bedingung unmöglich erfüllt sein kann. 9.6 Ein Mann spaziert mit seinem Hund von seinem Haus zu einer Kneipe. Die Entfernung zwischen Haus und Kneipe sei s. Der Mann gehe dabei mit der Geschwindigkeit v. Dies ist dem Hund jedoch zu langweilig. Er läuft deswegen doppelt so schnell zwischen der Kneipe und seinem Herrchen hin und her. Das heißt, er startet am Haus zusammen mit seinem Herrchen, dreht um,

7 sobald er das Ziel erreicht, stoppt, wenn er wieder auf sein Herrchen trifft, läuft dann wieder zur Kneipe,... Berechne, welchen Weg der Hund zurücklegt, bis Herrchen und Hund gemeinsam die Kneipe erreichen. Es gibt einen so genannten Mathematiker-Weg und einen so genannten Physiker-Weg. Versuche, beide zu finden. 9.7 In Aufgabe 1.7 haben wir die Länge der Kochkurve zu berechnet, was uns auf eine Folge (l n ) von Zahlen führt. Ebenso kann man die Fläche (a n ) unter der Kochkurve berechnen, indem man die Flächen der Dreiecke aufaddiert, dieschrittfürschrittaufdiekurve draufgesetzt werden.sinddiesefolgen jeweils beschränkt und/oder monoton? 9.8 Gib Folgen (a n ), (b n ) an mit lim (a n ) =, lim (b n ) =, sowie: a) lim(a n b n ) = 0 b) lim(a n b n ) = + c) lim( an b n ) = O-Notation: zeige, dass gilt a) 6n 4 O(3n 6 ), b) 16n 3 O(2 n ), c) n 2 O(n), Gib im Fall von ein entsprechendes C und ein n 0 an, so dass Bedingung (9.1) erfüllt ist Bestimme alle Häufungspunkte und den größten Häufungspunkt von ( π ) a n = sin 4 n (benutze dabei die Gleichheit sin(π/4) = 2/2) Prüfe jeweils auf Konvergenz und bestimme ggf. den Grenzwert. Hinweis: wenn lim a n = α und lim b n = β, dann ist lim(a n +b n ) = α+β. Ebenfalls gilt: lim(a n b n ) = α β und wenn β und alle b n 0 sind lim (a n/b n ) = α/β. a) a n = 3n+2( 1)n n b) b n = nxn nx n +1, x R,x > 1

11. Folgen und Reihen.

11. Folgen und Reihen. - Funktionen Folgen und Reihen Folgen Eine Folge reeller Zahlen ist eine Abbildung a: N R Statt a(n) für n N schreibt man meist a n ; es handelt sich also bei einer Folge um die Angabe der Zahlen a, a

Mehr

Folgen und Reihen. Beschränkte Folge: Es gibt eine Zahl c = const.

Folgen und Reihen. Beschränkte Folge: Es gibt eine Zahl c = const. Folgen und Reihen Folgen: Def.: Eine Abbildung a N K, n a(n) := a n (K = R C) wird Zahlenfolge genannt. Sie heißt reelle (komplexe) Zahlenfolge, falls K = R(C) ist. Symbole: a n K: Elemente der Folge,

Mehr

Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe. a 0 + a 1 + a 2 +

Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe. a 0 + a 1 + a 2 + 8 Reihen 38 8 Reihen Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe a 0 + a + a 2 + zu bilden. Wir wollen nun erklären, was wir darunter verstehen wollen. Zunächst kann man die

Mehr

Einführung in die Analysis

Einführung in die Analysis Ergänzungen zur Vorlesung Einführung in die Analysis Christian Schmeiser 1 Vorwort In dieser Vorlesung werden Grundbegriffe der Analysis wie Folgen und Reihen, Konvergenz und Vollständigkeit am Beispiel

Mehr

Konvergenz von Folgen

Konvergenz von Folgen 6 Konvergenz von Folgen Definition 6.1 Eine Folge in C (oder R) ist eine Abbildung f : N C (oder R). Schreibweise: (a n ) n N, (a n ), a 1, a 2... wobei a n = f(n). Beispiele: 1) (1 + 2 n ) n N, 3 2, 5

Mehr

4 Reihen. s n = a 1 + a 2 + + a n = Die Folge (s n ) n N der Partialsummen heißt eine (unendliche) Reihe und wird auch als a k. k=1. )n N geschrieben.

4 Reihen. s n = a 1 + a 2 + + a n = Die Folge (s n ) n N der Partialsummen heißt eine (unendliche) Reihe und wird auch als a k. k=1. )n N geschrieben. 4 Reihen Aus Folgen lassen sich durch Aufaddieren weitere Folgen konstruieren. Das sind die sogenannten Reihen, sie spielen in der Finanzmathematik eine wichtige Rolle. Sei (a k ) k N eine Folge. Wir definieren

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

4 Reihen und Finanzmathematik

4 Reihen und Finanzmathematik 4 Reihen und Finanzmathematik 4. Reihen Aus Folgen lassen sich durch Aufaddieren weitere Folgen konstruieren. Das sind die sogenannten Reihen, sie spielen in der Finanzmathematik eine wichtige Rolle. Sei

Mehr

λ(a n ) n 1 = (λa n ) n 1. Abbildung 1: Graph einer Folge. b n = arctan(n), f n = cos(nπ), g n = n 2, h n = ( 1) n n.

λ(a n ) n 1 = (λa n ) n 1. Abbildung 1: Graph einer Folge. b n = arctan(n), f n = cos(nπ), g n = n 2, h n = ( 1) n n. Folgen Es sei X eine beliebige Menge. Eine Folge mit Werten in X ist eine Abbildung von N nach X. Es wird also jeder natürlichen Zahl n (dem Index) ein Element a n aus X zugeordnet (das n-te Folgenglied).

Mehr

Analysis I. Vorlesung 9. Reihen

Analysis I. Vorlesung 9. Reihen Prof. Dr. H. Brenner Osnabrück WS 20/204 Analysis I Vorlesung 9 Reihen Wir haben in der siebten Vorlesung gesagt, dass man eine Dezimalentwicklung, also eine (unendliche) Ziffernfolge mit Ziffern zwischen

Mehr

2. Stetige lineare Funktionale

2. Stetige lineare Funktionale -21-2. Stetige lineare Funktionale Die am Ende von 1 angedeutete Eigenschaft, die ein lineares Funktional T : D(ú) 6 verallgemeinerten Funktion macht, ist die Stetigkeit von T in jedem n 0 0 D(ú). Wenn

Mehr

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert:

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: Beispiel: Wir untersuchen die rekursiv definierte Folge a 0 + auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: ( ) (,, 7, 5,...) Wir können also vermuten, dass die Folge monoton fallend

Mehr

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba.

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba. Die Eindeutigkeit nach Satz 3 ergibt schließlich (5). (6) folgt aus (2) und () wegen Aussage (7) ergibt sich aus () und (6). 0 = log b = log b ( a a) = log b a +log ba. 3 Reihen 3. Konvergenz und Divergenz

Mehr

Der Abschluss D ist die Menge, die durch Hinzunahme der Intervallränder entsteht, in den obigen Beispielen also

Der Abschluss D ist die Menge, die durch Hinzunahme der Intervallränder entsteht, in den obigen Beispielen also Festlegung Definitionsbereich 11.1 Festlegung Definitionsbereich Festlegung: Wir betrachten Funktionen f : D Ñ R, deren Definitionsbereich eine endliche Vereinigung von Intervallen ist, also z.b. D ra,

Mehr

19 Folgen. Grenzwerte. Stetigkeit

19 Folgen. Grenzwerte. Stetigkeit 19 Folgen. Grenzwerte. Stetigkeit Jörn Loviscach Versionsstand: 27. Dezember 2014, 16:35 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.j3l7h.de/videos.html

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration

Mehr

Übungen zur Vorlesung MATHEMATIK II

Übungen zur Vorlesung MATHEMATIK II Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Kapitel 4. Reihen 4.1. Definition und Beispiele

Kapitel 4. Reihen 4.1. Definition und Beispiele Kapitel 4. Reihen 4.1. Definition und Beispiele Ist (a n ) eine Folge von Zahlen, so heißt der formale Ausdruck a ν = a 0 + a 1 + a 2 +... eine Reihe; die einzelnen a ν sind die Glieder dieser Reihe. Um

Mehr

Funktionsgrenzwerte, Stetigkeit

Funktionsgrenzwerte, Stetigkeit Funktionsgrenzwerte, Stetigkeit Häufig tauchen in der Mathematik Ausdrücke der Form lim f(x) auf. x x0 Derartigen Ausdrücken wollen wir jetzt eine präzise Bedeutung zuweisen. Definition. b = lim f(x) wenn

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} Ganze Zahlen : Aus

Mehr

8 Konvergenzkriterien und Häufungswerte von Folgen in R

8 Konvergenzkriterien und Häufungswerte von Folgen in R 8 Konvergenzkriterien und Häufungswerte von Folgen in R 8.1 Konvergenz monotoner Folgen 8.2 Die Zahl e 8.3 Existenz monotoner Teilfolgen 8.4 Auswahlprinzip von Bolzano-Weierstraß 8.5 Konvergenzkriterium

Mehr

Mathematik III. Vorlesung 71

Mathematik III. Vorlesung 71 Prof. Dr. H. Brenner Osnabrück WS 2010/2011 athematik III Vorlesung 71 Ausschöpfungseigenschaften Die folgenden Rechenregeln für Integrale beruhen auf dem Ausschöpfungssatz für aße. an kann den Subgraphen

Mehr

Unendliche Reihen. D.h. Die Summe einer unendlichen Reihe ist der Grenzwert der Folge der Partialsummen.

Unendliche Reihen. D.h. Die Summe einer unendlichen Reihe ist der Grenzwert der Folge der Partialsummen. Unendliche Reihen Wegen der elementaren Eigenschaften der Zahlen ist lar, was unter einer endlichen Summe von Zahlen a + a 2 +... + zu verstehen ist. Vorderhand ist noch nicht erlärt, was unter einer unendlichen

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen 9 Stetigkeit von Funktionen Definition 9.1 : Sei D R oder C und f : D R, C. f stetig in a D : ε > 0 δ > 0 mit f(z) f(a) < ε für alle z D, z a < δ. f stetig auf D : f stetig in jedem Punkt a D. f(a) ε a

Mehr

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen.

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. 2.2. POTENZREIHEN 207 2.2 Potenzreihen. Definitionen Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. Eine Potenzreihe mit Entwicklungspunkt x 0 ist eine Reihe a n x x 0 n. Es gilt: es

Mehr

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen Skript zur Analysis 1 Kapitel 3 Stetigkeit / Grenzwerte von Funktionen von Prof. Dr. J. Cleven Fachhochschule Dortmund Fachbereich Informatik Oktober 2003 2 Inhaltsverzeichnis 3 Stetigkeit und Grenzwerte

Mehr

Thema 4 Limiten und Stetigkeit von Funktionen

Thema 4 Limiten und Stetigkeit von Funktionen Thema 4 Limiten und Stetigkeit von Funktionen Wir betrachten jetzt Funktionen zwischen geeigneten Punktmengen. Dazu wiederholen wir einige grundlegende Begriffe und Schreibweisen aus der Mengentheorie.

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f.

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f. Stetige Funktionen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume), spielen eine zentrale Rolle in der Mathematik. In der Analysis sind Abbildungen

Mehr

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 92

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 92 Kapitel 4 Funktionen und Stetigkeit In diesem Kapitel beginnen wir Funktionen f : Ê Ê systematisch zu untersuchen. Dazu bauen wir auf den Begriff des metrischen Raumes auf und erhalten offene und abgeschlossene

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 2 Nichtlineare Gleichungssysteme Problem: Für vorgegebene Abbildung f : D R n R n finde R n mit oder ausführlicher f() = 0 (21) f 1 ( 1,, n ) = 0, f n ( 1,, n ) = 0 Einerseits führt die mathematische

Mehr

Die Harmonische Reihe

Die Harmonische Reihe Die Harmonische Reihe Wie stellt sich Determinismus in der Mathematik dar? Wie stellt man Daten dar? Wie findet man das Resultat von unendlich vielen Schritten? Mehrere Wege können zu demselben Ziel führen

Mehr

4 Konvergenz von Folgen und Reihen

4 Konvergenz von Folgen und Reihen 4 KONVERGENZ VON FOLGEN UND REIHEN 4 Konvergenz von Folgen und Reihen 4.1 Konvergenzkriterien für reelle Folgen Definition: Eine reelle Folge(a n ) n N heißt monoton wachsend streng monoton wachsend nach

Mehr

Numerische Ableitung

Numerische Ableitung Numerische Ableitung Die Ableitung kann angenähert werden durch den Differentenquotient: f (x) f(x + h) f(x) h oder f(x + h) f(x h) 2h für h > 0, aber h 0. Beim numerischen Rechnen ist folgendes zu beachten:

Mehr

Gleichmäßige Konvergenz und Funktionenräume

Gleichmäßige Konvergenz und Funktionenräume Gleichmäßige Konvergenz und Funktionenräume Isabella Lukasewitz und Andreas Brack 07.06.2010 Vortrag zum Proseminar zur Analysis Konvergenz und Funktionenräume INHALTSVERZEICHNIS Bereits in den Vorlesungen

Mehr

Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen

Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen Kapitel III Stetige Funktionen 14 Stetigkeit und Rechenregeln für stetige Funktionen 15 Hauptsätze über stetige Funktionen 16 Konvergenz von Funktionen 17 Logarithmus und allgemeine Potenz C 1 14 Stetigkeit

Mehr

Kapitel 5. Stetige Funktionen 5.1. Stetigkeit

Kapitel 5. Stetige Funktionen 5.1. Stetigkeit Kapitel 5. Stetige Funktionen 5.1. Stetigkeit Reelle Zahlen sind ideale Objekte, die es uns ermöglichen, eine transparente und leistungsfähige Theorie aufzubauen. Ein Computer kann jedoch nur mit Approximationen

Mehr

Didaktik der Mathematik der Sekundarstufe II

Didaktik der Mathematik der Sekundarstufe II 1 / 31 Didaktik der Mathematik der Sekundarstufe II 3. Folgen und Grenzwerte H. Rodner, G. Neumann Humboldt-Universität zu Berlin, Institut für Mathematik Sommersemester 2010/11 Internetseite zur Vorlesung:

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathemati PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathemati für Informatier II (Sommersemester 00) Lösungen zu Aufgabenblatt

Mehr

5. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 8 Saison 1965/1966 Aufgaben und Lösungen

5. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 8 Saison 1965/1966 Aufgaben und Lösungen 5. Mathematik Olympiade Saison 1965/1966 Aufgaben und Lösungen 1 OJM 5. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und

Mehr

Folgen. Kapitel 3. 3.1 Zinsrechnung

Folgen. Kapitel 3. 3.1 Zinsrechnung Kapitel 3 Folgen Eine Folge reeller Zahlen ordnet natürlichen Zahlen jeweils eine reelle Zahl zu. Liegen beispielsweise volkswirtschaftliche Daten quartalsweise vor, so kann man diese als Folge interpretieren.

Mehr

Copyright, Page 1 of 5 Stetigkeit in

Copyright, Page 1 of 5 Stetigkeit in www.mathematik-netz.de Copyright, Page 1 of 5 Stetigkeit in Definition: (Stetigkeit) Sei ad, wobei D ist. Sei f eine Abbildung aus Abb(D,B) mit B und B. (i) f heißt stetig im Punkt a, wenn es zu jeder

Mehr

Kostenmodell. Daniel Graf, Tobias Pröger. 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016)

Kostenmodell. Daniel Graf, Tobias Pröger. 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016) Kostenmodell Daniel Graf, Tobias Pröger 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016) Erklärung: Diese Mitschrift ist als Ergänzung zur Vorlesung gedacht. Wir erheben keinen Anspruch

Mehr

n 1, n N \ {1}, 0 falls x = 0,

n 1, n N \ {1}, 0 falls x = 0, IV.1. Stetige Funktionen 77 IV. Stetigkeit IV.1. Stetige Funktionen Stetige Funktionen R R sind vielen sicher schon aus der Schule bekannt. Dort erwirbt man sich die naive Vorstellung, dass eine stetige

Mehr

Iterative Verfahren, Splittingmethoden

Iterative Verfahren, Splittingmethoden Iterative Verfahren, Splittingmethoden Theodor Müller 19. April 2005 Sei ein lineares Gleichungssystem der Form Ax = b b C n, A C n n ( ) gegeben. Es sind direkte Verfahren bekannt, die ein solches Gleichungssystem

Mehr

Taylor-Entwicklung der Exponentialfunktion.

Taylor-Entwicklung der Exponentialfunktion. Taylor-Entwicklung der Exponentialfunktion. Betrachte die Exponentialfunktion f(x) = exp(x). Zunächst gilt: f (x) = d dx exp(x) = exp(x). Mit dem Satz von Taylor gilt um den Entwicklungspunkt x 0 = 0 die

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

Reihen, Einleitung. 1-E1 Ma 2 Lubov Vassilevskaya

Reihen, Einleitung. 1-E1 Ma 2 Lubov Vassilevskaya Reihen, Einleitung 1-E1 Ma 2 Lubov Vassilevskaya Einleitung Im Folgenden werden wir Reihen, d.h. Summen von Zahlen untersuchen. Wir unterscheiden zwischen einer endlichen Reihe, bei der die Summe endlich

Mehr

8.3 Lösen von Gleichungen mit dem Newton-Verfahren

8.3 Lösen von Gleichungen mit dem Newton-Verfahren 09.2.202 8.3 Lösen von Gleichungen mit dem Newton-Verfahren Beispiel: + 2 e Diese Gleichung kann nicht nach aufgelöst werden, da die beiden nicht zusammengefasst werden können. e - - 2 0 Die gesuchten

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel. dt = lim. = lim = Weiters erhalten wir durch partielle Integration, dass

Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel. dt = lim. = lim = Weiters erhalten wir durch partielle Integration, dass Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel Zuerst wollen wir die Gamma-Funktion definieren, die eine Verallgemeinerung von n! ist. Dazu benötigen wir einige Resultate. Lemma.

Mehr

3 Vom Zählen zur Induktion

3 Vom Zählen zur Induktion 7 3 Vom Zählen zur Induktion 3.1 Natürliche Zahlen und Induktions-Prinzip Seit unserer Kindheit kennen wir die Zahlen 1,, 3, 4, usw. Diese Zahlen gebrauchen wir zum Zählen, und sie sind uns so vertraut,

Mehr

Mathematischen Grundlagen und Notationen

Mathematischen Grundlagen und Notationen Mathematischen Grundlagen und Notationen Susanne Schimpf Juni 008 Es geht in dieser Lerneinheit darum, mathematische Notationen besser zu verstehen und auch selbst korrekt zu benutzen. Außerdem sollen

Mehr

Analysis I. Vorlesung 16. Funktionenfolgen

Analysis I. Vorlesung 16. Funktionenfolgen Prof. Dr. H. Brenner Osnabrück WS 2014/2015 Analysis I Vorlesung 16 Funktionenfolgen Eine (vertikal gestauchte) Darstellung der ersten acht polynomialen Approximationen der reellen Exponentialfunktion

Mehr

Jeweils am Montag um 18:30 treffen sich Studenten in Seminarraum 3 zum gemeinsamen Lernen.

Jeweils am Montag um 18:30 treffen sich Studenten in Seminarraum 3 zum gemeinsamen Lernen. Jeweils am Montag um 18:30 treffen sich Studenten in Seminarraum 3 zum gemeinsamen Lernen. Betrachtungen zu Sprache, Logik und Beweisen Sprache Wir gehen von unserem Alphabet einigen Zusatzsymbolen aus.

Mehr

Differenzengleichungen. und Polynome

Differenzengleichungen. und Polynome Lineare Differenzengleichungen und Polynome Franz Pauer Institut für Mathematik, Universität Innsbruck Technikerstr. 13/7, A-600 Innsbruck, Österreich franz.pauer@uibk.ac.at 1 Einleitung Mit linearen Differenzengleichungen

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

2 Stetige Funktionen. 2.1 Grenzwerte von Funktionen. Definition Beispiel

2 Stetige Funktionen. 2.1 Grenzwerte von Funktionen. Definition Beispiel 2 Stetige Funktionen 2. Grenzwerte von Funktionen Definition Sei I R ein Intervall, a I ein innerer Punkt und f eine reellwertige Funktion, die auf I \ {a} (aber eventuell nicht in a) definiert ist. Wir

Mehr

Mathematik I. Vorlesung 25. Der große Umordnungssatz

Mathematik I. Vorlesung 25. Der große Umordnungssatz Prof. Dr. H. Brenner Osnabrück WS 009/010 Mathematik I Vorlesung 5 Der große Umordnungssatz Satz 5.1. (Großer Umordnungssatz) Es sei a i, i I, eine summierbare Familie von komplexen Zahlen mit der Summe

Mehr

Folgen und endliche Summen

Folgen und endliche Summen Kapitel 2 Folgen und endliche Summen Folgen und ihre Eigenschaften Endliche arithmetische und geometrische Folgen und Reihen Vollständige Induktion Anwendungen Folgen/endliche Summen Eigenschaften Folgen

Mehr

Inhalt. Vorwort Mittelwertsatz der Integralrechnung... 31

Inhalt. Vorwort Mittelwertsatz der Integralrechnung... 31 Inhalt Vorwort... 5 1 Stammfunktionen... 7 1.1 Erklärung der Stammfunktionen........................................... 7 1.2 Eigenschaften der Stammfunktionen.................................... 10 1.3

Mehr

Mengensysteme, Wahrscheinlichkeitsmaße

Mengensysteme, Wahrscheinlichkeitsmaße Kapitel 1 Mengensysteme, Wahrscheinlichkeitsmaße Der Großteil der folgenden fundamentalen Begriffe sind schon aus der Vorlesung Stochastische Modellbildung bekannt: Definition 1.1 Eine Familie A von Teilmengen

Mehr

Analysis I. Skriptum zur Vorlesung Wintersemester 2005/2006. Universität Trier Fachbereich IV Mathematik/Analysis

Analysis I. Skriptum zur Vorlesung Wintersemester 2005/2006. Universität Trier Fachbereich IV Mathematik/Analysis Jürgen Müller Analysis I Skriptum zur Vorlesung Wintersemester 2005/2006 Universität Trier Fachbereich IV Mathematik/Analysis Dank an Elke Gawronski und Judith Wahlen für die Mithilfe bei der Erstellung

Mehr

Vorlesung. Funktionen/Abbildungen

Vorlesung. Funktionen/Abbildungen Vorlesung Funktionen/Abbildungen 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Kapitel I. Die Objekte der Mathematik

Kapitel I. Die Objekte der Mathematik Kapitel I Die Objekte der Mathematik Objekte der Mathematik sind Zahlen, Punkte, Geraden, Ebenen, Vektoren, Felder, Funktionen,... Neue Objekte werden gebildet, indem man schon bekannte Objekte zu Mengen

Mehr

15 Wahrscheinlichkeitsrechnung und Statistik

15 Wahrscheinlichkeitsrechnung und Statistik 5 Wahrscheinlichkeitsrechnung und Statistik Alles, was lediglich wahrscheinlich ist, ist wahrscheinlich falsch. ( Descartes ) Trau keiner Statistik, die du nicht selbst gefälscht hast. ( Churchill zugeschrieben

Mehr

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C.

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C. Die omplexen Zahlen und Salarprodute Kurze Wiederholung des Körpers der omplexen Zahlen C. Erinnerung an die Definition von exp, sin, cos als Potenzreihen C C Herleitung der Euler Formel Definition eines

Mehr

2 Stetigkeit und Differenzierbarkeit

2 Stetigkeit und Differenzierbarkeit 2.1) Sei D R. a) x 0 R heißt Häufungspunkt von D, wenn eine Folge x n ) n N existiert mit x n D,x n x 0 und lim n x n = x 0. D sei die Menge der Häufungspunkte von D. b) x 0 D heißt innerer Punkt von D,

Mehr

Folgen und Grenzwerte

Folgen und Grenzwerte Wintersemester 2015/201 Folgen und Grenzwerte von Sven Grützmacher Dieser Vortrag wurde für den (von der Fachschaft organisierten) Vorkurs für die Studienanfänger an der Fakultät für Mathematik und Informatik

Mehr

Die Kugel Grundwissen Mathematik Geometrie Klasse 10. Definitionen und Regeln. Kugeloberfläche: O Kugel = 4 r² π. Kugelvolumen: - 1 -

Die Kugel Grundwissen Mathematik Geometrie Klasse 10. Definitionen und Regeln. Kugeloberfläche: O Kugel = 4 r² π. Kugelvolumen: - 1 - 10.1 Grundwissen Mathematik Geometrie Klasse 10 Die Kugel Beispiele Kugeloberfläche: O Kugel = 4 r² π r Kugelvolumen: V Kugel = 4 3 r³ π - 1 - 10. Grundwissen Mathematik Geometrie Klasse 10 Kreissektor

Mehr

lim Der Zwischenwertsatz besagt folgendes:

lim Der Zwischenwertsatz besagt folgendes: 2.3. Grenzwerte von Funktionen und Stetigkeit 35 Wir stellen nun die wichtigsten Sätze über stetige Funktionen auf abgeschlossenen Intervallen zusammen. Wenn man sagt, eine Funktion f:[a,b] R, definiert

Mehr

Handreichung. zur Mathematikvorlesung für. Wirtschaftswissenschaftler)

Handreichung. zur Mathematikvorlesung für. Wirtschaftswissenschaftler) 1 Handreichung zur Mathematikvorlesung für Wirtschaftswissenschaftler) Dr.Dr. Christina Schneider 2 Hinweis Das vorliegende Manuskript versteht sich als kurze und kompakte Handreichung zu meiner Vorlesung

Mehr

2 Rationale und reelle Zahlen

2 Rationale und reelle Zahlen 2 reelle Es gibt Mathematik mit Grenzwert (Analysis) und Mathematik ohne Grenzwert (z.b Algebra). Grenzwerte existieren sicher nur dann, wenn der Zahlbereich vollständig ist, also keine Lücken aufweist

Mehr

Kapitel 3. Natürliche Zahlen und vollständige Induktion

Kapitel 3. Natürliche Zahlen und vollständige Induktion Kapitel 3 Natürliche Zahlen und vollständige Induktion In Kapitel 1 haben wir den direkten Beweis, den modus ponens, kennen gelernt, der durch die Tautologie ( A (A = B) ) = B gegeben ist Dabei war B eine

Mehr

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.)

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.) 3. Untergruppen 19 3. Untergruppen Nachdem wir nun einige grundlegende Gruppen kennengelernt haben, wollen wir in diesem Kapitel eine einfache Möglichkeit untersuchen, mit der man aus bereits bekannten

Mehr

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer. Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Finanzmathematik 1 11 Folgen und Reihen 1 111 Folgen allgemein 1 112

Mehr

Kapitel II. Konvergenz von Folgen und Reihen

Kapitel II. Konvergenz von Folgen und Reihen Kapitel II Konvergenz von Folgen und Reihen 7 Einführende Beispiele und Rechenregeln für konvergente Folgen 8 Konvergenzkriterien und Häufungswerte von Folgen in R 9 Konvergenz und absolute Konvergenz

Mehr

Definition: Differenzierbare Funktionen

Definition: Differenzierbare Funktionen Definition: Differenzierbare Funktionen 1/12 Definition. Sei f :]a, b[ R eine Funktion. Sie heißt an der Stelle ξ ]a, b[ differenzierbar, wenn der Grenzwert existiert. f(ξ + h) f(ξ) lim h 0 h = lim x ξ

Mehr

Wir beginnen mit der Definition eines metrischen Raumes, der in diesem Kapitel von zentraler Bedeutung ist. x, y, z X (Dreiecksungleichung).

Wir beginnen mit der Definition eines metrischen Raumes, der in diesem Kapitel von zentraler Bedeutung ist. x, y, z X (Dreiecksungleichung). Kapitel 4 Metrische Räume und Stetigkeit 4.1 Metrische und normierte Räume 4.2 Folgen in metrischen Räumen 4.3 Offene und abgeschlossene Mengen 4.4 Stetige Funktionen 4.5 Grenzwerte von Funktionen 4.6

Mehr

Analysis I. 11. Beispielklausur mit Lösungen

Analysis I. 11. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 11. Beispielklausur mit en Aufgabe 1. Definiere die folgenden kursiv gedruckten) Begriffe. 1) Ein angeordneter Körper. ) Eine Folge in

Mehr

2.6 Stetigkeit und Grenzwerte

2.6 Stetigkeit und Grenzwerte 2.6 Stetigkeit und Grenzwerte Anschaulich gesprochen ist eine Funktion stetig, wenn ihr Graph sich zeichnen lässt, ohne den Stift abzusetzen. Das ist natürlich keine präzise mathematische Definition und

Mehr

Und so weiter... Annäherung an das Unendliche Lösungshinweise

Und so weiter... Annäherung an das Unendliche Lösungshinweise Stefanie Anzenhofer, Hans-Georg Weigand, Jan Wörler Numerisch und graphisch. Umfang einer Quadratischen Flocke Abbildung : Quadratische Flocke mit Seitenlänge s = 9. Der Umfang U der Figur beträgt aufgrund

Mehr

Stetigkeit. Klaus-R. Loeffler. 1 Vorstellung, Definition und Folgerungen Stetigkeitscharakterisierung durch Folgen... 3

Stetigkeit. Klaus-R. Loeffler. 1 Vorstellung, Definition und Folgerungen Stetigkeitscharakterisierung durch Folgen... 3 Stetigkeit Klaus-R. Loeffler Inhaltsverzeichnis 1 Vorstellung, Definition und Folgerungen 1.1 Stetigkeitscharakterisierung durch Folgen......................... 3 Regeln zur Stetigkeit an einer Stelle

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Christian Serpé Universität Münster 14. September 2011 Christian Serpé (Universität Münster) 14. September 2011 1 / 56 Gliederung 1 Motivation Beispiele Allgemeines Vorgehen 2 Der Vektorraum R n 3 Lineare

Mehr

fraktal kommt von f : C C : x x 3.

fraktal kommt von f : C C : x x 3. Kapitel 4 Fraktale und Dimension 4.1 Selbstähnlichkeit Was sind Fraktale? Das Wort fraktal kommt von zerbrochen und steht für die nicht-ganzzahlige Dimension. Wir betrachten also Objekte deren Dimension

Mehr

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0!

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 25.02.2004 Aufgabe 5 Gegeben ist die Funktion f(x) = 2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 06.08.2003 Aufgabe 5 Gegeben ist

Mehr

Kurvendiskussion einer ganzrationalen Funktion

Kurvendiskussion einer ganzrationalen Funktion Kurvendiskussion einer ganzrationalen Funktion Lernzuflucht 24. November 20 L A TEX M. Neumann Folgende Funktion soll in einer Kurvendiskussion bearbeitet werden: f(x) = x 4 2x 2 ; D = R () Diese Funktion

Mehr

Übung zu Grundbegriffe der Informatik. Simon Wacker. 15. November 2013

Übung zu Grundbegriffe der Informatik. Simon Wacker. 15. November 2013 Übung zu Grundbegriffe der Informatik Simon Wacker 15. November 2013 Vollständige Induktion über die Wortlänge Es sei B ein Alphabet. Dann ist B = n N 0 B n. Für jedes Wort w B sei A w eine Aussage, die

Mehr

7.8. Die Regel von l'hospital

7.8. Die Regel von l'hospital 7.8. Die Regel von l'hospital Der Marquis de l'hospital (sprich: lopital) war der erste Autor eines Buches über Infinitesimalrechnung (696) - allerdings basierte dieses Werk wesentlich auf den Ausführungen

Mehr

Mathematik I für Wirtschaftsinformatiker

Mathematik I für Wirtschaftsinformatiker e von Folgen und Reihen 13.11.2008 Allgemeine Folgen Nullfolgen Allgemeine Folgen Erinnerung: Folgen Wird jeder natürlichen Zahl n eine reelle Zahl a n zugeordnet, so spricht man von einer Zahlenfolge

Mehr

4. DIE ABLEITUNG (DERIVATIVE)

4. DIE ABLEITUNG (DERIVATIVE) 31 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch

Mehr

Die Taylorreihe einer Funktion

Die Taylorreihe einer Funktion Kapitel 6 Die Taylorreihe einer Funktion Dieser Abschnitt beschäftigt sich mit Taylorreihen, Taylorpolynomen und der Restgliedabschätzung für Taylorpolynome. Die Taylorreihe einer reellen Funktion ist

Mehr

3.2 Extensive und intensive Größen. Mathematik. Zusammenfassung des physikalischen Teils:

3.2 Extensive und intensive Größen. Mathematik. Zusammenfassung des physikalischen Teils: 3. Extensive und intensive Größen. Mathematik 43 3. Extensive und intensive Größen. Mathematik Zusammenfassung des physikalischen Teils: Wir untersuchen, wie sich bestimmte Größen bei Kontakt B 1 B zweier

Mehr

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil April (Voll-) Klausur Analysis I für Ingenieure en Rechenteil Aufgabe 7 Punkte (a) Skizzieren Sie die 4-periodische Funktion mit f() = für und f() = für (b) Berechnen Sie für diese Funktion die Fourierkoeffizienten

Mehr

27 Taylor-Formel und Taylor-Entwicklungen

27 Taylor-Formel und Taylor-Entwicklungen 136 IV. Unendliche Reihen und Taylor-Formel 27 Taylor-Formel und Taylor-Entwicklungen Lernziele: Konzepte: klein o - und groß O -Bedingungen Resultate: Taylor-Formel Kompetenzen: Bestimmung von Taylor-Reihen

Mehr

Stetigkeit. Kapitel 4. Stetigkeit. Peter Becker (H-BRS) Analysis Sommersemester / 543

Stetigkeit. Kapitel 4. Stetigkeit. Peter Becker (H-BRS) Analysis Sommersemester / 543 Kapitel 4 Stetigkeit Peter Becker (H-BRS) Analysis Sommersemester 2016 254 / 543 Inhalt Inhalt 4 Stetigkeit Eigenschaften stetiger Funktionen Funktionenfolgen und gleichmäßige Konvergenz Umkehrfunktionen

Mehr