Methodenlehre. Vorlesung 12. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Methodenlehre. Vorlesung 12. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg"

Transkript

1 Methodenlehre Vorlesung 12 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1

2 Methodenlehre II Woche Datum Thema 1 FQ Einführung, Verteilung der Termine Psychologie als Wissenschaft Hypothesen und Variablen Operationalisieren und Messen Objektivität, Reliabilität, Validität Das Experiment I Das Experiment II Störvariablen und ihre Kontrolle Forschungsethik Durchführung und Berichten eines Experiments Stichprobe und Population Statistische Bedeutsamkeit (Signifikanz) Inhaltliche Bedeutsamkeit Teststärke und Stichprobenumfangsplanung Wiederholung und Fragen 2

3 Beispielfrage 3

4 Statistische Signifikanz Nullhypothese Annahme, dass kein Unterschied / Zusammenhang besteht Bsp.: Die Mittelwerte zweier Gruppen unterscheiden sich nicht. Signifikanz basiert auf der Wahrscheinlichkeit, dass die Nullhypothese zutrifft Wie wahrscheinlich ist es, dass sich zwei Gruppen nicht unterscheiden? Wie wahrscheinlich ist es, dass der Unterschied zwischen zwei Gruppen zufällig ist? Ein signifikantes Ergebnis bedeutet, dass die Nullhypothese sehr unwahrscheinlich ist. P < 0.05: Die Wahrscheinlichkeit, dass die Nullhypothese zutrifft, ist kleiner 5%. Die Wahrscheinlichkeit, dass die Nullhypothese nicht zutrifft, ist grösser 95%. Entscheidungsregel Bei einem signifikanten Ergebnis lehnen wir die Nullhypothese ab! Mit einer Fehlerwahrscheinlichkeit von P < 0.05 Unsere Entscheidung ist in weniger als 5% der Fälle falsch. Bei 100 statistischen Vergleichen sind ca. 95 Entscheidungen richtig. Aber auch ca. 5 Entscheidungen falsch 4

5 Stichprobe und Population Experiment Einfluss von 15 min Pause vs. keiner Pause auf Problemlösefähigkeit Faktor Pause mit zwei Stufen (15 min Pause vs. keine Pause) Erfordert das Ziehen einer Stichprobe z.b. N = 40 N = 20 Personen pro Gruppe Deskriptive Statistik Berechnen der Mittelwerte und Standardabweichung für die beiden Gruppen Inferenzstatistik Schliessende Statistik Wir möchten von den Ergebnissen der Stichprobe auf die Population schliessen. Aussagen auf der Ebene der Population 5

6 Stichprobe und Population Population 1 Populationsmittelwert µ 1 (Problemlösen mit Pause) Population 2 Populationsmittelwert µ 2 (Problemlösen ohne Pause) Stichprobe ziehen Stichprobe ziehen Stichprobe 1 Stichprobenmittelwert (x quer 1 ) (Problemlösen mit Pause) Stichprobe 2 Stichprobenmittelwert (x quer 2 ) (Problemlösen ohne Pause) 6

7 Stichprobe und Population Forschungsfrage Unterscheidet sich Problemlösen mit Pause vs. ohne Pause? Nullhypothese Population 1 Populationsmittelwert µ 1 (Problemlösen mit Pause) = Population 2 Populationsmittelwert µ 2 (Problemlösen ohne Pause) Nullhypothese Die Populationsmittelwerte der beiden Bedingungen unterscheiden sich nicht H 0 : μ 1 =μ 2 Die Differenz der Populationsmittelwerte ist gleich Null H 0 : μ 1 - μ 2 =0 7

8 Stichprobe und Population Stichprobenebene Wenn die Nullhypothese zutrifft, dann unterscheiden sich die Mittelwerte der beiden Stichproben nur zufällig. Mittelwerte schätzen den Populationsmittelwert Es gibt aber zufällige Abweichungen aufgrund des Ziehens einer begrenzten Stichprobe Standardfehler des Mittelwerts Je grösser die Stichprobe, desto kleiner der Standardfehler des Mittelwerts Wenn die Nullhypothese zutrifft, dann sollte die Differenz der Mittelwerte der Stichprobe nahe 0 sein. Beim mehrmaligen Ziehen von zwei Stichproben und Berechnung der jeweiligen Mittelwertsdifferenzen: Häufigkeitsverteilung um Null Stichprobenkennwerteverteilung der Mittelwertsdifferenzen 8

9 Stichprobe und Population Population 1 Verteilung des Merkmals Population 2 Verteilung des Merkmals = 1 Ziehen zweier Stichproben Berechnung der Mittelwertsdifferenzen Häufigkeitsverteilung der Stichprobenmittelwerte 2 9 0

10 Stichprobe und Population 10

11 Stichprobe und Population Standardfehler der Mittelwertsdifferenzen Gibt die Breite der Stichprobenkennwerteverteilung der Mittelwertsdifferenzen an Vertrauensintervall der Mittelwertsdifferenz Formel: Grösse ist abhängig von: der Streuung des Merkmals in den Populationen 1 und 2 der Grösse der Stichproben 1 und 2 Je grösser die Stichproben, desto kleiner ist der Standardfehler Je kleiner die Stichproben, desto grösser ist der Standardfehler 11

12 Der Nullhypothesentest 1.) Experiment bringt empirischen Gruppenunterschied Bsp.: Empirische Mittelwertsdifferenz von ) Annahme der Nullhypothese Die Gruppen unterscheiden sich nicht (auf Populationsebene). Die empirische Mittelwertsdifferenz ist zufällig entstanden. 3.) Bestimmung der Wahrscheinlichkeit des empirischen Gruppenunterschieds unter Annahme der Nullhypothese Wie wahrscheinlich ist das Auftreten von 3.5, wenn die Nullhypothese stimmt? 4.) Vergleich der bestimmten Wahrscheinlichkeit mit dem vorher festgelegten Signifikanzniveau Ist die bestimmte Wahrscheinlichkeit kleiner als das Signifikanzniveau, dann lehne ich die Nullhypothese ab Der empirische Gruppenunterschied ist sehr unwahrscheinlich unter der Nullhypothese Also ist der empirische Gruppenunterschied (wahrscheinlich) nicht zufällig Interpretation: Die getesteten Gruppen unterscheiden sich signifikant. 12

13 Signifikanztest Der t-test Test für die Wahrscheinlichkeit einer beobachteten Mittelwertsdifferenz Unter der Annahme der Nullhypothese Berechnung über die empirische Mittelwertsdifferenz geteilt durch den Standardfehler der Mittelwertsdifferenz Verteilungsform zusätzlich abhängig von den Freiheitsgraden Freiheitsgrade sind abhängig von der Grösse der Stichproben Je grösser die Anzahl der Freiheitsgrade, desto ähnlicher ist die t-verteilung der Standardnormalverteilung. 13

14 Beispiel Ergebnis des Klammerntests Rote vs. Grüne Klammern t-test für unabhängige Stichproben (N = 100; n = 50 pro Gruppe) 14

15 Beispiel Häufigkeitsverteilung (N = 100; n = 50 pro Gruppe) Empirische Mittelwertsdifferenz: 6.22 Standardfehler der Differenz: 1.8 Statistischer Kennwert t = Wahrscheinlichkeit unter der Nullhypothese: p =

16 Beispiel Häufigkeitsverteilung (N = 50; n = 25 pro Gruppe) Empirische Mittelwertsdifferenz: 5.96 Standardfehler der Differenz: 2.7 Statistischer Kennwert t = 2.2 Wahrscheinlichkeit unter der Nullhypothese: p =

17 Beispiel Ergebnis des Klammerntests Rote vs. Grüne Klammern t-test für unabhängige Stichproben (N = 50; n = 25 pro Gruppe) 17

18 Beispiel Häufigkeitsverteilung (N = 20; n = 10 pro Gruppe) Empirische Mittelwertsdifferenz: 6.5 Standardfehler der Differenz: 5.47 Statistischer Kennwert t = 1.89 Wahrscheinlichkeit unter der Nullhypothese: p =

19 Beispiel Ergebnis des Klammerntests Rote vs. Grüne Klammern t-test für unabhängige Stichproben (N = 20; n = 10 pro Gruppe) 19

20 Beispiel Ergebnisvergleich N = 100 P = N = 50 P = N = 20 P = 0.25 signifikant signifikant n.s. 20

21 Stichprobe und Population Population 1 Verteilung des Merkmals Population 2 Verteilung des Merkmals = 1 Ziehen zweier Stichproben Berechnung der Mittelwertsdifferenzen Häufigkeitsverteilung der Stichprobenmittelwerte n 1 = 25 n 2 =

22 Stichprobe und Population Population 1 Verteilung des Merkmals Population 2 Verteilung des Merkmals = 1 Ziehen zweier Stichproben Berechnung der Mittelwertsdifferenzen Häufigkeitsverteilung der Stichprobenmittelwerte n 1 = 10 n 2 =

23 Stichprobe und Population Population 1 Verteilung des Merkmals Population 2 Verteilung des Merkmals = 1 Ziehen zweier Stichproben Berechnung der Mittelwertsdifferenzen Häufigkeitsverteilung der Stichprobenmittelwerte n 1 = 5 n 2 =

24 Stichprobe und Population Signifikanztest Frage: Wie wahrscheinlich ist das Auftreten der beobachteten Differenz der Stichprobenmittelwerte unter der Annahme der Nullhypothese? Beispiel: Beobachtete Differenz: = 3.5 Fläche unter der Kurve gibt die Wahrscheinlichkeit an

25 Stichprobe und Population Signifikanztest Frage: Wie wahrscheinlich ist das Auftreten der beobachteten Differenz der Stichprobenmittelwerte unter der Annahme der Nullhypothese? Fläche unter der Kurve gibt die Wahrscheinlichkeit an

26 Stichprobe und Population Signifikanztest Frage: Wie wahrscheinlich ist das Auftreten der beobachteten Differenz der Stichprobenmittelwerte unter der Annahme der Nullhypothese? Fläche unter der Kurve gibt die Wahrscheinlichkeit an

27 Stichprobe und Population Signifikanztest Frage: Wie wahrscheinlich ist das Auftreten der beobachteten Differenz der Stichprobenmittelwerte unter der Annahme der Nullhypothese? Fläche unter der Kurve gibt die Wahrscheinlichkeit an

28 Signifikanztest Die Wahrscheinlichkeit einer empirischen Mittelwertsdifferenz unter der Nullhypothese Ist abhängig von der Grösse der Streuung in Population 1 und 2 Ist abhängig von der Grösse der Stichprobe 1 und 2 Standardfehler der Mittelwertsdifferenz Stichprobengrösse Je grösser die Stichprobe, desto kleiner die Wahrscheinlichkeit einer beobachteten Mittelwertsdifferenz unter der Nullhypothese Mittelwertsdifferenzen sollten alle Nahe bei Null sein. Wenn die Nullhypothese zutrifft Je kleiner die Stichprobe, desto grösser die Wahrscheinlichkeit einer beobachteten Mittelwertsdifferenz unter der Nullhypothese Mittelwertsdifferenzen können zufällig auch weiter weg von Null auftreten 28

29 Statistische Signifikanz Die statistische Signifikanz ist stark abhängig von der Grösse der Stichprobe Annahme: Konstanter Unterschied zwischen den Gruppen Je grösser die Stichprobe, desto eher wird ein Ergebnis signifikant Je kleiner die Stichprobe, desto eher wird ein Ergebnis nicht signifikant Grund: Stichprobengrösse verändert den Standardfehler der Mittelwertsdifferenz Erkenntnis: Jeder noch so kleine Unterschied kann signifikant gemacht werden Man muss nur genügend Versuchspersonen erheben Statistische Signifikanz nur in Zusammenhang mit Vp-Zahl interpretierbar Frage: Wann ist ein Unterschied inhaltlich bedeutsam? 29

30 Inhaltliche Bedeutsamkeit Problem Statistische Signifikanzen stark von der Stichprobengrösse abhängig Ergebnisse zwischen Studien mit unterschiedlichen Stichprobengrössen nicht vergleichbar Lösung Effektstärken Effektstärken geben die Grösse eines Effekts unabhängig von der Stichprobengrösse an Erlaubt den Vergleich zwischen Studien Erlaubt die Einschätzung der inhaltlichen Bedeutsamkeit eines Effekts Handlungsanweisung Bei einem statistisch signifikanten Ergebnis immer auch die Effektstärke mit angeben 30

31 Effektstärken Effektstärke als Distanzmass Distanz zwischen Populationsmittelwerten Effektstärkenmass d Interpretation 31 d = 1: Populationen unterschieden sich um eine Streuungseinheit Konventionen d = 0.2: kleiner Effekt d = 0.5: mittlerer Effekt d = 0.8: grosser Effekt Konventionen gelten nur für nicht messwiederholte Mittelwertsvergleiche

32 Effektstärke Berechnung von d aus Daten Mittlerer Effekt P =

33 Effektstärke Berechnung von d aus Daten Mittlerer Effekt P =

34 Effektstärke Berechnung von d aus Daten Mittlerer Effekt P = 0.25 n.s. 34

35 Effektstärke Effektstärke als Mass der Varianzaufklärung Wie viel Prozent der gesamten Unterschiede zwischen allen Versuchspersonen wird durch die experimentelle Manipulation (UV) aufgeklärt? Anteil der aufgeklärten Varianz an der Gesamtvarianz Synonyme für aufgeklärte Varianz: Primärvarianz, Effektvarianz, systematische Varianz 35

36 Effektstärke Effektstärke aus Mass der Varianzaufklärung Primärvarianz/ Gesamtvarianz Gesamtvarianz besteht aus Primär + Sekundärvarianz Synonym: Gesamtvarianz besteht aus systematischer Varianz und Fehlervarianz Effektmass auf Populationsebene Ω 2 (Omega Quadrat) Wird in der Literatur wenig verwendet Effektmass auf Stichprobenebene η 2 (eta Quadrat) QS: Quadratsummen (Mass für Varianz auf Stichprobenebene) Bei mehreren Faktoren Partielles η 2 36

37 Effektstärken Konventionen Ω 2 = 0.01: kleiner Effekt 1% aufgeklärte Varianz Ω 2 = 0.06: mittlerer Effekt 6% aufgeklärte Varianz Ω 2 = 0.14: grosser Effekt 14% aufgeklärte Varianz η 2 fällt häufig etwas grösser aus (Überschätzung des Populationseffekts) Konventionen gelten nur für nicht-messwiederholte Mittelwertsvergleiche Basieren auf Cohen (1988) Berechnung über Kennwert des t-tests (t-wert) Kann bei Varianzanalyse von SPSS ausgegeben werden 37

38 Beispiel Effektstärkeberechnung aus den Daten Interpretation: Es wurden ca. 11% der Gesamtvarianz in der Problemlösefähigkeit durch den Faktor Pausen erklärt. Dies ist ein mittlerer Effekt. 38

39 Take Home Messages Forschungsfrage Gibt es einen Unterschied zwischen zwei Bedingungen / Gruppen? Oder ist der beobachtete Unterschied zufällig? Annahme der Nullhypothese Die Populationsmittelwerte der zwei Bedingungen unterscheiden sich nicht Die Differenz der Populationsmittelwerte ist Null Die Differenzen der beobachteten Stichprobenmittelwerte verteilen sich um Null. Zufällige Variation auf Grund der begrenzten Stichprobengrösse Je grösser die Stichproben, desto kleiner die Variation um Null Definiert durch den Standardfehler der Mittelwertsdifferenz 39

40 Take Home Messages Statistische Signifikanz Wie wahrscheinlich ist eine beobachtete (empirische) Mittelwertsdifferenz unter der Annahme der Nullhypothese? Entscheidungsregel: Ist diese Wahrscheinlichkeit kleiner als die (vordefinierte) Signifikanzschwelle, dann lehnen wir die Nullhypothese ab. Signifikanzschwelle ist (meist) P < 0.05 (5% Fehlerwahrscheinlichkeit) Statistische Signifikanz ist abhängig von der Stichprobengrösse Je grösser die Stichprobe, desto eher wird ein Ergebnis signifikant Effektstärke 40 Jeder noch so kleine Unterscheid kann signifikant gemacht werden Angabe der Grösse des Effekts unabhängig von der Stichprobengrösse Distanzmass d, Mass für die Varianzaufklärung η2 Bei signifikantem Ergebnis Effektstärke mit angeben Erlaubt den Vergleich von Ergebnissen mit unterschiedlichen Stichprobengrössen Erlaubt eine Abschätzung der inhaltlichen Bedeutsamkeit des Ergebnisses Z.B. anhand der Konventionen von Cohen (1988)

41 Vielen Dank für Ihre Aufmerksamkeit 41

Kapitel 5: Einfaktorielle Varianzanalyse

Kapitel 5: Einfaktorielle Varianzanalyse Kapitel 5: Einfaktorielle Varianzanalyse Durchführung einer einfaktoriellen Varianzanalyse ohne Messwiederholung Dieser Abschnitt zeigt die Durchführung der in Kapitel 5 vorgestellten einfaktoriellen Varianzanalyse

Mehr

Wiederholung Hypothesentests Zusammenfassung. Hypothesentests. Statistik I. Sommersemester Statistik I Hypothesentests I (1/36)

Wiederholung Hypothesentests Zusammenfassung. Hypothesentests. Statistik I. Sommersemester Statistik I Hypothesentests I (1/36) Statistik I Sommersemester 2009 Statistik I I (1/36) Wiederholung Grenzwertsatz Konfidenzintervalle Logik des 0.0 0.1 0.2 0.3 0.4 4 2 0 2 4 Statistik I I (2/36) Zum Nachlesen Agresti/Finlay: Kapitel 6+7

Mehr

Aufgaben zu Kapitel 7:

Aufgaben zu Kapitel 7: Aufgaben zu Kapitel 7: Aufgabe 1: In einer Klinik sollen zwei verschiedene Therapiemethoden miteinander verglichen werden. Zur Messung des Therapieerfolges werden die vorhandenen Symptome einmal vor Beginn

Mehr

2.1 Die Normalverteilung

2.1 Die Normalverteilung . INFERENZSTATISTIK Inferenzstatistik bedeutet übersetzt schließende Statistik. Damit ist der Schluss von den erhobenen Daten einer Stichprobe auf Werte in der Population gemeint..1 Die Normalverteilung

Mehr

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97.

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97. Aufgabenblock 4 Aufgabe ) Da s = 8. cm nur eine Schätzung für die Streuung der Population ist, müssen wir den geschätzten Standardfehler verwenden. Dieser berechnet sich als n s s 8. ˆ = = =.88. ( n )

Mehr

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Hypothese: Die Beschäftigung mit Kunst ist vom Bildungsgrad abhängig. 1. Annahmen Messniveau: Modell: Die Skala zur Erfassung der

Mehr

Hypothesentests mit SPSS. Beispiel für einen t-test

Hypothesentests mit SPSS. Beispiel für einen t-test Beispiel für einen t-test Daten: museum-f-v04.sav Hypothese: Als Gründe, in ein Museum zu gehen, geben mehr Frauen als Männer die Erweiterung der Bildung für Kinder an. Dies hängt mit der Geschlechtsrolle

Mehr

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren Hypothesenprüfung Teil der Inferenzstatistik Befaßt sich mit der Frage, wie Hypothesen über eine (in der Regel unbekannte) Grundgesamtheit an einer Stichprobe überprüft werden können Behandelt werden drei

Mehr

Lösungen zu den Übungsaufgaben in Kapitel 10

Lösungen zu den Übungsaufgaben in Kapitel 10 Lösungen zu den Übungsaufgaben in Kapitel 10 (1) In einer Stichprobe mit n = 10 Personen werden für X folgende Werte beobachtet: {9; 96; 96; 106; 11; 114; 114; 118; 13; 14}. Sie gehen davon aus, dass Mittelwert

Mehr

VS PLUS

VS PLUS VS PLUS Zusatzinformationen zu Medien des VS Verlags Statistik II Inferenzstatistik 2010 Übungsaufgaben und Lösungen Inferenzstatistik 2 [Übungsaufgaben und Lösungenn - Inferenzstatistik 2] ÜBUNGSAUFGABEN

Mehr

Business Value Launch 2006

Business Value Launch 2006 Quantitative Methoden Inferenzstatistik alea iacta est 11.04.2008 Prof. Dr. Walter Hussy und David Tobinski UDE.EDUcation College im Rahmen des dokforums Universität Duisburg-Essen Inferenzstatistik Erläuterung

Mehr

methodenlehre ll Grenzen des Signifikanztests methodenlehre ll Grenzen des Signifikanztests

methodenlehre ll Grenzen des Signifikanztests methodenlehre ll Grenzen des Signifikanztests Möglichkeiten und Grenzen des Signifikanztests Thomas Schäfer SS 29 1 Grenzen des Signifikanztests Sie haben zur Untersuchung Ihrer Fragestellung eine Experimental und eine Kontrollgruppe mit jeweils 2

Mehr

Jost Reinecke. 7. Juni 2005

Jost Reinecke. 7. Juni 2005 Universität Bielefeld 7. Juni 2005 Testtheorie Test für unabhängige Stichproben Test für abhängige Stichproben Testtheorie Die Testtheorie beinhaltet eine Reihe von Testverfahren, die sich mit der Überprüfung

Mehr

Kapitel 5: Einfaktorielle Varianzanalyse

Kapitel 5: Einfaktorielle Varianzanalyse Rasch, Friese, Hofmann & Naumann (006). Quantitative Methoden. Band (. Auflage). Heidelberg: Springer. Kapitel 5: Einfaktorielle Varianzanalyse Berechnen der Teststärke a priori bzw. Stichprobenumfangsplanung

Mehr

8. G*Power. power3/ 8. Stichprobenumfang, Effekt- und Teststärke

8. G*Power.  power3/ 8. Stichprobenumfang, Effekt- und Teststärke 8. G*Power http://www.psycho.uniduesseldorf.de/abteilungen/aap/g power3/ 8. Stichprobenumfang, Effekt- und Teststärke 8. Stichprobenumfangsplanung, Effektstärken und Teststärkenberechnung mit G*Power 3.0

Mehr

Kapitel 6: Zweifaktorielle Varianzanalyse

Kapitel 6: Zweifaktorielle Varianzanalyse Kapitel 6: Zweifaktorielle Varianzanalyse Durchführung einer zweifaktoriellen Varianzanalyse ohne Messwiederholung Dieser Abschnitt zeigt die Durchführung der in Kapitel 6 behandelten zweifaktoriellen

Mehr

Kapitel 9: Verfahren für Nominaldaten

Kapitel 9: Verfahren für Nominaldaten Kapitel 9: Verfahren für Nominaldaten Eindimensionaler Chi²-Test 1 Der zweidimensionale Chi²-Test 4 Eindimensionaler Chi²-Test Der eindimensionale χ²-test wird dann herangezogen, wenn die Versuchspersonen

Mehr

Analytische Statistik II

Analytische Statistik II Analytische Statistik II Institut für Geographie 1 Schätz- und Teststatistik 2 Das Testen von Hypothesen Während die deskriptive Statistik die Stichproben nur mit Hilfe quantitativer Angaben charakterisiert,

Mehr

Kapitel 9: Verfahren für Nominaldaten

Kapitel 9: Verfahren für Nominaldaten Kapitel 9: Verfahren für Nominaldaten Eindimensionaler Chi²-Test Der eindimensionale χ²-test wird dann herangezogen, wenn die Versuchspersonen einer Population anhand eines Merkmals mit zwei oder mehr

Mehr

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend oder eindeutig, wenn keine alternativen Interpretationsmöglichkeiten

Mehr

3. Der t-test. Der t-test

3. Der t-test. Der t-test Der t-test 3 3. Der t-test Dieses Kapitel beschäftigt sich mit einem grundlegenden statistischen Verfahren zur Auswertung erhobener Daten: dem t-test. Der t-test untersucht, ob sich zwei empirisch gefundene

Mehr

INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE. Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße

INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE. Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße DAS THEMA: INFERENZSTATISTIK III INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße Inferenzstatistik für Lagemaße Standardfehler

Mehr

Chi-Quadrat Verfahren

Chi-Quadrat Verfahren Chi-Quadrat Verfahren Chi-Quadrat Verfahren werden bei nominalskalierten Daten verwendet. Die einzige Information, die wir bei Nominalskalenniveau zur Verfügung haben, sind Häufigkeiten. Die Quintessenz

Mehr

Klausur Statistik I. Dr. Andreas Voß Wintersemester 2005/06

Klausur Statistik I. Dr. Andreas Voß Wintersemester 2005/06 Klausur Statistik I Dr. Andreas Voß Wintersemester 2005/06 Hiermit versichere ich, dass ich an der Universität Freiburg mit dem Hauptfach Psychologie eingeschrieben bin. Name: Mat.Nr.: Unterschrift: Bearbeitungshinweise:

Mehr

Kapitel 9: Verfahren für Nominaldaten

Kapitel 9: Verfahren für Nominaldaten Kapitel 9: Verfahren für Nominaldaten Eindimensionaler Chi²-Test 1 Der zweidimensionale Chi²-Test 6 Alternativer Lösungsweg für SPSS Version 17 und älter 10 Alte Dialogfelder: Eindimensionaler Chi²-Test

Mehr

Kapitel 5: Einfaktorielle Varianzanalyse

Kapitel 5: Einfaktorielle Varianzanalyse Kapitel 5: Einfaktorielle Varianzanalyse Durchführung einer einfaktoriellen Varianzanalyse ohne Messwiederholung 1 Berechnung der Effektstärke und der beobachteten Teststärke einer einfaktoriellen Varianzanalyse

Mehr

Literatur: Glantz, S.A. (2002). Primer of Biostatistics. New York: McGraw-Hill.

Literatur: Glantz, S.A. (2002). Primer of Biostatistics. New York: McGraw-Hill. Statistik Literatur: Glantz, S.A. (2002). Primer of Biostatistics. New York: McGraw-Hill. Maxwell, S.E. & Delaney, H.D. (2000). Designing Experiments and Analyzing Data. Mahwah, NJ: Erlbaum. Das Grundproblem

Mehr

3. Der t-test. Der t-test

3. Der t-test. Der t-test 3 3. Der t-test Dieses Kapitel beschäftigt sich mit einem grundlegenden statistischen Verfahren zur Auswertung erhobener Daten: dem t-test. Der t-test untersucht, ob sich zwei empirisch gefundene Mittelwerte

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Statistik & Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte

Mehr

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER DAS THEMA: INFERENZSTATISTIK IV INFERENZSTATISTISCHE AUSSAGEN FÜR ZUSAMMENHÄNGE UND UNTERSCHIEDE Inferenzstatistik für Zusammenhänge Inferenzstatistik für Unterschiede

Mehr

KATA LOGO Mathematik Statistik Roadmap: Von der Hypothese zum p-wert

KATA LOGO Mathematik Statistik Roadmap: Von der Hypothese zum p-wert KATA LOGO Mathematik Statistik Roadmap: Von der Hypothese zum p-wert 0. Das eigentliche Forschungsziel ist: Beweis der eigenen Hypothese H 1 Dafür muss Nullhypothese H 0 falsifiziert werden können Achtung!

Mehr

Grundlagen von Versuchsmethodik und Datenanalyse

Grundlagen von Versuchsmethodik und Datenanalyse Grundlagen von Versuchsmethodik und Datenanalyse Der Anfang: Hypothesen über Ursache-Wirkungs-Zusammenhänge Ursache Wirkung Koffein verbessert Kurzzeitgedächtnis Gewaltfilme führen zu aggressivem Verhalten

Mehr

Schätzverfahren ML vs. REML & Modellbeurteilung mittels Devianz, AIC und BIC. Referenten: Linda Gräfe & Konstantin Falk

Schätzverfahren ML vs. REML & Modellbeurteilung mittels Devianz, AIC und BIC. Referenten: Linda Gräfe & Konstantin Falk Schätzverfahren ML vs. REML & Modellbeurteilung mittels Devianz, AIC und BIC Referenten: Linda Gräfe & Konstantin Falk 1 Agenda Schätzverfahren ML REML Beispiel in SPSS Modellbeurteilung Devianz AIC BIC

Mehr

8. Konfidenzintervalle und Hypothesentests

8. Konfidenzintervalle und Hypothesentests 8. Konfidenzintervalle und Hypothesentests Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Beispiel. Sie wollen den durchschnittlichen Fruchtsaftgehalt eines bestimmten Orangennektars

Mehr

4.2 Grundlagen der Testtheorie

4.2 Grundlagen der Testtheorie 4.2 Grundlagen der Testtheorie Januar 2009 HS MD-SDL(FH) Prof. Dr. GH Franke Kapitel 5 Vertiefung: Reliabilität Kapitel 5 Vertiefung: Reliabilität 5.1 Definition Die Reliabilität eines Tests beschreibt

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

Aufgaben zu Kapitel 9

Aufgaben zu Kapitel 9 Aufgaben zu Kapitel 9 Aufgabe 1 Für diese Aufgabe benötigen Sie den Datensatz Nominaldaten.sav. a) Sie arbeiten für eine Marktforschungsfirma und sollen überprüfen, ob die in diesem Datensatz untersuchte

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Mittelwertvergleiche Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Aussagen hierzu sind mit einer unvermeidbaren Unsicherheit behaftet, die statistisch über eine Irrtumswahrscheinlichkeit bewertet wird.

Aussagen hierzu sind mit einer unvermeidbaren Unsicherheit behaftet, die statistisch über eine Irrtumswahrscheinlichkeit bewertet wird. Stichprobenumfang Für die Fragestellung auf Gleichheit von ein oder zwei Stichproben wird auf Basis von Hypothesentests der notwendige Stichprobenumfang bestimmt. Deshalb werden zunächst die Grundlagen

Mehr

Statistik II. Statistische Tests. Statistik II

Statistik II. Statistische Tests. Statistik II Statistik II Statistische Tests Statistik II - 12.5.2006 1 Test auf Anteilswert: Binomialtest Sei eine Stichprobe unabhängig, identisch verteilter ZV (i.i.d.). Teile diese Stichprobe in zwei Teilmengen

Mehr

14.01.14 DAS THEMA: INFERENZSTATISTIK II. Standardfehler Konfidenzintervalle Signifikanztests. Standardfehler

14.01.14 DAS THEMA: INFERENZSTATISTIK II. Standardfehler Konfidenzintervalle Signifikanztests. Standardfehler DAS THEMA: INFERENZSTATISTIK II INFERENZSTATISTISCHE AUSSAGEN Standardfehler Konfidenzintervalle Signifikanztests Standardfehler der Standardfehler Interpretation Verwendung 1 ZUR WIEDERHOLUNG... Ausgangspunkt:

Mehr

SPSS V Gruppenvergleiche ( 2 Gruppen) abhängige (verbundene) Stichproben

SPSS V Gruppenvergleiche ( 2 Gruppen) abhängige (verbundene) Stichproben SPSS V Gruppenvergleiche ( 2 Gruppen) abhängige (verbundene) Stichproben ÜBERSICHT: Testverfahren bei abhängigen (verbundenen) Stichproben parametrisch nicht-parametrisch 2 Gruppen t-test bei verbundenen

Mehr

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate Regression ein kleiner Rückblick Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate 05.11.2009 Gliederung 1. Stochastische Abhängigkeit 2. Definition Zufallsvariable 3. Kennwerte 3.1 für

Mehr

Statistik. Jan Müller

Statistik. Jan Müller Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen

Mehr

ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II

ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II 1.1 Durch welche Elemente lässt sich laut der Formel für die multiple Regression der Wert einer Person auf einer bestimmten abhängigen Variable Y vorhersagen? a)

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009, Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009, Statistik mit SPSS Sommersemester 2009, Statistik mit SPSS 26. August 2009 26. August 2009 Statistik Dozentin: mit Anja SPSS Mays 1 Bivariate Datenanalyse, Überblick bis Freitag heute heute Donnerstag Donnerstag Freitag

Mehr

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel 16.11.01 MP1 - Grundlagen quantitativer Sozialforschung - (4) Datenanalyse 1 Gliederung Datenanalyse (inferenzstatistisch)

Mehr

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden Inhaltsverzeichnis Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3 Warum Statistik? 3 Checkpoints 4 Daten 4 Checkpoints 7 Skalen - lebenslang wichtig bei der Datenanalyse

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne

Mehr

Institut für Soziologie Werner Fröhlich. Methoden 2. Kontingenztabellen Chi-Quadrat-Unabhängigkeitstest

Institut für Soziologie Werner Fröhlich. Methoden 2. Kontingenztabellen Chi-Quadrat-Unabhängigkeitstest Institut für Soziologie Methoden 2 Kontingenztabellen Chi-Quadrat-Unabhängigkeitstest Aufbau der Sitzung Was sind Kontingenztabellen? Wofür werden Kontingenztabellen verwendet? Aufbau und Interpretation

Mehr

6. Übung Statistische Tests Teil 1 (t-tests)

6. Übung Statistische Tests Teil 1 (t-tests) Querschnittsbereich 1: Epidemiologie, Medizinische iometrie und Medizinische Informatik - Übungsmaterial - Erstellt von Mitarbeitern des IMISE und des ZKS Leipzig 6. Übung Statistische Tests Teil 1 (t-tests)

Mehr

Statistische Grundlagen I

Statistische Grundlagen I Statistische Grundlagen I Arten der Statistik Zusammenfassung und Darstellung von Daten Beschäftigt sich mit der Untersuchung u. Beschreibung von Gesamtheiten oder Teilmengen von Gesamtheiten durch z.b.

Mehr

Vorlesung Wirtschaftsstatistik 2 (FK ) Wiederholungen deskriptive Statistik und Einleitung Normalverteilungsverfahren. Dipl.-Ing.

Vorlesung Wirtschaftsstatistik 2 (FK ) Wiederholungen deskriptive Statistik und Einleitung Normalverteilungsverfahren. Dipl.-Ing. Vorlesung Wirtschaftsstatistik 2 (FK 040637) Wiederholungen deskriptive Statistik und Einleitung Normalverteilungsverfahren Dipl.-Ing. Robin Ristl Wintersemester 2012/13 1 Vorlesungsinhalte Wiederholung:

Mehr

Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Waldinventur und Fernerkundung

Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Waldinventur und Fernerkundung Systematische Stichprobe Rel. große Gruppe von Stichprobenverfahren. Allgemeines Merkmal: es existiert ein festes, systematisches Muster bei der Auswahl. Wie passt das zur allgemeinen Forderung nach Randomisierung

Mehr

Mögliche Fehler beim Testen

Mögliche Fehler beim Testen Mögliche Fehler beim Testen Fehler. Art (Irrtumswahrscheinlichkeit α), Zusammenfassung: Die Nullhypothese wird verworfen, obwohl sie zutrifft. Wir haben uns blamiert, weil wir etwas Wahres abgelehnt haben.

Mehr

Prüfgröße: Ist die durch eine Schätzfunktion zugeordnete reelle Zahl (etwa Mittelwert 7 C).

Prüfgröße: Ist die durch eine Schätzfunktion zugeordnete reelle Zahl (etwa Mittelwert 7 C). Statistik Grundlagen Charakterisierung von Verteilungen Einführung Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsverteilungen Schätzen und Testen Korrelation Regression Einführung Aus praktischen Gründen

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 19. Januar 2011 1 Nichtparametrische Tests Ordinalskalierte Daten 2 Test für ein Merkmal mit nur zwei Ausprägungen

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Biostatistik Erne Einfuhrung fur Biowissenschaftler

Biostatistik Erne Einfuhrung fur Biowissenschaftler Matthias Rudolf Wiltrud Kuhlisch Biostatistik Erne Einfuhrung fur Biowissenschaftler PEARSON Studium Inhaltsverzeichnis Vorwort xi Kapitel 1 Einfiihrung 1 1.1 Biostatistik als Bestandteil biowissenschafllicher

Mehr

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen.

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen. Modul G.1 WS 07/08: Statistik 17.01.2008 1 Wiederholung Kovarianz und Korrelation Kovarianz = Maß für den linearen Zusammenhang zwischen zwei Variablen x und y Korrelation Die Korrelation ist ein standardisiertes

Mehr

Bivariater Zusammenhang in der Mehrfeldertafel PEΣO

Bivariater Zusammenhang in der Mehrfeldertafel PEΣO Bivariater Zusammenhang in der Mehrfeldertafel PEΣO 9. November 2001 Bivariate Häufigkeitsverteilungen in Mehrfeldertabellen In der Mehrfeldertabelle werden im Gegensatz zur Vierfeldertabelle keine dichotomen

Mehr

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Christian Peukert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2010

Mehr

Beurteilende Statistik

Beurteilende Statistik Beurteilende Statistik Wahrscheinlichkeitsrechnung und Beurteilende Statistik was ist der Unterschied zwischen den beiden Bereichen? In der Wahrscheinlichkeitstheorie werden aus gegebenen Wahrscheinlichkeiten

Mehr

Kapitel 7: Varianzanalyse mit Messwiederholung

Kapitel 7: Varianzanalyse mit Messwiederholung Kapitel 7: Varianzanalyse mit Messwiederholung Durchführung einer einfaktoriellen Varianzanalyse mit Messwiederholung 1 Durchführung einer zweifaktoriellen Varianzanalyse mit Messwiederholung auf einem

Mehr

11 Tests zur Überprüfung von Mittelwertsunterschieden

11 Tests zur Überprüfung von Mittelwertsunterschieden 11 Tests zur Überprüfung von Mittelwertsunterschieden 11.1 Der z Test (t Test) für verbundene Stichproben 11.2 Der z Test (t Test) für unabhängige Stichproben 11.3 Fehler 1. Art und 2. Art 11.4 Typische

Mehr

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

Biometrische Planung von Versuchsvorhaben

Biometrische Planung von Versuchsvorhaben Biometrische Planung von Versuchsvorhaben Einführung in das Prinzip der Lehrstuhl für Mathematik VIII Statistik http://statistik.mathematik.uni-wuerzburg.de/~hain Ziel des Vortrags Im nachfolgenden Vortrag

Mehr

Kapitel 4: Merkmalszusammenhänge

Kapitel 4: Merkmalszusammenhänge Kapitel 4: Merkmalszusammenhänge Streudiagramme 1 Korrelationen 3 Lineare Regression 6 Zusammenhang zwischen Korrelation, Regression und t-test 8 Streudiagramme SPSS bietet die Möglichkeit, verschiedene

Mehr

Lösung Aufgabe 1 (Regression) Es wurden in einer Befragung zwei metrische Merkmale X und Y erhoben. Betrachten Sie dazu die

Lösung Aufgabe 1 (Regression) Es wurden in einer Befragung zwei metrische Merkmale X und Y erhoben. Betrachten Sie dazu die Statistik für Kommunikationswissenschaftler Wintersemester 2010/2011 Vorlesung Prof. Dr. Nicole Krämer Übung Nicole Krämer, Cornelia Oberhauser, Monia Mahling Lösung Thema 9 Homepage zur Veranstaltung:

Mehr

12.1 Wie funktioniert ein Signifikanztest?

12.1 Wie funktioniert ein Signifikanztest? Sedlmeier & Renkewitz Kapitel 12 Signifikanztests 12.1 Wie funktioniert ein Signifikanztest? Zentrales Ergebnis eine Signifikanztests: Wie wahrscheinlich war es unter der Bedingung dass H0 gilt, diesen

Mehr

Tag 7: Statistik. Themen: A) Standardfehler des Mittelwerts B) Median und Quantile C) Signifikanztest D) Hausaufgabe

Tag 7: Statistik. Themen: A) Standardfehler des Mittelwerts B) Median und Quantile C) Signifikanztest D) Hausaufgabe Tag 7: Statistik Themen: A) Standardfehler des Mittelwerts B) Median und Quantile C) Signifikanztest D) Hausaufgabe A) Standardfehler des Mittelwerts Die Berechnung von Mittelwert und Standardabweichung

Mehr

Anhang A: Fragebögen und sonstige Unterlagen

Anhang A: Fragebögen und sonstige Unterlagen Anhang Anhang A: Fragebögen und sonstige Unterlagen A.: Flyer zur Probandenrekrutierung 46 A.: Fragebogen zur Meditationserfahrung 47 48 A.3: Fragebogen Angaben zur Person 49 5 5 A.4: Termin- und Einladungsschreiben

Mehr

Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es

Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es beim radioaktiven Zerfall, zwischen 100 und 110 Zerfälle

Mehr

? Unterscheiden sich Burschen und Mädchen im Ausmaß der Mithilfe im Haushalt?

? Unterscheiden sich Burschen und Mädchen im Ausmaß der Mithilfe im Haushalt? 341 i Metrische und kategoriale Merkmale An einer Beobachtungseinheit werden metrische und kategoriale Variable erhoben. Beispiel: Hausarbeit von Teenagern (Stunden/Woche) 25 15 STUNDEN 5-5 weiblich männlich?

Mehr

e) Beim klassischen Signifikanztest muß die Verteilung der Prüfgröße unter der Nullhypothese

e) Beim klassischen Signifikanztest muß die Verteilung der Prüfgröße unter der Nullhypothese 9 Hypothesentests 1 Kapitel 9: Hypothesentests A: Übungsaufgaben: [ 1 ] Bei Entscheidungen über das Ablehnen oder Nichtablehnen von Hypothesen kann es zu Irrtümern kommen. Mit α bezeichnet man dabei die

Mehr

Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test

Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test 1/29 Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test (t-test für ungepaarte Stichproben) Matthias Birkner http://www.staff.uni-mainz.de/birkner/biostatistik1516/ 11.12.2015 2/29 Inhalt 1 t-test

Mehr

Grundlagen der Versuchsmethodik. Datenauswertung. Datenvisualisierung

Grundlagen der Versuchsmethodik. Datenauswertung. Datenvisualisierung Grundlagen der Versuchsmethodik Datenauswertung Datenvisualisierung Der Anfang: Hypothesen über Ursache-Wirkungs-Zusammenhänge Ursache Wirkung Koffein verbessert Kurzzeitgedächtnis Gewaltfilme führen zu

Mehr

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Einfaktorielle Versuchspläne 27/40 Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Abweichung Einfach Differenz Helmert Wiederholt Vergleich Jede Gruppe mit Gesamtmittelwert

Mehr

Konfidenzintervall für den Anteilswert θ. Konfidenzintervalle. Jost Reinecke. Universität Bielefeld. 13. Juni 2005

Konfidenzintervall für den Anteilswert θ. Konfidenzintervalle. Jost Reinecke. Universität Bielefeld. 13. Juni 2005 Universität Bielefeld 13. Juni 2005 Einführung Einführung Wie kann die Kenntnis der Wahrscheinlichkeitsverteilung der Parameter einer Stichprobe dazu verhelfen auf die wahren Werte der Grundgesamtheit

Mehr

Inhaltsverzeichnis. II. Statistische Modelle und sozialwissenschaftliche Meßniveaus 16

Inhaltsverzeichnis. II. Statistische Modelle und sozialwissenschaftliche Meßniveaus 16 Vorwort 1 1. Kapitel: Der Stellenwert der Statistik für die sozialwissenschaflliche Forschung 1 1. Zur Logik (sozial-)wissenschaftlicher Forschung 1 1. Alltagswissen und wissenschaftliches Wissen 1 2.

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

Florian Frötscher und Demet Özçetin

Florian Frötscher und Demet Özçetin Statistische Tests in der Mehrsprachigkeitsforschung Aufgaben, Anforderungen, Probleme. Florian Frötscher und Demet Özçetin florian.froetscher@uni-hamburg.de SFB 538 Mehrsprachigkeit Max-Brauer-Allee 60

Mehr

Hypothesentests mit SPSS. Beispiel für eine zweifaktorielle Varianzanalyse Daten: POK07_AG4_HU_V04.SAV

Hypothesentests mit SPSS. Beispiel für eine zweifaktorielle Varianzanalyse Daten: POK07_AG4_HU_V04.SAV Beispiel für eine zweifaktorielle Varianzanalyse Daten: POK07_AG4_HU_V04.SAV Hypothese: Typische Eigenschaften von Terroristen (Prototypikalität) und die nationale Herkunft (Ausländer vs. Deutsche) haben

Mehr

SPSS III Mittelwerte vergleichen

SPSS III Mittelwerte vergleichen SPSS III Mittelwerte vergleichen A Zwei Gruppen ------------ Zwei-Stichproben t-test Beispieldatei: Seegräser Fragestellung: Unterscheidet sich die Anzahl der Seegräser in Gebieten mit und ohne Seeigelvorkommen

Mehr

Überblick über die Verfahren für Ordinaldaten

Überblick über die Verfahren für Ordinaldaten Verfahren zur Analyse ordinalskalierten Daten 1 Überblick über die Verfahren für Ordinaldaten Unterschiede bei unabhängigen Stichproben Test U Test nach Mann & Whitney H Test nach Kruskal & Wallis parametrische

Mehr

Grundlagen der Inferenzstatistik

Grundlagen der Inferenzstatistik Grundlagen der Inferenzstatistik (Induktive Statistik oder schließende Statistik) Dr. Winfried Zinn 1 Deskriptive Statistik versus Inferenzstatistik Die Deskriptive Statistik stellt Kenngrößen zur Verfügung,

Mehr

Kapitel 1: Deskriptive Statistik

Kapitel 1: Deskriptive Statistik Kapitel 1: Deskriptive Statistik Grafiken 1 Statistische Kennwerte 5 z-standardisierung 7 Grafiken Mit Hilfe von SPSS lassen sich eine Vielzahl unterschiedlicher Grafiken für unterschiedliche Zwecke erstellen.

Mehr

Stichprobenauslegung. für stetige und binäre Datentypen

Stichprobenauslegung. für stetige und binäre Datentypen Stichprobenauslegung für stetige und binäre Datentypen Roadmap zu Stichproben Hypothese über das interessierende Merkmal aufstellen Stichprobe entnehmen Beobachtete Messwerte abbilden Schluss von der Beobachtung

Mehr

J. Bortz/N. Döring: Forschungsmethoden und Evaluation (1995 bzw. neueste Auflage) Springer, Berlin S. 463ff

J. Bortz/N. Döring: Forschungsmethoden und Evaluation (1995 bzw. neueste Auflage) Springer, Berlin S. 463ff J. Bortz/N. Döring: Forschungsmethoden und Evaluation (1995 bzw. neueste Auflage) Springer, Berlin S. 463ff Signifikanztests Zur Logik des Signifikanztests Tests zur statistischen Überprüfung von Hypothesen

Mehr

Mittelwertvergleiche, Teil II: Varianzanalyse

Mittelwertvergleiche, Teil II: Varianzanalyse FB 1 W. Ludwig-Mayerhofer Statistik II 1 Herzlich willkommen zur Vorlesung Mittelwertvergleiche, Teil II: FB 1 W. Ludwig-Mayerhofer Statistik II 2 : Wichtigste Eigenschaften Anwendbar auch bei mehr als

Mehr

Von der Untersuchungsfrage zu statistischen Hypothesen, und wie war das nochmal mit dem α- und

Von der Untersuchungsfrage zu statistischen Hypothesen, und wie war das nochmal mit dem α- und Von der Untersuchungsfrage zu statistischen Hypothesen, und wie war das nochmal mit dem α- und β-fehler? Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de

Mehr

Auswertung mit dem Statistikprogramm SPSS: 30.11.05

Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Seite 1 Einführung SPSS Was ist eine Fragestellung? Beispiel Welche statistische Prozedur gehört zu welcher Hypothese? Statistische Berechnungen mit

Mehr

Webergänzung zu Kapitel 10

Webergänzung zu Kapitel 10 Webergänzung zu Kapitel 10 10.1.4 Varianzanalyse (ANOVA: analysis of variance) Im Kapitel 10 haben wir uns hauptsächlich mit Forschungsbeispielen beschäftigt, die nur zwei Ergebnissätze hatten (entweder

Mehr

Multivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.167

Multivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.167 Multivariate lineare Regression Statistik für SozialwissenschaftlerInnen II p.167 Multivariate Regression Verfahren zur Prüfung des gemeinsamen linearen Einflusses mehrerer unabhängiger Variablen auf eine

Mehr

Studiendesign/ Evaluierungsdesign

Studiendesign/ Evaluierungsdesign Jennifer Ziegert Studiendesign/ Evaluierungsdesign Praxisprojekt: Nutzerorientierte Evaluierung von Visualisierungen in Daffodil mittels Eyetracker Warum Studien /Evaluierungsdesign Das Design einer Untersuchung

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS Sommersemester 2009 Statistik mit SPSS 15. Mai 2009 15. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Überblick 1. Korrelation vs. Regression 2. Ziele der Regressionsanalyse 3. Syntax für

Mehr

Kapitel 3: Der t-test

Kapitel 3: Der t-test Kapitel 3: Der t-test Durchführung eines t-tests für unabhängige Stichproben 1 Durchführung eines t-tests für abhängige Stichproben 4 Durchführung eines t-tests für eine Stichprobe 6 Vertiefung: Vergleich

Mehr

Mittelwertvergleiche, Teil I: Zwei Gruppen

Mittelwertvergleiche, Teil I: Zwei Gruppen FB W. Ludwig-Mayerhofer Statistik II Mittelwertvergleiche Herzlich willkommen zur Vorlesung Mittelwertvergleiche, Teil I: Zwei Gruppen FB W. Ludwig-Mayerhofer Statistik II Mittelwertvergleiche Mittelwertvergleiche:

Mehr

Kapitel 7: Varianzanalyse mit Messwiederholung

Kapitel 7: Varianzanalyse mit Messwiederholung Rasch, Friese, Hofmann & Naumann (006). Quantitative Methoden. Band (. Auflage). Heidelberg: Springer. Kapitel 7: Varianzanalyse mit Messwiederholung Nach dem Starten von GPower müssen Sie für Varianzanalysen

Mehr

Butz, Krüger: Mensch-Maschine-Interaktion, Kapitel 13 - Evaluation. Mensch-Maschine-Interaktion

Butz, Krüger: Mensch-Maschine-Interaktion, Kapitel 13 - Evaluation. Mensch-Maschine-Interaktion Folie 1 Mensch-Maschine-Interaktion Folie 2 Kapitel 13 - Evaluation Arten der Evaluation Formativ vs. Summativ Quantitativ vs. Qualitativ Analytisch vs. Empirisch Analytische Methoden Cognitive Walkthrough

Mehr