Schwingungen g und Wellen II Wellen, Gedämpfte Schwingungen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Schwingungen g und Wellen II Wellen, Gedämpfte Schwingungen"

Transkript

1 Physik A VL1 (7.11.1) Schwingngen g nd Wellen II Wellen, Gedämpfe Schwingngen Wellen Gedämpfe Schwingngen schwache Dämpfng aperiodischer Grenzfall Kriechfall 1

2 Ei Erinnerng: Beschreibng von Schwingngen Sh Schwingngsdaer T Amplide Phase ϕ Kreisfreqenz π T ( ) sin( + ϕ ) ( ϕ Differenialgleichng der harmonischen Schwingng Federpendel mahemaisches Pendel (kleine Aslenkngen) physikalisches Pendel && + α& & + α ϕ& & ϕ + ϕ D m g l mgd J

3 Beschreibng von Wellen Schwingngen nd Wellen Schwingngen, die zsäzlich ihren Or ändern, sind Wellen Wellen sind zeilich nd örlich periodische Vorgänge Beschreibng von Wellen Bewegng: Wellenlänge λ, Bewegngsgeschwindigkei c! Periodendaer T Freqenz 1 ν T c c λ ν π T Wellengeschwindigkei Wellenlänge Kreisfreqenz Amplide Wll Wellenzahl k π λ ( ) sin( k ) π c π ν k c λ k 3

4 Beschreibng von Wellen Wellen in Ram nd Zei Die Wellen-Differenialgleichng O Orsabhängige Wellengleichng l Zibhä Zeiabhängige i Schwingngsgleichng i h mi ( ) sin( k ) ( ) sin( ) k (, ) sin( k ) π πν λ c c (, ) sin c Änderngen von nd Ableingen in nd : parielle Ableingen 1 c eindimensionale Wellengleichng - für alle Wellen gülig -, 4

5 B h ib W ll Beschreibng von Wellen Wellen in Ram nd Zei Die Wellen-Differenialgleichng eindimensionale Wellengleichng 1 c? Einsezen nd überprüfen: c c cos c cos c c sin c sin c i di i l Wll lih 1 5 eindimensionale Wellengleichng c

6 Asbreing von Wellen Frage: Wie kann sich eine Welle im Ram bewegen? 1. Bewegng in Asbreingsrichng: longidinale Welle Beispiel: Schallwellen. Bewegng senkrech zr Asbreingsrichng: ransversale Welle Beispiele: Wasserwellen, Seilwellen 6

7 Gdä Gedämpfe Sh Schwingngen Schwingngen nd Wellen in der Realiä hör jede Schwingng irgendwann af! Eine ngedämpfe Schwingng ha eine konsane Schwingngsenergie nd dami eine konsane Amplide. Bei einer gedämpfen Schwingng nimm die Schwingngsenergie g g nd dami die Amplide daernd ab. Ursache für die Dämpfng sind Energieverlse drch Reibng 7

8 Gdä Gedämpfe Sh Schwingngen Schwingngen nd Wellen Beispiel: ein an einem Federpendel befesiger Kolben ach in eine Flüssigkei Sokes sche Reibngskraf (~v) dämpf die Schwingng des Pendels F R v & Vermng: eponenieller Abfall der Schwingngsamplide? Afsellng einer Bewegngsgleichng mi Reibngskraf proporional zr Geschwindigkei 8

9 Gdä Gedämpfe Sh Schwingngen - Bewegngsgleichng lih Afsellng einer Bewegngsgleichng mi Reibngskraf proporional zr Geschwindigkei: F D F R v & m & mi m & + D + β& D m nd β m m & + + & Differenialgleichng einer gedämpfen Schwingng Lösngsansaz für die DGL: Benzng kompleer Zahlen! z ( ) ( ) + i y( ) 9

10 Gdä Gedämpfe Sh Schwingngen - Bewegngsgleichng lih Lösng der Bewegngsgleichng Lösngsansaz: Ableingen: z z&( ) &&( z ) λ ( ) z z, z, λ: komplee Zahlen λ z λ z λ Einsezen in die Differenialgleichng + + λ & ( λ + λ + ) z λ & + Lösng der qadraischen Gleichng drch qadraische Ergänzng: λ + λ + λ + λ + λ ± nd sind reele Zahlen! λ is komple, wenn der Term ner der Wrzel negaiv is 1

11 Gdä Gedämpfe Sh Schwingngen - Bewegngsgleichng lih Lösng der Bewegngsgleichng λ ± schwache Dämpfng Radikan wird negaiv: < λ ± ( 1) e i 1 mi e ± Lösngsansaz: z( ) z λ Lösngsgleichng: lih z ( ) z ± i e e is nich gleich! i ϕ Realeil der Lösng (mi z r e nd Re( z ) r cosϕ ): Re( z( )) Re( z) cos( ) e Lösng der gedämpfen Schwingngsgleichng - Schwingfall 11

12 Gdä Gedämpfe Sh Schwingngen schwache h Dämpfng Lösng der gedämpfen Schwingngsgleichng: Re( z( )) Re( z) cos( ) e ( ) cos( ) e Diskssion der Lösng e nd sind posiive relle Zahlen! ± e mi < nd & + + & Überlagerng einer periodischen Fnkion mi Kreisfreqenz e einer abklingenden Eponenialfnkion mi Eponen. nd e häng wie bei der ngedämpfen Schwingng nr von der Masse m nd der Federkonsanen D ab, nich von der Amplide Sysem schwing mi e <, Schwingngsdaer is T > T. die periodische Schwingng wird drch die Eponenialfnkion gedämpf! nach der Zei 1/ ha die Amplide af den Wer /e abgenommen D m 1

13 Gdä Gedämpfe Sh Schwingngen schwache h Dämpfng ( ) cos( ) ( e () 3 s,3 s 1 s 1s 1 s aperiodischer Grenzfall / s 13

14 Gdä Gedämpfe Sh Schwingngen schwache h Dämpfng Berachng zweier afeinanderfolgender Maima: 1 cons. ( n + 1) n + e n n Definiion des logarihmischen Dekremens: Λ Verhälnis beliebiger, afeinanderfolgender Ampliden: n n+ 1 n + k k Λ e n cons. Besimmng des Energieverlss mi logarihmischem Dekremen: Anfangsenergie 1 E D Die Schwingngsamplide nimm mi der Zei ab Abnahme der Energie: 1 1 E D n D Dami gil für den relaiven Energieverls: 1 n Λ nλ D n n e E E En nλ Λ 1 e E n 14

15 Gdä Gedämpfe Sh Schwingngen schwache h Dämpfng Es wirk eine Reibngskraf Die mechanische Energie E kin + E po Oszillaor is zeilich nich konsan beim gedämpfen harmonischen / s 15

16 Gdä Gedämpfe Sh Schwingngen aperiodischer Grenzfall Spezialfall: mi λ ± Radikan wird Nll Lösng wird reell: λ ( ) Das Sysem schwing nich! Es kehr in Asgangslage zrück! Beweis der Richigkei des Ansazes Differenialgleichng: + + oder mi : Lösng: & & & + + & ( ) 1. Ableing:. Ableing: &( ) &&( ) ( ) Einsezen der Fnkion nd der Ableingen in die (reelle) Differenialgleichng: + + ( ) 16

17 Gdä Gedämpfe Sh Schwingngen aperiodischer Grenzfall Spezialfall: ( ) Das Sysem schwing nich! Das Sysem kehr in kürzes möglicher Zei in die Asgangslage zrück! () 3 s,3 s 1 s 1s1 1 s aperiodischer Grenzfall ( ) / s 17

18 Gdä Gedämpfe Sh Schwingngen aperiodischer Grenzfall Beispiel: Soßdämpfer: Düsenberg 193 Feder Soßdämpfer Masse (Rad) 18

19 Gdä Gedämpfe Sh Schwingngen Ki Kriechfall hfll Fall: > mi λ ± Radikan wird posiiv Wrzel liefer reelle Zahl: λ m ( ) m Das Sysem schwing nich! Es beweg sich eponeniell in die Asgangslage Rhelage zrück! Dies geschieh langsamer als beim aperiodischen Grenzfall!! 19

20 Gdä Gedämpfe Sh Schwingngen Ki Kriechfall hfll Fall: > ( ) m Das Sysem schwing nich! Es beweg sich eponeniell in die Asgangslage Rhelage zrück! () () 1 1 5s s 1 s 1 1 s aperiodischer Grenzfall ( ) 15 s 1 Dies geschieh langsamer als beim aperiodischen Grenzfall!! / s

21 Zsammenfassng Gdä Gedämpfe Sh Schwingngen Vergleich lihder Fälle () () aperiodischer Grenzfall ( ) ) e Kriechfall > ( ) m Schwingfall < ) cos( ) ( / s e 1

22 Zsammenfassng Gdä Gedämpfe Sh Schwingngen Vergleich lihder Fälle () Berachng der Grenzsiaion ( nahe ) > < Überschwingen/Einschwingen des Sysems / s Einschwingen is dann sinnvoll, wenn mi Hafreibng z rechnen is (verhinder blockieren!)

Schaltvorgänge. Praktikum. Grundlagen der Elektrotechnik. Versuch: Versuchsanleitung. 0. Allgemeines

Schaltvorgänge. Praktikum. Grundlagen der Elektrotechnik. Versuch: Versuchsanleitung. 0. Allgemeines Prakikm Grndlagen der Elekroechnik Versch: Schalvorgänge Verschsanleing. Allgemeines Eine sinnvolle Teilnahme am Prakikm is nr drch eine ge Vorbereing af dem jeweiligen Soffgebie möglich. Von den Teilnehmern

Mehr

Elektrodynamik II - Wechselstromkreise

Elektrodynamik II - Wechselstromkreise Physik A VL36 (18.1.13 Elekrodynamik II - Wechselspannung und Wechselsrom Wechselspnnung durch Indukion Drehsrom Schalungen mi Wechselsrom Kirchhoff sche h egeln Maschenregel bei Indukiviäen und Kapaziäen

Mehr

Stand: 25. Juni 2001 Seite 3-1

Stand: 25. Juni 2001 Seite 3-1 Formelsammlng hema Bereiche eie Wechselspannng Begriffsdefiniion 3- eiger- nd iniendiagramm 3- mrechnng Bogenmaß Gradmaß 3-3 Kreisfreqenz 3-3 Effekivwer 3-3 hasenverschiebngswinkel 3-3 Mahemaische Darsellng

Mehr

Abiturprüfung Baden-Württemberg 1986

Abiturprüfung Baden-Württemberg 1986 001 - hp://www.emah.de 1 Abirprüfng Baden-Würemberg 1986 Leisngskrs Mahemaik - Analysis Z jedem > 0 is eine Fnkion f gegeben drch f x x x e x ; x IR Ihr Schabild sei K. a Unersche K af Asympoen, Schnipnke

Mehr

Wechselspannung. Zeitlich veränderliche Spannung mit periodischer Wiederholung

Wechselspannung. Zeitlich veränderliche Spannung mit periodischer Wiederholung Elekrische Schwingungen und Wellen. Wechselsröme i. Wechselsromgrößen ii.wechselsromwidersand iii.verhalen von LC Kombinaionen. Elekrischer Schwingkreis 3. Elekromagneische Wellen Wechselspannung Zeilich

Mehr

6 Elektromagnetische Schwingungen und Wellen

6 Elektromagnetische Schwingungen und Wellen 6 Elektroagnetische Schwingungen und Wellen Elektroagnetischer Schwingkreis Schaltung it Kondensator C und Induktivität L. Kondensator wird periodisch aufgeladen und entladen. Tabelle 6.1: Vergleich elektroagnetischer

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdeparmen E13 WS 211/12 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peer Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körsgens, David Magerl, Markus Schindler, Moriz v. Sivers Vorlesung 1.11.211,

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt Prof Dr M Gerds Dr A Dreves J Michael Winerrimeser 6 Mahemaische Mehoden in den Ingenieurwissenschafen 4 Übungsbla Aufgabe 9 : Mehrmassenschwinger Berache wird ein schwingendes Sysem aus Körpern der Masse

Mehr

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B Kapitel 0 WELLE im VAKUUM In den Maxwell-Gleichungen erscheint eine Asymmetrie durch Ladungen, die Quellen des E-Feldes sind und durch freie Ströme, die Ursache für das B-Feld sind. Im Vakuum ist ρ und

Mehr

2 Mechanische Schwingungen und Wellen. 2.1 Mechanische Schwingungen

2 Mechanische Schwingungen und Wellen. 2.1 Mechanische Schwingungen 2 Mechanische Schwingungen und Wellen 2.1 Mechanische Schwingungen 2.1.1 Harmonische Schwingungen Federpendel, Fadenpendel 2.1.2 Gedämpfte Schwingungen 2.1.3 Erzwungene Schwingungen 2.2 Wellen 2.2.1 Transversale

Mehr

Kondensator und Spule im Gleichstromkreis

Kondensator und Spule im Gleichstromkreis E2 Kondensaor und Spule im Gleichsromkreis Es sollen experimenelle nersuchungen zu Ein- und Ausschalvorgängen bei Kapaziäen und ndukiviäen im Gleichsromkreis durchgeführ werden. Als Messgerä wird dabei

Mehr

9 Periodische Bewegungen

9 Periodische Bewegungen Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen Mit Schwingungsdauer (Periode, Periodendauer) T Welle Schwingung breitet sich im Raum aus Zustand y wiederholt sich in Raum

Mehr

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2 Fachrichung Physik Physikalisches Grundprakikum Ersell: Bearbeie: Versuch: L. Jahn SR M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher Akualisier: am 29. 03. 2010 Srömung im Rohr Inhalsverzeichnis

Mehr

Einführung in die Physik I. Schwingungen und Wellen 1

Einführung in die Physik I. Schwingungen und Wellen 1 Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

6. Erzwungene Schwingungen

6. Erzwungene Schwingungen 6. Erzwungene Schwingungen Ein durch zeitveränderliche äußere Einwirkung zum Schwingen angeregtes (gezwungenes) System führt erzwungene Schwingungen durch. Bedeutsam sind vor allem periodische Erregungen

Mehr

Schwingungen. Harmonische Schwingungen. t Anharmonische Schwingungen. S. Alexandrova FDIBA TU Sofia 1

Schwingungen. Harmonische Schwingungen. t Anharmonische Schwingungen. S. Alexandrova FDIBA TU Sofia 1 Schwingungen Harmonische Schwingungen x t Anharmonische Schwingungen x x t S. Alexandrova FDIBA TU Sofia 1 t ANHARMONISCHE SCHWINGUNGEN EHB : Kraft F = -k(x-x o ) Potentielle Energie: E p E p Parabel mit

Mehr

Masse, Kraft und Beschleunigung Masse:

Masse, Kraft und Beschleunigung Masse: Masse, Kraf und Beschleunigung Masse: Sei 1889 is die Einhei der Masse wie folg fesgeleg: Das Kilogramm is die Einhei der Masse; es is gleich der Masse des Inernaionalen Kilogrammprooyps. Einzige Einhei

Mehr

III.2 Radioaktive Zerfallsreihen

III.2 Radioaktive Zerfallsreihen N.BORGHINI Version vom 5. November 14, 13:57 Kernphysik III. Radioakive Zerfallsreihen Das Produk eines radioakiven Zerfalls kann selbs insabil sein und späer zerfallen, und so weier, sodass ganze Zerfallsreihen

Mehr

Vorlesung Physik für Pharmazeuten und Biologen

Vorlesung Physik für Pharmazeuten und Biologen Vorlesung Physik für Pharmazeuten und Biologen Schwingungen Mechanische Wellen Akustik Freier harmonischer Oszillator Beispiel: Das mathematische Pendel Bewegungsgleichung : d s mg sinϕ = m dt Näherung

Mehr

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital apiel 11 Produkion, Sparen und der Aufbau von apial Vorbereie durch: Florian Barholomae / Sebasian Jauch / Angelika Sachs Die Wechselwirkung zwischen Produkion und apial Gesamwirschafliche Produkionsfunkion:

Mehr

INPUT-EVALUATION DER ZHW: PHYSIK SEITE 1. Serie 1

INPUT-EVALUATION DER ZHW: PHYSIK SEITE 1. Serie 1 INPUT-EVALUATIN DER ZHW: PHYSIK SEITE 1 Serie 1 1. Zwei Personen ziehen mi je 500 N an den Enden eines Seils. Das Seil ha eine Reissfesigkei von 600 N. Welche der vier folgenden Aussagen is physikalisch

Mehr

Anhang A1. Schwingungen. A1.1 Freie Schwingung ohne Dämpfung. A1.2 Freie Schwingung mit Dämpfung PN0907

Anhang A1. Schwingungen. A1.1 Freie Schwingung ohne Dämpfung. A1.2 Freie Schwingung mit Dämpfung PN0907 Anhang A1 Schwingungen Am Beispiel eines Drehschwingers werden im Folgenden die allgemeinen Eigenschaften schwingfähiger Systeme zusammengestellt und diskutiert. A1.1 Freie Schwingung ohne Dämpfung Idealisierter

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwere un Eigenvekoren Vorbemerkung: Is ie n n Marix inverierbar, so ha as lineare Gleichungssysem A x b für jees b genau eine Lösung, nämlich x A b. Grun: i A x A A b b, ii Is y eine weiere Lösung,

Mehr

7 Drehstromgleichrichter

7 Drehstromgleichrichter Drehsromgleichricher 7 Drehsromgleichricher 7.1 Mielpnk-Schalng (Halbbrücke) (3-plsiger Gleichricher) In bbildng 7-1 sind die drei Sekndärwicklngen eines Drehsrom-Transformaors in Sernschalng dargesell.

Mehr

Rechteckgenerator mit Schmitt-Trigger Eine Anwendung des Schmitt-Triggers als Multivibrator stellt der Rechteckgenerator nach Bild 1 dar:

Rechteckgenerator mit Schmitt-Trigger Eine Anwendung des Schmitt-Triggers als Multivibrator stellt der Rechteckgenerator nach Bild 1 dar: echeckgeneraor mi Schmi-rigger echeckgeneraor mi Schmi-rigger Eine Anwendng des Schmi-riggers als Mlivibraor sell der echeckgeneraor nach Bild dar U sa 0 Bild -U sa- C echeckgeneraor mi inverierendem Schmi-rigger.

Mehr

3. Echtzeit-Scheduling Grundlagen

3. Echtzeit-Scheduling Grundlagen 3. Echzei-Scheduling Grundlagen 3.1. Grundbegriffe, Klassifikaion und Bewerung Grundbegriffe Job Planungseinhei für Scheduling e wce r d Ausführungszei, Bearbeiungszei (execuion ime) maximale Ausführungszei

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Wechselströme (WS) Frühjahrssemester Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Wechselströme (WS) Frühjahrssemester Physik-Institut der Universität Zürich Anleiung zum Physikprakikum für Obersufenlehrpersonen Wechselsröme (WS) Frühjahrssemeser 2017 Physik-nsiu der Universiä Zürich nhalsverzeichnis 11 Wechselsröme (WS) 11.1 11.1 Einleiung........................................

Mehr

4.7. Exponential- und Logarithmusfunktionen

4.7. Exponential- und Logarithmusfunktionen ... Eonenialfunkionen Definiion:.. Eonenial- und Logarihmusfunkionen Die Funkion f() = c a mi D = R, c und a R + \{}heiß Eonenialfunkion zur Basis a. Die Eonenialfunkion zur Basis a = e mi der Eulerschen

Mehr

POHLsches 1 Drehpendel

POHLsches 1 Drehpendel POHLsches 1 Drehpendel Aufgabenstellung: Charakterisieren Sie das Schwingungsverhalten eines freien sowie eines periodisch angeregten Drehpendels. Stichworte zur Vorbereitung: Schwingungen, harmonische

Mehr

2.2 Rechnen mit Fourierreihen

2.2 Rechnen mit Fourierreihen 2.2 Rechnen mi Fourierreihen In diesem Abschni sollen alle Funkionen als sückweise seig und -periodisch vorausgesez werden. Ses sei ω 2π/. Wir sezen jez aus Funkionen neue Funkionen zusammen und schauen,

Mehr

Übungsaufgaben Mathematik 3 MST Lösung zu Blatt 4 Differentialgleichungen

Übungsaufgaben Mathematik 3 MST Lösung zu Blatt 4 Differentialgleichungen Übngsafgaben Mathematik MST Lösng z Blatt 4 Differentialgleichngen Prof. Dr. B.Grabowski Z Afgabe ) Lösen Sie folgende Differentialgleichngen nd Anfangswertprobleme drch mehrfaches Integrieren nach y(x)

Mehr

1 Lokale Änderungsrate und Gesamtänderung

1 Lokale Änderungsrate und Gesamtänderung Schülerbuchseie Lösungen vorläufig I Inegralrechnung Lokale Änderungsrae und Gesamänderung S. S. b h = m s ( s) + m s s + m s ( s) = 7 m Fläche = 7 FE a) s =, h km h +, h km h +, h km h +, h km h +,, h

Mehr

Signal- und Systemtheorie for Dummies

Signal- und Systemtheorie for Dummies FB Eleroechni Ewas Signal- und Sysemheorie or Dummies Version - Juli Oh No!!!! Pro. Dr.-Ing. ajana Lange Fachhochschule Merseburg FB Eleroechni Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies

Mehr

1 Physikalische Grundlagen

1 Physikalische Grundlagen Qaniaive Messng der spezifischen Wärmekapaziä nd der Schmelzwärme einer eekischen Legierng (SWE) Sichwore: Innere Energie, Schmelzenergie, hasenmwandlng hysikalische Grndlagen. Wärmekapaziä nd Schmelzkrve

Mehr

III. Schwingungen und Wellen

III. Schwingungen und Wellen III. Schwingungen und Wellen III.1 Schwingungen Physik für Mediziner 1 Schwingungen Eine Schwingung ist ein zeitlich periodischer Vorgang Schwingungen finden im allgemeinen um eine stabile Gleichgewichtslage

Mehr

Elektromagnetische Schwingungen und elektromagnetische Wellen im Vakuum

Elektromagnetische Schwingungen und elektromagnetische Wellen im Vakuum TU München Experimentalphysik 2 Ferienkurs WS 08/09 Felicitas Thorne Elektromagnetische Schwingungen und elektromagnetische Wellen im Vakuum Freitag, 27. Februar 2009 Inhaltsverzeichnis 1 Der elektromagnetische

Mehr

Kapitel 6: Ort, Geschwindigkeit und Beschleunigung als Funktion der Zeit

Kapitel 6: Ort, Geschwindigkeit und Beschleunigung als Funktion der Zeit Kapiel 6: Or, Geschwindigkei und Beschleunigung als Funkion der Zei 2 Kapiel 6: Or, Geschwindigkei und Beschleunigung als Funkion der Zei Einführung Lerninhal Einführung 3 Das Programm yzet erlaub es,

Mehr

12. Vorlesung. I Mechanik

12. Vorlesung. I Mechanik 12. Vorlesung I Mechanik 7. Schwingungen 8. Wellen transversale und longitudinale Wellen, Phasengeschwindigkeit, Dopplereffekt Superposition von Wellen 9. Schallwellen, Akustik Versuche: Wellenwanne: ebene

Mehr

GRUNDLAGENLABOR CLASSIC RC-GLIED

GRUNDLAGENLABOR CLASSIC RC-GLIED GUNDLAGNLABO LASSI -GLID Inhal: 1. inleing nd Zielsezng...2 2. Theoreische Afgaben - Vorbereing...2 3. Prakische Messafgaben...4 Anhang: in- nd Asschalvorgänge...5 Filename: Version: Ahor: _Glied_2_.doc

Mehr

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung)

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) 10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) Versuche: Pendel mit zwei Längen Sandpendel ohne/mit Dämpfung erzwungene Schwingung mit ω

Mehr

Erzwungene Schwingungen

Erzwungene Schwingungen Fachrichtung Physik Physikalisches Grundpraktikum Versuch: ES Erstellt: M. Kauer B. Scholz Aktualisiert: am 28. 06. 2016 Erzwungene Schwingungen Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Theoretische Grundlagen

Mehr

Laplacetransformation in der Technik

Laplacetransformation in der Technik Verallgemeinere Funkionen Laplaceransformaion in der echnik Fakulä Grundlagen Februar 26 Fakulä Grundlagen Laplaceransformaion in der echnik Übersich Verallgemeinere Funkionen Verallgemeinere Funkionen

Mehr

2. Freie Schwingungen

2. Freie Schwingungen 2. Freie Schwingungen Bei freien Schwingungen greifen keine zeitlich veränderlichen äußeren Kräfte am schwingenden System an. Das System wird nach einer anfänglichen Störung sich selbst überlassen. Die

Mehr

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild:

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild: Ein Nezgerä, auch Nezeil genann, is eine elekronische Schalungen die die Wechselspannung aus dem Sromnez (230V~) in eine Gleichspannung umwandeln kann. Ein Nezgerä sez sich meisens aus folgenden Komponenen

Mehr

Zeitabhängige Felder, Maxwell-Gleichungen

Zeitabhängige Felder, Maxwell-Gleichungen Zeiabhängige Felde, Mawell-Gleichungen Man beobache, dass ein eiabhängiges Magnefeld ein elekisches Feld eeug. Dies füh.. u eine Spannung an eine Dahschleife (ndukion). mgekeh beobache man auch: ein eiabhängiges

Mehr

HTL Kapfenberg pc_reifeprüfungsaufgaben_ma_11_bsp.31.mcd Seite 1 von 7

HTL Kapfenberg pc_reifeprüfungsaufgaben_ma_11_bsp.31.mcd Seite 1 von 7 HTL Kapfenberg p_reifeprüfungsaufgaben_ma Bsp.3.m Seie von 7 Angaben zu Aufgabe 3: Ein shwingfähiges mehanishes Sysem is mi einem geshwinigeisproporionalem Dämpfer ausgesae. Folgene in iesem Zusammenhang

Mehr

1 Fouriersynthese und Fourieranalyse

1 Fouriersynthese und Fourieranalyse Schwingungslehre in Kursstufe 5/ 57 Ernst Schreier Fouriersynthese und Fourieranalyse. Stehende Wellen / Eigenschwingungen / Resonanz Bei einfacher Reflexion bildet sich immer eine stehende Welle vor der

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge heinisch-wesfälische Technische Hochschule Aachen Insiu für Sromricherechni und Elerische Anriebe Universiäsprofessor Dr. ir. i W. De Doncer Grundgebiee der Eleroechni II Feedbacaufgabe: Transiene Vorgänge

Mehr

2.2.6 Betafunktion: Behandlung von Teilchenstrahlen als Vielteilchensystem

2.2.6 Betafunktion: Behandlung von Teilchenstrahlen als Vielteilchensystem ..6 Betafnktion: Behandlng von Teilchentrahlen al Vielteilchenytem Literatr: K. Wille, Phyik der Teilchenbechleniger nd Synchrotrontrahlngqellen, Unterkapitel 3. bi 3.3 Vor-nd Nachteile der Bahnberechnng

Mehr

Fachrichtung Mess- und Regelungstechniker

Fachrichtung Mess- und Regelungstechniker Fachrichung Mess- und egelungsechniker 4.3.2.7-2 chüler Daum:. Tiel der L.E. : Digiale euerungsechnik 3 2. Fach / Klasse : Arbeiskunde, 3. Ausbildungsjahr 3. Themen der Unerrichsabschnie :. -Kippglied

Mehr

D f = 1 π D J (M13.13) 1 Hz = 1 s kg m 2 rad. N m rad

D f = 1 π D J (M13.13) 1 Hz = 1 s kg m 2 rad. N m rad 00 13 Mechanische harmonische Schwingungen T Schwingungsdauer = 1/ f, Dauer einer vollen Schwingung, J Trägheismomen des die Drehschwingung ausführenden Körpers, bezogen auf seine Drehachse, dann gelen

Mehr

Mathematik für das Ingenieurstudium. 4. Juli 2011

Mathematik für das Ingenieurstudium. 4. Juli 2011 Mahemaik ür das Ingenieursudium Jürgen Koch Marin Sämple 4. Juli 0 .6 Beweise 43 Beispiel.3 (Ungleichungen) a) Die Ungleichung + 4 < 6 is ür alle -Were deinier. Zur Besimmung der Lösungsmenge berechnen

Mehr

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ...

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ... FH D FB 3 Fachhochschule Düsseldorf Universiy of Applied Sciences Fachbereich Elekroechnik Deparmen of Elecrical Engineering Prakikum Grundlagen der Elekroechnik Versuch 5 Name Marikelnummer:... Anesa

Mehr

Mathematik III DGL der Technik

Mathematik III DGL der Technik Mahemaik III DGL der Technik Grundbegriffe: Differenialgleichung: Bedingung in der Form einer Gleichung in der Ableiungen der zu suchenden Funkion bis zu einer endlichen Ordnung aufreen. Funkions- und

Mehr

7.3. Partielle Ableitungen und Richtungsableitungen

7.3. Partielle Ableitungen und Richtungsableitungen 7.3. Parielle Ableiungen und Richungsableiungen Generell vorgegeben sei eine Funkion f von einer Teilmenge A der Ebene R oder allgemeiner des n-dimensionalen Raumes R n nach R. Für x [x 1,..., x n ] aus

Mehr

Ergänzungen zur Physik I: Wellen (Zusammenfassung)

Ergänzungen zur Physik I: Wellen (Zusammenfassung) Ergänzungen zu Physik I Inhaltsverzeichnis Ergänzungen zur Physik I: Wellen (Zusammenfassung) U. Straumann, 28. Dezember 2013 Physik - Institut Universität Zürich Inhaltsverzeichnis 1 Wellengleichung 2

Mehr

Technische Mechanik III (Dynamik)

Technische Mechanik III (Dynamik) Insiu für Mechanische Verfahrensechnik und Mechanik Bereich newande Mechanik Technische Mechanik III (Dynamik) 8.6.4 Bearbeiunszei: h min ufabe y y (8 Punke) x m O α x β Ein Fußball der Masse m, der als

Mehr

Durchflussmesser. 4.4 Durchflussmessung. Durchflussmesser. Schwebekörperverfahren. V Q = t. Mengenmessung: Bestimmung des Stoffvolumens oder Masse

Durchflussmesser. 4.4 Durchflussmessung. Durchflussmesser. Schwebekörperverfahren. V Q = t. Mengenmessung: Bestimmung des Stoffvolumens oder Masse 4.4 Durchflussmessung Durchflussmesser Mengenmessung: esimmung es Soffvolumens oer Masse Durchfluss, olumen, Zei Durchflussmesser 3 Schwebekörperverfahren 4 Konisches Rohr Schwebekörper Für Gase un Flüssigkeien

Mehr

III. Gekoppelte Schwingungen und Wellen 1. Komplexe Schwingungen 1.1. Review: harmonischer Oszillator

III. Gekoppelte Schwingungen und Wellen 1. Komplexe Schwingungen 1.1. Review: harmonischer Oszillator III. Gekoppelte Schwingungen und Wellen 1. Komplexe Schwingungen 1.1. Review: harmonischer Oszillator Hooksches Gesetz Harmonisches Potential allgemeine Lösung Federpendel Fadenpendel Feder mit Federkonstante

Mehr

b) Man erwärmt auf einer Herdplatte mit einer Leistung von 2,0 kw zehn Minuten lang zwei Liter Wasser von 20 C.

b) Man erwärmt auf einer Herdplatte mit einer Leistung von 2,0 kw zehn Minuten lang zwei Liter Wasser von 20 C. Wärmelehre. a) Berechne, wie viel Energie man benöig, um 250 ml Wasser von 20 C auf 95 C zu erwärmen? b) Man erwärm auf einer Herdplae mi einer Leisung von 2,0 kw zehn Minuen lang zwei Lier Wasser von

Mehr

INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11

INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 INSIU FÜR NGENDE HYSI hysikalisches rakikum für Suierene er Ingenieurswissenschafen Universiä Hamburg, Jungiussraße 11 elier-ärmepumpe 1 Ziel äleleisung, ärmeleisung un ie Leisungsziffer einer elier-ärmepumpe

Mehr

Schwingungen und Wellen Teil I

Schwingungen und Wellen Teil I Schwingungen und Wellen Teil I 1.. 3. 4. 5. 6. 7. 8. 9. 10. Einleitung Arten von Schwingungen Lösung der Differentialgleichung Wichtige Größen Das freie ungedämpfte und gedämpfte Feder-Masse-System Ausbreitung

Mehr

EPI WS 2008/09 Dünnweber/Faessler

EPI WS 2008/09 Dünnweber/Faessler 11. Vorlesung EP I Mechanik 7. Schwingungen gekoppelte Pendel 8. Wellen (transversale und longitudinale Wellen, Phasengeschwindigkeit, Dopplereffekt Superposition von Wellen) Versuche: Schwebung gekoppelte

Mehr

Elektrische Schwingungen und Wellen

Elektrische Schwingungen und Wellen Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #4 am 0.07.2007 Vladimir Dyakonov Elektrische Schwingungen und Wellen Wechselströme Wechselstromgrößen

Mehr

Einleitung. Modulationsverfahren

Einleitung. Modulationsverfahren Pro. Dr.-Ing. W.-P. Bchwald Modlaionsverahren Einleing U Signale über einen Kanal überragen z können, ss i allgeeinen eine Modlaion a eine geeignee rägerreqenz erolgen, deren Lage an die Kanaleigenschaen

Mehr

1 Rasterelektronenmikroskop (vorbereitete Aufgabe, 1. Prüfungsteil)

1 Rasterelektronenmikroskop (vorbereitete Aufgabe, 1. Prüfungsteil) nur für den inernen Gebrauch Beispiel für eine mündliche Abiurprüfung im Fach Physik MündlicheAbiurprüfung Seie 1 von 6 Hilfsmiel: Zugelassener Taschenrechner, Wörerbuch der deuschen Rechschreibung. 1

Mehr

gekoppelte Pendelreihe Wellenmaschine Seilwelle (hin und her)

gekoppelte Pendelreihe Wellenmaschine Seilwelle (hin und her) Mechanik Wellen 16. Wellen 16.1. Einleitung Beispiele: gekoppelte Pendelreihe Wellenmaschine Seilwelle (hin und her) Was passiert? Das schwingende Medium/Teilchen bewegt sich nicht fort, sondern schwingt

Mehr

Leitungsgebundene Störfestigkeit

Leitungsgebundene Störfestigkeit Condced Immniy - 1 - Siegfried Meier Leingsgebndene Sörfesigkei in Aomoive Applikaionen Sörngen im Zeibereich af Versorgngsleingen 1 ISO7637-2...2 1.1 Allgemeines...2 1.1.1 Klassifizierng der Fnkionszsände...2

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Zenrale schrifliche Abiurprüfungen im Fach Mahemaik Aufgabe 9: Radioakiver Zerfall Beim radioakiven Zerfall einer Subsanz S 1 beschreib m 1 () die Masse der noch nich zerfallenen Subsanz zum Zeipunk mi

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert ( )

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert ( ) Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 005/06 Julian Merkert (1999) Versuch: P1-0 Pendel - Vorbereitung - Vorbemerkung Das einfachste Modell, um einen Pendelversuch zu beschreiben,

Mehr

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik)

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik) Physik EI1 Mechnik - Einfühung Seie I MECHNIK 1. EINÜHRUNG Gundlgen, Kinemik, Dynmik (Wiedeholung de Schulphysik) _Mechnik_Einfuehung1_Bneu.doc - 1/9 Die einfühenden Kpiel weden wi zunächs uf dem Niveu

Mehr

Mechanische Schwingungen und Wellen

Mechanische Schwingungen und Wellen Mechanische und Wellen Inhalt 1. 2.Überlagerung von 3.Entstehung und Ausbreitung von Wellen 4.Wechselwirkungen von Wellen 2 Voraussetzungen Schwingfähige Teilchen Energiezufuhr Auslenkung Rücktreibende

Mehr

Resonanz und Dämpfung

Resonanz und Dämpfung Resonanz und ämpfung Wenn eine Masse m an einem Federpendel (Federkonstante ) frei ohne ämpfung schwingt, genügt die Elongation s = s ( t ) der ifferentialgleichung m # s ( t ) + # s( t ) = 0. ies ist

Mehr

Versuch M3a für Nebenfächler Gedämpfter harmonischer Oszillator

Versuch M3a für Nebenfächler Gedämpfter harmonischer Oszillator Versuch M3a für Nebenfächler Gedämpfter harmonischer Oszillator I. Physikalisches Institut, Raum HS102 Stand: 23. Juni 2014 generelle Bemerkungen bitte Versuchsaufbau (Nummer) angeben bitte Versuchspartner

Mehr

Der lineare harmonische Oszillator

Der lineare harmonische Oszillator Als Beispiel für ein schwingungsfähiges Syse haen wir ereis das aheaische Pendel kennengelern. Der Auslenkwinkel ϕ des Pendels schwing haronisch u einen Gleichgewichswer ϕ = 0. Schwingungen ähnlicher Ar

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt

Mehr

Diskrete Integratoren und Ihre Eigenschaften

Diskrete Integratoren und Ihre Eigenschaften Diskree Inegraoren und Ihre Eigenschafen Whie Paper von Dipl.-Ing. Ingo Völlmecke Indusrielle eglersrukuren werden im Allgemeinen mi Hilfe von Inegraoren aufgebau. Aufgrund des analogen Schalungsaufbaus

Mehr

17. Kapitel: Die Investitionsplanung

17. Kapitel: Die Investitionsplanung ABWL 17. Kapiel: Die Ivesiiosplaug 1 17. Kapiel: Die Ivesiiosplaug Leifrage des Kapiels: Welche Type vo Ivesiiosobjeke gib es? Wie läss sich die Voreilhafigkei eies Ivesiiosobjeks fesselle? Wie ka aus

Mehr

gelöst. Durch Einsetzen von (10.4) in (10.3) erhält man eine algebraische Gleichung, aus der λ bestimmt werden kann:

gelöst. Durch Einsetzen von (10.4) in (10.3) erhält man eine algebraische Gleichung, aus der λ bestimmt werden kann: . Mechanische Schwingungen Federn beruhen auf den elastischen Eigenschaften von Festkörpern. In elastischen mechanischen Systemen sind mechanische Schwingungen möglich die an Hand einfacher Beispiele besprochen

Mehr

Bericht zur Prüfung im Oktober 2007 über Finanzmathematik und Investmentmanagement

Bericht zur Prüfung im Oktober 2007 über Finanzmathematik und Investmentmanagement Berich zur Prüfung im Okober 7 über Finanzmahemaik und Invesmenmanagemen (Grundwissen) Peer Albrech (Mannheim) Am 5 Okober 7 wurde zum zweien Mal eine Prüfung im Fach Finanzmahemaik und Invesmenmanagemen

Mehr

Faraday-Rotation. I. Rückmann, H. Bieker, P. Kruse. Bad Honnef Universität Bremen

Faraday-Rotation. I. Rückmann, H. Bieker, P. Kruse. Bad Honnef Universität Bremen Faraday-Rotation I. Rückmann, H. Bieker, P. Kruse Universität Bremen Bad Honnef 2014 I. Rückmann, H. Bieker, P. Kruse (Uni-Bremen) Faraday-Rotation Bad Honnef 2014 1 / 18 Faraday-Rotation magnetfeldinduzierte

Mehr

Mechatronische Antriebssysteme. LabVIEW und Motoransteuerung mit maxon

Mechatronische Antriebssysteme. LabVIEW und Motoransteuerung mit maxon Mecharonische Anriebssyseme LabVIEW und Mooranseuerung mi maxon Anriebssysemen Anriebssysem Elekrischer Bereich Maser Elekronik, Sofware Mecharonik Conroller Mechanischer Bereich Las Moor Geriebe Encoder

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre (c) Ulm University p. 1/ Grundlagen der Physik Schwingungen und Wärmelehre 3. 04. 006 Othmar Marti othmar.marti@uni-ulm.de Experimentelle Physik Universität Ulm (c) Ulm University p. / Physikalisches Pendel

Mehr

Formelzusammenstellung

Formelzusammenstellung Übung zu Mechanik 4 - ormelsammlung Seite 4 ormelzusammenstellung. Grundbegriffe Harmonische Schwingung Sinusschwingung: (t) sin ( t + ϕ) Schwingungsamplitude: Kreisfrequenz: Phasenwinkel: requenz: f Schwingungsdauer,

Mehr

Mechanische Schwingungen und Wellen

Mechanische Schwingungen und Wellen Begriff mechanische Welle Mechanische Schwingungen und Wellen Teil II - Wellen Definition: Eine mech. Welle ist die Ausbreitung einer mech. Schwingung im Raum, bei der Energie übertragen jedoch kein Stoff

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester Physik-Institut der Universität Zürich Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester 2016 Physik-Institut der Universität Zürich Inhaltsverzeichnis 4 Resonanz (R) 4.1 4.1 Einleitung........................................

Mehr

[c] = 1 m s. Erfolgt die Bewegung der Teilchen senkrecht zur Ausbreitungsrichtung der Welle, dann liegt liegt Transversalwelle vor0.

[c] = 1 m s. Erfolgt die Bewegung der Teilchen senkrecht zur Ausbreitungsrichtung der Welle, dann liegt liegt Transversalwelle vor0. Wellen ================================================================== 1. Transversal- und Longitudinalwellen ------------------------------------------------------------------------------------------------------------------

Mehr

Versuch Erzwungene Schwingung

Versuch Erzwungene Schwingung Versuch Erzwungene Schwingung erneuert aus Studiengebühren Vorbereitung: Drehschwingung, Gedämpfte Schwingung, Erzwungene Schwingung, Phasenraumdiagramme, Wirbelstrombremse Literatur: Standard-Lehrbücher

Mehr

Physik Profilkurs ÜA 07 mechanische Wellen Ks. 2011

Physik Profilkurs ÜA 07 mechanische Wellen Ks. 2011 Aufgabe 1) Ein Wellenträger wird mit f = 2,0 Hz harmonisch angeregt, wobei sich Wellen der Länge 30 cm und der Amplitude 3,0 cm bilden. Zur Zeit t o = 0,0 s durchläuft der Anfang des Wellenträgers gerade

Mehr

9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION

9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION Eponenialfunkion, Logarihmusfunkion 9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION 9.. Eponenialfunkion (a) Definiion Im Abschni Zinseszinsrechnung konne die Berechnung eines Kapials K n nach n Perioden der

Mehr

TONTECHNIK HÖREN // SCHALLWANDLER // IMPULSANTWORT UND FALTUNG // DIGITALE SIGNALE // MEHRKANALTECHNIK // TONTECHNISCHE PRAXIS

TONTECHNIK HÖREN // SCHALLWANDLER // IMPULSANTWORT UND FALTUNG // DIGITALE SIGNALE // MEHRKANALTECHNIK // TONTECHNISCHE PRAXIS 4., aktualisierte Auflage thomas GÖRNE TONTECHNIK HÖREN // SCHALLWANDLER // IMPULSANTWORT UND FALTUNG // DIGITALE SIGNALE // MEHRKANALTECHNIK // TONTECHNISCHE PRAXIS 18 1 Schall und Schwingungen 1.1 Mechanische

Mehr

Schulinternes Curriculum ARG

Schulinternes Curriculum ARG Physik Schulinternes Curriculum ARG Unterrichtsvorhaben Fachliche Kompetenzen Inhalte Methoden / Material UMGANG MIT DACHWISSEN verwenden Entropie als Wärmeäquivalent. S1 1 THERMODYNAMIK ea ERKENNTNISGEWINNUNG

Mehr

Phasenseparation (Entmischung) in binären, homogenen Mischungen

Phasenseparation (Entmischung) in binären, homogenen Mischungen Phasenseparation (Entmischng) in binären homogenen Mischngen Exkrs: Tangenten an molare Zstandsfnktionen In einer binären Mischng (enthält 2 Komponenten) seien Teilchen der orte nd Teilchen der orte vorhanden.

Mehr

Wechselstromlehre. (Lothar Melching) 1 Komplexe Zahlen Arithmetik Polarkoordinaten... 2

Wechselstromlehre. (Lothar Melching) 1 Komplexe Zahlen Arithmetik Polarkoordinaten... 2 Wechselsromlehre (Lohar Melching) Inhalsverzeichnis Komplexe Zahlen 2. Arihmeik.............................. 2.2 Polarkoordinaen........................... 2 2 Widersände 3 2. Ohmscher Widersand........................

Mehr

2. H Atom Grundlagen. Physik IV SS H Grundl. 2.1

2. H Atom Grundlagen. Physik IV SS H Grundl. 2.1 . H Atom Grundlagen.1 Schrödingergleichung mit Radial-Potenzial V(r). Kugelflächen-Funktionen Y lm (θ,φ).3 Radial-Wellenfunktionen R n,l (r).4 Bahn-Drehimpuls l.5 Spin s Physik IV SS 005. H Grundl..1 .1

Mehr

1 Kinematik der geradlinigen Bewegung eines Punktes 1.1 Freier Fall; Geschwindigkeit, Fallzeit, kinematische Diagramme

1 Kinematik der geradlinigen Bewegung eines Punktes 1.1 Freier Fall; Geschwindigkeit, Fallzeit, kinematische Diagramme Inhal / Übersich der Aufgaben mi Lösungen XI Aufgabe Erläuerung "Info"-Bild Seie 1 1 Kinemaik der geradlinigen Bewegung eines Punkes 1.1 Freier Fall; Geschwindigkei, Fallzei, kinemaische Diagramme 5 1.2

Mehr

11.8 Digitale Filter. Vorteile digitaler Filter

11.8 Digitale Filter. Vorteile digitaler Filter Fachhochschule usbur Fachbereich Elekroechnik Pro. Dr. C. Clemen.8 Diiale Filer Nachrichenüberraunsechnik.8 Diiale Filer ls wichies Beispiel ür diiale Sinalverarbeiun sollen nun diiale Filer behandel werden.

Mehr