Über-/Rückblick. F3 01/02 p.269/294

Größe: px
Ab Seite anzeigen:

Download "Über-/Rückblick. F3 01/02 p.269/294"

Transkript

1 Über-/Rükblik Algorithmenbegriff: Berehenbarkeit Turing-Mashine RAM µ-rekursive Funktionen Zeit Platz Komplexität Algorithmentehniken Algorithmenanalyse (Berehnung der Komplexität) Rekursion Iteration Baktraking Greedy-Algorithmen Auflösen von Rekurrenzen F3 01/02 p.269/294

2 Einige Feststellungen Mergesort hat eine worst-ase-zeitkomplexität von O(n log n). Insertsort hat eine worst-ase-zeitkomplexität von Θ(n 2 ). Somit ist Mergesort asymptotish shneller als Insertsort. Manhmal ist es möglih, die exakte Zeit für einen gegebenen Computer festzustellen, aber das ist meistens niht lohnenswert. F3 01/02 p.270/294

3 Asymptotishe Algorithmenanalyse Analyse der Hauptidee des Algorithmus. Mergesort ist ein divide-and-onquer-algorithmus: Ein Problem wird auf zwei Probleme etwa halber Größe reduziert (mit linearem Zeitaufwand für deomposition und omposition). Θ(n log n) Insertsort ist ein Sortieralgorithmus, für den nah dem i-ten Zyklus die ersten i Elemente der Folge sortiert sind und im i-ten Shritt das i-te Element in die rihtige Position gebraht wird. i-ter Shritt } sortiert F3 01/02 p.271/294

4 Analyse (2) Vorsiht ist bei der asymptotishen Analyse geboten besonders, wenn die Komplexität niht nur vom Umfang der Eingabedaten abhängt. Für die Zeitkomplexität von Insertsort gilt: T (n) Ω(n) T (n) O(n 2 ) Kann man nun shreiben T (n) Ω(n 2 )? Nein! Es gibt Eingaben, für die Insertsort Θ(n) Zeit brauht. Aber für die worst-ase- Zeitkomplexität gilt: T worst (n) Ω(n 2 ) F3 01/02 p.272/294

5 Einführungsbeispiel: Ebenen In maximal wieviele Gebiete zerteilen n Geraden die euklidshe Ebene? keine Gerade (n = 0): das Gebiet bleibt unverändert. Also L 0 = 1. eine Gerade (n = 1): zwei Gebiete, d.h. L 1 = 2. zwei Geraden (n = 2): vier Gebiete, d.h. L 2 = 4. I. I. II. IV. I. II. III. n=0 n=1 n=2 F3 01/02 p.273/294

6 Ebenen (2) Die Vermutung L n = 2 n, die für n = 0, 1, 2 stimmt, wird durh L 3 widerlegt: Für n = 3 ergibt sih folgendes Bild: I. VI. VII. II. n=3 V. IV. III. Also: L 3 = 7. Ist die neue Gerade zu keiner anderen parallel, so shneidet sie alle vorherigen Geraden genau einmal (höhstens in n 1 vershiedenen Punkten). F3 01/02 p.274/294

7 Rekurrenzgleihung Wenn die n-te Gerade niht durh einen früheren Shnittpunkt geht, so wird die Maximalzahl erreiht. Es ergibt sih die Rekurrenz L n := L n 1 + n für die gesuhte Zahl L n mit dem Anfangswert L 0 := 1. Um nun eine geshlossene Formel für L n zu gewinnen, wikeln wir die ersten Rekurrenzen ab: L 0 = 1 L 1 = L = = 2 L 2 = L = (L 0 + 1) + 2 = = 4 L 3 = (L 1 + 2) + 3 = ((L 0 + 1) + 2) + 3 = = 7 F3 01/02 p.275/294

8 Summenformel Die offensihtlihe Vermutung ist also L n = 1 + n i=1 i Diese Vermutung muß aber noh formal bewiesen werden, was wir durh vollständige Induktion tun werden. Die Verankerung für n = 0 ergibt sih wie gewünsht: L 0 = i=1 i = 1 F3 01/02 p.276/294

9 Summenformel (2) Induktionsannahme: m L m = 1 + i=1 i für ein festes m IN Induktionsshritt: L m+1 = L m + (m + 1) (entsprehend der Rekurrenz) = m 1 + i + (m + 1) (nah Induktionsannahme) = 1 + i=1 m+1 i=1 i (trivial) Damit ist die Formel L n = 1 + n i=1 i bewiesen. F3 01/02 p.277/294

10 geshlossene Formel Die Summenformel ist keine geshlossene Formel! m Mit Hilfe der Gaußshen Formel i = n(n+1) erhalten 2 i=1 wir nun eine geshlossene Formel für L n : L n = 1 + n(n + 1) 2 Grundsätzlihes Vorgehen beim Lösen von Rekurrenzgleihungen: Zuerst die Werte für kleine Argumente berehnen. Diese Werte können helfen 1. die Lösung zu finden, 2. die Lösung zu verifizieren. F3 01/02 p.278/294

11 2. Beispiel: Türme von Hanoi A B C Ausgangssituation: Seien drei Stangen gegeben und n Sheiben, die der Größe nah sortiert auf Stange A liegen. Aufgabe: Die Sheiben von Stange A sollen auf Stange C vershoben werden, wobei in jedem Shritt nur eine Sheibe bewegt und niemals eine größere Sheibe auf eine kleinere gelegt werden kann. F3 01/02 p.279/294

12 rekursiver Algorithmus 1. Vershiebe die n 1 oberen Sheiben von A auf B. 2. Vershiebe die größte Sheibe von A auf C. 3. Vershiebe alle n 1 Sheiben von B auf C. Vershiebungs-Analyse: Sei T (n) die Anzahl der Vershiebungen, die obiger Algorithmus brauht, um n Sheiben zu vershieben. Es gilt 1 falls n = 1 T (n) = 2T (n 1) + 1 falls n > 1 Frage: Kann man das shneller tun? Antwort: Nein. F3 01/02 p.280/294

13 Hanoi-Rekurrenz Rekurrenzgleihung für die Türme von Hanoi: 1 falls n = 1 T (n) = 2T (n 1) + 1 falls n 2 Tabellarishe Darstellung: n T (n) n Vermutung: T (n) = 2 n 1? F3 01/02 p.281/294

14 Beweis Wir betrahten zwei Beweismöglihkeiten: 1. vollständige Induktion 2. Reduzieren auf Summen Induktionsbeweis für: T (n) = 2 n 1 ist Lösung. Induktionsanfang: Für n = 1 gilt T (1) = = 1. Induktionsshritt: Nah der Induktionsannahme sei für ein gegebenes n 1 T (n) = 2 n 1 eine Lösung der Rekurrenzgleihung. Nah Rekurrenzgleihung: T (n + 1) = 2T (n) + 1 = 2(2 n 1) + 1 = 2 n+1 1 F3 01/02 p.282/294

15 Reduzierung auf Summen Es kann vorkommen, daß nah dem Studium endlih vieler Anfangswerte keine Vermutung naheliegt, die beweisbar eine Lösung darstellt. Hier kann nur noh formal nah einer Lösung gesuht werden. Abwikeln der Rekursion Zusammenfassen / Ersetzen bekannter (Teil-)Summen Die Methode kann zu einem standardisierten Verfahren zum Auffinden einer geshlossenen Formel für beliebige lineare Rekurrenzgleihungen erweitert werden! F3 01/02 p.283/294

16 Hanoi auf Summen reduzieren T (n) = 2T (n 1) + 1 = 2(2T (n 2) + 1) + 1 = 4T (n 2) = 4(2T (n 3) + 1) = 2 3 T (n 3) = 2 k T (n k) + = 2 n 1 T (1) + = n 1 i=0 k 1 i=0 n 2 2 i i=0 2 i 2 i (geometrishe Reihe) = 2n = 2n 1 F3 01/02 p.284/294

17 3. Beispiel: divide and onquer at(n/) nk nk' Problem P der Größe n n n n n n Lösung Aufteilung in a Subprobleme Zusammenfassung zur Lösung von P Gesuht: Zeitkomplexität T (n) dieses Algorithmus. d falls n = 1 T (n) = at ( n) + kn + k n falls n > 1 F3 01/02 p.285/294

18 Vereinfahung Zur Analyse des divide-and-onquer-algorithmus vereinfahen wir die Rekurrenz zu b falls n = 1 T (n) = at ( n ) + bn falls n > 1. k und k sind für jedes Problem bekannt und konstant! d k + k Also wählen wir b := k + k F3 01/02 p.286/294

19 Abwikeln der Rekurrenz Durh rekursives Einsetzen (Abwikeln) erhalten wir: ( n ) ( ( n ) T (n) = at + bn = a at + b n ) + bn ( 2 n ) = a 2 T + bn a 2 + bn ( n ) = a (at 2 + b n ) + bn a bn ( n ) ( a ) 2 = a 3 a T + bn + bn 3 + bn ( n ) k 1 ( a ) i = a k T + bn k Wenn n = k ist, so briht das Verfahren bei T (n) = a k b + bn k 1 i=0 ( a )i ab, denn es ist T (1) = b. i=0 F3 01/02 p.287/294

20 Der Weg zur geshlossenen Formel Mit n = k folgt k = log (n) und somit k 1 ( a ) i T (n) = a k b + bn = a k b + bn i=0 k ( a ) i ( a ) k bn i=0 = a k b (1 n ) + bn k = bn log (n) i=0 ( a ) i k ( a ) i i=0 Je nah dem Verhältnis von a zu ergeben sih untershiedlihe Lösungen! F3 01/02 p.288/294

21 Falluntersheidung Fall 1, a < : i=0 ( a ) i konvergiert T (n) proportional zu n Fall 2, a = : T (n) = bn(log (n) + 1) T (n) prop. n log(n) Fall 3, a > : T (n) proportional zu n log (a) Dann folgt T (n) = bn log (n) i=0 ( a ) i a ) log (n)+1 1 ( a = bn( a 1 bn = bn alog (n) = ba log (n) = bn log (a) n weil a log (n) = n log (a) stets gilt. ) log (n) F3 01/02 p.289/294

22 Shlußfolgerung Wihtige Feststellung zu divide-and-onquer-algorithmen: Die Zeitkomplexität eines divide-and-onquer-algorithmus hängt nur von dem Verhältnis a ab und niht von der Art des Problems oder vom Lösungsweg, wenn der Zeitbedarf für die Zerlegung in Teilprobleme und die Zusammenfassung der Teillösungen proportional zur Größe des Problems ist. F3 01/02 p.290/294

23 Ein praktishes Problem Für das Platinenlayout sind Anordnungen von Chips der Maße 1 2 m auf einer Bahn von 2 m Höhe und bisher unbestimmter Länge n nötig. Möglihe Anordnungen sind z.b.: n=5 n=6 Sei T n die Anzahl der vershiedenen Anordnungen auf einer Bahn der Länge n. Es gilt T n = T n 1 + T n 2 für n 2 Anfangswerte: T 0 := 1 und T 1 := 1 F3 01/02 p.291/294

24 Fibonai-Zahlen F 0 = 0, F 1 = 1, F n = F n 1 + F n 2 für n > 1 Wir suhen eine Lösung in der Form F n = r n (r ist unbekannte Konstante). Existiert eine solhe Lösung, dann gilt: r n = r n 1 + r n 2 für jedes n > 1 und daraus folgt, dass entweder r = 0 oder r 2 = r + 1. Diese Gleihung hat zwei Lösungen: r 1 = , r 2 = F3 01/02 p.292/294

25 Fibonai-Zahlen (2) Eine allgemeine Lösung der Gleihung hat die Form λr n 1 + µr n 2 wobei λ und µ Konstanten sind. Daraus folgt: λ + µ = F 0 = 0, λr 1 + µr 2 = F 1 = 1 λ = µ = 1 5 und (( F n = ) n ( 1 ) n ) 5 2 ( 1 Wegen lim ) n 5 n 2 = 0 gilt: ( F n ) n 5 für n 2 F3 01/02 p.293/294

26 Der goldene Shnitt Das abgetrennte Rehtek soll das gleihe Seitenverhältnis haben, wie das ursprünglihe Rehtek. r Dafür muß r s = s gelten. r s s s Es folgt x = r = s = 1 s r s x 1 oder x 2 x 1 = 0. Lösungen: x = Φ = 1+ 5 und x = ˆΦ = r-s Eine Größe r wird nah dem goldenen Shnitt geteilt, wenn der Teil s das geometrishe Mittel von r und r s ist: s = r(r s). F3 01/02 p.294/294

Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g:

Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g: TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 2 Prof. Dr. Helmut Seidl, S. Pott,

Mehr

17. KONTEXTSENSITIVE SPRACHEN

17. KONTEXTSENSITIVE SPRACHEN 17. KONTEXTSENSITIVE SPRACHEN HAUPTERGEBNIS: KS = ERW = NSPACE(O(n)) REK Das heisst: Kontextsensitive Grammatiken und Grammatiken vom Erweiterungstyp haben die gleihe Beshreibungsmähtigkeit. Kontextsensitive

Mehr

Übersicht. Datenstrukturen und Algorithmen. Übersicht. Divide-and-Conquer. Vorlesung 9: Quicksort (K7)

Übersicht. Datenstrukturen und Algorithmen. Übersicht. Divide-and-Conquer. Vorlesung 9: Quicksort (K7) Datenstrukturen und Algorithmen Vorlesung 9: (K7) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://www-i2.rwth-aachen.de/i2/dsal0/ Algorithmus 8. Mai 200 Joost-Pieter

Mehr

Algorithmen und Datenstrukturen Wintersemester 2004/ November T(n) = T(n a) + T(a) + n

Algorithmen und Datenstrukturen Wintersemester 2004/ November T(n) = T(n a) + T(a) + n Lehrstuhl für Praktische Informatik III Norman May B6, 29, Raum C0.05 68131 Mannheim Telefon: (0621) 181 2517 Email: norman@pi3.informatik.uni-mannheim.de Matthias Brantner B6, 29, Raum C0.05 68131 Mannheim

Mehr

Physik. Lichtgeschwindigkeit

Physik. Lichtgeschwindigkeit hysik Lihtgeshwindigkeit Messung der Lihtgeshwindigkeit in Versuhsaufbau Empfänger s Spiegel Sender l osition 0 d Abb. Versuhsdurhführung Die Spiegel werden auf die osition 0 m geshoben und die hase mit

Mehr

SSYLB2 SS06 Daniel Schrenk, Andreas Unterweger Übung 5. Laborprotokoll SSY. Reglerentwurf nach dem Frequenz- Kennlinien-Verfahren

SSYLB2 SS06 Daniel Schrenk, Andreas Unterweger Übung 5. Laborprotokoll SSY. Reglerentwurf nach dem Frequenz- Kennlinien-Verfahren Laborprotokoll SSY Reglerentwurf nah dem Frequenz- Kennlinien-Verfahren Daniel Shrenk, Andreas Unterweger, ITS 24 SSYLB2 SS6 Daniel Shrenk, Andreas Unterweger Seite 1 von 13 1. Einleitung Ziel der Übung

Mehr

Abschnitt: Algorithmendesign und Laufzeitanalyse

Abschnitt: Algorithmendesign und Laufzeitanalyse Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher

Mehr

T7 - Bestimmung der Oberflächenspannung homologer wässriger Alkohollösungen (Traubesche Regel)

T7 - Bestimmung der Oberflächenspannung homologer wässriger Alkohollösungen (Traubesche Regel) T7 - Bestimmung der Oberflähenspannung homologer wässriger Alkohollösungen (Traubeshe Regel) Aufgaben:. Messung der Oberflähenspannung von vershieden konzentrierten wässrigen Lösungen der homologen Alkohole

Mehr

S=[n] Menge von Veranstaltungen J S kompatibel mit maximaler Größe J

S=[n] Menge von Veranstaltungen J S kompatibel mit maximaler Größe J Greedy-Strategie Definition Paradigma Greedy Der Greedy-Ansatz verwendet die Strategie 1 Top-down Auswahl: Bestimme in jedem Schritt eine lokal optimale Lösung, so dass man eine global optimale Lösung

Mehr

Übersicht. Datenstrukturen und Algorithmen Vorlesung 5: Rekursionsgleichungen (K4) Übersicht. Binäre Suche. Joost-Pieter Katoen. 20.

Übersicht. Datenstrukturen und Algorithmen Vorlesung 5: Rekursionsgleichungen (K4) Übersicht. Binäre Suche. Joost-Pieter Katoen. 20. Übersicht Datenstrukturen und Algorithmen Vorlesung 5: (K4) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://www-i2.informatik.rwth-aachen.de/i2/dsal12/ 20.

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/32 Datenstrukturen und Algorithmen Vorlesung 7: Sortieren (K2) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group

Mehr

Seminar Kryptographie

Seminar Kryptographie Seminar Kryptographie Christian Wilkin Seminararbeit WS 24/25 Dezember 24 Betreuung: Prof. Dr. Alfred Sheerhorn Fahbereih Design und Informatik Fahhohshule Trier University of Applied Sienes FACHHOCHSCHULE

Mehr

Frequenzanalyse. Der Abstand der diskreten Frequenzlinien ist der Kehrwert der Periodendauer:

Frequenzanalyse. Der Abstand der diskreten Frequenzlinien ist der Kehrwert der Periodendauer: WS 0 Fourier-Reihe: Jede einigrermaßen gutartige 1 periodishe reelle Zeitfuntion x(t) ann mittels einer Fourier-Reihe dargestellt werden als eine Summe omplexer Amplituden (Fourier-Synthese): xt () e n

Mehr

Methoden zum Lösen von Rekursionsgleichungen

Methoden zum Lösen von Rekursionsgleichungen Rekursionsgleichungen... Slide 1 Methoden zum Lösen von Rekursionsgleichungen Bisher wurde Expandieren der Rekursion + Raten der Gesetzmäßigkeit benutzt, um einfache Rekursionsgleichungen zu lösen. Zum

Mehr

Logarithmen und Logarithmengesetze

Logarithmen und Logarithmengesetze R. Brinkmnn http://brinkmnn-du.de Seite 9.. Logrithmen und Logrithmengesetze Wir betrhten die Gleihung 5 = 5 Auf der linken Seite steht eine Potenz mit der Bsis 5 und dem Eponenten. Auf der rehten Seite

Mehr

2.1 Motivation, Zurückführung auf ein Doppelintegral. Wir betrachten einen zylindrischen Körper K, der von der Fläche

2.1 Motivation, Zurückführung auf ein Doppelintegral. Wir betrachten einen zylindrischen Körper K, der von der Fläche Kpitel 2 Ds Flähenintegrl 2.1 Motivtion, Zurükführung uf ein Doppelintegrl Wir betrhten einen zylindrishen Körper K, der von der Flähe z f(x, y, seitlih von einer Zylinderflähe mit Erzeugenden prllel zur

Mehr

Umstellen von Formeln und Gleichungen

Umstellen von Formeln und Gleichungen Umstellen von Formeln und Gleihungen. Ds Zusmmenfssen von Termen edeutet grundsätzlih ein Ausklmmern, uh wenn mn den Zwishenshritt niht immer ufshreit. 4 6 = (4 6) =. Steht eine Vrile, nh der ufgelöst

Mehr

Klausuraufgaben, Prüfungsleistung 06/08, Wirtschaftsmathematik, Betriebswirtschaft

Klausuraufgaben, Prüfungsleistung 06/08, Wirtschaftsmathematik, Betriebswirtschaft Studiengang Modul Art der Leistung Klausur-Kennzeihen Betriebswirtshat Wirtshatsmathematik Prüungsleistung Datum.6.8 BB-WMT-P 86 Bezüglih der Anertigung Ihrer Arbeit sind olgende Hinweise verbindlih: Verwenden

Mehr

Rekursionen (Teschl/Teschl 8.1-8.2)

Rekursionen (Teschl/Teschl 8.1-8.2) Rekursionen (Teschl/Teschl 8.1-8.2) Eine Rekursion kter Ordnung für k N ist eine Folge x 1, x 2, x 3,... deniert durch eine Rekursionsvorschrift x n = f n (x n 1,..., x n k ) für n > k, d. h. jedes Folgenglied

Mehr

Kapitel 6. Komplexität von Algorithmen. Xiaoyi Jiang Informatik I Grundlagen der Programmierung

Kapitel 6. Komplexität von Algorithmen. Xiaoyi Jiang Informatik I Grundlagen der Programmierung Kapitel 6 Komplexität von Algorithmen 1 6.1 Beurteilung von Algorithmen I.d.R. existieren viele Algorithmen, um dieselbe Funktion zu realisieren. Welche Algorithmen sind die besseren? Betrachtung nicht-funktionaler

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen

Mehr

Zusammenfassung: Lineare mechanische Wellen

Zusammenfassung: Lineare mechanische Wellen LGÖ Ks Ph -stündig 0.09.0 Zusammenfassung: Lineare mehanishe Wellen Alle Shwingungen und Wellen werden als ungedämpft angesehen. Mehanishe Wellen benötigen zu ihrer Ausbreitung einen Wellenträger, d. h.

Mehr

Kapitel 7. Rekursionsgleichungen. Allgemeines Iterationsmethode Klassen von Rekursionsgleichungen Erzeugende Funktionen

Kapitel 7. Rekursionsgleichungen. Allgemeines Iterationsmethode Klassen von Rekursionsgleichungen Erzeugende Funktionen Kapitel 7 Rekursionsgleichungen p. /38 Kapitel 7 Rekursionsgleichungen Allgemeines Iterationsmethode Klassen von Rekursionsgleichungen Erzeugende Funktionen Kapitel 7 Rekursionsgleichungen p. 2/38 Allgemeines

Mehr

Kapitel 8. Rekursionsgleichungen. Landau-Symbole. Lösen von Rekursionsgleichungen Allgemeines Iterationsmethode Spezialfälle Erzeugende Funktionen

Kapitel 8. Rekursionsgleichungen. Landau-Symbole. Lösen von Rekursionsgleichungen Allgemeines Iterationsmethode Spezialfälle Erzeugende Funktionen Rekursionsgleichungen Landau-Symbole Kapitel 8 Lösen von Rekursionsgleichungen Allgemeines Iterationsmethode Spezialfälle Erzeugende Funktionen Kapitel 8 Rekursionsgleichungen p./42 Landau-Symbole () Modellierung

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

I. II. I. II. III. IV. I. II. III. I. II. III. IV. I. II. III. IV. V. I. II. III. IV. V. VI. I. II. I. II. III. I. II. I. II. I. II. I. II. III. I. II. III. IV. V. VI. VII. VIII.

Mehr

Kostenmaße. F3 03/04 p.188/395

Kostenmaße. F3 03/04 p.188/395 Kostenmaße Bei der TM nur ein Kostenmaß: Ein Schritt (Konfigurationsübergang) kostet eine Zeiteinheit; eine Bandzelle kostet eine Platzeinheit. Bei der RAM zwei Kostenmaße: uniformes Kostenmaß: (wie oben);

Mehr

Kapitel 3. Natürliche Zahlen und vollständige Induktion

Kapitel 3. Natürliche Zahlen und vollständige Induktion Kapitel 3 Natürliche Zahlen und vollständige Induktion In Kapitel 1 haben wir den direkten Beweis, den modus ponens, kennen gelernt, der durch die Tautologie ( A (A = B) ) = B gegeben ist Dabei war B eine

Mehr

16. All Pairs Shortest Path (ASPS)

16. All Pairs Shortest Path (ASPS) . All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e

Mehr

Mathematische Grundlagen der Computerlinguistik

Mathematische Grundlagen der Computerlinguistik Mengen und Mengenoperationen (Teil II) Centrum für Informations- und Sprachverarbeitung (CIS) 2. Juni 2014 Table of Contents 1 2 3 Definition Mengenfamilie Eine Menge, deren sämtliche Elemente selbst wiederum

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

Weiterführende Aufgaben zu chemischen Gleichgewichten

Weiterführende Aufgaben zu chemischen Gleichgewichten Weiterführende Aufgaben zu hemishen Gleihgewihten Fahshule für Tehnik Suhe nah Ruhe, aber durh das Gleihgewiht, niht durh den Stillstand deiner Tätigkeiten. Friedrih Shiller Der Shlüssel zur Gelassenheit

Mehr

Rechenregeln für Summen

Rechenregeln für Summen Rechenregeln für Summen Im Umgang mit Summen sind gewisse Regeln zu beachten. 1 Summe gleicher Summanden Betrachten wir folgende Summe: x Hier enthält x keinen Summationsindex, d.h. es wird x einfach n-mal

Mehr

2. Wellenausbreitung

2. Wellenausbreitung 2. Wellenausbreitung Die Wellengleihung beshreibt die Bewegung des Stabes: 2 u t 2 =2 2 u x 2 Für die eindeutige Festlegung der Lösung müssen zusätzlih Anfangsbedingungen und Randbedingungen angegeben

Mehr

Darstellungstheorie der Lorentz-Gruppe

Darstellungstheorie der Lorentz-Gruppe Kai Walter 29. Juli 2008 Inhaltsverzeihnis 1 Einführung 2 2 Lie-Algebra der Lorentz-Gruppe 2 2.1 Minkowski-Raum............................. 2 2.2 Lorentz-Transformation......................... 3 2.3

Mehr

Aufgaben zu Kapitel 14

Aufgaben zu Kapitel 14 Aufgaben zu Kapitel 14 1 Aufgaben zu Kapitel 14 Verständnisfragen Aufgabe 14.1 Haben (reelle) lineare Gleichungssysteme mit zwei verschiedenen Lösungen stets unendlich viele Lösungen? Aufgabe 14.2 Gibt

Mehr

Algorithmen auf Sequenzen

Algorithmen auf Sequenzen Algorithmen auf Sequenzen Vorlesung von Prof. Dr. Sven Rahmann im Sommersemester 2008 Kapitel 5 Approximative Textsuhe Weseite zur Vorlesung http://ls11-www.s.tu-dortmund.de/people/rahmann/teahing/ss2008/algorithmenaufsequenzen

Mehr

1. Musterlösung. Problem 1: Average-case-Laufzeit vs. Worst-case-Laufzeit

1. Musterlösung. Problem 1: Average-case-Laufzeit vs. Worst-case-Laufzeit Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner Musterlösung Problem : Average-case-Laufzeit vs Worst-case-Laufzeit pt (a) Folgender Algorithmus löst das Problem der

Mehr

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5) Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff

Mehr

2 i. i=0. und beweisen Sie mittels eines geeigneten Verfahrens die Korrektheit der geschlossenen Form.

2 i. i=0. und beweisen Sie mittels eines geeigneten Verfahrens die Korrektheit der geschlossenen Form. für Informatik Prof. aa Dr. Ir. Joost-Pieter Katoen Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder Tutoraufgabe (Vollständige Induktion): Finden Sie eine geschlossene Form für die

Mehr

7.4. Teilverhältnisse

7.4. Teilverhältnisse 7... erehnung von Teilverhältnissen ufgen zu Teilverhältnissen Nr. 7.. Teilverhältnisse Die Shwerpunkte von Figuren und Körpern lssen sih mit Hilfe von Teilverhältnissen usdrüken und erehnen. Definition

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 1 für die Übung

Mehr

Etablierte Bodenmodelle im Ingenieurbau

Etablierte Bodenmodelle im Ingenieurbau Einleitung BODENMODELLE Einleitung Die realistishe Abbildung von Bauwerk - Boden Wehselwirkungen in Finite Elemente Programmen ist ungeahtet des gegenwärtig hohen Entwiklungsstandes der verfügbaren Software

Mehr

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java 1 / 20 Einstieg in die Informatik mit Java Rekursion Gerd Bohlender Institut für Angewandte und Numerische Mathematik Gliederung 2 / 20 1 Überblick 2 Rekursion 3 Rekursive Sortieralgorithmen 4 Backtracking

Mehr

Erweiterte spezielle Relativitätstheorie

Erweiterte spezielle Relativitätstheorie Das Mihelson-Morley-Experiment als Shlüssel zur Vereinheitlihung von spezieller Relativitätstheorie und Äthertheorie von Andreas Varesi Münhen, 7. Februar 2005 von 30 Abstrat Mit Hilfe des Mihelson-Morley-Experiments

Mehr

3 Vom Zählen zur Induktion

3 Vom Zählen zur Induktion 7 3 Vom Zählen zur Induktion 3.1 Natürliche Zahlen und Induktions-Prinzip Seit unserer Kindheit kennen wir die Zahlen 1,, 3, 4, usw. Diese Zahlen gebrauchen wir zum Zählen, und sie sind uns so vertraut,

Mehr

Spezielle Relativitätstheorie. Die Suche nach dem Äther

Spezielle Relativitätstheorie. Die Suche nach dem Äther Spezielle Relativitätstheorie Die Suhe nah dem Äther Wellennatur des Lihtes Sir Isaa Newton (1643 177) Ihm wird die Korpuskulattheorie des Lihtes zugeshrieben: daß das Liht etwas ist, das sih mit einer

Mehr

JAVA - Suchen - Sortieren

JAVA - Suchen - Sortieren Übungen Informatik I JAVA - Suchen - Sortieren http://www.fbi-lkt.fh-karlsruhe.de/lab/info01/tutorial Übungen Informatik 1 Folie 1 Inhalt Suchen/Sortieren binary search mergesort bubblesort Übungen Informatik

Mehr

Kapitel 4. Grundlagen der Analyse von Algorithmen. Xiaoyi Jiang Informatik II Datenstrukturen und Algorithmen

Kapitel 4. Grundlagen der Analyse von Algorithmen. Xiaoyi Jiang Informatik II Datenstrukturen und Algorithmen Kapitel 4 Grundlagen der Analyse von Algorithmen 1 4.1 Kostenfunktion zu Beurteilung von Algorithmen Die Angabe der Laufzeit (und etwas weniger wichtig des Speicherplatzes) liefert das wichtigste Maß für

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier fernau@uni-trier.de

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier fernau@uni-trier.de Diskrete Strukturen und Logik WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik & Mengenlehre

Mehr

Funktionen und Mächtigkeiten

Funktionen und Mächtigkeiten Vorlesung Funktionen und Mähtigkeiten. Etws Mengenlehre In der Folge reiten wir intuitiv mit Mengen. Eine Menge ist eine Zusmmenfssung von Elementen. Zum Beispiel ist A = {,,,,5} eine endlihe Menge mit

Mehr

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert:

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: Beispiel: Wir untersuchen die rekursiv definierte Folge a 0 + auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: ( ) (,, 7, 5,...) Wir können also vermuten, dass die Folge monoton fallend

Mehr

Dualität in der Elementaren Geometrie

Dualität in der Elementaren Geometrie Dualität in der Elementaren Geometrie Vortrag zum Tag der Mathematik 2012 Holger Stephan, Berlin Weierstraß Institut für Angewandte Analysis und Stohastik Inhaltsverzeihnis 1 Zusammenfassung (aus dem Programmheft)

Mehr

Kostenmodell. Daniel Graf, Tobias Pröger. 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016)

Kostenmodell. Daniel Graf, Tobias Pröger. 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016) Kostenmodell Daniel Graf, Tobias Pröger 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016) Erklärung: Diese Mitschrift ist als Ergänzung zur Vorlesung gedacht. Wir erheben keinen Anspruch

Mehr

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2015 MATHEMATIK. 24. Juni :30 Uhr 11:00 Uhr. Platzziffer (ggf. Name/Klasse):

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2015 MATHEMATIK. 24. Juni :30 Uhr 11:00 Uhr. Platzziffer (ggf. Name/Klasse): MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2015 MATHEMATIK 24. Juni 2015 8:30 Uhr 11:00 Uhr Pltzziffer (ggf. Nme/Klsse): Die Benutzung von für den Gebruh n der Mittelshule zugelssenen Formelsmmlungen

Mehr

EDA-Methoden. Versuch 12 im Informationselektronischen Praktikum. Studiengang Elektrotechnik und Informationstechnik

EDA-Methoden. Versuch 12 im Informationselektronischen Praktikum. Studiengang Elektrotechnik und Informationstechnik Fakultät für Elektrotehnik und Informationstehnik Institut für Mikro- und Nanoelektronik Fahgebiet Elektronishe Shaltungen und Systeme EDA-Methoden Versuh 12 im Informationselektronishen Praktikum Studiengang

Mehr

4 Effizienz und Komplexität 3.1 1

4 Effizienz und Komplexität 3.1 1 4 Effizienz und Komplexität 3.1 1 Effizienz (efficiency): auf den Ressourcen-Verbrauch bezogene Programmeigenschaft: hohe Effizienz bedeutet geringen Aufwand an Ressourcen. Typische Beispiele: Speichereffizienz

Mehr

Programmiertechnik II

Programmiertechnik II Analyse von Algorithmen Algorithmenentwurf Algorithmen sind oft Teil einer größeren Anwendung operieren auf Daten der Anwendung, sollen aber unabhängig von konkreten Typen sein Darstellung der Algorithmen

Mehr

Iterative Verfahren, Splittingmethoden

Iterative Verfahren, Splittingmethoden Iterative Verfahren, Splittingmethoden Theodor Müller 19. April 2005 Sei ein lineares Gleichungssystem der Form Ax = b b C n, A C n n ( ) gegeben. Es sind direkte Verfahren bekannt, die ein solches Gleichungssystem

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 2. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 2. Übungsblatt Prof. Dr. T. Apel J. Mihael Mathematishe Methoden in den Ingenieurwissenshaften. Übungsblatt Wintertrimester 5 Aufgabe 4 : (Variationsrehnung Extremalen Bestimmen Sie die Extremalen der folgenden Variationsprobleme

Mehr

Grundlagen der Programmierung

Grundlagen der Programmierung Grundlagen der Programmierung Algorithmen und Datenstrukturen Die Inhalte der Vorlesung wurden primär auf Basis der angegebenen Literatur erstellt. Darüber hinaus sind viele Teile direkt aus der Vorlesung

Mehr

Codierung, Codes (variabler Länge)

Codierung, Codes (variabler Länge) Codierung, Codes (variabler Länge) A = {a, b, c,...} eine endliche Menge von Nachrichten (Quellalphabet) B = {0, 1} das Kanalalphabet Eine (binäre) Codierung ist eine injektive Abbildung Φ : A B +, falls

Mehr

Mathematik I für Wirtschaftsinformatiker

Mathematik I für Wirtschaftsinformatiker e von Folgen und Reihen 13.11.2008 Allgemeine Folgen Nullfolgen Allgemeine Folgen Erinnerung: Folgen Wird jeder natürlichen Zahl n eine reelle Zahl a n zugeordnet, so spricht man von einer Zahlenfolge

Mehr

Sortierverfahren für Felder (Listen)

Sortierverfahren für Felder (Listen) Sortierverfahren für Felder (Listen) Generell geht es um die Sortierung von Daten nach einem bestimmten Sortierschlüssel. Es ist auch möglich, daß verschiedene Daten denselben Sortierschlüssel haben. Es

Mehr

Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel. dt = lim. = lim = Weiters erhalten wir durch partielle Integration, dass

Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel. dt = lim. = lim = Weiters erhalten wir durch partielle Integration, dass Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel Zuerst wollen wir die Gamma-Funktion definieren, die eine Verallgemeinerung von n! ist. Dazu benötigen wir einige Resultate. Lemma.

Mehr

6. Übungsblatt zur Mathematik I für Maschinenbau

6. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 6. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 2/ 25..-.2. Aufgabe G (Lineare Gleichungssysteme)

Mehr

3. Argumentieren und Beweisen mit Punktemustern

3. Argumentieren und Beweisen mit Punktemustern 3 Punktemuster 22 3. Argumentieren und Beweisen mit Punktemustern 3.1 Figurierte Zahlen Gerade in der Grundschule bietet es sich immer wieder an, Zahlen durch Gegenstände zu verdeutlichen. Andererseits

Mehr

Verkürzungsfaktor bei Antennen und Koax-Leitungen

Verkürzungsfaktor bei Antennen und Koax-Leitungen 071111 hb9tyx@lusterte.om Verkürzungsaktor bei Antennen und Koax-Leitungen Vielleiht haben Sie sih beim Bau von Antennen oder Umwegleitungen auh shon geragt, woher eigentlih der Verkürzungsaktor stammt.

Mehr

Physik I Übung 11 - Lösungshinweise

Physik I Übung 11 - Lösungshinweise Physik I Übung 11 - Lösungshinweise Stefan Reutter SoSe 2012 Moritz Kütt Stand: 04.07.2012 Franz Fujara Aufgabe 1 Das Lied der Moreley Die shöne Moreley singe eine besondere Art von Welle, die ein sehr

Mehr

5 Relativistische Mechanik

5 Relativistische Mechanik 5 Relativistishe ehanik Nah dem Relativitätsprinzip müssen die Naturgesetze, also insbesondere die Gesetze der ehanik, in jedem IS die gleihe Form annehmen. Zur Formulierung der Impulserhaltung etwa benötigt

Mehr

Mittelwerte. Sarah Kirchner & Thea Göllner

Mittelwerte. Sarah Kirchner & Thea Göllner Mittelwerte Srh Kirher The Göller Mittelwerte sid vershiedee mthemtish defiierte Kegröße. Uter dem Mittelwert zweier oder mehrerer Zhle versteht m meistes de Durhshitt, owohl viele dere Mittelilduge vorkomme.

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 6: Induktives Vorgehen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische

Mehr

Bitte beschäftigen Sie sich mit folgenden Aspekten aus dem Gebiet Schwache Wechselwirkung :

Bitte beschäftigen Sie sich mit folgenden Aspekten aus dem Gebiet Schwache Wechselwirkung : Bitte beshäftigen Sie sih mit folgenden Asekten aus dem Gebiet Shwahe Wehselwirkung : igenarten des nuklearen β-zerfalls Fermi- und Gamow-Teller Übergänge 3 vektorielle und axiale Kolung 4 Wiederholen

Mehr

Protokoll zur Vorlesung Theoretische Informatik I

Protokoll zur Vorlesung Theoretische Informatik I Protokoll zur Vorlesung Theoretishe Informtik I! " # $ % # & ' ( % ) * + & " & & &, " ' % + - + # + & '. / 0 1 # 0 & 2 & # & 3 4 & 5 # 0 + & 6 & ' + 7 7 3 8 4 & 7 + + + % ( % 6 # 9 & 5 # 0 + & 3 8. : &

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Lösungen Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Kapitel I: Mengen Aufgabe

Mehr

Ideen der Informatik Suchen und Sortieren [Ordnung muss sein ] Kurt Mehlhorn Adrian Neumann viele Folien von Kostas Panagiotou

Ideen der Informatik Suchen und Sortieren [Ordnung muss sein ] Kurt Mehlhorn Adrian Neumann viele Folien von Kostas Panagiotou Ideen der Informatik Suchen und Sortieren [Ordnung muss sein ] Kurt Mehlhorn Adrian Neumann viele Folien von Kostas Panagiotou Suchen Welche Telefonnummer hat Kurt Mehlhorn? Wie schreibt man das Wort Equivalenz?

Mehr

Kinetik homogener Reaktionen - Formalkinetik

Kinetik homogener Reaktionen - Formalkinetik Prof. Dr. xel rehm Universität Oldenburg - Praktikum der Tehnishen Chemie 1 Einleitung Kinetik homogener Reaktionen - Formalkinetik Unter hemisher Kinetik versteht man die Lehre von der Geshwindigkeit

Mehr

Vorlesung Diskrete Strukturen Transportnetze

Vorlesung Diskrete Strukturen Transportnetze Vorlesung Diskrete Strukturen Trnsportnetze Bernhr Gnter WS 2009/10 Gerihtete Grphen Ein shlingenloser gerihteter Grph ist ein Pr (V, A), woei V eine elieige Menge ist, eren Elemente wir Eken nennen un

Mehr

Übungsblatt 1. f(n) = f(n) = O(g(n)) g(n) = O(f(n)) Zeigen oder widerlegen Sie: 3 n = Θ(2 n ) Aufgabe 1.2 Gegeben sei die folgende Funktion:

Übungsblatt 1. f(n) = f(n) = O(g(n)) g(n) = O(f(n)) Zeigen oder widerlegen Sie: 3 n = Θ(2 n ) Aufgabe 1.2 Gegeben sei die folgende Funktion: Übungsblatt 1 Aufgabe 1.1 Beweisen oder widerlegen Sie, dass für die im Folgenden definierte Funktion f(n) die Beziehung f(n) = Θ(n 4 ) gilt. Beachten Sie, dass zu einem vollständigen Beweis gegebenenfalls

Mehr

Laufzeit und Komplexität

Laufzeit und Komplexität Laufzeit und Komplexität Laufzeit eines Algorithmus Benchmarking versus Analyse Abstraktion Rechenzeit, Anzahl Schritte Bester, Mittlerer, Schlechtester Fall Beispiel: Lineare Suche Komplexitätsklassen

Mehr

2. Algorithmen und Algorithmisierung Algorithmen und Algorithmisierung von Aufgaben

2. Algorithmen und Algorithmisierung Algorithmen und Algorithmisierung von Aufgaben Algorithmen und Algorithmisierung von Aufgaben 2-1 Algorithmisierung: Formulierung (Entwicklung, Wahl) der Algorithmen + symbolische Darstellung von Algorithmen Formalismen für die symbolische Darstellung

Mehr

Wellen. Wellen treten in der Natur in großer Zahl auf: Wasserwellen, Schallwellen, Lichtwellen, Radiowellen, La Ola im Stadion

Wellen. Wellen treten in der Natur in großer Zahl auf: Wasserwellen, Schallwellen, Lichtwellen, Radiowellen, La Ola im Stadion Wellen Wellen treten in der Natur in großer Zahl au: Wasserwellen, Shallwellen, Lihtwellen, Radiowellen, La Ola im Stadion Von den oben genannten allen die ersten beiden in die Kategorie mehanishe Wellen,

Mehr

Mathematik für Wirtschaftswissenschaftler, WS 10/11 Musterlösungen zu Aufgabenblatt 11

Mathematik für Wirtschaftswissenschaftler, WS 10/11 Musterlösungen zu Aufgabenblatt 11 Mathematik für Wirtschaftswissenschaftler, WS / Musterlösungen zu Aufgabenblatt Aufgabe 76: Bestimmen Sie mittels Gauß-Elimination die allgemeine Lösung der folgenden linearen Gleichungssysteme Ax b: a)

Mehr

Alexander Halles. Temperaturskalen

Alexander Halles. Temperaturskalen emperatursalen Stand: 15.0.004 - Inhalt - 1. Grundsätzlihes über emperatur 3. Kelvin-Sala 3 3. Fahrenheit-Sala und Ranine-Sala 4 4. Celsius-emperatursala 4 5. Die Réaumur-Sala 4 6. Umrehnung zwishen den

Mehr

Physik, grundlegendes Anforderungsniveau

Physik, grundlegendes Anforderungsniveau Niedersahsen Diese Lösung wurde erstellt von Tanja Reimbold Sie ist eine offizielle Lösung des Niedersähsishen Kultusministeriums Eigenshaften von Liht Aufgabe 1 Vorgaben: Transmissionsgitter mit 6 g =

Mehr

3. Ziel der Vorlesung

3. Ziel der Vorlesung 3. Ziel der Vorlesung Der Zweck der Vorlesung ist das Studium fundamentaler Konzepte in der Algorithmentheorie. Es werden relevante Maschinenmodelle, grundlegende und höhere Datenstrukturen sowie der Entwurf

Mehr

Uebersicht. Webpage & Ilias. Administratives. Lehrbuch. Vorkenntnisse. Datenstrukturen & Algorithmen

Uebersicht. Webpage & Ilias. Administratives. Lehrbuch. Vorkenntnisse. Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Uebersicht Administratives Einleitung Ein einführendes Beispiel Matthias Zwicker Universität Bern Frühling 2010 2 Administratives Dozent Prof. Zwicker, zwicker@iam.unibe.ch

Mehr

OBERFLÄCHENAKTIVITÄT. 1. Versuchsplatz. 2. Allgemeines zum Versuch. Komponenten: - Messapparatur - Bechergläser - Pipetten - Messkolben - Laborboy

OBERFLÄCHENAKTIVITÄT. 1. Versuchsplatz. 2. Allgemeines zum Versuch. Komponenten: - Messapparatur - Bechergläser - Pipetten - Messkolben - Laborboy Praktikum Teil A und B 10. OBERFLÄCHENAKTIVITÄT Stand 8/05/013 OBERFLÄCHENAKTIVITÄT 1. Versuhsplatz Komponenten: - Messapparatur - Behergläser - Pipetten - Messkolben - Laborboy. Allgemeines zum Versuh

Mehr

Universität Karlsruhe (TH)

Universität Karlsruhe (TH) Universität Karlsruhe (TH) Institut für Innovatives Rehnen und Programmstrukturen (IPD) Übersetzerbau WS 2007/08 http://www.info.uni-karlsruhe.de/ Dozent: Prof. Dr.rer.nat. G. Goos goos@ipd.info.uni-karlsruhe.de

Mehr

3.1.3 Newtonsche Interpolationsformel / Dividierte Differenzen

3.1.3 Newtonsche Interpolationsformel / Dividierte Differenzen KAPITEL 3 INTERPOLATION UND APPROXIMATION 4 33 Newtonsche Interpolationsformel / Dividierte Differenzen Das Verfahren von Neville ist unpraktisch, wenn man das Polynom selbst sucht oder das Polynom an

Mehr

1.) Rekursion und Induktion: Rechnen mit natürlichen Zahlen

1.) Rekursion und Induktion: Rechnen mit natürlichen Zahlen 1) Rekursion und Induktion: Rechnen mit natürlichen Zahlen Aufbauend auf: "Anwendungen: Sätze, Beweise, Algorithmen und Programme", "Fasern" Aufgaben: 9 > restart; Axiomatik der natürlichen Zahlen Wir

Mehr

2.3 Der Fluss eines Vektorfeldes

2.3 Der Fluss eines Vektorfeldes 32 Kapitel 2. Gewöhnlihe Differentialgleihungen 2.3 Der Fluss eines Vektorfeldes Sei F:D R n R n ein stetig differenzierbares Vektorfeld. Dann erfüllt F die Voraussetzungen des Existenz- und Eindeutigkeitssatzes.

Mehr

Städtisches Gymnasium Wermelskirchen, Fachkonferenz Physik Leistungsbewertung

Städtisches Gymnasium Wermelskirchen, Fachkonferenz Physik Leistungsbewertung Städtishes Gymnasium Wermelskirhen, Fahkonferenz Physik C Beispiel einer Klausur SEK II inl. Erwartungshorizont Q Physik Grundkurs. Klausur 0.0.04 Thema: Dopplereffekt, Shwingkreis Name: Aufgabe : Doppler-Effekt

Mehr

Modul Chemische Kinetik und Reaktionsdynamik: Hydrolyse von Harnstoff

Modul Chemische Kinetik und Reaktionsdynamik: Hydrolyse von Harnstoff Modul Chemishe Kineti und Reationsdynami: ydrolyse von arnstoff Theorie Mit ilfe von Enzymen ist es möglih, die Ativierungsenergie von hemishen Reationen so weit herabzusetzen, dass die Reationsgeshwindigeit

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

3.2.7.5 Pulverbeschichtung in der Automobilindustrie

3.2.7.5 Pulverbeschichtung in der Automobilindustrie Magerlakierungen Das Lakierergebnis in shwer zugänglihen hintershnittenen Flähen der Karosse z.b. im Bereih A-Säulen/Türshaht ist aufgrund des guten Umgriffverhaltens des Pulvers besser als bei Naßapplikationen.

Mehr

Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen

Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen Kapitel III Stetige Funktionen 14 Stetigkeit und Rechenregeln für stetige Funktionen 15 Hauptsätze über stetige Funktionen 16 Konvergenz von Funktionen 17 Logarithmus und allgemeine Potenz C 1 14 Stetigkeit

Mehr