10. Medizinische Statistik

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "10. Medizinische Statistik"

Transkript

1 10. Medizinische Statistik Projektplanung Deskriptive Statistik Inferenz-Statistik Literatur: Hüsler, J. und Zimmermann, H.: Statistische Prinzipien für medizinische Projekte, Verlag Hans Huber, Medizinische Informatik 10. Medizinische Statistik 1 Projektplanung 1. Fragestellung diskutieren: Ziele festlegen, alle relevanten Variablen und Einflussgrößen bestimmen, Modellüberlegungen mit Einbezug bekannter wissenschaftlicher Arbeiten. 2. Planung des Experimentes: sinnvolle Variablen und Einflussgrößen festlegen, Stichprobengröße bestimmen, Kosten und Zeitaufwand abklären. 3. Durchführung des Experimentes: Protokollierung, Kontrolle der Variablen und Einflussgrößen. 4. Statistische Auswertung: Graphiken erstellen und Maßzahlen berechnen, Diskussion der Modellannahmen. 5. Diskussion der neuen Informationen: Validität bestimmen, Schlussfolgerungen herleiten, Bericht verfassen. Medizinische Informatik 10. Medizinische Statistik 2

2 Population und Stichprobe Die Stichprobe muss eine zufällige Auswahl der Population sein! Probleme und Lösungen: inhomogene Population Aufteilung in Untergruppen (z.b. Männer und Frauen) retrospektive Studie prospektive Studie Bias durch Auswahl Zufallsauswahl (Problem bei Freiwilligen, eigenen Patienten,..) Bias durch Vermengung Kausale Faktoren kennen und berücksichtigen (z.b. Alter, soziale Indikatoren,...) Informationsbias klare Definitionen & Versuchprotokolle mit möglichst wenig Variationen (Problem z.b. bei Umfragen zu heiklen Themen) Medizinische Informatik 10. Medizinische Statistik 3 Deskriptive Statistik: Maßzahlen Umfang (Stichprobenumfang) Minimum Maximum Mittelwert (mean) x : (x x n ) / 2 Median (median): (n+1)/2-te Wert bzw. Mittelwert 1. Quartil: 25% der Werte sind kleiner 3. Quartil: 75% der Werte sind kleiner Varianz s 2 : ((x 1 - x) (x n - x) 2 ) / (n - 1) Standardabweichung s (SD): Varianz innerhalb x + s sind 2/3 der Daten (bei Normalverteilung NV) innerhalb x + 2s: 95% (bei NV; ohne > 75%) innerhalb x + 3s: 99% (bei NV; ohne > 90%) Medizinische Informatik 10. Medizinische Statistik 4

3 Deskriptive Statistik: Grafische Darstellungen Balkendiagramm Sektorendiagramm Strichdiagramm Baumdiagramm Histogramm Häufigkeitspolygon Kistendiagramm (Boxplot) Punktediagramm (Scatter Plot) Medizinische Informatik 10. Medizinische Statistik 5 Visualisierung einiger Maßzahlen Strichdiagramm Q1: 1.Quartil Q3: 3.Quartil ~x: Median -x: Mittelwert s: Standardabweichung Boxplot: (Min, Q1, Median, Q3, Max) Medizinische Informatik 10. Medizinische Statistik 6

4 Deskriptive Statistik (1) Tabelle Kreisdiagramm / Sektorendiagramm Säulen-/Balkendiagramm Medizinische Informatik 10. Medizinische Statistik 7 Deskriptive Statistik (2) (Tabelle) Histogramm Häufigkeitspolygon / Linie Medizinische Informatik 10. Medizinische Statistik 8

5 Deskriptive Statistik (3) Häufigkeitspolygon zweier Gruppen Medizinische Informatik 10. Medizinische Statistik 9 Inferenz-Statistik: Wichtige Tests Test auf Normalverteilung visuell mit Wahrscheinlichkeitspapier durch Vergleich von Streubreite und Standardabweichung Vergleich zweier Mittelwerte von Meßreihen bei Normalverteilung: t-tests ohne Normalverteilung: Wilcoxon- bzw. Rangsummentest Vergleich von Häufigkeiten Vierfeldertafel (Chi-Quadrat-Test) Kontingenztabellen (linearer) Zusammenhang zwischen zufälligen Variablen Korrelationskoeffizient lineare Regression Medizinische Informatik 10. Medizinische Statistik 10

6 Varianten von T-Tests in Excel Vergleich zweier unabhängiger Stichproben (wie signifikant ist die Differenz der Mittelwerte) Beispiel: Vergleich Köpergröße von Männern und Frauen Formel: t mit x1, x2: Mittelwerte mit s1, s2: Standardabweichungen mit n1, n2: Stichprobengröße mit (n1+ n2 2) / 2 Freiheitsgraden (FG) Falls Standardabweichungen ähnlich (homogen), bessere Formel möglich: F-Test Falls Stichproben abhängig: Bewertung der Differenzen Beispiel: Wirkung einer Blutdrucktherapie: vor/nach-vergleich Formel: t = Mittelwert der Differenzen * n / s mit (n-1) FG Einseitig (Männer > Frauen?) oder zweiseitig (Unterschied?) Medizinische Informatik 10. Medizinische Statistik 11 Varianten von Chi-Quadrat-Tests in Excel Vergleich einer gegebenen (beobachteten) Häufigkeitsverteilung mit einer erwarteten (theoretischen) Häufigkeitsverteilung Beispiel: Häufigkeiten eines Würfels (3000 Würfe) beobachtet (h b ): 1: 511; 2: 472; 3:572; 4:498; 5:513; 6:434 erwartet (h e ): 1:500; 2:500; 3:500; 4:500; 5:500; 6:500 Prüfgröße: Summe der Abweichungsquadrate (h b h e ) 2 = χ 2 mit Anzahl der Freiheitsgrade: Klassenzahl 1 (hier 5) In jedem Feld mindestens ein Erwartungswert von 5 nötig. Spezialisierung auf 2 x 2 Feld oder auf m x k Feld (Kontigenztest, Chi-Quadrat-Mehrfeldertest) Falls Stichproben abhängig: McNemar-Test Medizinische Informatik 10. Medizinische Statistik 12

I. Deskriptive Statistik 1

I. Deskriptive Statistik 1 I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................

Mehr

Statistik. Jan Müller

Statistik. Jan Müller Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen

Mehr

Chi-Quadrat Verfahren

Chi-Quadrat Verfahren Chi-Quadrat Verfahren Chi-Quadrat Verfahren werden bei nominalskalierten Daten verwendet. Die einzige Information, die wir bei Nominalskalenniveau zur Verfügung haben, sind Häufigkeiten. Die Quintessenz

Mehr

Tabellen und Abbildungen

Tabellen und Abbildungen Professur E-Learning und Neue Medien Institut für Medienforschung Philosophische Fakultät Einführung in die Statistik Tabellen und Abbildungen Überblick Tabellen Abbildungen Polygonzug Histogramm Box-Plot

Mehr

Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure

Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure Von Prof. Hubert Weber Fachhochschule Regensburg 3., überarbeitete und erweiterte Auflage Mit zahlreichen Bildern, Tabellen sowie

Mehr

Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es

Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es beim radioaktiven Zerfall, zwischen 100 und 110 Zerfälle

Mehr

Zusammenhangsanalyse mit SPSS. Messung der Intensität und/oder der Richtung des Zusammenhangs zwischen 2 oder mehr Variablen

Zusammenhangsanalyse mit SPSS. Messung der Intensität und/oder der Richtung des Zusammenhangs zwischen 2 oder mehr Variablen - nominal, ordinal, metrisch In SPSS: - Einfache -> Mittelwerte vergleichen -> Einfaktorielle - Mehrfaktorielle -> Allgemeines lineares Modell -> Univariat In SPSS: -> Nichtparametrische Tests -> K unabhängige

Mehr

Statistik II. Statistische Tests. Statistik II

Statistik II. Statistische Tests. Statistik II Statistik II Statistische Tests Statistik II - 12.5.2006 1 Test auf Anteilswert: Binomialtest Sei eine Stichprobe unabhängig, identisch verteilter ZV (i.i.d.). Teile diese Stichprobe in zwei Teilmengen

Mehr

Lösungen zu den Übungsaufgaben in Kapitel 10

Lösungen zu den Übungsaufgaben in Kapitel 10 Lösungen zu den Übungsaufgaben in Kapitel 10 (1) In einer Stichprobe mit n = 10 Personen werden für X folgende Werte beobachtet: {9; 96; 96; 106; 11; 114; 114; 118; 13; 14}. Sie gehen davon aus, dass Mittelwert

Mehr

If something has a 50% chance of happening, then 9 times out of 10 it will. Yogi Berra

If something has a 50% chance of happening, then 9 times out of 10 it will. Yogi Berra If something has a 50% chance of happening, then 9 times out of 10 it will. Yogi Berra If you torture your data long enough, they will tell you whatever you want to hear. James L. Mills Warum Biostatistik?

Mehr

Übungsbuch Statistik für Dummies

Übungsbuch Statistik für Dummies beborah Rumseif Übungsbuch Statistik für Dummies WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Inhaltsverzeichnis Über die Autorin 8 Über den Übersetzer 8 Einführung 15 Über dieses Buch 15 Törichte Annahmen

Mehr

Vorlesung Wirtschaftsstatistik 2 (FK ) Wiederholungen deskriptive Statistik und Einleitung Normalverteilungsverfahren. Dipl.-Ing.

Vorlesung Wirtschaftsstatistik 2 (FK ) Wiederholungen deskriptive Statistik und Einleitung Normalverteilungsverfahren. Dipl.-Ing. Vorlesung Wirtschaftsstatistik 2 (FK 040637) Wiederholungen deskriptive Statistik und Einleitung Normalverteilungsverfahren Dipl.-Ing. Robin Ristl Wintersemester 2012/13 1 Vorlesungsinhalte Wiederholung:

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Statistik & Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte

Mehr

Biomathematik für Mediziner, Klausur SS 2001 Seite 1

Biomathematik für Mediziner, Klausur SS 2001 Seite 1 Biomathematik für Mediziner, Klausur SS 2001 Seite 1 Aufgabe 1: Von den Patienten einer Klinik geben 70% an, Masern gehabt zu haben, und 60% erinnerten sich an eine Windpockeninfektion. An mindestens einer

Mehr

KATA LOGO Mathematik Statistik Roadmap: Von der Hypothese zum p-wert

KATA LOGO Mathematik Statistik Roadmap: Von der Hypothese zum p-wert KATA LOGO Mathematik Statistik Roadmap: Von der Hypothese zum p-wert 0. Das eigentliche Forschungsziel ist: Beweis der eigenen Hypothese H 1 Dafür muss Nullhypothese H 0 falsifiziert werden können Achtung!

Mehr

Zeit zum Kochen [in min] [10, 20[ [20, 30[ [30, 40[ [40, 50[ [50,60[ [60, 100] Hi

Zeit zum Kochen [in min] [10, 20[ [20, 30[ [30, 40[ [40, 50[ [50,60[ [60, 100] Hi 1. Susi und Fritzi bereiten ein Faschingsfest vor, dazu gehört natürlich ein Faschingsmenü. Ideen haben sie genug, aber sie möchten nicht zu viel Zeit fürs Kochen aufwenden. In einer Zeitschrift fanden

Mehr

Dr. I. Fahrner WiSe 2016/17 Fakultät Grundlagen Hochschule Esslingen Übungsblatt 2. Statistik

Dr. I. Fahrner WiSe 2016/17 Fakultät Grundlagen Hochschule Esslingen Übungsblatt 2. Statistik Dr. I. Fahrner WiSe 2016/17 Fakultät Grundlagen 6.10.2016 Hochschule Esslingen Übungsblatt 2 Statistik Stichworte: arithmetischer Mittelwert, empirische Varianz, empirische Standardabweichung, empirischer

Mehr

Klausur Statistik I. Dr. Andreas Voß Wintersemester 2005/06

Klausur Statistik I. Dr. Andreas Voß Wintersemester 2005/06 Klausur Statistik I Dr. Andreas Voß Wintersemester 2005/06 Hiermit versichere ich, dass ich an der Universität Freiburg mit dem Hauptfach Psychologie eingeschrieben bin. Name: Mat.Nr.: Unterschrift: Bearbeitungshinweise:

Mehr

VS PLUS

VS PLUS VS PLUS Zusatzinformationen zu Medien des VS Verlags Statistik II Inferenzstatistik 2010 Übungsaufgaben und Lösungen Inferenzstatistik 2 [Übungsaufgaben und Lösungenn - Inferenzstatistik 2] ÜBUNGSAUFGABEN

Mehr

Statistik. Datenanalyse mit EXCEL und SPSS. Prof. Dr. Karlheinz Zwerenz. R.Oldenbourg Verlag München Wien. Von

Statistik. Datenanalyse mit EXCEL und SPSS. Prof. Dr. Karlheinz Zwerenz. R.Oldenbourg Verlag München Wien. Von Statistik Datenanalyse mit EXCEL und SPSS Von Prof. Dr. Karlheinz Zwerenz R.Oldenbourg Verlag München Wien Inhalt Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt XI XII XII TEIL I GRUNDLAGEN

Mehr

I Einführung 1. 1 Über den Umgang mit Statistik 3

I Einführung 1. 1 Über den Umgang mit Statistik 3 I Einführung 1 1 Über den Umgang mit Statistik 3 1.1 Statistik richtig lehren und lernen 3 1.2 Testergebnisse richtig interpretieren 6 1.3 Einfluss des Zufalls 8 1.4 Die Interpretation von Zusammenhängen

Mehr

Test auf Varianzgleichheit (F-Test) (einseitiger Test!!)

Test auf Varianzgleichheit (F-Test) (einseitiger Test!!) T-Tests in Excel T-Tests in Excel Test auf Varianzgleichheit (F-Test) (einseitiger Test!!)! Annahmen:! Unabhängige Stichproben! Normalverteilte Grundgesamtheiten H0 : σx = σ y; H0 : σx > σ y Sx σ x F =

Mehr

Kapitel 5: Einfaktorielle Varianzanalyse

Kapitel 5: Einfaktorielle Varianzanalyse Kapitel 5: Einfaktorielle Varianzanalyse Durchführung einer einfaktoriellen Varianzanalyse ohne Messwiederholung Dieser Abschnitt zeigt die Durchführung der in Kapitel 5 vorgestellten einfaktoriellen Varianzanalyse

Mehr

Der Zentrale Grenzwertsatz

Der Zentrale Grenzwertsatz QUALITY-APPS Applikationen für das Qualitätsmanagement Der Zentrale Grenzwertsatz Autor: Dr. Konrad Reuter Für ein Folge unabhängiger Zufallsvariablen mit derselben Verteilung und endlichem Erwartungswert

Mehr

Ein bisschen Statistik

Ein bisschen Statistik Prof. Dr. Beat Siebenhaar ein bisschen Statistik 1 Ein bisschen Statistik (orientiert an Hüsler/Zimmermann (006) mit Umsetzung auf die linguistische Fragen) 1. Datentypen und Grafik Grafische Darstellungen

Mehr

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden Inhaltsverzeichnis Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3 Warum Statistik? 3 Checkpoints 4 Daten 4 Checkpoints 7 Skalen - lebenslang wichtig bei der Datenanalyse

Mehr

Statistik eindimensionaler Größen

Statistik eindimensionaler Größen Statistik eindimensionaler Größen Michael Spielmann Inhaltsverzeichnis 1 Aufgabe der eindimensionalen Statistik 2 2 Grundbegriffe 2 3 Aufbereiten der Stichprobe 3 4 Die Kennzahlen Mittelwert und Streuung,

Mehr

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18 3. Deskriptive Statistik Ziel der deskriptiven (beschreibenden) Statistik (explorativen Datenanalyse) ist die übersichtliche Darstellung der wesentlichen in den erhobenen Daten enthaltene Informationen

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übung 2 28.02.2008 1 Inhalt der heutigen Übung Beschreibende Statistik Gemeinsames Lösen der Übungsaufgaben 2.1: Häufigkeitsverteilung 2.2: Tukey Boxplot 25:Korrelation

Mehr

Biostatistik Erne Einfuhrung fur Biowissenschaftler

Biostatistik Erne Einfuhrung fur Biowissenschaftler Matthias Rudolf Wiltrud Kuhlisch Biostatistik Erne Einfuhrung fur Biowissenschaftler PEARSON Studium Inhaltsverzeichnis Vorwort xi Kapitel 1 Einfiihrung 1 1.1 Biostatistik als Bestandteil biowissenschafllicher

Mehr

Statistik für Studenten der Sportwissenschaften SS 2008

Statistik für Studenten der Sportwissenschaften SS 2008 Statistik für Studenten der Sportwissenschaften SS 008 Aufgabe 1 Man weiß von Rehabilitanden, die sich einer bestimmten Gymnastik unterziehen, dass sie im Mittel µ=54 Jahre (σ=3 Jahre) alt sind. a) Welcher

Mehr

Kapitel 5 FRAGESTELLUNG 1. Öffne die Datei alctobac.sav.

Kapitel 5 FRAGESTELLUNG 1. Öffne die Datei alctobac.sav. Kapitel 5 FRAGESTELLUNG 1 Öffne die Datei alctobac.sav. Zuerst werden wir ein Streudiagramm erstellen, um einen grafischen Überblick von diesem Datensatz zu erhalten. Gehe dazu auf Grafiken / Streudiagramm

Mehr

Keine Panik vor Statistik!

Keine Panik vor Statistik! Markus Oestreich I Oliver Romberg Keine Panik vor Statistik! Erfolg und Spaß im Horrorfach nichttechnischer Studiengänge STUDIUM 11 VIEWEG+ TEUBNER Inhaltsverzeichnis 1 Erstmal locker bleiben: Es längt

Mehr

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen 4. Datenanalyse und Modellbildung Deskriptive Statistik 2-1 2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen Für die Auswertung einer Messreihe, die in Form

Mehr

Computergestützte Methoden. Master of Science Prof. Dr. G. H. Franke WS 07/08

Computergestützte Methoden. Master of Science Prof. Dr. G. H. Franke WS 07/08 Computergestützte Methoden Master of Science Prof. Dr. G. H. Franke WS 07/08 1 Seminarübersicht 1. Einführung 2. Recherchen mit Datenbanken 3. Erstellung eines Datenfeldes 4. Skalenniveau und Skalierung

Mehr

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97.

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97. Aufgabenblock 4 Aufgabe ) Da s = 8. cm nur eine Schätzung für die Streuung der Population ist, müssen wir den geschätzten Standardfehler verwenden. Dieser berechnet sich als n s s 8. ˆ = = =.88. ( n )

Mehr

TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG

TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG Statistik eine Umschreibung Mathematische Hilfswissenschaft mit der Aufgabe, Methoden für die Sammlung, Aufbereitung, Analyse

Mehr

Einführung in statistische Testmethoden

Einführung in statistische Testmethoden Einführung in statistische Testmethoden und die Bearbeitung von Messdaten mit Excel 1. Beispielhafte Einführung in den Gebrauch von Testmethoden 2. Typen von Messwerten, Verteilungen 3. Mittelwert, Varianz,

Mehr

Anleitung: Standardabweichung

Anleitung: Standardabweichung Anleitung: Standardabweichung So kann man mit dem V200 Erwartungswert und Varianz bzw. Standardabweichung bei Binomialverteilungen für bestimmte Werte von n, aber für allgemeines p nach der allgemeinen

Mehr

Einfache statistische Auswertungen mit dem TI-Nspire

Einfache statistische Auswertungen mit dem TI-Nspire 1. Neues Dokument und darin eine neue Seite anlegen Als Typ 6: Lists & Spreadsheet wählen. Darin die Messwerte in einer Spalte erfassen. Dies ergibt die Urliste. Wenn mehrere Messwerte vorliegen, die diejenigen,

Mehr

Aufgaben zu Kapitel 9

Aufgaben zu Kapitel 9 Aufgaben zu Kapitel 9 Aufgabe 1 Für diese Aufgabe benötigen Sie den Datensatz Nominaldaten.sav. a) Sie arbeiten für eine Marktforschungsfirma und sollen überprüfen, ob die in diesem Datensatz untersuchte

Mehr

8. Statistik Beispiel Noten. Informationsbestände analysieren Statistik

8. Statistik Beispiel Noten. Informationsbestände analysieren Statistik Informationsbestände analysieren Statistik 8. Statistik Nebst der Darstellung von Datenreihen bildet die Statistik eine weitere Domäne für die Auswertung von Datenbestände. Sie ist ein Fachgebiet der Mathematik

Mehr

Statistik II Übung 2: Multivariate lineare Regression

Statistik II Übung 2: Multivariate lineare Regression Statistik II Übung 2: Multivariate lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen Flugpreisen und der Flugdistanz, dem Passagieraufkommen und der Marktkonzentration. Verwenden

Mehr

Tabellarische und graphie Darstellung von univariaten Daten

Tabellarische und graphie Darstellung von univariaten Daten Part I Wrums 1 Motivation und Einleitung Motivation Satz von Bayes Übersetzten mit Paralleltext Merkmale und Datentypen Skalentypen Norminal Ordinal Intervall Verältnis Merkmalstyp Diskret Stetig Tabellarische

Mehr

Deskriptive Statistik 1 behaftet.

Deskriptive Statistik 1 behaftet. Die Statistik beschäftigt sich mit Massenerscheinungen, bei denen die dahinterstehenden Einzelereignisse meist zufällig sind. Statistik benutzt die Methoden der Wahrscheinlichkeitsrechnung. Fundamentalregeln:

Mehr

Kapitel 9: Verfahren für Nominaldaten

Kapitel 9: Verfahren für Nominaldaten Kapitel 9: Verfahren für Nominaldaten Eindimensionaler Chi²-Test 1 Der zweidimensionale Chi²-Test 4 Eindimensionaler Chi²-Test Der eindimensionale χ²-test wird dann herangezogen, wenn die Versuchspersonen

Mehr

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente...

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente... Inhaltsverzeichnis 0 Einführung 1 1 Zufallsvorgänge und Wahrscheinlichkeiten 5 1.1 Zufallsvorgänge.......................... 5 1.1.1 Ergebnismengen..................... 6 1.1.2 Ereignisse und ihre Verknüpfung............

Mehr

Kapitel 1: Deskriptive Statistik

Kapitel 1: Deskriptive Statistik Kapitel 1: Deskriptive Statistik Grafiken 1 Statistische Kennwerte 5 z-standardisierung 7 Grafiken Mit Hilfe von SPSS lassen sich eine Vielzahl unterschiedlicher Grafiken für unterschiedliche Zwecke erstellen.

Mehr

Elisabeth Raab-Steiner/ Michael Benesch. Der Fragebogen. Von der Forschungsidee zur SPSS-Auswertung. 3., aktualisierte und überarbeitete Auflage

Elisabeth Raab-Steiner/ Michael Benesch. Der Fragebogen. Von der Forschungsidee zur SPSS-Auswertung. 3., aktualisierte und überarbeitete Auflage Elisabeth Raab-Steiner/ Michael Benesch Der Fragebogen Von der Forschungsidee zur SPSS-Auswertung 3., aktualisierte und überarbeitete Auflage facultas.wuv Inhaltsverzeichnis 1 Elementare Definitionen 13

Mehr

STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG

STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG Statistische Methoden In der vorliegenden fiktiven Musterstudie wurden X Patienten mit XY Syndrom (im folgenden: Gruppe XY) mit Y Patienten eines unauffälligem

Mehr

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

Grenzen für x -s-regelkarten

Grenzen für x -s-regelkarten Normalverteilte Fertigung: Stichproben aus der Fertigung: σ σ Eine normalverteilte Fertigung hat den Mittelwert µ und die Standardabweichung σ. Stichproben aus der Fertigung haben zufällig abweichende

Mehr

? Unterscheiden sich Burschen und Mädchen im Ausmaß der Mithilfe im Haushalt?

? Unterscheiden sich Burschen und Mädchen im Ausmaß der Mithilfe im Haushalt? 341 i Metrische und kategoriale Merkmale An einer Beobachtungseinheit werden metrische und kategoriale Variable erhoben. Beispiel: Hausarbeit von Teenagern (Stunden/Woche) 25 15 STUNDEN 5-5 weiblich männlich?

Mehr

Prüfgröße: Ist die durch eine Schätzfunktion zugeordnete reelle Zahl (etwa Mittelwert 7 C).

Prüfgröße: Ist die durch eine Schätzfunktion zugeordnete reelle Zahl (etwa Mittelwert 7 C). Statistik Grundlagen Charakterisierung von Verteilungen Einführung Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsverteilungen Schätzen und Testen Korrelation Regression Einführung Aus praktischen Gründen

Mehr

Einfache Statistiken in Excel

Einfache Statistiken in Excel Einfache Statistiken in Excel Dipl.-Volkswirtin Anna Miller Bergische Universität Wuppertal Schumpeter School of Business and Economics Lehrstuhl für Internationale Wirtschaft und Regionalökonomik Raum

Mehr

b) Bestimmen Sie die Varianz der beiden Schätzer. c) Ist ein oder sind beide Schätzer konsistent? Begründen Sie!

b) Bestimmen Sie die Varianz der beiden Schätzer. c) Ist ein oder sind beide Schätzer konsistent? Begründen Sie! Aufgabe 1 (3 + 3 + 2 Punkte) Ein Landwirt möchte das durchschnittliche Gewicht von einjährigen Ferkeln bestimmen lassen. Dies möchte er aus seinem diesjährigen Bestand an n Tieren schätzen. Er kann dies

Mehr

Kapitel 1: Deskriptive Statistik

Kapitel 1: Deskriptive Statistik Kapitel 1: Deskriptive Statistik Grafiken Mit Hilfe von SPSS lassen sich eine Vielzahl unterschiedlicher Grafiken für unterschiedliche Zwecke erstellen. Wir besprechen hier die zwei in Kapitel 1.1 thematisierten

Mehr

Tag 7: Statistik. Themen: A) Standardfehler des Mittelwerts B) Median und Quantile C) Signifikanztest D) Hausaufgabe

Tag 7: Statistik. Themen: A) Standardfehler des Mittelwerts B) Median und Quantile C) Signifikanztest D) Hausaufgabe Tag 7: Statistik Themen: A) Standardfehler des Mittelwerts B) Median und Quantile C) Signifikanztest D) Hausaufgabe A) Standardfehler des Mittelwerts Die Berechnung von Mittelwert und Standardabweichung

Mehr

Bivariate Zusammenhänge

Bivariate Zusammenhänge Bivariate Zusammenhänge Tabellenanalyse: Kreuztabellierung und Kontingenzanalyse Philosophische Fakultät Institut für Soziologie Berufsverläufe und Berufserfolg von Hochschulabsolventen Dozent: Mike Kühne

Mehr

Sozialwissenschaftliche Datenanalyse mit R

Sozialwissenschaftliche Datenanalyse mit R Katharina Manderscheid Sozialwissenschaftliche Datenanalyse mit R Eine Einführung F' 4-1 V : 'i rl ö LiSl VS VERLAG Inhaltsverzeichnis Vorwort 5 Danksagung 7 Inhaltsverzeichnis 9 R für sozialwissenschaftliche

Mehr

methodenlehre ll Grenzen des Signifikanztests methodenlehre ll Grenzen des Signifikanztests

methodenlehre ll Grenzen des Signifikanztests methodenlehre ll Grenzen des Signifikanztests Möglichkeiten und Grenzen des Signifikanztests Thomas Schäfer SS 29 1 Grenzen des Signifikanztests Sie haben zur Untersuchung Ihrer Fragestellung eine Experimental und eine Kontrollgruppe mit jeweils 2

Mehr

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend oder eindeutig, wenn keine alternativen Interpretationsmöglichkeiten

Mehr

4. Erstellen von Klassen

4. Erstellen von Klassen Statistik mit Tabellenkalkulation 4. Erstellen von Klassen Mit einem einfachen Befehl lässt sich eine Liste von Zahlen auf die Häufigkeit der einzelnen Werte untersuchen. Verwenden Sie dazu den Befehl

Mehr

Über den Autor 7. Teil Beschreibende Statistik 29

Über den Autor 7. Teil Beschreibende Statistik 29 Inhaltsverzeichnis Über den Autor 7 Einführung Über dieses Buch - oder:»... für Dummies«verpflichtet! Wie man dieses Buch benutzt 22 Wie ich Sie mir vorstelle 22 Wie dieses Buch aufgebaut ist 23 Teil I:

Mehr

Literatur: Glantz, S.A. (2002). Primer of Biostatistics. New York: McGraw-Hill.

Literatur: Glantz, S.A. (2002). Primer of Biostatistics. New York: McGraw-Hill. Statistik Literatur: Glantz, S.A. (2002). Primer of Biostatistics. New York: McGraw-Hill. Maxwell, S.E. & Delaney, H.D. (2000). Designing Experiments and Analyzing Data. Mahwah, NJ: Erlbaum. Das Grundproblem

Mehr

Statistische Auswertung (Signifikanzen) Projekt: Evaluation der Langzeitauswirkung des Imago Paartherapie Workshops

Statistische Auswertung (Signifikanzen) Projekt: Evaluation der Langzeitauswirkung des Imago Paartherapie Workshops Auswertung: Irina Zamfirescu Auftraggeber: Mag. Klaus Brehm Statistische Auswertung (Signifikanzen) Projekt: Evaluation der Langzeitauswirkung des Imago Paartherapie Workshops Fragestellung: Wirkt sich

Mehr

Chi Quadrat-Unabhängigkeitstest

Chi Quadrat-Unabhängigkeitstest Fragestellung 1: Untersuchung mit Hilfe des Chi-Quadrat-Unabhängigkeitstestes, ob zwischen dem Herkunftsland der Befragten und der Bewertung des Kontaktes zu den Nachbarn aus einem Anderen Herkunftsland

Mehr

Jost Reinecke. 7. Juni 2005

Jost Reinecke. 7. Juni 2005 Universität Bielefeld 7. Juni 2005 Testtheorie Test für unabhängige Stichproben Test für abhängige Stichproben Testtheorie Die Testtheorie beinhaltet eine Reihe von Testverfahren, die sich mit der Überprüfung

Mehr

Aufgaben zu Kapitel 1

Aufgaben zu Kapitel 1 Aufgaben zu Kapitel 1 Aufgabe 1 a) Öffnen Sie die Datei Beispieldatensatz.sav, die auf der Internetseite zum Download zur Verfügung steht. Berechnen Sie die Häufigkeiten für die beiden Variablen sex und

Mehr

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten Zufallsgrößen Ergebnisse von Zufallsexperimenten werden als Zahlen dargestellt 0 Einführung Wahrscheinlichkeitsrechnung 2 Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Hypothesentests

Mehr

Analytische Statistik II

Analytische Statistik II Analytische Statistik II Institut für Geographie 1 Schätz- und Teststatistik 2 Das Testen von Hypothesen Während die deskriptive Statistik die Stichproben nur mit Hilfe quantitativer Angaben charakterisiert,

Mehr

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren Hypothesenprüfung Teil der Inferenzstatistik Befaßt sich mit der Frage, wie Hypothesen über eine (in der Regel unbekannte) Grundgesamtheit an einer Stichprobe überprüft werden können Behandelt werden drei

Mehr

F7: Statistik und Radioaktivität

F7: Statistik und Radioaktivität Grundpraktikum F7: Statistik und Radioaktivität Autor: Partner: Versuchsdatum: Versuchsplatz: Abgabedatum: Inhaltsverzeichnis 1 Physikalische Grundlagen und Aufgabenstellung 2 2 Messwerte und Auswertung

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 19. Januar 2011 1 Nichtparametrische Tests Ordinalskalierte Daten 2 Test für ein Merkmal mit nur zwei Ausprägungen

Mehr

Univariates Datenmaterial

Univariates Datenmaterial Univariates Datenmaterial 1.6.1 Deskriptive Statistik Zufallstichprobe: Umfang n, d.h. Stichprobe von n Zufallsvariablen o Merkmal/Zufallsvariablen: Y = {Y 1, Y 2,..., Y n } o Realisationen/Daten: x =

Mehr

Fachrechnen für Tierpfleger

Fachrechnen für Tierpfleger Z.B.: Fachrechnen für Tierpfleger A10. Statistik 10.1 Allgemeines Was ist Statistik? 1. Daten sammeln: Durch Umfragen, Zählung, Messung,... 2. Daten präsentieren: Tabellen, Grafiken 3. Daten beschreiben/charakterisieren:

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten.

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten. Statistik für Kommunikationswissenschaftler Wintersemester 2009/200 Vorlesung Prof. Dr. Helmut Küchenhoff Übung Cornelia Oberhauser, Monia Mahling, Juliane Manitz Thema 4 Homepage zur Veranstaltung: http://www.statistik.lmu.de/~helmut/kw09.html

Mehr

Kapitel 9: Verfahren für Nominaldaten

Kapitel 9: Verfahren für Nominaldaten Kapitel 9: Verfahren für Nominaldaten Eindimensionaler Chi²-Test Der eindimensionale χ²-test wird dann herangezogen, wenn die Versuchspersonen einer Population anhand eines Merkmals mit zwei oder mehr

Mehr

Von Wilcoxon bis McNemar es kann nur einen Signifikanztest geben

Von Wilcoxon bis McNemar es kann nur einen Signifikanztest geben Institut für Medizinische Biometrie und Epidemiologie Von Wilcoxon bis McNemar es kann nur einen Signifikanztest geben Zum Nacharbeiten Auswahl von Signifikanztests 2 prinzipielle Unterscheidungskriterien:

Mehr

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Hypothese: Die Beschäftigung mit Kunst ist vom Bildungsgrad abhängig. 1. Annahmen Messniveau: Modell: Die Skala zur Erfassung der

Mehr

Statistische Grundlagen I

Statistische Grundlagen I Statistische Grundlagen I Arten der Statistik Zusammenfassung und Darstellung von Daten Beschäftigt sich mit der Untersuchung u. Beschreibung von Gesamtheiten oder Teilmengen von Gesamtheiten durch z.b.

Mehr

Schätzverfahren ML vs. REML & Modellbeurteilung mittels Devianz, AIC und BIC. Referenten: Linda Gräfe & Konstantin Falk

Schätzverfahren ML vs. REML & Modellbeurteilung mittels Devianz, AIC und BIC. Referenten: Linda Gräfe & Konstantin Falk Schätzverfahren ML vs. REML & Modellbeurteilung mittels Devianz, AIC und BIC Referenten: Linda Gräfe & Konstantin Falk 1 Agenda Schätzverfahren ML REML Beispiel in SPSS Modellbeurteilung Devianz AIC BIC

Mehr

Dipl.-Volksw. Markus Pullen Wintersemester 2012/13

Dipl.-Volksw. Markus Pullen Wintersemester 2012/13 Statistische Auswertungen mit R Universität Kassel, FB 07 Wirtschaftswissenschaften Dipl.-Volksw. Markus Pullen Wintersemester 2012/13 Beispiele 8. Sitzung Konfidenzintervalle, Hypothesentests > # Anwendungsbeispiel

Mehr

Hydrologie und Flussgebietsmanagement

Hydrologie und Flussgebietsmanagement Hydrologie und Flussgebietsmanagement o.univ.prof. DI Dr. H.P. Nachtnebel Institut für Wasserwirtschaft, Hydrologie und konstruktiver Wasserbau Gliederung der Vorlesung Statistische Grundlagen Etremwertstatistik

Mehr

3. Übung Deskription und Diagnose Wer oder was ist normal?

3. Übung Deskription und Diagnose Wer oder was ist normal? Querschnittsbereich 1: Epidemiologie, Medizinische Biometrie und Medizinische Informatik - Übungsmaterial - Erstellt von Mitarbeitern des IMISE und des ZKS Leipzig 3. Übung Deskription und Diagnose Wer

Mehr

Kapitel 9: Verfahren für Nominaldaten

Kapitel 9: Verfahren für Nominaldaten Kapitel 9: Verfahren für Nominaldaten Eindimensionaler Chi²-Test 1 Der zweidimensionale Chi²-Test 6 Alternativer Lösungsweg für SPSS Version 17 und älter 10 Alte Dialogfelder: Eindimensionaler Chi²-Test

Mehr

Wahrscheinlichkeitsrechnung und schließende Statistik

Wahrscheinlichkeitsrechnung und schließende Statistik Springer-Lehrbuch Wahrscheinlichkeitsrechnung und schließende Statistik von Karl Mosler, Friedrich Schmid Neuausgabe Wahrscheinlichkeitsrechnung und schließende Statistik Mosler / Schmid schnell und portofrei

Mehr

Test-Finder. Inhalt. Orientierung im Test-Chaos Dipl.-Psych. Dr. Guido Strunk

Test-Finder. Inhalt. Orientierung im Test-Chaos Dipl.-Psych. Dr. Guido Strunk Test-Finder 1 Test-Finder Orientierung im Test-Chaos Dipl.-Psych. Dr. Guido Strunk Inhalt 1 Grundlagen... 2 2 Maße der zentralen Tendenz vergleichen Zwei Gruppen... 3 2.1 T-Test für unabhängige Daten...

Mehr

Inhaltsverzeichnis. II. Statistische Modelle und sozialwissenschaftliche Meßniveaus 16

Inhaltsverzeichnis. II. Statistische Modelle und sozialwissenschaftliche Meßniveaus 16 Vorwort 1 1. Kapitel: Der Stellenwert der Statistik für die sozialwissenschaflliche Forschung 1 1. Zur Logik (sozial-)wissenschaftlicher Forschung 1 1. Alltagswissen und wissenschaftliches Wissen 1 2.

Mehr

Lösungen zur Biomathe-Klausur Gruppe A Montag, den 16. Juli 2001

Lösungen zur Biomathe-Klausur Gruppe A Montag, den 16. Juli 2001 Lösungen zur Biomathe-Klausur Gruppe A Montag, den 16. Juli 2001 1. Sensitivität und Spezifität In einer medizinischen Ambulanz haben 30 % der Patienten eine akute Appendizitis. 80 % dieser Patienten haben

Mehr

Deskriptive Statistik & grafische Darstellung

Deskriptive Statistik & grafische Darstellung Deskriptive Statistik & grafische Darstellung Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) Deskriptive

Mehr

Statistik II (Sozialwissenschaften)

Statistik II (Sozialwissenschaften) Dr. Hans-Otfried Müller Institut für Mathematische Stochastik Fachrichtung Mathematik Technische Universität Dresden http://www.math.tu-dresden.de/sto/mueller/ Statistik II (Sozialwissenschaften) 2. Konsultationsübung,

Mehr

Medikamentengabe usw. eingegriffen

Medikamentengabe usw. eingegriffen Biometrie Zusammenfassung Vorwort Das vorliegende Skript dient zur Vorbereitung für die Klausur und als kurzer Überblick bei Biometrischen Fragestellungen in Doktorarbeiten. Vielen Dank an Herrn PD Dr.

Mehr

Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Waldinventur und Fernerkundung

Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Waldinventur und Fernerkundung Systematische Stichprobe Rel. große Gruppe von Stichprobenverfahren. Allgemeines Merkmal: es existiert ein festes, systematisches Muster bei der Auswahl. Wie passt das zur allgemeinen Forderung nach Randomisierung

Mehr

Test auf einen Anteilswert (Binomialtest) Vergleich zweier Mittelwerte (t-test)

Test auf einen Anteilswert (Binomialtest) Vergleich zweier Mittelwerte (t-test) Spezielle Tests Test auf einen Anteilswert (Binomialtest) Vergleich zweier Anteilswerte Test auf einen Mittelwert (Ein-Stichproben Gauss bzw. t-test) Vergleich zweier Mittelwerte (t-test) Test auf einen

Mehr

Computermathematik Grundkurs Statistik mit Excel, G. Karigl

Computermathematik Grundkurs Statistik mit Excel, G. Karigl Computermathematik Grundkurs Statistik mit Excel, G. Karigl Inhalt: Lektion 1 Deskriptive Methoden für eindimensionale Stichproben Lektion 2 Multivariate deskriptive Statistik Lektion 3 Über diskrete und

Mehr

Institut für Soziologie Werner Fröhlich. Methoden 2. Kontingenztabellen Chi-Quadrat-Unabhängigkeitstest

Institut für Soziologie Werner Fröhlich. Methoden 2. Kontingenztabellen Chi-Quadrat-Unabhängigkeitstest Institut für Soziologie Methoden 2 Kontingenztabellen Chi-Quadrat-Unabhängigkeitstest Aufbau der Sitzung Was sind Kontingenztabellen? Wofür werden Kontingenztabellen verwendet? Aufbau und Interpretation

Mehr

Bivariater Zusammenhang in der Mehrfeldertafel PEΣO

Bivariater Zusammenhang in der Mehrfeldertafel PEΣO Bivariater Zusammenhang in der Mehrfeldertafel PEΣO 9. November 2001 Bivariate Häufigkeitsverteilungen in Mehrfeldertabellen In der Mehrfeldertabelle werden im Gegensatz zur Vierfeldertabelle keine dichotomen

Mehr