Konzept diskreter Zufallsvariablen

Größe: px
Ab Seite anzeigen:

Download "Konzept diskreter Zufallsvariablen"

Transkript

1 Statistik 1 für SoziologInnen Konzept diskreter Zufallsvariablen Univ.Prof. Dr. Marcus Hudec

2 Beispiel: Zufallsvariable 3 Münzen werden unabhängig voneinander geworfen. Jede Münze kann entweder Kopf oder Zahl zeigen. Man ist nur an der Zahl der Köpfe interessiert. Elementarereignis Wahrscheinlichkeit KKK 1/8 KKZ 1/8 KZK 1/8 ZKK 1/8 KZZ 1/8 ZKZ 1/8 ZZK 1/8 ZZZ 1/8 2 Statistik 1 - Diskrete Zufallsvariable

3 Beispiel: Zufallsvariable 3 Münzen werden unabhängig voneinander geworfen. Jede Münze kann entweder Kopf oder Zahl zeigen. Man ist nur an der Zahl der Köpfe interessiert. Anzahl Kopf Elementarereignis Wahrscheinlichkeit KKK 3 1/8 KKZ 2 1/8 KZK 2 1/8 ZKK 2 1/8 KZZ 1 1/8 ZKZ 1 1/8 ZZK 1 1/8 ZZZ 0 1/8 3 Statistik 1 - Diskrete Zufallsvariable

4 Beispiel: Zufallsvariable Jedem Elementarereignis wird eine Zahl zugeordnet (Anzahl der beobachteten Köpfe) Die Wahrscheinlichkeit für das Auftreten einer Zahl ergibt sich durch Summation der Wahrscheinlichkeiten der Elementarereignisse, die mit dieser Zahl verknüpft sind: Anzahl Kopf Wahrscheinlichkeit 1/8 3/8 3/8 1/8 4 Statistik 1 - Diskrete Zufallsvariable

5 Diskrete Zufallsvariable (Random Variable) Eine Variable X, die jedem möglichen Ereignis e E eines Zufallsexperimentes eine Zahl X(e) zuordnet, wird als Zufallsvariable bezeichnet. Die Wahrscheinlichkeitsverteilung einer Zufallsvariablen X ergibt sich durch die Zuordnung der Wahrscheinlichkeiten von allen durch X definierten Ereignissen. 5 Statistik 1 - Diskrete Zufallsvariable

6 Beispiel aus Buch von Agresti General Social Survey Question: What do you think is the ideal number of children for a family to have? Ideal Number Relative Frequency 0,01 0,03 0,60 0,23 0,12 0,01 6 Statistik 1 - Diskrete Zufallsvariable

7 Beispiel aus Buch von Agresti If you randomly pick out a person from the USpopulation the probability of each allowed answer will follow the above table. Ideal Number Probability 0,01 0,03 0,60 0,23 0,12 0,01 7 Statistik 1 - Diskrete Zufallsvariable

8 Wahrscheinlichkeitsfunktion Die Funktion f(x), die jeder Zahl x die Wahrscheinlichkeit P(X=x) zuordnet, heißt Wahrscheinlichkeitsfunktion der diskreten Zufallsvariablen X: f(x) = P(X = x) Seien x 1, x 2,..., x i,... die Realisationsmöglichkeiten der diskreten Zufallsvariablen X, so wird die Wahrscheinlichkeitsfunktion oft kurz als p i geschrieben: f(x i ) = P(X = x i ) = p i i=1, 2,... 8 Statistik 1 - Diskrete Zufallsvariable

9 Beispiel: Zufallsvariable Jedem Elementarereignis wird eine Zahl zugeordnet (Anzahl der beobachteten Köpfe) Anzahl Kopf Wahrscheinlichkeit P{X=2} = 3/8 P{X 2} = 1 - P{X > 2} = 1/8 + 3/8 + 3/8 = 1-1/8 =7/8 P{0 < X 1} = 3/8 1/8 3/8 3/8 1/8 P{X > 1} = 1 - P{X 1} = 3/8 + 1/8 = 1-1/8-3/8 = 4/8 9 Statistik 1 - Diskrete Zufallsvariable

10 Verteilungsfunktion Um die Wahrscheinlichkeitsverteilung einer Zufallsvariablen X zu definieren, genügt es Ereignissen des Typs {X x} Wahrscheinlichkeiten zuzuordnen. Daraus lassen sich bereits für alle anderen durch X definierten Ereignisse die Wahrscheinlichkeiten ermitteln. Die Funktion F(x), die jedem x die Wahrscheinlichkeit P(X x) zuordnet nennt man die theoretische Verteilungsfunktion der Zufallsvariablen X: F(x) = P(X x) 10 Statistik 1 - Diskrete Zufallsvariable

11 Beispiel: Münzwurf Anzahl Kopf X Wahrscheinlichkeitsfunktion 1/8 3/8 3/8 1/8 P(X=x) Verteilungsfunktion F(x) = P(X x) 1/8 4/8 7/8 8/8 F(0) = P{X 0} = 1/8 F(1) = P{X 1} = 4/8 F(2) = P{X 2} = 7/8 F(3) = P{X 3} = 8/8 1,2 1 0,8 0,6 0,4 0,2 Verteilungsfunktion Statistik 1 - Diskrete Zufallsvariable

12 Beispiel Probability P(X = x) Ideal Number of Children 0,70 0,60 0,50 0,40 0,30 0,20 0,10 0, P(2 X 3) = 0,60 + 0,23 = 0,83 P(X 3) = 0,87 P(X 1) = 0,04 P(2 X 3) = P(X 3) P(X 1) = 0,87 0,04 = 0,83 Ideal Number of Children X Probability P(X = x) Probability F(x) = P(X x) 0 0,01 0,01 1 0,03 0,04 2 0,60 0,64 3 0,23 0,87 4 0,12 0,99 5 0,01 1,00 Wir können aus der theoretischen Verteilungsfunktion die Wahrscheinlichkeit für beliebige Ereignisse berechnen. 12 Statistik 1 - Diskrete Zufallsvariable

13 Sprachliche Formulierungen Für eine diskrete Zufallsvariable, die nur ganzzahlige Werte annehmen kann, sind folgende Aussagen äquivalent: X größer 2 X>2 bzw. X 3 X zumindest 3 X 3 X ist 3 oder mehr X 3 X ist nicht kleiner als 3 Nicht(X<3)= X 3 Ebenfalls äquivalent sind die folgenden Aussagen: X ist kleiner als 2 X<2 bzw. X 1 X ist höchstens 1 X 1 X ist 1 oder kleiner X 1 X ist nicht größer als 1 Nicht(X>1)= X 1 13 Statistik 1 - Diskrete Zufallsvariable

14 Eigenschaften der Verteilungsfunktion F(x) nimmt nur Werte zwischen 0 und 1 an, d.h. es gilt: 0 F(x) 1 bzw. da F(x) = P(X x) 0 P(X x) 1 F(x) steigt für wachsendes x monoton an x 1 < x 2 F(x 1 ) F(x 2 ) F(x) 1 für x F(x) 0 für x - 14 Statistik 1 - Diskrete Zufallsvariable

15 f(x) F(x) im diskreten Fall Zwischen der Wahrscheinlichkeitsfunktion f(x) und der Verteilungsfunktion F(x) gelten im Fall der diskreten Zufallsvariable X mit den Realisationsmöglichkeiten x 1, x 2,..., x i,...: Fx) ( fx ( i ) Die Differenz zweier xi x aufeinanderfolgender Werte F(x i ) - F(x i-1 ) = f(x i ) der Verteilungsfunktion ist die Wahrscheinlichkeit des größeren Wertes bestimmt F(x i ) = P(X x i ) = = P(X < x i ) + P(X = x i ) = = F(x i-1 ) + P(X = x i ) 15 Statistik 1 - Diskrete Zufallsvariable

16 Erwartungswert Sei X eine diskrete Zufallsvariable mit den Realisationsmöglichkeiten x i und der zugehörigen Wahrscheinlichkeitsfunktion p i =P(X=x i ), i=1,2,... Dann heißt E(X) der Erwartungswert von X. EX ( ) i xp i i Gewichtete Summe der Merkmalsausprägungen, wobei die Gewichte die Wahrscheinlichkeiten sind. 16 Statistik 1 - Diskrete Zufallsvariable

17 Varianz einer ZV Misst die theoretisch zu erwartende Schwankung eines zufälligen Phänomens V(X) E(X²) E(X)² V(X) [x E(X)]²p(x ) i i i Analoge Eigenschaften wie bei der empirischen Varianz Y a bx V(Y) b²v(x) 17 Statistik 1 - Diskrete Zufallsvariable

18 Beispiel aus Buch von Agresti Ideal Number of Children X Probability P(X = x) E(X) E(X²) 0 0,01 0,00 0,00 1 0,03 0,03 0,03 2 0,60 1,20 2,40 3 0,23 0,69 2,07 4 0,12 0,48 1,92 5 0,01 0,05 0,25 2,45 6,67 Erwartungswert E(X): 2,45 Varianz V(X): = 6,67 2,45² = 0,6675 EX ( ) xp i i i Standardabweichung: 0,8170 V(X) E(X²) E(X)² 18 Statistik 1 - Diskrete Zufallsvariable

19 Varianz beim Roulette (Varianz.XLS) Unterschiedliche Strategien haben den selben Erwartungswert aber eine verschiedene Varianz! 19 Statistik 1 - Diskrete Zufallsvariable

20 Varianz beim Roulette (Varianz.XLS) 250 Drücken Sie F Simulation Spiel auf Dutzend Simulation Spiel auf 1 Zahl Theorie 20 Statistik 1 - Diskrete Zufallsvariable

21 Beispiel Würfelwurf Wir betrachten einen idealen (unverfälschten) Würfel, welcher folgende Wahrscheinlichkeitsfunktion besitzt: Augenzahl Probability E(X) E(X²) 1 0,1667 0,1667 0, ,1667 0,3333 0, ,1667 0,5000 1, ,1667 0,6667 2, ,1667 0,8333 4, ,1667 1,0000 6,0000 1,0000 3,5 15,1667 EX ( ) xp i i i Erwartungswert 3,5 Varianz 2,9167 Standardabweichung 1,7078 V(X) E(X²) E(X)² 21 Statistik 1 - Diskrete Zufallsvariable

22 Arithm. Mittel versus Erwartungswert 22 Statistik 1 - Diskrete Zufallsvariable

23 Inferenzstatistisches Prinzip In der Inferenzstatistik (schließenden Statistik) versucht man durch den systematischen Vergleich von empirischen Häufigkeitsverteilungen mit hypothetischen theoretischen Modellen Schlussfolgerungen über den datengenerierenden Prozess ziehen zu können. Dieser Vergleich kann auf verschiedenen Ebenen erfolgen: Vergleich der theoretischen und der empirischen Verteilung (z.b. Säulendiagramm empirischer Häufigkeiten versus Wahrscheinlichkeitsfunktion) Vergleich von Maßzahlen (z.b. Mittelwert versus Erwartungswert) 23 Statistik 1 - Diskrete Zufallsvariable

24 Beispiel: Diskrete Zufallsvariable Bei einem Wissenstest muss ein Kandidat bei jeder Frage ein Zuordnungsproblem der folgenden Art lösen: 1) Erste Türkenbelagerung 2) Schlacht von Hastings 3) Entdeckung Amerikas a) 1066 b) 1492 c) 1529 Der Ereignisraum kann wie folgt dargestellt werden: a b c a c b b a c b c a c a b c b a Die Anzahl der richtigen Antworten bei dieser Frage ist, da die korrekte Lösung (c a b) lautet, wie folgt: Statistik 1 - Diskrete Zufallsvariable

25 Beispiel: Diskrete Zufallsvariable Geht man davon aus, dass ein Kandidat die Fragen rein nach dem Zufallsprinzip beantwortet (jede der 6 möglichen Antwortmuster mit gleicher Wahrscheinlichkeit wählt), ergibt sich für die Wahrscheinlichkeitsfunktion der Anzahl richtigen Antworten folgende Tabelle: Anzahl richtige Antworten Wahrscheinlichkeit /6 3/6 0 1/6 25 Statistik 1 - Diskrete Zufallsvariable

26 Beispiel: Diskrete Zufallsvariable Stellt man den Kandidaten wiederholt eine Problemstellung des obigen Typs, kann man wohl davon ausgehen, dass der Kandidat im Mittel pro Problem eine richtige Antwort treffen wird: x i p i x i p i 0 2/ /6 3/6 EX ( ) xp i i i 3 1/6 3/6 Summe 1 1 Dieses gewogene Mittel ist der Erwartungswert der Zufallsvariable. 26 Statistik 1 - Diskrete Zufallsvariable

27 Anwendung beim Zuordnungstest In 3 Schulklassen (A, B, C) mit je 30 Schülern wird der zuvor beschriebene Zuordnungstest durchgeführt: Korrekt Prob Theorie A B C 0 2/ / / Erwartungswert bei zufälligem Antwortverhalten (Theorie) 1 richtige Lösung pro Schüler Berechnung der empirischen Mittelwerte pro Klasse: Mittelwert in Klasse(A): 10/30 = 1/3 Mittelwert in Klasse B: 27/30 = 9/10 Mittelwert in Klasse C: 66/30 = 2,2 1 x n Theorie: Verteilung beim Raten nach dem reinen Zufallsprinzip 27 Statistik 1 - Diskrete Zufallsvariable k i 1 n x i i k i 1 h x i i

28 Vergleich empirische theoretische Verteilung Theorie A Theorie B Theorie C Gruppe A: deutlich schlechter als blindes Raten Gruppe B: entspricht blindem Raten Gruppe C: deutlich besser als blindes Raten 28 Statistik 1 - Diskrete Zufallsvariable

29 Eigenschaften des Erwartungswertes Linearität: Additivität: 29 E(aX b) ae(x) b E(X Y) E(X) E(Y) Der Erwartungswert einer Summe ist die Summe der Erwartungswerte Beachte : E(X X) E(2X) aber X X 2X Statistik 1 - Diskrete Zufallsvariable

30 Zufallsvariable Augenzahl beim Würfelwurf Augenzahl (X) P(X=x) x.p(x=x) 1 0,167 0, ,167 0, ,167 0, ,167 0, ,167 0, ,167 1,000 3,5 E(X) = 3,5 30 Statistik 1 - Diskrete Zufallsvariable

31 Zufallsvariable Doppelte Augenzahl (2X) Augenzahl (2X) P(X=x) x.p(x=x) 2 0,167 0, ,167 0, ,167 1, ,167 1, ,167 1, ,167 2,000 7 E(X) = 3,5 E(2X) = 2*3,5=7 31 Statistik 1 - Diskrete Zufallsvariable

32 Summe Augenzahl von 2 Würfen 32 Statistik 1 - Diskrete Zufallsvariable

33 Zufallsvariable X+X Summe Augenzahl von 2 Würfen ,028 0,028 0,028 0,028 0,028 0, ,028 0,028 0,028 0,028 0,028 0, ,028 0,028 0,028 0,028 0,028 0, ,028 0,028 0,028 0,028 0,028 0, ,028 0,028 0,028 0,028 0,028 0, ,028 0,028 0,028 0,028 0,028 0,028 z.b.: P(X+X=7)=6/36 1/36 = 0, Statistik 1 - Diskrete Zufallsvariable

34 Zufallsvariable X+X Augenzahl Y=X+X P(Y=y) y.p(y=y) 2 0,028 0, ,056 0, ,083 0, ,111 0, ,139 0, ,167 1, ,139 1, ,111 1, ,083 0, ,056 0, ,028 0,333 7,000 0,180 0,160 0,140 0,120 0,100 0,080 0,060 0,040 0,020 0,000 P(Y=y) E(X) = 3,5 E(2X) = 2*3,5 = 7 E(X+X) = E(2X) = 7 34 Statistik 1 - Diskrete Zufallsvariable

35 Eigenschaften der Varianz einer ZV V(X) E(X²) E(X)² In Bezug auf lineare Transformationen gilt analog wie bei der empirischen Varianz: Y a bx V(Y) b²v(x) In Bezug auf die Summe/Differenz gilt, für zwei unabhängige Zufallsvariablen X und Y: V(X Y) V(X) V(Y) V(X Y) V(X) V(Y) Allgemein gilt: V(X Y) V(X) V(Y) 2Cov(X,Y) 35 Statistik 1 - Diskrete Zufallsvariable

36 Anwendungsbeispiel Im Zuge einer Erhebung wurden Haushalte in einer Stadt nach der Anzahl der im Haushalt benutzten KFZ befragt. Anzahl der benutzten KFZ Relative Häufigkeit % 40% 20% 10% Sie wählen aus der obigen Population rein zufällig einen Haushalt aus und X sei die Zufallsvariable Anzahl der KFZ in einem zufällig ausgewählten Haushalt. Berechne Erwartungswert und Varianz für die diskrete Zufallsvariable X! Angenommen Sie ziehen aus der obigen Population eine Zufallsstichprobe von 5 unabhängigen Haushalten. Wie groß sind der Erwartungswert und die Varianz für die Gesamtsumme der Anzahl der KFZ, die von den 5 ausgewählten Haushalten genutzt werden? 36 Statistik 1 - Diskrete Zufallsvariable

37 Lösung Anzahl KFZ rel Häufigkeit E(X) X² E(X²) 0 30% % 0,4 1 0,4 2 20% 0,4 4 0,8 3 10% 0,3 9 0,9 100% 1,1 2,1 Varianz 0,89 Erwartungswert bei 1 Person 1,1 Varianz bei einer Person 0,89 Erwartungswert bei 5 Personen 5,5 Varianz bei 5 Personen 4,45 wegen Unabhängigkeit Vorgehen: zuerst berechnen wir E(X) und V(X); dann wenden wir an, dass der Erwartungswert einer Summe gleich der Summe der Erwartungswerte ist. Bei der Varianz gilt das nur, wenn die Beobachtungen statistisch unabhängig sind! 37 Statistik 1 - Diskrete Zufallsvariable

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Wahrscheinlichkeitstheorie Was will die Sozialwissenschaft damit? Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Auch im Alltagsleben arbeiten wir mit Wahrscheinlichkeiten, besteigen

Mehr

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten Zufallsgrößen Ergebnisse von Zufallsexperimenten werden als Zahlen dargestellt 0 Einführung Wahrscheinlichkeitsrechnung 2 Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Hypothesentests

Mehr

Diskrete Wahrscheinlichkeitsverteilungen

Diskrete Wahrscheinlichkeitsverteilungen Diskrete Wahrscheinlichkeitsverteilungen Worum geht es in diesem Modul? Zufallsvariablen Wahrscheinlichkeitsverteilungen Maßzahlen theoretischer Verteilungen Eigenschaften von Erwartungswert und Varianz

Mehr

Name:... Matrikel-Nr.:... 3 Aufgabe Handyklingeln in der Vorlesung (9 Punkte) Angenommen, ein Student führt ein Handy mit sich, das mit einer Wahrscheinlichkeit von p während einer Vorlesung zumindest

Mehr

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen.

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen. Dieses Quiz soll Ihnen helfen, Kapitel 2.5-2. besser zu verstehen. Frage Wir betrachten ein Würfelspiel. Man wirft einen fairen, sechsseitigen Würfel. Wenn eine oder eine 2 oben liegt, muss man 2 SFr zahlen.

Mehr

Hypergeometrische Verteilung

Hypergeometrische Verteilung Hypergeometrische Verteilung Typischer Anwendungsfall: Ziehen ohne Zurücklegen Durch den Ziehungsprozess wird die Wahrscheinlichkeit des auch hier zu Grunde liegenden Bernoulli-Experimentes verändert.

Mehr

Zufallsgrößen. Vorlesung Statistik für KW 29.04.2008 Helmut Küchenhoff

Zufallsgrößen. Vorlesung Statistik für KW 29.04.2008 Helmut Küchenhoff Zufallsgrößen 2.5 Zufallsgrößen 2.5.1 Verteilungsfunktion einer Zufallsgröße 2.5.2 Wahrscheinlichkeits- und Dichtefunktion Wahrscheinlichkeitsfunktion einer diskreten Zufallsgröße Dichtefunktion einer

Mehr

Weihnachtszettel zur Vorlesung. Stochastik I. Wintersemester 2011/2012

Weihnachtszettel zur Vorlesung. Stochastik I. Wintersemester 2011/2012 Weihnachtszettel zur Vorlesung Stochastik I Wintersemester 0/0 Aufgabe. Der Weihnachtsmann hat vergessen die Weihnachtsgeschenke mit Namen zu beschriften und muss sie daher zufällig verteilen. Dabei enthält

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

Grundlegende Eigenschaften von Punktschätzern

Grundlegende Eigenschaften von Punktschätzern Grundlegende Eigenschaften von Punktschätzern Worum geht es in diesem Modul? Schätzer als Zufallsvariablen Vorbereitung einer Simulation Verteilung von P-Dach Empirische Lage- und Streuungsparameter zur

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch 6 Stetige Verteilungen 1 Kapitel 6: Stetige Verteilungen A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch dargestellt. 0.2 6

Mehr

Wahrscheinlichkeitstheorie

Wahrscheinlichkeitstheorie Kapitel 2 Wahrscheinlichkeitstheorie Josef Leydold c 2006 Mathematische Methoden II Wahrscheinlichkeitstheorie 1 / 24 Lernziele Experimente, Ereignisse und Ereignisraum Wahrscheinlichkeit Rechnen mit Wahrscheinlichkeiten

Mehr

$ % + 0 sonst. " p für X =1 $

$ % + 0 sonst.  p für X =1 $ 31 617 Spezielle Verteilungen 6171 Bernoulli Verteilung Wir beschreiben zunächst drei diskrete Verteilungen und beginnen mit einem Zufallsexperiment, indem wir uns für das Eintreffen eines bestimmten Ereignisses

Mehr

Aufgaben zu Kapitel 38

Aufgaben zu Kapitel 38 Aufgaben zu Kapitel 38 Aufgaben zu Kapitel 38 Verständnisfragen Aufgabe 38. Welche der folgenden vier Aussagen sind richtig:. Kennt man die Verteilung von X und die Verteilung von Y, dann kann man daraus

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Wahrscheinlichkeitsverteilungen 1. Binomialverteilung 1.1 Abzählverfahren 1.2 Urnenmodell Ziehen mit Zurücklegen, Formel von Bernoulli 1.3 Berechnung von Werten 1.4 Erwartungswert und Standardabweichung

Mehr

Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7:

Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7: Discrete Probability - Übungen (SS5) Felix Rohrer Wahrscheinlichkeitstheorie 1. KR, Abschnitt 6.1, Aufgabe 5: Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Augensumme von zwei geworfenen Würfeln

Mehr

MafI I: Logik & Diskrete Mathematik (Autor: Gerrit (-Arthur) Gruben)

MafI I: Logik & Diskrete Mathematik (Autor: Gerrit (-Arthur) Gruben) Musterlösung zum. Aufgabenblatt zur Vorlesung MafI I: Logik & Diskrete Mathematik (Autor: Gerrit (-Arthur Gruben. Wahrscheinlichkeiten I ( Punkte Die Seiten von zwei Würfeln sind mit den folgenden Zahlen

Mehr

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate Regression ein kleiner Rückblick Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate 05.11.2009 Gliederung 1. Stochastische Abhängigkeit 2. Definition Zufallsvariable 3. Kennwerte 3.1 für

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

Kenngrößen von Zufallsvariablen

Kenngrößen von Zufallsvariablen Kenngrößen von Zufallsvariablen Die Wahrscheinlichkeitsverteilung kann durch die sogenannten Kenngrößen beschrieben werden, sie charakterisieren sozusagen die Verteilung. Der Erwartungswert Der Erwartungswert

Mehr

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung Mathematik: LehrerInnenteam Arbeitsblatt 7-7. Semester ARBEITSBLATT Erwartungswert, Varianz und Standardabweichung Die Begriffe Varianz und Standardabweichung sind uns bereits aus der Statistik bekannt

Mehr

Webinar Induktive Statistik. - Wahrscheinlichkeitsrechnung - Stichprobentheorie

Webinar Induktive Statistik. - Wahrscheinlichkeitsrechnung - Stichprobentheorie Webinar Induktive Statistik - Wahrscheinlichkeitsrechnung - Stichprobentheorie Wahrscheinlichkeitstheorie Aufgabe : Zwei Lieferanten decken den Bedarf eines PKW-Herstellers von 00.000 Einheiten pro Monat.

Mehr

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion Kapitel 12 Stetige Zufallsvariablen 12.1. Dichtefunktion und Verteilungsfunktion stetig Verteilungsfunktion Trägermenge T, also die Menge der möglichen Realisationen, ist durch ein Intervall gegeben Häufig

Mehr

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend oder eindeutig, wenn keine alternativen Interpretationsmöglichkeiten

Mehr

Kapitel 5. Stochastik

Kapitel 5. Stochastik 76 Kapitel 5 Stochastik In diesem Kapitel wollen wir die Grundzüge der Wahrscheinlichkeitstheorie behandeln. Wir beschränken uns dabei auf diskrete Wahrscheinlichkeitsräume Ω. Definition 5.1. Ein diskreter

Mehr

Statistik II. Statistische Tests. Statistik II

Statistik II. Statistische Tests. Statistik II Statistik II Statistische Tests Statistik II - 12.5.2006 1 Test auf Anteilswert: Binomialtest Sei eine Stichprobe unabhängig, identisch verteilter ZV (i.i.d.). Teile diese Stichprobe in zwei Teilmengen

Mehr

Dieser Begriff wurde von Jacob Bernoulli Ars conjectandi geprägt (1773), in dem das erste Gesetz der großen Zahlen bewiesen wurde.

Dieser Begriff wurde von Jacob Bernoulli Ars conjectandi geprägt (1773), in dem das erste Gesetz der großen Zahlen bewiesen wurde. 10.1 Über den Begriff Stochastik Die Wahrscheinlichkeitsrechnung ist eine Teildisziplin von Stochastik. Dabei kommt das Wort Stochastik aus dem Griechischen : die Kunst des Vermutens (von Vermutung, Ahnung,

Mehr

Übungen zur Mathematik für Pharmazeuten

Übungen zur Mathematik für Pharmazeuten Blatt 1 Aufgabe 1. Wir betrachten den Ereignisraum Ω = {(i,j) 1 i,j 6} zum Zufallsexperiment des zweimaligem Würfelns. Sei A Ω das Ereignis Pasch, und B Ω das Ereignis, daß der erste Wurf eine gerade Augenzahl

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 5 Hilfsmittel aus der Kombinatorik 7 Bedingte

Mehr

Wahrscheinlichkeitsrechnung für die Mittelstufe

Wahrscheinlichkeitsrechnung für die Mittelstufe Wahrscheinlichkeitsrechnung für die Mittelstufe Wir beginnen mit einem Beispiel, dem Münzwurf. Es wird eine faire Münze geworfen mit den Seiten K (für Kopf) und Z (für Zahl). Fair heißt, dass jede Seite

Mehr

I. Deskriptive Statistik 1

I. Deskriptive Statistik 1 I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................

Mehr

Biomathematik für Mediziner, Klausur SS 2001 Seite 1

Biomathematik für Mediziner, Klausur SS 2001 Seite 1 Biomathematik für Mediziner, Klausur SS 2001 Seite 1 Aufgabe 1: Von den Patienten einer Klinik geben 70% an, Masern gehabt zu haben, und 60% erinnerten sich an eine Windpockeninfektion. An mindestens einer

Mehr

Bachelor BEE Statistik Übung: Blatt 1 Ostfalia - Hochschule für angewandte Wissenschaften Fakultät Versorgungstechnik Aufgabe (1.1): Gegeben sei die folgende Messreihe: Nr. ph-werte 1-10 6.4 6.3 6.7 6.5

Mehr

Bestimmen Sie die möglichen Realisationen sowie die dazugehörigen Wahrscheinlicheiten der Zufallsvariable

Bestimmen Sie die möglichen Realisationen sowie die dazugehörigen Wahrscheinlicheiten der Zufallsvariable Zufallsgrößen ================================================================= 1. In einer Sendung von 10 Artikeln befinden sich 4 fehlerhafte. 4 Artikel werden zufällig entnommen. X beschreibe die Anzahl

Mehr

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Aufgabe 1 (10 Punkte). 10 Schüler der zehnten Klasse unterziehen sich zur Vorbereitung auf die Abschlussprüfung einem Mathematiktrainingsprogramm.

Mehr

Stochastik und Statistik für Ingenieure Vorlesung 4

Stochastik und Statistik für Ingenieure Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Stochastik und Statistik für Ingenieure Vorlesung 4 30. Oktober 2012 Quantile einer stetigen Zufallsgröße Die reelle Zahl

Mehr

K8 Stetige Zufallsvariablen Theorie und Praxis

K8 Stetige Zufallsvariablen Theorie und Praxis K8 Stetige Zufallsvariablen Theorie und Praxis 8.1 Theoretischer Hintergrund Wir haben (nicht abzählbare) Wahrscheinlichkeitsräume Meßbare Funktionen Zufallsvariablen Verteilungsfunktionen Dichten in R

Mehr

2.2 Ereignisse und deren Wahrscheinlichkeit

2.2 Ereignisse und deren Wahrscheinlichkeit 2.2 Ereignisse und deren Wahrscheinlichkeit Literatur: [Papula Bd., Kap. II.2 und II.], [Benning, Kap. ], [Bronstein et al., Kap. 1.2.1] Def 1 [Benning] Ein Zufallsexperiment ist ein beliebig oft wiederholbarer,

Mehr

Prüfungstutorat: Angewandte Methoden der Politikwissenschaft. Polito Seminar Carl Schweinitz 10.12.2014

Prüfungstutorat: Angewandte Methoden der Politikwissenschaft. Polito Seminar Carl Schweinitz 10.12.2014 Prüfungstutorat: Angewandte Methoden der Politikwissenschaft Polito Seminar Carl Schweinitz 10.12.2014 Übersicht 1. Einheiten und Variablen 2. Skalen und ihre Transformation 3. Deskriptive Statistik 4.

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

Wahrscheinlichkeits - rechnung und Statistik

Wahrscheinlichkeits - rechnung und Statistik Michael Sachs Mathematik-Studienhilfen Wahrscheinlichkeits - rechnung und Statistik für Ingenieurstudenten an Fachhochschulen 4., aktualisierte Auflage 2.2 Eindimensionale Häufigkeitsverteilungen 19 absolute

Mehr

Der Zentrale Grenzwertsatz

Der Zentrale Grenzwertsatz QUALITY-APPS Applikationen für das Qualitätsmanagement Der Zentrale Grenzwertsatz Autor: Dr. Konrad Reuter Für ein Folge unabhängiger Zufallsvariablen mit derselben Verteilung und endlichem Erwartungswert

Mehr

Univariates Datenmaterial

Univariates Datenmaterial Univariates Datenmaterial 1.6.1 Deskriptive Statistik Zufallstichprobe: Umfang n, d.h. Stichprobe von n Zufallsvariablen o Merkmal/Zufallsvariablen: Y = {Y 1, Y 2,..., Y n } o Realisationen/Daten: x =

Mehr

b) Bestimmen Sie die Varianz der beiden Schätzer. c) Ist ein oder sind beide Schätzer konsistent? Begründen Sie!

b) Bestimmen Sie die Varianz der beiden Schätzer. c) Ist ein oder sind beide Schätzer konsistent? Begründen Sie! Aufgabe 1 (3 + 3 + 2 Punkte) Ein Landwirt möchte das durchschnittliche Gewicht von einjährigen Ferkeln bestimmen lassen. Dies möchte er aus seinem diesjährigen Bestand an n Tieren schätzen. Er kann dies

Mehr

Chi-Quadrat-Verteilung

Chi-Quadrat-Verteilung Chi-Quadrat-Verteilung Die Verteilung einer Summe X +X +...+X n, wobei X,..., X n unabhängige standardnormalverteilte Zufallsvariablen sind, heißt χ -Verteilung mit n Freiheitsgraden. Eine N(, )-verteilte

Mehr

Deskriptive Statistik 1 behaftet.

Deskriptive Statistik 1 behaftet. Die Statistik beschäftigt sich mit Massenerscheinungen, bei denen die dahinterstehenden Einzelereignisse meist zufällig sind. Statistik benutzt die Methoden der Wahrscheinlichkeitsrechnung. Fundamentalregeln:

Mehr

Übungsrunde 5, Gruppe 2 LVA , Übungsrunde 5, Gruppe 2, Markus Nemetz, TU Wien, 11/2006

Übungsrunde 5, Gruppe 2 LVA , Übungsrunde 5, Gruppe 2, Markus Nemetz, TU Wien, 11/2006 3.. Angabe Übungsrunde 5, Gruppe 2 LVA 07.369, Übungsrunde 5, Gruppe 2, 4.. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, /2006 Betrachten Sie einen Behälter, der Karten mit jeweils einer aufgedruckten

Mehr

Übungsrunde 9, Gruppe 2 LVA 107.369, Übungsrunde 8, Gruppe 2, 12.12. Markus Nemetz, TU Wien, 12/2006

Übungsrunde 9, Gruppe 2 LVA 107.369, Übungsrunde 8, Gruppe 2, 12.12. Markus Nemetz, TU Wien, 12/2006 3.75. Angabe Übungsrunde 9, Gruppe 2 LVA 07.369, Übungsrunde 8, Gruppe 2, 2.2. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 2/2006 X sei eine stetige sg mit Dichte f(x), x R. Ermitteln Sie einen

Mehr

Diskrete Verteilungen

Diskrete Verteilungen KAPITEL 6 Disrete Verteilungen Nun werden wir verschiedene Beispiele von disreten Zufallsvariablen betrachten. 1. Gleichverteilung Definition 6.1. Eine Zufallsvariable X : Ω R heißt gleichverteilt (oder

Mehr

Chi-Quadrat Verfahren

Chi-Quadrat Verfahren Chi-Quadrat Verfahren Chi-Quadrat Verfahren werden bei nominalskalierten Daten verwendet. Die einzige Information, die wir bei Nominalskalenniveau zur Verfügung haben, sind Häufigkeiten. Die Quintessenz

Mehr

Wahrscheinlichkeitstheorie und Naive Bayes

Wahrscheinlichkeitstheorie und Naive Bayes Wahrscheinlichkeitstheorie und Naive Bayes Caroline Sporleder Computational Linguistics Universität des Saarlandes Sommersemester 2011 12.05.2011 Caroline Sporleder Naive Bayes (1) Elementare Wahrscheinlichkeitstheorie

Mehr

Übungsblatt 9. f(x) = e x, für 0 x

Übungsblatt 9. f(x) = e x, für 0 x Aufgabe 1: Übungsblatt 9 Basketball. Ein Profi wirft beim Training aus einer Entfernung von sieben Metern auf den Korb. Er trifft bei jedem Wurf mit einer Wahrscheinlichkeit von p = 1/2. Die Zufallsvariable

Mehr

Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure

Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure Von Prof. Hubert Weber Fachhochschule Regensburg 3., überarbeitete und erweiterte Auflage Mit zahlreichen Bildern, Tabellen sowie

Mehr

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente...

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente... Inhaltsverzeichnis 0 Einführung 1 1 Zufallsvorgänge und Wahrscheinlichkeiten 5 1.1 Zufallsvorgänge.......................... 5 1.1.1 Ergebnismengen..................... 6 1.1.2 Ereignisse und ihre Verknüpfung............

Mehr

Anleitung: Standardabweichung

Anleitung: Standardabweichung Anleitung: Standardabweichung So kann man mit dem V200 Erwartungswert und Varianz bzw. Standardabweichung bei Binomialverteilungen für bestimmte Werte von n, aber für allgemeines p nach der allgemeinen

Mehr

Kapitel VI - Lage- und Streuungsparameter

Kapitel VI - Lage- und Streuungsparameter Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

Tabelle 11.2 zeigt die gemeinsame Wahrscheinlichkeitsfunktion und die Randverteilungen

Tabelle 11.2 zeigt die gemeinsame Wahrscheinlichkeitsfunktion und die Randverteilungen Kapitel 11 Stichprobenfunktionen Um eine Aussage über den Wert eines unbekannten Parameters θ zu machen, zieht man eine Zufallsstichprobe vom Umfang n aus der Grundgesamtheit. Das Merkmal wird in diesem

Mehr

13.5 Der zentrale Grenzwertsatz

13.5 Der zentrale Grenzwertsatz 13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle

Mehr

Spielgeräte: Von Wahrscheinlichkeiten bis Binomialverteilung

Spielgeräte: Von Wahrscheinlichkeiten bis Binomialverteilung Bernoulli-Kette, und hypergeometrische Verteilung: F. 2. 32 Spielgeräte: Von Wahrscheinlichkeiten bis Die folgende Stationenarbeit dient dazu, die Begriffe der Oberstufenstochastik (Wahrscheinlichkeit;

Mehr

Stochastik (Laplace-Formel)

Stochastik (Laplace-Formel) Stochastik (Laplace-Formel) Übungen Spielwürfel oder Münzen werden ideal (oder fair) genannt, wenn jedes Einzelereignis mit gleicher Wahrscheinlichkeit erwartet werden kann. 1. Ein idealer Spielwürfel

Mehr

Prof. Dr. Christoph Karg Hochschule Aalen. Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik. Sommersemester 2016

Prof. Dr. Christoph Karg Hochschule Aalen. Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik. Sommersemester 2016 Prof. Dr. Christoph Karg 5.7.2016 Hochschule Aalen Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik Sommersemester 2016 Name: Unterschrift: Klausurergebnis Aufgabe 1 (15 Punkte) Aufgabe 3

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Mathematische und statistische Methoden II Dr. Malte Persike persike@uni-mainz.de lordsofthebortz.de lordsofthebortz.de/g+

Mehr

Satz 16 (Multiplikationssatz)

Satz 16 (Multiplikationssatz) Häufig verwendet man die Definition der bedingten Wahrscheinlichkeit in der Form Damit: Pr[A B] = Pr[B A] Pr[A] = Pr[A B] Pr[B]. (1) Satz 16 (Multiplikationssatz) Seien die Ereignisse A 1,..., A n gegeben.

Mehr

Methoden der KI in der Biomedizin Unsicheres Schließen

Methoden der KI in der Biomedizin Unsicheres Schließen Methoden der KI in der Biomedizin Unsicheres Schließen Karl D. Fritscher Motivation Insofern sich die Gesetze der Mathematik auf die Wirklichkeit beziehen, sind sie nicht sicher. Und insofern sie sich

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übungen für die kompetenzbasierte Abschlussprüfung 1. 60 Äpfel wurden gewogen und die Ergebnisse in einem Boxplot-Diagramm dargestellt. Ergänzen Sie die folgenden

Mehr

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97.

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97. Aufgabenblock 4 Aufgabe ) Da s = 8. cm nur eine Schätzung für die Streuung der Population ist, müssen wir den geschätzten Standardfehler verwenden. Dieser berechnet sich als n s s 8. ˆ = = =.88. ( n )

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 19. Januar 2011 1 Nichtparametrische Tests Ordinalskalierte Daten 2 Test für ein Merkmal mit nur zwei Ausprägungen

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

Maximilian Gartner, Walther Unterleitner, Manfred Piok. Einstieg in die Wahrscheinlichkeitsrechnung

Maximilian Gartner, Walther Unterleitner, Manfred Piok. Einstieg in die Wahrscheinlichkeitsrechnung Zufallsexperimente Den Zufall erforschen Maximilian Gartner, Walther Unterleitner, Manfred Piok Thema Stoffzusammenhang Klassenstufe Einstieg in die Wahrscheinlichkeitsrechnung Daten und Zufall 1. Biennium

Mehr

Kontrolle. Themenübersicht

Kontrolle. Themenübersicht Themenübersicht Arbeitsblatt 1 Statistik Arbeitsblatt 2 Erheben und Auswerten von Daten Arbeitsblatt 3 Zufallsexperimente Arbeitsblatt 4 mehrstufige Zufallsexperimente Inhalt, Schwerpunkte des Themas Urliste,

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

Würfelspiel. Heinz Klaus Strick. Beispiele zum Einsatz des TI-30X Plus MultiView :

Würfelspiel. Heinz Klaus Strick. Beispiele zum Einsatz des TI-30X Plus MultiView : Beispiele zum Einsatz des TI-30X Plus MultiView : Würfelspiel Für den schulartübergreifenden Einsatz Stochastik Grundkurs Besonders passend für Baden-Württemberg und Bayern Bei einem Würfelspiel hat ein

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Was du wissen musst: Die Begriffe Zufallsexperiment, Ereignisse, Gegenereignis, Zufallsvariable und Wahrscheinlichkeit sind dir geläufig. Du kannst mehrstufige Zufallsversuche

Mehr

Verteilungsfunktion und dquantile

Verteilungsfunktion und dquantile Statistik 1 für SoziologInnen Verteilungsfunktion und dquantile Univ.Prof. Dr. Marcus Hudec Kumulierte Häufigkeiten Hinweis: Damit die Kumulation inhaltlich sinnvoll ist, muss das Merkmal zumindest ordinal

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne

Mehr

15 Wahrscheinlichkeitsrechnung und Statistik

15 Wahrscheinlichkeitsrechnung und Statistik 5 Wahrscheinlichkeitsrechnung und Statistik Alles, was lediglich wahrscheinlich ist, ist wahrscheinlich falsch. ( Descartes ) Trau keiner Statistik, die du nicht selbst gefälscht hast. ( Churchill zugeschrieben

Mehr

Beurteilende Statistik

Beurteilende Statistik Beurteilende Statistik Wahrscheinlichkeitsrechnung und Beurteilende Statistik was ist der Unterschied zwischen den beiden Bereichen? In der Wahrscheinlichkeitstheorie werden aus gegebenen Wahrscheinlichkeiten

Mehr

Exemplar für Prüfer/innen

Exemplar für Prüfer/innen Exemplar für Prüfer/innen Kompensationsprüfung zur standardisierten kompetenzorientierten schriftlichen Reifeprüfung AHS Juni 2016 Mathematik Kompensationsprüfung 3 Angabe für Prüfer/innen Hinweise zur

Mehr

Grundbegriffe der Wahrscheinlichkeitstheorie

Grundbegriffe der Wahrscheinlichkeitstheorie KAPITEL 1 Grundbegriffe der Wahrscheinlichkeitstheorie 1. Zufallsexperimente, Ausgänge, Grundmenge In der Stochastik betrachten wir Zufallsexperimente. Die Ausgänge eines Zufallsexperiments fassen wir

Mehr

3.3. Aufgaben zur Binomialverteilung

3.3. Aufgaben zur Binomialverteilung .. Aufgaben zur Binomialverteilung Aufgabe 1: Ziehen mit Zurücklegen und Binomialverteilung Ein sechsseitiger Würfel wird zehnmal geworfen. a) Wie groß ist die Wahrscheinlichkeit, nur beim ersten Mal die

Mehr

Wahrscheinlichkeit und Zufall

Wahrscheinlichkeit und Zufall Wahrscheinlichkeit und Zufall Klassische Probleme der Wahrscheinlichkeitsrechnung 23. Juni 2009 Dr. Katja Krüger Universität Paderborn Inhalt Die Wetten des Chevalier de Méréé Warten auf die erste Sechs

Mehr

Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse

Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse Yannik Behr Gliederung 1 Stochastische Prozesse Stochastische Prozesse Ein stochastischer Prozess ist ein Phänomen, dessen

Mehr

Statistik eindimensionaler Größen

Statistik eindimensionaler Größen Statistik eindimensionaler Größen Michael Spielmann Inhaltsverzeichnis 1 Aufgabe der eindimensionalen Statistik 2 2 Grundbegriffe 2 3 Aufbereiten der Stichprobe 3 4 Die Kennzahlen Mittelwert und Streuung,

Mehr

Gesucht: wie viele Mitarbeiter sind max. durch Ziffernfolge unterscheidbar. Lösung: Möglichkeiten; Reihenfolge und MIT Zurücklegen- also = = 6561

Gesucht: wie viele Mitarbeiter sind max. durch Ziffernfolge unterscheidbar. Lösung: Möglichkeiten; Reihenfolge und MIT Zurücklegen- also = = 6561 1 Bettina Kietzmann Februar 2013 Numerische Aufgaben Statistik 1D 1. Kombinatorik Für die Lösung dieser Aufgaben ist die Tabelle der Formelsammlung S. 10 relevant. Geht es darum Möglichkeiten zu errechnen

Mehr

Spezielle stetige Verteilungen

Spezielle stetige Verteilungen Spezielle stetige Verteilungen schon bekannt: Die Exponentialverteilung mit Parameter k R, k > 0 hat die Dichte f (x) = ke kx für x 0 und die Verteilungsfunktion F (x) = 1 e kx für x 0. Eigenschaften Für

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Rainer Hauser Dezember 2012 1 Einleitung 1.1 Zufallsexperimente Im Folgenden wird das Resultat eines Experiments als Ereignis bezeichnet. Lässt man eine Metallkugel aus einer

Mehr

VS PLUS

VS PLUS VS PLUS Zusatzinformationen zu Medien des VS Verlags Statistik II Inferenzstatistik 2010 Übungsaufgaben und Lösungen Inferenzstatistik 2 [Übungsaufgaben und Lösungenn - Inferenzstatistik 2] ÜBUNGSAUFGABEN

Mehr

Begleitbuch für Mathematik Oberstufe für die Abiturprüfung 2017 Baden-Württemberg - berufliche Gymnasien. Stochastik

Begleitbuch für Mathematik Oberstufe für die Abiturprüfung 2017 Baden-Württemberg - berufliche Gymnasien. Stochastik mathe-aufgaben.com Begleitbuch für Mathematik Oberstufe für die Abiturprüfung 2017 Baden-Württemberg - berufliche Gymnasien Stochastik Dipl.-Math. Alexander Schwarz E-Mail: aschwarz@mathe-aufgaben.com

Mehr

4. Grundzüge der Wahrscheinlichkeitsrechnung

4. Grundzüge der Wahrscheinlichkeitsrechnung 4. Grundzüge der Wahrscheinlichkeitsrechnung Dr. Antje Kiesel Institut für angewandte Mathematik WS 2010/2011 In der beschreibenden Statistik haben wir verschiedene Kennzahlen (Statistiken) für Stichproben

Mehr

Statistik I für Betriebswirte Vorlesung 5

Statistik I für Betriebswirte Vorlesung 5 Statistik I für Betriebswirte Vorlesung 5 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 07. Mai 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 5 1 Klassische Wahrscheinlichkeitsdefinition

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen)

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen) Dr. Jürgen Senger INDUKTIVE STATISTIK Wahrscheinlichkeitstheorie, Schätz- und Testverfahren ÜUNG. - LÖSUNGEN. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen Die Urne enthält 4 weiße und 8 rote Kugeln.

Mehr

Tabellarische und graphie Darstellung von univariaten Daten

Tabellarische und graphie Darstellung von univariaten Daten Part I Wrums 1 Motivation und Einleitung Motivation Satz von Bayes Übersetzten mit Paralleltext Merkmale und Datentypen Skalentypen Norminal Ordinal Intervall Verältnis Merkmalstyp Diskret Stetig Tabellarische

Mehr

6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen

6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen 6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Bisher: Diskrete Zufallsvariablen,

Mehr

4. Kumulierte Häufigkeiten und Quantile

4. Kumulierte Häufigkeiten und Quantile 4. Kumulierte Häufigkeiten und Quantile Kumulierte Häufigkeiten Oft ist man nicht an der Häufigkeit einzelner Merkmalsausprägungen interessiert, sondern an der Häufigkeit von Intervallen. Typische Fragestellung:

Mehr

Statistik. Datenanalyse mit EXCEL und SPSS. Prof. Dr. Karlheinz Zwerenz. R.Oldenbourg Verlag München Wien. Von

Statistik. Datenanalyse mit EXCEL und SPSS. Prof. Dr. Karlheinz Zwerenz. R.Oldenbourg Verlag München Wien. Von Statistik Datenanalyse mit EXCEL und SPSS Von Prof. Dr. Karlheinz Zwerenz R.Oldenbourg Verlag München Wien Inhalt Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt XI XII XII TEIL I GRUNDLAGEN

Mehr