Angewandte Mathematik und Programmierung

Größe: px
Ab Seite anzeigen:

Download "Angewandte Mathematik und Programmierung"

Transkript

1 Agewdte Mthemtik ud Progrmmierug Eiführug i ds Kozept der objektorietierte Aweduge zu mthemtische Reches WS 2012/13

2 Ihlt Wiederholug (Eigeschfte vo Folge zusmmegefsst) Zhlereihe Kovergez vo Reihe Beweis durch vollstädige Iduktio Agewdte Mthemtik ud Progrmmierug 2

3 Wiederholug (Eigeschfte vo Folge zusmmegefsst) Eie Folge: Eie Folge ist eie Abbildug der türliche Zhle i die reelle Zhle. N R :, k mit (1, 2,3,...)idetifiziert werde ud wird mit ( ) bezeichet N Allgemeie Drstellug 1, 2, 3, 4,..., Agewdte Mthemtik ud Progrmmierug 3

4 Wiederholug (Eigeschfte vo Folge zusmmegefsst) Eigeschfte: Eie Folge ( ) heißt mooto flled, we für lle gilt: +1 Eie Folge ( ) heißt streg mooto flled, we für lle gilt: +1 Eie Folge ( ) heißt mooto steiged, we für lle gilt: +1 Eie Folge ( ) heißt streg mooto steiged, we für lle gilt: +1 Eie Folge ( ) heißt ch ute beschräkt, flls gilt: x R mit x für lle N Eie Folge ( ) heißt ch obe beschräkt, flls gilt: x R mit x für lle N Eie Folge heißt beschräkt we sie ch ute ud obe beschräkt ist Eie Folge ( ) heißt periodisch we gilt: Ds k heißt Periode vo ( ) k N mit für lle N Eie Folge ( ) heißt koverget gege die reelle Zhl, we gilt: 0 N mit mt - für lle Bezeichug: lim Eie Folge heißt diverget, we sie icht kovergiert k Agewdte Mthemtik ud Progrmmierug 4

5 Wiederholug (Eigeschfte vo Folge zusmmegefsst) Eie Folge ( ) heißt um lteriered, we es Teilfolge (b ) ud (c ) gibt mit: N gilt : b c Eie Folge ( ) besitzt eie Häufugspukt, we es eie Teilfolge vo ( ) gibt die gege kovergiert. Stz 1: Jede kovergete Folge ist beschräkt Stz 2: Eie mootoe Folge ist etweder ubeschräkt oder koverget Eie Folge die gege 0 kovergiert heißt Nullfolge. Stz 3: Eie Folge ( ) kovergiert gege ( -) ist Nullfolge Eie beliebige Lierkombitio edlich vieler Nullfolge ist eie Nullfolge Agewdte Mthemtik ud Progrmmierug 5

6 Folge Stz 4: (Recheregel für kovergete Folge) ) lim lim b) c) d) lim lim lim ud lim b ud lim b ud lim b b lim ( b lim ( e) lim ud lim b b ud b b b b 0 lim ( ) b ) lim (b /b ) /b ) b für lle b Stz 5: (Cuchy-Kovergezkriterium) ( ) kovergiert 0 N mit - m für lle,m Agewdte Mthemtik ud Progrmmierug 6

7 Kovergez vo Folge Wir utersuche ds Verhlte vo Zhlefolge für wchsede Idices. Es komme im Wesetliche drei Verhltesmuster vor: 1) Die Glieder der Folge äher sich mit wchsedem geu eier Zhl. 1 Mit dem wchsede äher sich die Glieder der Folge dem Wert Null. 1 2 Mit dem wchsede äher sich die Glieder der Folge dem Wert 1. 1 Mit dem wchsede äher sich die Glieder scheller der Folge dem Wert Null. 2) Mit wchsedem Idex äher sich die Glieder der Folge bwechseld zwei verschiedee Zhle (1 ) 3) Die Glieder der Folge wchse mit über jede och so große Zhl. 2 Agewdte Mthemtik ud Progrmmierug 7

8 Kovergez vo Folge Also M k Kovergez direkt erkee z.b Folge(1/) M k durch sukzessive Ableitug ud Vereifchug oder ur durch Vereifchug bestimme. M k durch l hospitlsche Regel feststelle. M k uch durch bestimmte Eigeschfte oder Kovergezkriterie bestimme: Siehe Ahg: Agewdte Mthemtik ud Progrmmierug 8

9 L HOSPITALSCHE Regel We m de Grezwert vo Fuktioe utersucht, gestltet ds sich oft schwierig ud k mchml sehr lge duer. Dbei hilft ei Soderfll der Grezwertbetrchtug: Die Regel vo L Hospitl (lopitl). Dbei gilt: f(x) Sid f ud g i de jeweilige Bereiche differezierbre Fuktioe ud ist x g(x) ud lim f(x) x R x lim g(x) 0 (bzw. ) ( liegt lso die Situtio 0 0 bzw. vor), so ist S f(x) f '(x) lim lim, x g(x) x g'(x) Sofer der letztere Grezwert existiert. Agewdte Mthemtik ud Progrmmierug 9

10 Arithmetische Folge () rithmetische Folge Eie Folge, bei der die Differez je zweier ufeider folgeder Folgeglieder kostt ist, hißt heißt rithmetische ti h Folge. Rekursiv Rk lute die Glieder Glid eier rithmetische ti h Fl Folge N b 1 wobei vo eie gegebee Strtwert usgegge wird: 0 c wobei c R( cost.) Eie rithmetische Folge beschreibt ei (diskretes) lieres, streg mootoes Wchstum (c > 0) oder Abflle (c < 0). Für c = 0 hdelt es sich um kostte Folge mit Glieder = 0 D die Glieder rithmetischer Folge stets kostte Abstd voeider hbe, divergiere diese Folge immer (ußer im Fll c = 0, wo es sich um kostte ud dmit kovergete Folge hdelt). Setzt m die Rekursiosbedigug sukzessive uch i die Glieder usw. ei ud -1 bildet -1 c -2 2c -3 3c..., erket m leicht, dss die Glieder eier rithmetische Folge durch 0 c für N gegebe sid. Dies etspricht eier 2 Gerdegleichug im R bzw. eier (ffi) liere Fuktio uf R, welche die y-achse (Ordite) i 0 scheidet ud die Steigug c besitzt (erweitere de diskrete Idex N zur kotiuierliche Vrible x R )., Agewdte Mthemtik ud Progrmmierug 10

11 . Arithmetische Folge q ( ) geometrische Folge Eie Folge, dere Quotiet vo umittelbr ufeider folgede Glieder kostt ist, wird ls geometrische Folge bezeichet. Die die geometrische Folge für 11 defiierede i d N Rekursiosbedigug ist zusmme mit eiem gegebee Afgsglied 0 : q c wobei q R( cost.) Begied mit 0 > 0, stelle geometrische Folge ei (diskretes) expoetielles, streg mootoes Wchstum (q > 1) oder ei ebesolches Abflle (0 < q < 1) dr. Für q = 1 ergibt sich die kostte Folge = 0 ud bei q = 0 ist = 0 ( 1). Für q < 0 ist die geometrische Folge lteriered. (1/) hrmoische Folge Die hrmoische Folge ist die mthemtische Zhlefolge der Kehrwerte der positive gze Zhle, lso die Folge 1 für 1 Die hrmoische Folge kovergiert gege Null: lim 0 1 Agewdte Mthemtik ud Progrmmierug 11

12 Reihe Grob gesgt sid (uedliche) reelle Reihe uedliche Summe reeller Zhle. Für eie reelle Folge gibt die Folge der Prtilsumme (bzw. Teilsumme) mit de Glieder N S k k k Alss zur Reihe ( S k) k N. Eie Reihe ist demch eie spezielle Folge der Form (,,,,.. ) welche wie folgt otiert wird: S N oder S 0 Agewdte Mthemtik ud Progrmmierug 12

13 Kovergez vo Reihe Eie Reihe heißt koverget, flls die zugehörige Folge der Prtilsumme ( S ) k k N koverget ist. Ihr Limes S wird ls Summe der Reihe bezeichet ud m schreibt S ls Abkürzug für N oder S 0 S k lim Sk lim k k 0 M bekommt meiste folgede Reihe -Aussge. Sid die gültig, oder sid die überhupt richtig oder flsch? K m überhupt beweise, dss die flsch oder richtig sid? S 2i ( 1) i0 S 2 (2i 1) 2 ( 1)(2 S i i0 i0 6 1) Agewdte Mthemtik ud Progrmmierug 13

14 Vollstädige Iduktio I der Mthemtik gibt es im Prizip drei grudlegede Beweismethode, mit dee m versucht, die Gültigkeit vo mthemtische Aussge zu beweise bzw. herzuleite. Es gibt de direkte Beweis. Es gibt de idirekte Beweis, uch "Beweis durch Widerspruch. Es gibt de Beweis durch vollstädige Iduktio. Mit der vollstädige Iduktio köe Aussge über die türliche Zhle bewiese werde Bemerkug: Uter Iduktio versteht m (im Gegestz zur Deduktio eigetlich ds logisch uzulässige Schließe vo Eizelfälle uf lle Fälle. Die mthemtische Iduktio ist ei Werkzeug, mit dem m ds suber mche k. M beweist mit vollstädige Iduktio die Aussge erst für de Iduktiosfg (I.A.), meistes = 0 oder = 1. D beweist m, dss die Aussge für +1 gilt, we die Aussge für gilt (Iduktiosschluss). Agewdte Mthemtik ud Progrmmierug 14

15 Vollstädige Iduktio Prizip der vollstädige Iduktio. Sei A eie Aussge oder eie Eigeschft, die vo eier türliche Zhl bhägt. Wir schreibe uch A(). We wir wisse, dss folgedes gilt: (1) Iduktiosbsis (Iduktiosverkerug): Die Aussge A gilt im Fll = 1 (ds heißt, es gilt A(1)), (2) Iduktiosschritt: itt Für jede türliche Zhl 1 folgt flt us A() die Aussge A(+1), d gilt die Aussge A für lle türliche Zhle 1. Erläuterug Bedeutug der vollstädige Iduktio: Um eie Aussge über uedlich viele Objekte chzuweise, muss m ur zwei Aussge beweise: Iduktiosbsis: A(1) Iduktiosschritt: A() A(+1) M et A() uch die Iduktiosvorussetzug Agewdte Mthemtik ud Progrmmierug 15

16 Vollstädige Iduktio Die hiter diesem Prizip stehede Philosophie ist die, dss m i objektiv kotrollierbrer Weise über eie Uedlichkeit ( lle türliche Zhle) spreche k. Die Bedeutug dieses Prizips, wurde zwische 1860 ud 1920 u.. vo Moritz Psch (Professor i Gieße) ud Giuseppe Peo (Professor i Turi) etdeckt. Problem (CF (C.F. Guß): =??? ( 1) S i 2 i0 Dh D.h für jede türliche Zhl 1 gilt: = (+1)/2. I Worte: Die Summe der erste positive gze Zhle ist gleich (+1)/2. Kosequez: M k die Summe gz eifch usreche, ud es pssiere kum Rechefehler Agewdte Mthemtik ud Progrmmierug 16

17 Vollstädige Iduktio Der Trick vo Guß: Guß ht die Summe icht so bestimmt, soder mit folgedem geile Trick: = = (+1). Also gilt = (+1)/2. Agewdte Mthemtik ud Progrmmierug 17

18 Beweis durch Vollstädige Iduktio: Beweis durch Vollstädige Iduktio: Beweis durch Iduktio ch. Die Aussge A() sei die Aussge des Stzes, lso: A(): = (+1)/2. Sowohl bei der Iduktiosbsis ls uch beim Iduktiosschritt zeige wir, dss i der etsprechede Gleichug liks ud rechts ds Gleiche steht. Iduktiosbsis: Sei = 1. D steht uf der like Seite ur der Summd 1, ud uf der rechte Seite steht 2 1/2, lso ebeflls 1. Also gilt A(1) Agewdte Mthemtik ud Progrmmierug 18

19 Beweis durch Vollstädige Iduktio: Iduktiosschritt: Iduktiosschritt: Sei eie türliche Zhl 1, ud sei die Aussge richtig für. Wir müsse A(+1) beweise, ds heißt, die Summe ( 1) + + (+1) bereche. Wir splte wir diese Summe uf: ( 1) + + (+1) = [ ( 1) + ] + (+1) = (+1)/2 + (+1) (ch Iduktio) = [(+1) + 2(+1)]/2 = (+2)(+1)/2. Isgesmt hbe wir die Aussge A(+1) bewiese. Somit gilt der Stz. Agewdte Mthemtik ud Progrmmierug 19

20 Weitere Beispiele: Vollstädige Iduktio Agewdte Mthemtik ud Progrmmierug 20

21 Weitere Beispiele: Vollstädige Iduktio Agewdte Mthemtik ud Progrmmierug 21

22 Weitere Beispiele: Vollstädige Iduktio Agewdte Mthemtik ud Progrmmierug 22

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer vo Prof. Dr. Ig. Dirk Rbe FH Emde/Leer Überblick: Folge ud Reihe Folge: Zhlefolge ( ) ; ; ; ist eie geordete Liste vo Zhle ( IN) : Glieder der Folge f(): Bildugsgesetz (eplizit i oder rekursiv) z.b.: (

Mehr

5.7. Aufgaben zu Folgen und Reihen

5.7. Aufgaben zu Folgen und Reihen 5.7. Aufgbe zu Folge ud Reihe Aufgbe : Lieres ud beschrätes Wchstum Aus eiem Qudrt mit der Seiteläge dm gehe uf die rechts gedeutete Weise eue Figure hervor. Die im -te Schritt gefügte Qudrte sid jeweils

Mehr

Gegebenenfalls heisst die Zahl s. der Reihe, und man schreibt

Gegebenenfalls heisst die Zahl s. der Reihe, und man schreibt Prof. Dr. Berd Dreseler 6 Reihe 6.1 Kovergez vo Reihe Gegebe sei eie Folge s 1 1, 2 1 2 3 1 2 3... s s, s..., 1 2 1, wird der Folge eie weitere Folge omplexer Zhle. Durch s zugeordet. www.berd-dreseler.de

Mehr

Analysis I Probeklausur 2

Analysis I Probeklausur 2 WS /2 Mriescu/ Ert Alysis I Probeklusur 2. Aufgbe Die Folge (x ) N sei rekursiv defiiert durch x =, x + = 2+x. () Beweise, dss die Folge (x ) N streg mooto wchsed ist. (b) Beweise, dss (x ) N durch 2 ch

Mehr

8.3. Komplexe Zahlen

8.3. Komplexe Zahlen 8.. Komplee Zhle Wie bereits i 8.. drgestellt, wurde die fortlufede Erweiterug der Zhlbereiche durch die Eiführug immer kompleerer Recheopertioe otwedig:. Auf de türliche Zhle führte der Wusch ch iverse

Mehr

Zahlenreihen und Konvergenzkriterien

Zahlenreihen und Konvergenzkriterien www.mthemtik-etz.de Copyright, Pge of 0 Zhlereihe ud Kovergezkriterie. Kovergete Reihe Reihe sid Folge spezieller Burt, so dss gegeüber de Ergebisse über Folge grudsätzlich icht viel Neues zu erwrte ist.

Mehr

Marek Kubica, Diskrete Strukturen Übungsblatt 13 Gruppe 11

Marek Kubica, Diskrete Strukturen Übungsblatt 13 Gruppe 11 Mrek Kubic, kubic@i.tum.de Diskrete Strukture Übugsbltt Gruppe Pukteverteilug: Σ Aufgbe () 8 () 7 Der Grph B ht de Prüfer-Code,,,,, der zustde kommt, we m de kleiste Kote vom Grd streicht ud de dere, übrig

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12 Mthemtisches Istitut der Uiversität Müche Prof. Dr. Peter Otte WiSe 203/4 Lösug 2 2.0.204 Aufgbe 2. [8 Pute] Übuge zur Alysis für Iformtier ud Sttistier Lösug zu Bltt 2 Für eie Teilmege Ω R, sei {, flls

Mehr

Aufgaben zur Analysis I

Aufgaben zur Analysis I Aufgabe zur Aalysis I Es werde folgede Theme behadelt:. Logik, Iduktio, Mege, Abbilduge 2. Supremum, Ifimum 3. Folge, Fuktioefolge 4. Reihe, Potezreihe 5. Mootoie ud Stetigkeit 6. Differetialrechug 7.

Mehr

ALGEBRA. Potenzen und Wurzeln. Grundlagen. Manuskript zur Wiederholung. Datei Nr Dezember Friedrich W. Buckel

ALGEBRA. Potenzen und Wurzeln. Grundlagen. Manuskript zur Wiederholung. Datei Nr Dezember Friedrich W. Buckel ALGEBRA Poteze ud Wurzel Grudlge Muskript zur Wiederholug Dtei Nr. Dezember 00 Friedrich W. Buckel Itertsgymsium Schloß Torgelow Ihlt Poteze mit türliche Expoete Potezgesetze Poteze mit egtive gze Expoete

Mehr

7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt.

7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt. Rdiziere 7 Rdiziere 7.1 Eiführug Uter der -te Wurzel us versteht eie Zhl x, die it poteziert ergibt. x x für 0 9 3 3 9 * : Wurzelexpoet, N ud 1 : Rdikd, 0 x: Wurzel(wer) t Poteziere: Bsis ud Expoet sid

Mehr

Zahlenbereiche. Jeder Zahlenbereich ist eine Erweiterung des vorigen und enthält diesen

Zahlenbereiche. Jeder Zahlenbereich ist eine Erweiterung des vorigen und enthält diesen Mthemtik Ihlt Zhlebereiche Recheopertioe Hierrchie der Recheopertioe Recheregel Brüche Recheregel für Brüche Klmmerreche Potezrechug Potezgesetze Ntürliche Zhle Zhlebereiche Jeder Zhlebereich ist eie Erweiterug

Mehr

Zahlenfolgen, Grenzwerte und Zahlenreihen

Zahlenfolgen, Grenzwerte und Zahlenreihen KAPITEL 5 Zahlefolge, Grezwerte ud Zahlereihe. Folge Defiitio 5.. Uter eier Folge reeller Zahle (oder eier reelle Zahlefolge) versteht ma eie auf N 0 erlarte reellwertige Futio, die jedem N 0 ei a R zuordet:

Mehr

Fachbereich Mathematik

Fachbereich Mathematik OSZ Kfz-Techik Berufsoberschule Mthemtik Oberstufezetrum Krftfhrzeugtechik Berufsschule, Berufsfchschule, Fchoberschule ud Berufsoberschule Berli, Bezirk Chrlotteburg-Wilmersdorf Fchbereich Mthemtik Arbeits-

Mehr

Logarithmus - Übungsaufgaben. I. Allgemeines

Logarithmus - Übungsaufgaben. I. Allgemeines Eie Gleichug höhere Grdes wie z. B. Gymsium / Relschule Logrithmus - Üugsufge Klsse 0 I. Allgemeies k ch ufgelöst werde, idem m die Wurzel zieht. Tritt die Uekte jedoch im Epoete eier Potez uf, spricht

Mehr

Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr

Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr DEMO für ZAHLENFOLGEN Teil 2 Arithmetische ud geometrische Folge Die wichtigste Theorieteile ud gz ausführliches Traiig Datei Nr. 40012 Neu geschriebe ud sehr erweitert Std: 4. Februar 2010 INTERNETBIBLIOTHEK

Mehr

x mit Hilfe eines linearen, zeitinvarianten

x mit Hilfe eines linearen, zeitinvarianten Übug &Prktiku zu Digitle Sigle ud Systee The: Fltug Diskrete Fltug Wird ei zeitdiskretes Sigl ( T ) x it Hile eies liere, zeitivrite Siglverrbeitugssystes verrbeitet, so lässt sich ds Verhlte des verrbeitede

Mehr

Musterlösung zur Musterprüfung 1 in Mathematik

Musterlösung zur Musterprüfung 1 in Mathematik Musterlösug zur Musterprüfug i Mthemtik Diese Musterlösug ethält usführliche Lösuge zu lle Aufgbe der Musterprüfug i Mthemtik sowie Hiweise zum Selbstlere. Literturhiweise ) Bosch: Brückekurs Mthemtik,

Mehr

Aufgaben und Lösungen der Probeklausur zur Analysis I

Aufgaben und Lösungen der Probeklausur zur Analysis I Fachbereich Mathematik AG 5: Fuktioalaalysis Prof. Dr. K.-H. Neeb Dipl.-Math. Rafael Dahme Dipl.-Math. Stefa Wager ATECHNISCHE UNIVERSITÄT DARMSTADT SS 007 19. Jui 007 Aufgabe ud Lösuge der Probeklausur

Mehr

( 3) k ) = 3) k 2 3 für k gerade

( 3) k ) = 3) k 2 3 für k gerade Aufgbe : ( Pute Zeige Sie mithilfe des Biomische Lehrstzes: ( 3 ( 3 ist für lle N eie türliche Zhl Lösug : Nch dem biomische Lehrstz gilt: ( 3 Somit ergibt sich ( 3 ( 3 ( ( 3 bzw ( 3 ( ( 3 ( ( 3 ( ( 3

Mehr

Folgen und Reihen Glege 03/01

Folgen und Reihen Glege 03/01 Folge ud Reihe Glege 03/0 I diesem Script werde folgede Theme behadelt: Folge (Eiführug)... Arithmetische Folge... Geometrische Folge...3 Mootoie...4 Kovergez...5 Grezwert...6 Schrake...7 Arithmetische

Mehr

Jeder Käufer der Zeitschrift darf auszugsweise Kopien für den eigenen Unterricht anfertigen.

Jeder Käufer der Zeitschrift darf auszugsweise Kopien für den eigenen Unterricht anfertigen. Mthemtikiformtio Vom Potezreche zum Logrithmus Nr. Zweite korrigierte Auflge. Jur 00 ISSN -9 Mthemtikiformtio ist eie Zeitschrift vo Begbteförderug Mthemtik e.v. Herusgbe ud Redktio: Professor Dr. Hrld

Mehr

Die Logarithmusfunktion

Die Logarithmusfunktion Ihltsverzeichis Ihltsverzeichis...1 Die Logrithusfuktio...2 Eiführug...2 Eiige Beispiele...2 Spezielle Logrithe...3 Die Ukehrfuktio der Epoetilfuktio...3 Die Eigeschfte der Logrithusfuktio...4 Defiitiosereich

Mehr

4.1 G sei Gruppe (mit multiplikativ geschriebener Verknüpfung) und a G. Dann heißt. falls a k 1 G k 1 ord(a) := k 1 a k = 1 G sonst

4.1 G sei Gruppe (mit multiplikativ geschriebener Verknüpfung) und a G. Dann heißt. falls a k 1 G k 1 ord(a) := k 1 a k = 1 G sonst 15 Wichtige Sätze ud Defiitioe zu 4: Ds qudrtische Rezirozitätsgesetz us der Vorlesug: LV-NR 150 39 Verstltug Diskrete Mthemtik II, 4.0 std Dozet Holtkm, R. 4.1 G sei Grue (mit multiliktiv geschriebeer

Mehr

Mathematik Vorkurs. Fachhochschule Konstanz Fachbereich Elektrotechnik & Informationstechnik Prof. Birkhölzer

Mathematik Vorkurs. Fachhochschule Konstanz Fachbereich Elektrotechnik & Informationstechnik Prof. Birkhölzer Mthemtik Vorkurs Fchhochschule Kostz Fchbereich Versio 5.8 Copright 0 Versio 5.8 Copright 0 Mthemtik Wozu, Wie, Ws?.... Mthemtik Wozu?..... Hitergrud: Aspekte der Mthemtik..... Mthemtische Aspekte im Alltg

Mehr

2.1.1 Potenzen mit natürlichen Exponenten

2.1.1 Potenzen mit natürlichen Exponenten .. Poteze mit türliche Expoete Eie Potez (gelese: hoch ) ist eie bgekürzte Schreibweise für ds Produkt us gleiche Fktore : = wobei > eie türliche Zhl ist heisst Bsis, Expoet der Potez. Beispiele: 5 = =

Mehr

1. Übungsblatt zur Analysis II

1. Übungsblatt zur Analysis II Fchereich Mthemtik Prof Dr Steffe Roch Nd Sissouo WS 9/ 69 Üugsltt zur Alysis II Gruppeüug Aufge G Bestimme Sie für jede der folgede Fuktioe f : [, ] R ds utere ud oere Itegrl ud etscheide Sie, o die Fuktio

Mehr

Inhalt 1. Zahlenbereiche / Zahlenmengen 2. Terme

Inhalt 1. Zahlenbereiche / Zahlenmengen 2. Terme Mthemtische Grudlge für die Eiggsklsse des TG Ihlt. Zhlebereiche / Zhlemege. Terme.. Grudbegriffe.. Summe ud Differeze.. Produkte.. Auflöse vo Klmmer.. Ausklmmer ud Ausmultipliziere... Ausklmmer... Ausmultipliziere...

Mehr

Klasse 10 Graphen von ganzrationalen Funktionen skizzieren

Klasse 10 Graphen von ganzrationalen Funktionen skizzieren Klsse 0 Grphe vo grtiole Fuktioe skiiere Nr.3-4.4.06 Ausggslge Vorwisse Die SuS kee Grudfuktioe ud ihre Grphe: f() = ²; ³; ⁴ f() = ; f() = Die SuS kee bei Grudfuktioe folgede Veräderuge: g() = f() Der

Mehr

Mittelwerte und Zahlenfolgen Beat Jaggi, beat.jaggi@phbern.ch

Mittelwerte und Zahlenfolgen Beat Jaggi, beat.jaggi@phbern.ch vsmp sspmp ssimf Mittelwete ud Zhlefolge Bet Jggi, bet.jggi@phbe.ch Eileitug Ds Bilde vo Mittelwete ist ei zetles Kozept i de Mthemtik: Lgemsse i de Sttistik (Mittelwet, Medi, Modus); Mitte, Mittelliie

Mehr

Versuchsprotokoll zum Versuch Nr. 4

Versuchsprotokoll zum Versuch Nr. 4 I diesem Versuch geht es drum, die Temperturbhäigkeit vo Widerstäde zu bestimme. Dies erfolgt mit folgeder Aordug: Folgede Geräte wurde dbei verwedet Gerät Bezeichug/Hersteller Ivetrummer Schleifdrhtbrücke

Mehr

Termin vereinbaren. Patient abrufen. Befund erstellen. Befund lesen

Termin vereinbaren. Patient abrufen. Befund erstellen. Befund lesen Grphische Repräsettio vo Iterktiosusdrücke Christi Heilei, Abt. DBIS Jui 1997 1. Eileitug Dieser Bericht stellt eie eifche grphische Nottio für Iterktiosusdrücke vor, wie sie i de Berichte Grudlge vo Iterktiosusdrücke

Mehr

Demoseiten für

Demoseiten für Zhlefolge Große Eiführug Eiführede Beispiele Explizite ud rekursive Berechug Schubilder ud Eigeschfte Ergäzt durch viele Arte rekursiv defiierter Folge, uch spezieller Wchstumsfolge! Ergäzeder Eistz vo

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

4 Deckungsrückstellung

4 Deckungsrückstellung eckugsrückstellug 33 4 eckugsrückstellug iel: erfhre zur Erittlug des Wertes eies ersicherugsvertrgs ud der zur eckug der Risike ötige Rückstelluge des ersicherugsuterehes. Proble: Präie werde kostt gezhlt,

Mehr

Nachklausur - Analysis 1 - Lösungen

Nachklausur - Analysis 1 - Lösungen Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:

Mehr

7.5. Aufgaben zu Skalarprodukt und Vektorprodukt

7.5. Aufgaben zu Skalarprodukt und Vektorprodukt 7.. Aufgbe zu Sklrprodukt ud Vektorprodukt Aufgbe : Sklrprodukt Bereche die folgede Produkte: ) Aufgbe : Läge eies Vektors Bestimme die Läge ud de etsprechede Eiheitsvektor der folgede Vektore. =, b =,

Mehr

... a ik) i=1...m, k=1...n A = = ( a mn

... a ik) i=1...m, k=1...n A = = ( a mn Zurück Stad: 4..6 Reche mit Matrize I der Mathematik bezeichet ma mit Matrix im Allgemeie ei rechteckiges Zahleschema. I der allgemeie Darstellug habe die Zahle zwei Idizes, de erste für die Zeileummer,

Mehr

Übungsblatt Nr. 1. Lösungsvorschlag

Übungsblatt Nr. 1. Lösungsvorschlag Istitut für Kryptogrphie ud Sicherheit Prof. Dr. Jör Müller-Qude Dirk Achebch Tobis Nilges Vorlesug Theoretische Grudlge der Iformtik Übugsbltt Nr. 1 svorschlg Aufgbe 1 (K) (4 Pukte): Edliche Automte ud

Mehr

Übungsaufgaben zur Vorlesung ANALYSIS I (WS 12/13) Serie 10

Übungsaufgaben zur Vorlesung ANALYSIS I (WS 12/13) Serie 10 Humboldt-Uiversität zu Berli Istitut für Mathematik Prof. A. Griewak Ph.D.; Dr. A. Hoffkamp; Dipl.Math. T.Bosse; Dipl.Math. L. Jase Übugsaufgabe zur Vorlesug ANALYSIS I (WS 2/3) Serie 0 Musterlösug S.

Mehr

STUDIUM. Mathematische Grundlagen für Betriebswirte

STUDIUM. Mathematische Grundlagen für Betriebswirte STUDIUM Mthetische Grudlge für Betrieswirte Mit de folgede Aufge köe Sie i eie Selsttest üerprüfe, o Sie och eiigerße die Grudlge der Alger eherrsche. Diese hdwerkliche Fertigkeite sid wesetlich, we es

Mehr

Prof. Dr. Roland Füss Statistik II SS 2008

Prof. Dr. Roland Füss Statistik II SS 2008 1. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug ergibt sich aus de Grezwertsätze. Grezwertsätze sid Aussage über eie Zufallsvariable für de Fall, dass die Azahl

Mehr

10. FOLGEN, REIHEN, GRENZWERTE

10. FOLGEN, REIHEN, GRENZWERTE Folge, Reihe, Grezwerte 0. FOLGEN, REIHEN, GRENZWERTE 0.. Folge (a) Defiitio Betrachtet ma bei eier Fuktio ur jee Fuktioswerte, die sich durch Eisetze vo Argumete aus de atürliche Zahle ergebe, so erhält

Mehr

SUCHPROBLEME UND ALPHABETISCHE CODES

SUCHPROBLEME UND ALPHABETISCHE CODES SUCHPROBLEME UND ALPHABETISCHE CODES Der Problematik der alphabetische Codes liege Suchprobleme zugrude, dere Lösug dem iformatiostheoretische Problem der Fidug eies (optimale) alphabetische Codes gleich

Mehr

Beweistechniken Vollständige Induktion - Beispiele, Erweiterungen und Übungen

Beweistechniken Vollständige Induktion - Beispiele, Erweiterungen und Übungen Beweistechike Vollstädige Iduktio - Beispiele, Erweiteruge ud Übuge Alex Chmelitzki 15. März 005 1 Starke Iduktio Eie etwas abgewadelte Form der Iduktio ist die sogeate starke Iduktio. Bei dieser Spielart

Mehr

Musterlösung zu Übungsblatt 2

Musterlösung zu Übungsblatt 2 Prof. R. Padharipade J. Schmitt C. Schießl Fuktioetheorie 25. September 15 HS 2015 Musterlösug zu Übugsblatt 2 Aufgabe 1. Reelle Fuktioe g : R R stelle wir us üblicherweise als Graphe {(x, g(x)} R R vor.

Mehr

Abiturprüfug Mathematik 008 Bade-Württemberg (ohe CAS) Wahlteil - Aufgabe Aalysis I Aufgabe I.: Ei Tal i de Berge wird ach Weste vo eier steile Felswad, ach Oste vo eiem flache Höhezug begrezt. Der Querschitt

Mehr

Vorlesung Wirtschaftsmathematik. Studiengang Business Administration und Wirtschaftspsychologie

Vorlesung Wirtschaftsmathematik. Studiengang Business Administration und Wirtschaftspsychologie Hochschule Fchbereich Wirtschft Rheibch Bo-Rhei-Sieg Dipl.th.A.Füllebch Uiversity of Applied Scieces Vorlesug Wirtschftsmthemtik Studiegg Busiess Admiistrtio ud Wirtschftspsychologie . Alysis.. Fuktioe

Mehr

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I Uiversität des Saarlades Fakultät für Mathematik ud Iformatik Witersemester 2003/04 Prof. Dr. Joachim Weickert Dr. Marti Welk Dr. Berhard Burgeth Lösuge der Aufgabe zur Vorbereitug auf die Klausur Mathematik

Mehr

Kapitel 4: Stationäre Prozesse

Kapitel 4: Stationäre Prozesse Kapitel 4: Statioäre Prozesse M. Scheutzow Jauary 6, 2010 4.1 Maßerhaltede Trasformatioe I diesem Kapitel führe wir zuächst de Begriff der maßerhaltede Trasformatio auf eiem Wahrscheilichkeitsraum ei ud

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n,

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n, f : a P UNIVERSIÄ DES SAARLANDES FACHRICHUNG 6. MAHEMAIK Prof. Dr. Rolad Speicher M.Sc. obias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 202 Musterlösug zu Blatt Aufgabe. Zeige Sie durch Abwadlug

Mehr

Finanzierung: Übungsserie IV Aussenfinanzierung

Finanzierung: Übungsserie IV Aussenfinanzierung Them Dokumetrt Fizierug: Übugsserie IV Aussefizierug Lösuge Theorie im Buch "Itegrle Betriebswirtschftslehre" Teil: pitel: D Fizmgemet 2.4 Aussefizierug Fizierug: Übugsserie IV Aussefizierug Aufgbe Eie

Mehr

1 Analysis T1 Übungsblatt 1

1 Analysis T1 Übungsblatt 1 Aalysis T Übugsblatt A eier Weggabelug i der Wüste lebe zwei Brüder, die vollkomme gleich aussehe, zwische dee es aber eie gewaltige Uterschied gibt: Der eie sagt immer die Wahrheit, der adere lügt immer.

Mehr

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

Nennenswertes zur Stetigkeit

Nennenswertes zur Stetigkeit Neeswertes zur Stetigkeit.) Puktweise Stetigkeit: Vo Floria Modler Defiitio der pukteweise Stetigkeit: Eie Fuktio f : D R ist geau da i x D stetig, we gilt: ε > δ >, so dass f ( x) f ( x ) < ε x D mit

Mehr

Flächenberechnung. Flächenberechnung

Flächenberechnung. Flächenberechnung Itegrlrechug Gegee sei eie Fuktio. 1 Itegrlrechug Gesucht ist die Fläche zwische der Kurve vo 0 is 1 ud der -Achse. 0 1 2 197 Wegeer Mth/5_Itegrl_k Mittwoch 04.04.2007 18:38:48 Itegrlrechug Wir eee 1 um

Mehr

Zahlen, Folgen, Reihen. In diesem Kapitel wird nun wirklich der Grundstein der Analysis gelegt, darüber hinaus sollten. Kapitel 2

Zahlen, Folgen, Reihen. In diesem Kapitel wird nun wirklich der Grundstein der Analysis gelegt, darüber hinaus sollten. Kapitel 2 Kapitel Zahle, Folge, Reihe I diesem Kapitel wird u wirklich der Grudstei der Aalysis gelegt, darüber hiaus sollte wir us och etwas de verschiedee Zahlbereiche widme. Mit atürliche Zahle rechet ma bereits

Mehr

MATRIZENRECHNUNG A = Matrix: m Zeilen, n Spalten. Allgemein: A = heißt Komponente der Matrix (Element der Matrix) aij:

MATRIZENRECHNUNG A = Matrix: m Zeilen, n Spalten. Allgemein: A = heißt Komponente der Matrix (Element der Matrix) aij: MATRIZENRECHNUNG Mtri: 3 5 4 5 A = 3 5 5 7 8 3 8 Allgeei: A = 3 3 3 Zeile, Splte ij: heißt Kopoete der Mtri (Eleet der Mtri) ij ist Kopoete der i-te Zeile, j-te Splte Mtri der Ordug, ( -Mtri): A(,) oder

Mehr

Wintersemester 2006/2007, Universität Rostock Abgabetermin: spätestens 24.10.2006, 09:00 Uhr. Aufgabe 1.1: (5 P)

Wintersemester 2006/2007, Universität Rostock Abgabetermin: spätestens 24.10.2006, 09:00 Uhr. Aufgabe 1.1: (5 P) Serie Abgabetermi: spätestes 24.0.2006, 09:00 Uhr Aufgabe.: 5 P Zeige Sie, dass das geometrische Mittel icht größer ist als das arithmetische Mittel, d.h., dass für alle Zahle a, b R mit a, b 0 gilt ab

Mehr

- Goldener Schnitt - Nur ein Teilungsverhältnis oder fundamentales Geheimnis des Universums? Vorwort... 2

- Goldener Schnitt - Nur ein Teilungsverhältnis oder fundamentales Geheimnis des Universums? Vorwort... 2 Ihltsverzeichis Kpitel Seite Vorwort.... Mthemtische Grudlge des Goldee Schittes... Ws ist der Goldee Schitt?..... Nähere Betrchtug des Teilugsverhältisses Herleitug der Zhle τ ud ρ..3. Die Zhle τ ud ρ...3..

Mehr

Geometrische Folgen. Auch Wachstumsfolgen Viele Aufgaben. Lösungen nur auf der Mathe-CD Hier nur Ausschnitte. Datei Nr

Geometrische Folgen. Auch Wachstumsfolgen Viele Aufgaben. Lösungen nur auf der Mathe-CD Hier nur Ausschnitte. Datei Nr ZAHLENFOLGEN Teil Geometrische Folge Auch Wachstumsfolge Viele Aufgabe Lösuge ur auf der Mathe-CD Hier ur Ausschitte Datei Nr. 00 Friedrich Buckel März 00 Iteretbibliothek für Schulmathematik 00 Geometrische

Mehr

Mathematik für Wirtschaftswissenschaftler Beispiele, Graken, Beweise. c Uwe Jensen

Mathematik für Wirtschaftswissenschaftler Beispiele, Graken, Beweise. c Uwe Jensen Mathematik für Wirtschaftswisseschaftler Beispiele, Grake, Beweise c Uwe Jese 8. Oktober 2007 Ihaltsverzeichis 4 Folge, Reihe, Grezwerte, Stetigkeit 47 4. Folge ud Reihe............................ 47

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Rolad Speicher M.Sc. Tobias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 01 Musterlösug zu Blatt 0 Aufgabe 1. Käpt Schwarzbart,

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB Inhltsverzeichnis Inhltsverzeichnis... Die Inverse einer Mtrix.... Definition der Einheitsmtrix.... Bedingung für die inverse Mtrix.... Berechnung der Inversen Mtrix..... Ds Verfhren nch Guß mit

Mehr

Mathematik Abiturwissen. Script von Michael Telgkamp Vorlesung Dr. Bruder

Mathematik Abiturwissen. Script von Michael Telgkamp Vorlesung Dr. Bruder Mathematik Abiturwisse Script vo Michael Telgkamp Vorlesug Dr. Bruder . Eiführug Abiturwisse Mathematik / 9. Zahlebereiche: N atürliche Zahle Z gaze Zahle Q ratioale Zahle R reelle Zahle C komplee Zahle

Mehr

Repetitionsaufgaben Potenzen und Potenzgleichungen

Repetitionsaufgaben Potenzen und Potenzgleichungen Ktole Fchschft Mthetik Repetitiosufgbe Poteze ud Potezgleichuge Ihltsverzeichis A) Vorbeerkuge B) Lerziele C) Poteze D) Potezgleichuge E) Aufgbe Poteze it Musterlösuge F) Aufgbe Potezgleichuge it Musterlösuge

Mehr

Formelsammlung zur Zuverlässigkeitsberechnung

Formelsammlung zur Zuverlässigkeitsberechnung Formelsmmlug zur Zuverlässgetsberechug zusmmegestellt vo Tt Lge Fchhochschule Merseburg Fchberech Eletrotech Ihlt:. Zuverlässget vo Betrchtugsehete.... Zuverlässget elemetrer, chtreprerbrer ysteme... 3.

Mehr

AT AB., so bezeichnet man dies als innere Teilung von

AT AB., so bezeichnet man dies als innere Teilung von Teilverhältisse Aus der Geometrie der Dreiecke ket ma die Aussage, dass der Schwerpukt T eies Dreiecks die Seitehalbierede im Verhältis : teilt. Für die Strecke AT ud TM gilt gemäß der Abbildug AT : TM

Mehr

Wegen der (mit einem Fehler von nur +1,0 recht guten) Näherung an die Kreiszahl

Wegen der (mit einem Fehler von nur +1,0 recht guten) Näherung an die Kreiszahl Seite 1 Fiboacci-Wachstum Axel Köig Es werde stetige Wachstumsfuktioe vorgestellt, die diskretes additives Wachstum ach Fiboacci optimal approximiere. Darüber hiaus wird die Vermutug aufgestellt, dass

Mehr

Innerbetriebliche Leistungsverrechnung

Innerbetriebliche Leistungsverrechnung Ierbetriebliche Leistugsverrechug I der Kostestellerechug bzw. im Betriebsabrechugsboge (BAB ist ach der Erfassug der primäre Kostestellekoste das Ziel, die sekudäre Kostestellekoste, also die Koste der

Mehr

Inhaltsverzeichnis. 3 Stetigkeit. 3.1 Reelle und komplexe Funktionen

Inhaltsverzeichnis. 3 Stetigkeit. 3.1 Reelle und komplexe Funktionen Ihaltsverzeichis 3 Stetigkeit 1 3.1 Reelle ud komplexe Fuktioe........................ 1 3. Grezwerte vo Fuktioe.......................... 3.3 Eiseitige oder ueigetliche Grezwerte................... 3

Mehr

COMPUTER-NUMERIK MATHEMATISCHE UND NUMERISCHE METHODEN DER MECHANIK (MNMM-II) Teil II der Vorlesung U. GABBERT

COMPUTER-NUMERIK MATHEMATISCHE UND NUMERISCHE METHODEN DER MECHANIK (MNMM-II) Teil II der Vorlesung U. GABBERT COMPUTER-NUMERIK Teil II der Vorlesug MATHEMATISCHE UND NUMERISCHE METHODEN DER MECHANIK MNMM-II U. GABBERT eiter des ehrstuhls ür Numerische Mechik Istitut ür Mechik Nur zum Gebruch der OvGU Mgdeburg

Mehr

Integralrechnung kurzgefasst

Integralrechnung kurzgefasst Itegrlrehug kurzgefsst. Flähe uter eiem Grphe Die Eistiegsfrge lutet: Wie k m de Fläheihlt A eies Flähestüks erehe, ds egrezt wird - vom Grphe G f eier (stetige) Fuktio - vo der -Ahse - vo zwei Prllele

Mehr

Mathematische Grundlagen 1. Zahlenrechnen

Mathematische Grundlagen 1. Zahlenrechnen Mthemtische Grudlge. Zhlereche Ihltsverzeichis:. Zhlereche..... Die Grudrecherte..... Reche i der Mege der türliche Zhle..... Reche i der Mege der gze Zhle... 5.. Reche i der Mege der rtiole Zhle... 7...

Mehr

1 Grenzwerte und Stetigkeit bei Funktionen mehrerer Variablen

1 Grenzwerte und Stetigkeit bei Funktionen mehrerer Variablen KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffma SS 204 6.04.204 Höhere Mathematik II für die Fachrichtug Iformatik. Saalübug (6.04.204) Grezwerte ud Stetigkeit

Mehr

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert.

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert. Prof. Dr. H. Rommelfager: Etscheidugstheorie, Kaitel 3 7 3. Etscheidug bei Risiko (subjektive oder objektive) Eitrittswahrscheilichkeite für das Eitrete der mögliche Umweltzustäde köe vom Etscheidugsträger

Mehr

Bitte schicken Sie mir eine E-mail, wenn Sie einen Fehler gefunden haben 1. Moritz Kaßmann

Bitte schicken Sie mir eine E-mail, wenn Sie einen Fehler gefunden haben 1. Moritz Kaßmann Das folgede Skript zur Vorlesug Spezielle Aspekte der Aalysis für Studierede des Lehramts a Grud, Haupt ud Realschule wird fortlaufed aktualisiert ud verädert werde. Das Skript ethält bei weitem icht alle

Mehr

1.2. Taylor-Reihen und endliche Taylorpolynome

1.2. Taylor-Reihen und endliche Taylorpolynome 1.. aylor-reihe ud edliche aylorpolyome 1..1 aylor-reihe Wir köe eie Fuktio f() i eier Umgebug eies Puktes o gut durch ihre agete i o: t o () = f(o) + f (o) (-o) aäher: Wir sehe: Je weiter wir vo o weg

Mehr

6. Reihen. 6. Reihen 63

6. Reihen. 6. Reihen 63 6. Reihe 63 6. Reihe Wir wolle us u mit eiem spezielle Typ vo Folge beschäftige, der i der Praxis sehr häufig vorkommt: ämlich Folge, die i der Form (a 0, a 0 + a, a 0 + a + a 2,... für gewisse a K gegebe

Mehr

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S Statistik mit Excel 2013 Peter Wies Theme-Special 1. Ausgabe, Februar 2014 W-EX2013S 3 Statistik mit Excel 2013 - Theme-Special 3 Statistische Maßzahle I diesem Kapitel erfahre Sie wie Sie Date klassifiziere

Mehr

Potenzen, Wurzeln und ihre Rechengesetze

Potenzen, Wurzeln und ihre Rechengesetze R. Brik http://rik-du.de Seite 9.0.00 Poteze, Wurzel ud ihre Rechegesetze Der Potezegriff Defiitio: Eie Potez ist eie Multipliktio gleicher Fktore (Bsis), ei der der Epoet die Azhl der Fktore git. : =...

Mehr

Brückenkurs Mathematik Dr. Karl TH Nürnberg

Brückenkurs Mathematik Dr. Karl TH Nürnberg Brükekurs Mthemtik Dr. Krl TH Nürerg Qudrtishe Gleihuge Ugleihuge Copyright : Huert Krl Alle Rehte vorehlte. Diese Puliktio drf ohe die usdrüklihe shriftlihe Geehmigug des Autors weder gz oh uszugsweise

Mehr

Übungen mit dem Applet Fourier-Reihen

Übungen mit dem Applet Fourier-Reihen Fourier-Reihe 1 Übuge mit dem Applet Fourier-Reihe 1 Mathematischer Hitergrud... Übuge mit dem Applet... 3.1 Eifluss der Azahl ud der Sprugstelle...3. Eifluss vo y-verschiebug ud Amplitude...4.3 Eifluss

Mehr

Lösung zur Klausur zur Stochastik (5.01.0121, SoSe 2016) am 14.07.2016, Zeit: 10-12, Raum: W01-0-015

Lösung zur Klausur zur Stochastik (5.01.0121, SoSe 2016) am 14.07.2016, Zeit: 10-12, Raum: W01-0-015 Prof Dr Dietmr Pfeifer Istitut für Mthemti Lösug zur Klusur zur Stohsti (500, SoSe 06) m 40706, Zeit: 0, Rum: W0005 Nme: MtrNr: GebDtum: Studiegg: ewertugsmodlitäte: Die Klusur ist mit 50 Pute ud mehr

Mehr

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist. Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,

Mehr

fdv f x, yz, dzdydx Folie 1

fdv f x, yz, dzdydx Folie 1 fd f x, y, ddydx R R 1 1 f ( rcossi, rsisi, r cos) r si dddr Folie 1 Dreifachitegrale orspa Als orwisse sollte Sie die Grudlage u Doppelitegrale mitbrige (s..b. L. Papula, Mathematik für Igeieure ud Naturwisseschaftler

Mehr

Physikalische Grundlagen: Strahlengang durch optische Systeme

Physikalische Grundlagen: Strahlengang durch optische Systeme ieser Text ist ür iteressierte Leser gedacht, die sich über die klausur-relevate, physiologische Grudlage hiaus mit der Optik des Auges beschätige wolle! Physikalische Grudlage: Strahlegag durch optische

Mehr

Mathematik. Vorlesung im Bachelor-Studiengang Business Administration (Modul BWL 1A) an der FH Düsseldorf im Wintersemester 2008/09

Mathematik. Vorlesung im Bachelor-Studiengang Business Administration (Modul BWL 1A) an der FH Düsseldorf im Wintersemester 2008/09 Mathematik Vorlesug im Bachelor-Studiegag Busiess Admiistratio (Modul BWL A) a der FH Düsseldorf im Witersemester 2008/09 Dozet: Dr. Christia Kölle Teil I Fiazmathematik, Lieare Algebra, Lieare Optimierug

Mehr

Ein kleines Einmaleins über Mittelwertbildungen

Ein kleines Einmaleins über Mittelwertbildungen Vorlesugsergäzug zur Igeieurmathematik R.Brigola Ei kleies Eimaleis über Mittelwertbilduge Grudlage über arithmetische Mittel, geometrische Mittel, harmoische Mittel, quadratische Mittel ud das arithmetisch-geometrische

Mehr

Lösungen zu Mathematik für Informatiker I Übungen Sommersemster 2007

Lösungen zu Mathematik für Informatiker I Übungen Sommersemster 2007 Lösuge zu Mathematik für Iformatiker I Übuge Sommersemster 2007 Aexader (Axe) Straschi Apri 2007 Diese Lösuge zu der Übug Mathematik für Iformatiker I, Sommersemester 2007, etsteht gerade im aufe meies

Mehr

Aufgaben zur vollständigen Induktion

Aufgaben zur vollständigen Induktion c 7 by Raier Müller - Aufgabe zur vollstädige Idutio We ichts aderes agegebe ist, da gelte die Behauptuge für IN {; ; ;...}. A) Teilbareit: ) ist gerade (d.h. durch teilbar). ) ist durch teilbar. ) ist

Mehr

Zur Definition. der wirksamen. Wärmespeicherkapazität

Zur Definition. der wirksamen. Wärmespeicherkapazität Ao. Uiv. Prof. Dipl.-Ig. Dr. tech. Klaus Kreč, Büro für Bauphysik, Schöberg a Kap, Österreich Zur Defiitio der wirksae Wärespeicherkapazität vo Ao. Uiv. Prof. Dipl.-Ig. Dr. tech. Klaus Kreč Büro für Bauphysik

Mehr

Übungsblatt 1 zur Vorlesung Angewandte Stochastik

Übungsblatt 1 zur Vorlesung Angewandte Stochastik Dr Christoph Luchsiger Übugsblatt 1 zur Vorlesug Agewadte Stochastik Repetitio WT Herausgabe des Übugsblattes: Woche 9, Abgabe der Lösuge: Woche 1 (bis Freitag, 1615 Uhr), Rückgabe ud Besprechug: Woche

Mehr

Formen der Arbeit mit mathematisch begabten Schülern in Russland 1

Formen der Arbeit mit mathematisch begabten Schülern in Russland 1 Boris Averboukh Forme der Arbeit mit mthemtisch begbte Schüler i Russld Eie Ursche der mthemtische ud techische Erfolge i Russld des 0. Jhrhuderts wr die ktive Arbeit mit mthemtisch begbte Kider, der viele

Mehr

4 Die rationalen Zahlen

4 Die rationalen Zahlen 4 Die rtionlen Zhlen Der Ring der gnzen Zhlen ht den Mngel, dß nicht jede Gleichung = X, 0 innerhl Z lösr ist. (Z.B. ist 1 = 2 X unlösr in Z). Zu seiner Beseitigung erweitert mn den Zhlereich zum Körper

Mehr

Versicherungstechnik

Versicherungstechnik Operatios Research ud Wirtschaftsiformati Prof. Dr. P. Recht // Dipl.-Math. Rolf Wedt DOOR Versicherugstechi Übugsblatt 3 Abgabe bis zum Diestag, dem 03..205 um 0 Uhr im Kaste 9 Lösugsvorschlag: Vorbereituge

Mehr

Unendliche Folge Eine Folge heißt unendlich, wenn die Anzahl der Glieder unbegrenzt ist.

Unendliche Folge Eine Folge heißt unendlich, wenn die Anzahl der Glieder unbegrenzt ist. . Folge ud Reihe.... Folge..... Grudlage.....2 Arithmetische Folge... 2..3 Geometrische Folge... 2.2 Reihe... 2.2. Grudlage... 2.2.2 Arithmetische Reihe... 2.2.3 Geometrische Reihe... 3.3 Eiige spezielle

Mehr

Kaiser Prüfungsordner Analysis Theoriefragen

Kaiser Prüfungsordner Analysis Theoriefragen Mtemti ür Iormtier Kiser Prüugsorder Alysis Teorierge tulisierte Ausreitug vo Micel Jros mici24, Std 6..24 23:37 revisio # 89 Alle Atworte wurde vo mir muell eu eigetippt. Sie stmme teilweise us dem Kiser-Sriptum,

Mehr

Gruppe 108: Janina Bär Christian Hörr Robert Rex

Gruppe 108: Janina Bär Christian Hörr Robert Rex TEHNIHE UNIVEITÄT HEMNITZ FAULTÄT FÜ INFOMATI Hardwarepraktikum im W /3 Versuch 3 equetielle ysteme I Gruppe 8: aia Bär hristia Hörr obert ex hemitz, 7. November Hardwarepraktikum equetielle ysteme I Aufgabe

Mehr

D i e a k t i e n r e c h t l i c h e K a p i t a l e r h ö h u n g

D i e a k t i e n r e c h t l i c h e K a p i t a l e r h ö h u n g D i e k t i e r e c h t l i c h e p i t l e r h ö h u g I. Grudlge 1. Motive der pitlbeschffug pitlerhöhuge ufsse sätliche Mßhe der Aktiegesellschft, Eigeoder Fredkpitl zu beschffe. Motive für eie pitlbeschffug

Mehr