INTELLIGENTE DATENANALYSE IN MATLAB. Evaluation & Exploitation von Modellen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "INTELLIGENTE DATENANALYSE IN MATLAB. Evaluation & Exploitation von Modellen"

Transkript

1 INTELLIGENTE DATENANALYSE IN MATLAB Evaluation & Exploitation von Modellen

2 Überblick Schritte der Datenanalyse: Datenvorverarbeitung Problemanalyse Problemlösung Anwendung der Lösung Aggregation und Selektion von Daten. Integration und Säuberung der Daten. Feature- Extraktion. Bestimmen von gegeb./gesuchten Größen. Wahl des Performanzmaß/ Zielkriteriums. Modellraum und Modellannahmen. Algorithmen für das Optimieren des Zielkriteriums finden. Implementieren der Algorithmen. Modell-Selektion & -Anpassung. Training & Evaluation des Modells auf gegebenen Daten. Vorhersage für neue Daten. 2

3 Überblick Evaluation von Lernverfahren. Selektion und Anpassung von Modellen. Evaluation von Klassifikatoren. Exploitation von Modellen. 3

4 Evaluation von Lernverfahren Ziel: Qualitätsbewertung der Modelle eines Lernverfahrens. Nachdem wir Problem analysiert haben und Verfahren identifiziert & implementiert haben. Qualität eines Modells: Wie gut sind die Vorhersagen des Modells? Was genau heißt gut? Wie berechnet/schätzt man die Genauigkeit der Vorhersagen auf zukünftigen Daten? 4

5 Evaluation von Lernverfahren Problemstellung Gegeben: Repräsentative Evaluierungsdaten E mit bekannter Zielgröße. Bewertungsmaß (Verlustfunktion) welche Qualität einer Vorhersage misst, z.b. Klassifikation: Anzahl falsch klassifizierter Beispiele (Fehlerrate). ( prediction prediction l y, y) y y Regression: Mittlerer quadratischer Fehler. prediction prediction l( y, y) ( y y) Muss nicht identisch sein zur Verlustfunktion des Lernverfahrens Ranking: Mittlerer Abstand zw. echter und vorhergesagter Position. 2 5

6 Evaluation von Lernverfahren Problemstellung Eingabe: Lernverfahren welches ein Modell h ausgibt. Ziel: Bewertung der mittleren Qualität des Lernverfahrens. Theoretischer Mittelwert des Verlusts auf der Testverteilung: Aber: Testverteilung R E[ l( h( X ), Y)] p( x, y) l( h( x), y)d( x, y) theo p( X, Y) unbekannt! Evaluierungsdaten E {( x sind repräsentativ 1, y1),,( xn, yn)} aus p( X, Y) gezogen theoretischen Mittelwert durch empirischen Mittelwert (empirisches Risiko) schätzen: n 1 R l( h( x ), y ) emp i i n i 1 6

7 Evaluation von Lernverfahren Problemstellung Welche Daten für Evaluation verwenden: Daten auf welchen das Modell trainiert wurde? Nein! Empirischer Verlust auf diesen Daten meist 0. Daten auf welche das Modell angewendet werden soll? Nein! Zielgröße für diese Daten unbekannt. Idee: Gelabelte Trainingsdaten aufteilen in Lerndaten zum Lernen eines Modells, und Evaluierungsdaten zum Evaluieren des Modells. 7

8 Evaluation von Lernverfahren Aufteilung der Trainingsdaten: Holdout Validation Gegeben: Trainingsdaten D {( x, y ),,( x, y )}. Aufteilen der Daten in Lerndaten 1 1 und Evaluierungsdaten E {( x, y ),,( x, y )}. Lerne Modell h auf Daten L und bestimme empirisches n 1 Risiko auf Daten E: R ( h) l( h( x ), y ) Lerne Modell h auf Daten D. 1 1 Ausgabe: Modell h mit Risiko-Schätzer Rˆ ( h) R ( h). n n L {( x, y ),,( x, y )} k1 k1 n n emp i i n k i k 1 emp k k emp Pessimistische Schätzung 8

9 Evaluation von Lernverfahren Aufteilung der Trainingsdaten: Cross Validation Gegeben: Trainingsdaten D {( x, y ),,( x, y )}. Aufteilen der Daten in p Blöcke D {(, ),,(, )} i xi y 1 i x 1 i y k ik mit D D und D D für 2 verschiedene Blöcke. i i i j Wiederhole für i = 1 p Trainiere Modell h i auf Daten D\D i. Berechne empirisches Risiko auf D i : Lerne Modell h auf Daten D. 1 1 Ausgabe: Modell h mit mittlerem Risiko p ˆ 1 R ( h) R ( h ). emp emp i p i 1 n n k 1 R ( h ) l( h ( x ), y ) emp i i i j i k j 1 j 9

10 Evaluation von Lernverfahren Aufteilung der Trainingsdaten: Leave-One-Out Validation Gegeben: Trainingsdaten D {( x. 1, y1),,( xn, yn)} Spezialfall von Cross Validation mit. Wiederhole für i = 1 n Trainiere Modell h i auf Daten. D\( xi, yi) Berechne empirisches Risiko für : Lerne Modell h auf Daten D. Ausgabe: Modell h mit Loo-Fehler n. I.d.R. aufwendig zu berechnen. ( x, y ) ( x, y ) i i i Für einige Probleme existiert analyt. Lösung für Loo- Fehler. i i D R ( h ) l( h ( x ), y ) emp i i i i ˆ 1 R ( h) R ( h ) emp emp i n i 1 10

11 Evaluation von Lernverfahren Signifikanz des empirischen Risikos Wie gut ist der Schätzer Risiko R h? theo ( ) Rˆ ( h) für das echte Idee: m-malige Validation ergibt m Schätzwerte für empirisches Risiko mit Mittelwert R. Standardfehler (Standardabw. des Schätzers): Test der Hypothese R ( h) R ( h) : theo emp ˆ emp 2 R R R 1 m 1 p R ( h) Rˆ ( h) 1 ( p( R ( h) Rˆ ( h) ) p( Rˆ ( h) R ( h) )) theo emp theo emp emp theo 1 2 R Inverse der Normalverteilung: z 2 x e dz 2 x 11

12 Evaluation von Lernverfahren Signifikanz des empirischen Risikos mit Signifikanz- Test der Hypothese ˆ theo ( ) emp ( ) niverau 5% (signifikantes Ereignis). R h R h Beispiel: 10-malige Wiederholung einer Leave-One- Out-Validation (auf 10 verschiedenen Datensätzen). 10 Schätzwerte mit Mittelwert R = 8% R = 0,09. Gesucht ist mit Konfidenzintervall 1 und = 5%: p R ( h) Rˆ ( h) 0,950 theo emp ( 0, 09 ) 0,950 (123,3 ) 0,975 ( z) 0,975 z 0,835 z 0,68% 123,3 R 8,0 0,68% 12

13 Selektion und Anpassung von Modellen Ziel: Hohe Qualität des Modells durch Selektion/ Anpassung des Modells bzw. Lernverfahrens. Anpassen von Modellkomponenten (z.b. Verlustfunktion/Regularisierung, Splitting-Kriterium). Parameter des Lernverfahrens (z.b. maximale Anzahl Iterationen). Parameter der Verlustfunktion (z.b. Klassen-Kosten). Parameter des Regularisierers (z.b. des 2 -Regularsierers). Parameter der Daten-Transformation bzw. des Kernels (z.b. des RBF-Kernels). 13

14 Selektion und Anpassung von Modellen Grid-Suche Idee: Stichprobenartig aus der Menge aller möglichen Parameter bzw. Parameterkombinationen ziehen. Für jede gezogene Kombination mittels Cross-Validation (CV) Schätzer für bestimmen. R ( ) theo h Parameter wählen mit minimalem Risiko. Beispiel für Parameter-Auswahl: Grid-Suche Für jeden Grid-Punkt Schätzer für das Risiko berechnen mittels CV

15 Selektion und Anpassung von Modellen Aufteilung der Lerndaten Welche Daten für Modell-Anpassung verwenden: Daten auf welchen das Modell evaluiert wird? Nein! Evaluierung des Modells wäre zu optimistisch. Idee: Lerndaten aufteilen in Daten für Learning: zum Lernen eines Modells mit festen Parametern und Tuning: zum Anpassen der Modellparameter. Art der Aufteilung: Holdout-Validation. Cross-Validation. Loo-Validation. 15

16 Selektion und Anpassung von Modellen Aufteilung der Lerndaten Beispiel: Geschachtelte Cross-Validation. Aufteilen der Trainingsdaten D in p Blöcke D i. Wiederhole für i = 1 p Aufteilen der Lerndaten L=D\D i in q Blöcke L j. Wiederhole für alle Modell-Parameterkombinationen Wiederhole für j = 1 q Trainiere für aktuelle Parameterkombination ein Modell auf L\L j. Berechne empirisches Risiko auf L j. Bestimme mittleres empirisches Risiko für aktuelle Parameterkombination. Trainiere für beste Parameterkombination Modell h i auf D\D i. Berechne empirisches Risiko auf D i. Trainiere für beste Parameterkombination Modell h auf D. 16

17 Evaluation von Klassifikatoren Ziel: Bewertung eines konkreten Modells für binäre Klassifikation. Nachdem wir Problem analysiert haben, Verfahren identifiziert & implementiert haben, und Klassifikations- Modell (Klassifikator) trainiert haben. Qualität eines Klassifikators: Precision/Recall-Analyse. ROC-Analyse. 17

18 Evaluation von Klassifikatoren Definitionen (für binäre Klassifikation) Entscheidungsfunktion: Ordnet einer Eingabe x m einen numerischen Wert f : zu,. Beispiel: Klassifikationsfunktion: Ordnet einem Entscheidungsfunktionswert f ( x ) ein Klassenlabel zu, g: Y. Beispiel: f ( x) T x w Kontingenztabelle: g( f ( x)) sign( f ( x) ) Klassifikations-Schwellwert Tatsächlich positiv Tatsächlich negativ Positiv vorhergesagt TP (true positives) FP (false positives) Negativ vorhergesagt FN (false negatives) TN (true negatives) 18

19 Evaluation von Klassifikatoren Definitionen (für binäre Klassifikation) Beispiel HIV-Erkrankungen in Deutschland: In Deutschland leben Menschen. Davon sind Menschen an HIV erkrankt. Ein HIV-Test ergab (hochgerechnet auf alle Menschen): Tatsächlich positiv Tatsächlich negativ Summe Positiv vorhergesagt Negativ vorhergesagt Summe False Negatives: fälschlicherweise als HIV-negativ klassifiziert False Positives: fälschlicherweise als HIV-positiv klassifiziert 19

20 Evaluation von Klassifikatoren Qualität eines Klassifikators Gegeben: Repräsentative Evaluierungsdaten E mit bekannter Zielgröße. Entscheidungs- und Klassifikationsfunktion. Gesucht: Bewertung der Entscheidungsfunktion. Beispiele: Precision/Recall-Kurve, ROC-Kurve. Bewertung der Klassifikationsfunktion (Entscheidungsfunktion für einen konkreten Schwellwert). Beispiele: Fehlerrate, F-Maß. 20

21 Evaluation von Klassifikatoren Qualität eines Klassifikators Für jeden Klassifikations-Schwellwert ergibt sich eine Kontigenztabelle, d.h. Werte für TP, FP, TN und FN. Unterschiedliche Bewertungsmaße für einen Klassifikator (für einen konkreten Schwellwert): Trefferquote (Recall): Genauigkeit (Precision): Ausfallquote (Fallout): TP ,89% TP FN TP ,71% TP FP FP ,14% TN FP

22 Evaluation von Klassifikatoren Qualität eines Klassifikators Tatsächlich positiv Tatsächlich negativ Summe Positiv vorhergesagt Negativ vorhergesagt Summe Trefferquote (Recall): Genauigkeit (Precision): Ausfallquote (Fallout): TP ,89% TP FN TP ,71% TP FP FP ,14% TN FP

23 Evaluation von Klassifikatoren Recall versus Precision Kombinierte Bewertungsmaße aus Recall und Precision: Sensitivität (Sensitivity): Recall bzgl. positiver Beispiele. Spezifität (Specificity): Recall bzgl. negativer Beispiele. F-Maß (F-score): Harmonisches Mittel aus Precision & Recall. Precision Recall 35,71% 99,89% F-score ,61% Precision Recall 35,71% 99,89% Spezielle Schwellwerte : Gewinnschwelle (Break-Even-Point): Schwellwert für welchen Precision = Recall. F-Schwellwert (Maximal F-score): Schwellwert für welchen F-score maximal ist. 23

24 Precision Evaluation von Klassifikatoren Recall versus Precision Precision/Recall-Kurve: Precision vs. Recall für unterschiedliche Schwellwerte. 1,00 Break-Even-Point 0,75 BEP F Maximal F-score 0,50 Vorheriges Beispiel 0,25 AUC PR (Area Under Curve: Precision/Recall) 0,00 0,25 0,50 0,75 1,00 Recall 0 Recall = 99,89% Precision = 35,71% wenig aussagekräftig 24

25 Evaluation von Klassifikatoren Recall versus Fallout Receiver-Operating-Characteristic (ROC): Bewertung der Entscheidungsfunktion unabhängig vom Schwellwert durch Fallout statt Precision. Großer Schwellwert: Mehr positive Beispiel falsch klassifiziert. Kleiner Schwellwert: Mehr negative Beispiel falsch klassifiziert. Fläche unter der ROC-Kurve (AUC ROC ) bewertet Entscheidungsfunktion. Analog zur Fläche unter Precision/Recall-Kurve. 25

26 Recall Evaluation von Klassifikatoren Recall versus Fallout ROC-Kurve bzw. Recall/Fallout-Kurve: Recall (True Positives Rate) vs. Fallout (False Positives Rate). 1,00 0 Vorheriges Beispiel Recall = 99,89% Fallout = 0,14% 0,75 0,50 0,25 AUC ROC (Area Under Curve: ROC) 0,00 0,25 0,50 0,75 1,00 Fallout 26

27 Evaluation von Klassifikatoren Recall versus Fallout Algorithmus zur Bestimmung des AUC ROC -Wertes. AUC_ROC(f, y) Sortiere Paare (f i, y i ) aufsteigend nach f i Setze TN = 0, FN = 0, AUC = 0 FOR i = 1 n IF y i > 0 THEN FN = FN + 1 ELSE AUC = AUC + TN TN = TN + 1 AUC = AUC/(FN * TN) RETURN AUC f Vektor mit n Entscheidungsfunktionswerten y Vektor mit zugehörigen Klassenlabels 27

28 Exploitation von Modellen Anwenden von Modellen in der Praxis: Einstellen von Modellparametern nach dem Lernen (z.b. Schwellwerte, Default-Klasse). Kombination mehrerer gelernter Modelle (z.b. Verwendung mehrerer Spam-Filter). Integration des Modells in bestehende Softwarearchitektur. Monitoren der Qualität (Verteilung der Eingabedaten ändert sich oft über die Zeit Qualität verringert sich). Sammeln neuer Trainingsdaten zur Verbesserung des Modells. 28

29 Zusammenfassung Qualität von Lernverfahren/Modellen messen Auf Evaluierungsdaten; nicht auf Trainingsdaten! Signifikanz des Ergebnisses prüfen. Modell-Selektion/-Anpassung Auf Tuningdaten; nicht auf Evaluierungsdaten! Modellparameter z.b. durch Grid-Suche + Cross-Validation. Bewertung eines Klassifikators durch Recall, Precision, Fallout, F-Maß usw. Bewertung einer Entscheidungsfunktion durch Fläche unter der ROC-Kurve. 29

Evaluation. Caroline Sporleder. Computational Linguistics Universität des Saarlandes. Sommersemester 2011 26.05.2011

Evaluation. Caroline Sporleder. Computational Linguistics Universität des Saarlandes. Sommersemester 2011 26.05.2011 Evaluation Caroline Sporleder Computational Linguistics Universität des Saarlandes Sommersemester 2011 26.05.2011 Caroline Sporleder Evaluation (1) Datensets Caroline Sporleder Evaluation (2) Warum evaluieren?

Mehr

Vorlesung Maschinelles Lernen

Vorlesung Maschinelles Lernen Vorlesung Maschinelles Lernen Additive Modelle Katharina Morik Informatik LS 8 Technische Universität Dortmund 7.1.2014 1 von 34 Gliederung 1 Merkmalsauswahl Gütemaße und Fehlerabschätzung 2 von 34 Ausgangspunkt:

Mehr

Vorlesung Wissensentdeckung

Vorlesung Wissensentdeckung Gliederung Vorlesung Wissensentdeckung Additive Modelle Katharina Morik, Weihs 1 Merkmalsauswahl Gütemaße und Fehlerabschätzung.6.015 1 von 33 von 33 Ausgangspunkt: Funktionsapproximation Aufteilen der

Mehr

Seminar Text- und Datamining Datamining-Grundlagen

Seminar Text- und Datamining Datamining-Grundlagen Seminar Text- und Datamining Datamining-Grundlagen Martin Hacker Richard Schaller Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg 23.05.2013 Gliederung 1 Klassifikationsprobleme 2 Evaluation

Mehr

Mathe III. Garance PARIS. Mathematische Grundlagen III. Evaluation. 16. Juli /25

Mathe III. Garance PARIS. Mathematische Grundlagen III. Evaluation. 16. Juli /25 Mathematische Grundlagen III Evaluation 16 Juli 2011 1/25 Training Set und Test Set Ein fairer Test gibt an, wie gut das Modell im Einsatz ist Resubstitution: Evaluation auf den Trainingsdaten Resubstitution

Mehr

Seminar Textmining SS 2015 Grundlagen des Maschinellen Lernens

Seminar Textmining SS 2015 Grundlagen des Maschinellen Lernens Seminar Textmining SS 2015 Grundlagen des Maschinellen Lernens Martin Hacker Richard Schaller Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg 17.04.2015 Entscheidungsprobleme beim Textmining

Mehr

Vortrag zum Paper Results of the Active Learning Challenge von Guyon, et. al. Sören Schmidt Fachgebiet Knowledge Engineering

Vortrag zum Paper Results of the Active Learning Challenge von Guyon, et. al. Sören Schmidt Fachgebiet Knowledge Engineering Vortrag zum Paper Results of the Active Learning Challenge von Guyon, et. al. Sören Schmidt Fachgebiet Knowledge Engineering 11.12.2012 Vortrag zum Paper Results of the Active Learning Challenge von Isabelle

Mehr

Funktion Das Skript erstellt ROC-Kurven mit Konfidenzbändern, berechnet (gewichtete) Cutoff-Punkte und (partial) Area under the Curve (AUC, pauc).

Funktion Das Skript erstellt ROC-Kurven mit Konfidenzbändern, berechnet (gewichtete) Cutoff-Punkte und (partial) Area under the Curve (AUC, pauc). Skriptname: ROC_pAUC7.jsl JMP-Version: JMP 7 Datum: 10.09.2007 Download: ROC.zip Funktion Das Skript erstellt ROC-Kurven mit Konfidenzbändern, berechnet (gewichtete) Cutoff-Punkte und (partial) Area under

Mehr

Algorithmen zur Analyse historischer Landkarten. Benedikt Budig Universität Würzburg

Algorithmen zur Analyse historischer Landkarten. Benedikt Budig Universität Würzburg Algorithmen zur Analyse historischer Landkarten Benedikt Budig Universität Würzburg Einführung Einführung Algorithmen zur Analyse historischer Landkarten Einführung Algorithmen zur Analyse historischer

Mehr

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining.

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining. Motivation Themenblock: Klassifikation Praktikum: Data Warehousing und Data Mining Ziel Item hat mehrere Attribute Anhand von n Attributen wird (n+)-tes vorhergesagt. Zusätzliches Attribut erst später

Mehr

Seminar Künstliche Intelligenz WS 2013/14 Grundlagen des Maschinellen Lernens

Seminar Künstliche Intelligenz WS 2013/14 Grundlagen des Maschinellen Lernens Seminar Künstliche Intelligenz WS 2013/14 Grundlagen des Maschinellen Lernens Martin Hacker Richard Schaller Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg 19.12.2013 Allgemeine Problemstellung

Mehr

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016 Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 1 M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Übungsblatt 3 Maschinelles Lernen und Klassifikation Abgabe online

Mehr

Semestralklausur zur Vorlesung. Web Mining. Prof. J. Fürnkranz Technische Universität Darmstadt Sommersemester 2004 Termin: 22. 7.

Semestralklausur zur Vorlesung. Web Mining. Prof. J. Fürnkranz Technische Universität Darmstadt Sommersemester 2004 Termin: 22. 7. Semestralklausur zur Vorlesung Web Mining Prof. J. Fürnkranz Technische Universität Darmstadt Sommersemester 2004 Termin: 22. 7. 2004 Name: Vorname: Matrikelnummer: Fachrichtung: Punkte: (1).... (2)....

Mehr

Klassifikation im Bereich Musik

Klassifikation im Bereich Musik Klassifikation im Bereich Musik Michael Günnewig 30. Mai 2006 Michael Günnewig 1 30. Mai 2006 Inhaltsverzeichnis 1 Was ist eine Klassifikation? 3 1.1 Arten und Aufbau von Klassifikationen.................

Mehr

Vergleich von Methoden zur Rekonstruktion von genregulatorischen Netzwerken (GRN)

Vergleich von Methoden zur Rekonstruktion von genregulatorischen Netzwerken (GRN) Exposé zur Bachelorarbeit: Vergleich von Methoden zur Rekonstruktion von genregulatorischen Netzwerken (GRN) Fakultät: Informatik, Humboldt-Universität zu Berlin Lijuan Shi 09.05.2013 Betreuer: Prof. Dr.

Mehr

Bayes Klassifikatoren M E T H O D E N D E S D A T A M I N I N G F A B I A N G R E U E L

Bayes Klassifikatoren M E T H O D E N D E S D A T A M I N I N G F A B I A N G R E U E L Bayes Klassifikatoren M E T H O D E N D E S D A T A M I N I N G F A B I A N G R E U E L Inhalt Grundlagen aus der Wahrscheinlichkeitsrechnung Hypothesenwahl Optimale Bayes Klassifikator Naiver Bayes Klassifikator

Mehr

Algorithmen mit konstantem Platzbedarf: Die Klasse REG

Algorithmen mit konstantem Platzbedarf: Die Klasse REG Algorithmen mit konstantem Platzbedarf: Die Klasse REG Sommerakademie Rot an der Rot AG 1 Wieviel Platz brauchen Algorithmen wirklich? Daniel Alm Institut für Numerische Simulation Universität Bonn August

Mehr

Domain-independent. independent Duplicate Detection. Vortrag von Marko Pilop & Jens Kleine. SE Data Cleansing

Domain-independent. independent Duplicate Detection. Vortrag von Marko Pilop & Jens Kleine. SE Data Cleansing SE Data Cleansing Domain-independent independent Duplicate Detection Vortrag von Marko Pilop & Jens Kleine http://www.informatik.hu-berlin.de/~pilop/didd.pdf {pilop jkleine}@informatik.hu-berlin.de 1.0

Mehr

Versuchsplanung. Teil 2 Varianzanalyse (ANOVA) Dr. Tobias Kiesling

Versuchsplanung. Teil 2 Varianzanalyse (ANOVA) Dr. Tobias Kiesling Versuchsplanung Teil 2 Varianzanalyse (ANOVA) Dr. Tobias Kiesling Gliederung Grundlagen der Varianzanalyse Streuungszerlegung und Modellschätzer Modellannahmen und Transformationen

Mehr

Theoretical Analysis of Protein-Protein Interactions. Proseminar SS 2004

Theoretical Analysis of Protein-Protein Interactions. Proseminar SS 2004 Theoretical Analysis of Protein-Protein Interactions Proseminar Virtual Screening: Predicting Pairs from Sequence Übersicht Einleitung 1.Modell: Vorhersage von Protein-Interfaces aus Sequenzprofilen und

Mehr

Maschinelles Lernen Entscheidungsbäume

Maschinelles Lernen Entscheidungsbäume Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Maschinelles Lernen Entscheidungsbäume Paul Prasse Entscheidungsbäume Eine von vielen Anwendungen: Kreditrisiken Kredit - Sicherheiten

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Statistik & Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte

Mehr

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke Vorlesungsplan 17.10. Einleitung 24.10. Ein- und Ausgabe 31.10. Reformationstag, Einfache Regeln 7.11. Naïve Bayes, Entscheidungsbäume 14.11. Entscheidungsregeln, Assoziationsregeln 21.11. Lineare Modelle,

Mehr

If something has a 50% chance of happening, then 9 times out of 10 it will. Yogi Berra

If something has a 50% chance of happening, then 9 times out of 10 it will. Yogi Berra If something has a 50% chance of happening, then 9 times out of 10 it will. Yogi Berra If you torture your data long enough, they will tell you whatever you want to hear. James L. Mills Warum Biostatistik?

Mehr

Projektaufgaben Block 2

Projektaufgaben Block 2 Kurs BZQ III - Stochastikpraktikum WS 2013/14 Humboldt-Universität zu Berlin Randolf Altmeyer Philip-Moritz Eckert Projektaufgaben Block 2 Abgabe: bis 10.12.2013 Zur Einstimmung (freiwillig, ohne Abgabe)

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Machine Learning in Azure Hätte ich auf der Titanic überlebt? Olivia Klose Technical Evangelist, Microsoft @oliviaklose oliviaklose.

Machine Learning in Azure Hätte ich auf der Titanic überlebt? Olivia Klose Technical Evangelist, Microsoft @oliviaklose oliviaklose. Machine Learning in Azure Hätte ich auf der Titanic überlebt? Olivia Klose Technical Evangelist, Microsoft @oliviaklose oliviaklose.com 13.06.20 15 SQLSaturday Rheinland 2015 1. Zu komplex: Man kann

Mehr

Aussagen hierzu sind mit einer unvermeidbaren Unsicherheit behaftet, die statistisch über eine Irrtumswahrscheinlichkeit bewertet wird.

Aussagen hierzu sind mit einer unvermeidbaren Unsicherheit behaftet, die statistisch über eine Irrtumswahrscheinlichkeit bewertet wird. Stichprobenumfang Für die Fragestellung auf Gleichheit von ein oder zwei Stichproben wird auf Basis von Hypothesentests der notwendige Stichprobenumfang bestimmt. Deshalb werden zunächst die Grundlagen

Mehr

Data Mining und maschinelles Lernen

Data Mining und maschinelles Lernen Data Mining und maschinelles Lernen Einführung und Anwendung mit WEKA Caren Brinckmann 16. August 2000 http://www.coli.uni-sb.de/~cabr/vortraege/ml.pdf http://www.cs.waikato.ac.nz/ml/weka/ Inhalt Einführung:

Mehr

Mit KI gegen SPAM. Proseminar Künstliche Intelligenz

Mit KI gegen SPAM. Proseminar Künstliche Intelligenz Mit KI gegen SPAM Proseminar Künstliche Intelligenz SS 2006 Florian Laib Ausblick Was ist SPAM? Warum SPAM-Filter? Naive Bayes-Verfahren Fallbasiertes Schließen Fallbasierte Filter TiMBL Vergleich der

Mehr

Kapitel ML: I. I. Einführung. Beispiele für Lernaufgaben Spezifikation von Lernproblemen

Kapitel ML: I. I. Einführung. Beispiele für Lernaufgaben Spezifikation von Lernproblemen Kapitel ML: I I. Einführung Beispiele für Lernaufgaben Spezifikation von Lernproblemen ML: I-8 Introduction c STEIN/LETTMANN 2005-2010 Beispiele für Lernaufgaben Autoeinkaufsberater Welche Kriterien liegen

Mehr

Einführung in die Computerlinguistik

Einführung in die Computerlinguistik Einführung in die Computerlinguistik Statistische Modellierung I WS 2010/2011 Manfred Pinkal Wortartinformation Wortartinformation ist eine wichtige Voraussetzung für die syntaktische Analyse. Woher kommt

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB

INTELLIGENTE DATENANALYSE IN MATLAB INTELLIGENTE DATENANALYSE IN MATLAB Bildanalyse Literatur David A. Forsyth: Computer Vision i A Modern Approach. Mark S. Nixon und Alberto S. Aguado: Feature Extraction and Image Processing. Ulrich Schwanecke:

Mehr

TEXTKLASSIFIKATION. WS 2011/12 Computerlinguistik I Deasy Sukarya & Tania Bellini

TEXTKLASSIFIKATION. WS 2011/12 Computerlinguistik I Deasy Sukarya & Tania Bellini TEXTKLASSIFIKATION WS 2011/12 Computerlinguistik I Deasy Sukarya & Tania Bellini GLIEDERUNG 1. Allgemeines Was ist Textklassifikation? 2. Aufbau eines Textklassifikationssystems 3. Arten von Textklassifikationssystemen

Mehr

8. Konfidenzintervalle und Hypothesentests

8. Konfidenzintervalle und Hypothesentests 8. Konfidenzintervalle und Hypothesentests Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Beispiel. Sie wollen den durchschnittlichen Fruchtsaftgehalt eines bestimmten Orangennektars

Mehr

Chi-Quadrat Verfahren

Chi-Quadrat Verfahren Chi-Quadrat Verfahren Chi-Quadrat Verfahren werden bei nominalskalierten Daten verwendet. Die einzige Information, die wir bei Nominalskalenniveau zur Verfügung haben, sind Häufigkeiten. Die Quintessenz

Mehr

Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g:

Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g: TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 2 Prof. Dr. Helmut Seidl, S. Pott,

Mehr

Simulation mit modernen Tools - runde und spitze Berechnung von π -

Simulation mit modernen Tools - runde und spitze Berechnung von π - Simulation mit modernen Tools - runde und spitze Berechnung von π - Prof. Dr. rer. nat. Stefan Ritter Fakultät EIT 7. April 01 Gliederung 1. Wozu Simulation?. Moderne Tools zur Simulation 1. Maple, Geogebra

Mehr

Ideen der Informatik. Maschinelles Lernen. Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik

Ideen der Informatik. Maschinelles Lernen. Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Ideen der Informatik Maschinelles Lernen Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Übersicht Lernen: Begriff Beispiele für den Stand der Kunst Spamerkennung Handschriftenerkennung

Mehr

Vorlesung Maschinelles Lernen

Vorlesung Maschinelles Lernen Vorlesung Maschinelles Lernen Strukturelle Modelle SVMstruct Katharina Morik LS 8 Künstliche Intelligenz Fakultät für Informatik 16.12.2008 1 von 35 Gliederung LS 8 Künstliche Intelligenz Fakultät für

Mehr

Überblick. Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung

Überblick. Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Grundlagen Überblick Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Klassifikation bei bekannter Wahrscheinlichkeitsverteilung Entscheidungstheorie Bayes- Entscheidungsfunktionen

Mehr

PRAKTIKUM Experimentelle Prozeßanalyse 2. VERSUCH AS-PA-2 "Methoden der Modellbildung statischer Systeme" Teil 2 (für ausgewählte Masterstudiengänge)

PRAKTIKUM Experimentelle Prozeßanalyse 2. VERSUCH AS-PA-2 Methoden der Modellbildung statischer Systeme Teil 2 (für ausgewählte Masterstudiengänge) FACHGEBIET Systemanalyse PRAKTIKUM Experimentelle Prozeßanalyse 2 VERSUCH AS-PA-2 "Methoden der Modellbildung statischer Systeme" Teil 2 (für ausgewählte Masterstudiengänge) Verantw. Hochschullehrer: Prof.

Mehr

Kapitel 5: Abstrakte Algorithmen und Sprachkonzepte. Elementare Schritte

Kapitel 5: Abstrakte Algorithmen und Sprachkonzepte. Elementare Schritte Elementare Schritte Ein elementarer Berechnungsschritt eines Algorithmus ändert im Allgemeinen den Wert von Variablen Zuweisungsoperation von fundamentaler Bedeutung Zuweisungsoperator In Pascal := In

Mehr

Naive Bayes. Naive Bayes

Naive Bayes. Naive Bayes Naive Bayes Ein einfacher Klassifikator Wolfgang Konen Fachhochschule Köln November 007 W. Konen DMC WS007 Seite - 1 informatikö Inhalt Naive Bayes Der Ansatz Beispiel Wetterdaten Bayes sche Regel Das

Mehr

I. Deskriptive Statistik 1

I. Deskriptive Statistik 1 I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................

Mehr

Textmining Klassifikation von Texten Teil 1: Naive Bayes

Textmining Klassifikation von Texten Teil 1: Naive Bayes Textmining Klassifikation von Texten Teil 1: Naive Bayes Dept. Informatik 8 (Künstliche Intelligenz) Friedrich-Alexander-Universität Erlangen-Nürnberg (Informatik 8) Klassifikation von Texten 1: Naive

Mehr

Diagnostikstudien. Dr. Dirk Hasenclever IMISE, Leipzig.

Diagnostikstudien. Dr. Dirk Hasenclever IMISE, Leipzig. Diagnostikstudien Dr. Dirk Hasenclever IMISE, Leipzig Hasenclever@IMISE.uni-Leipzig.de Diagnostische Tests Krankheit ja Krankheit nein Test positiv TrueP FP Test negativ FN TrueN Test- Positive Test- Negative

Mehr

1 Gemischte Lineare Modelle

1 Gemischte Lineare Modelle 1 Gemischte Lineare Modelle Wir betrachten zunächst einige allgemeine Aussagen für Gemischte Lineare Modelle, ohne zu tief in die mathematisch-statistische Theorie vorzustoßen. Danach betrachten wir zunächst

Mehr

Jost Reinecke. 7. Juni 2005

Jost Reinecke. 7. Juni 2005 Universität Bielefeld 7. Juni 2005 Testtheorie Test für unabhängige Stichproben Test für abhängige Stichproben Testtheorie Die Testtheorie beinhaltet eine Reihe von Testverfahren, die sich mit der Überprüfung

Mehr

Statistik II. Statistische Tests. Statistik II

Statistik II. Statistische Tests. Statistik II Statistik II Statistische Tests Statistik II - 12.5.2006 1 Test auf Anteilswert: Binomialtest Sei eine Stichprobe unabhängig, identisch verteilter ZV (i.i.d.). Teile diese Stichprobe in zwei Teilmengen

Mehr

Signalverarbeitung 2. Volker Stahl - 1 -

Signalverarbeitung 2. Volker Stahl - 1 - - 1 - Hidden Markov Modelle - 2 - Idee Zu klassifizierende Merkmalvektorfolge wurde von einem (unbekannten) System erzeugt. Nutze Referenzmerkmalvektorfolgen um ein Modell Des erzeugenden Systems zu bauen

Mehr

Einführung in die Informatik 1

Einführung in die Informatik 1 Einführung in die Informatik 1 Algorithmen und algorithmische Sprachkonzepte Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag,

Mehr

Anwendung eines SAS/STAT-Modells ohne SAS/STAT in einem CRM-Projekt

Anwendung eines SAS/STAT-Modells ohne SAS/STAT in einem CRM-Projekt Poster Anwendung eines SAS/STAT-Modells ohne SAS/STAT in einem CRM-Projekt Timm Euler Tobias Otte viadee GmbH viadee GmbH Anton-Bruchausen-Str. 8 Anton-Bruchausen-Str. 8 48147 Münster 48147 Münster Timm.Euler@viadee.de

Mehr

Statistik II für Betriebswirte Vorlesung 12

Statistik II für Betriebswirte Vorlesung 12 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 12 11. Januar 2013 7.3. Multiple parameterlineare Regression Im Folgenden soll die

Mehr

Flussdiagramm / Programmablaufplan (PAP)

Flussdiagramm / Programmablaufplan (PAP) Flussdiagramm / Programmablaufplan (PAP) Basissysmbole Grenzstelle (Anfang, Zwischenhalt oder Ende des Programms/Algorithmus) Verbindung Zur Verdeutlichung der Ablaufrichtung werden Linien mit einer Pfeilspitze

Mehr

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97.

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97. Aufgabenblock 4 Aufgabe ) Da s = 8. cm nur eine Schätzung für die Streuung der Population ist, müssen wir den geschätzten Standardfehler verwenden. Dieser berechnet sich als n s s 8. ˆ = = =.88. ( n )

Mehr

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente...

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente... Inhaltsverzeichnis 0 Einführung 1 1 Zufallsvorgänge und Wahrscheinlichkeiten 5 1.1 Zufallsvorgänge.......................... 5 1.1.1 Ergebnismengen..................... 6 1.1.2 Ereignisse und ihre Verknüpfung............

Mehr

WEKA A Machine Learning Interface for Data Mining

WEKA A Machine Learning Interface for Data Mining WEKA A Machine Learning Interface for Data Mining Frank Eibe, Mark Hall, Geoffrey Holmes, Richard Kirkby, Bernhard Pfahringer, Ian H. Witten Reinhard Klaus Losse Künstliche Intelligenz II WS 2009/2010

Mehr

Lernen von Entscheidungsbäumen. Volker Tresp Summer 2014

Lernen von Entscheidungsbäumen. Volker Tresp Summer 2014 Lernen von Entscheidungsbäumen Volker Tresp Summer 2014 1 Anforderungen an Methoden zum Datamining Schnelle Verarbeitung großer Datenmengen Leichter Umgang mit hochdimensionalen Daten Das Lernergebnis

Mehr

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Aufgabe 1 (10 Punkte). 10 Schüler der zehnten Klasse unterziehen sich zur Vorbereitung auf die Abschlussprüfung einem Mathematiktrainingsprogramm.

Mehr

Künstliche Intelligenz Maschinelles Lernen

Künstliche Intelligenz Maschinelles Lernen Künstliche Intelligenz Maschinelles Lernen Stephan Schwiebert Sommersemester 2009 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Maschinelles Lernen Überwachtes Lernen

Mehr

Entwicklung eines Distanzmaßes zwischen Bildern über dem Modell der Fields of Visual Words

Entwicklung eines Distanzmaßes zwischen Bildern über dem Modell der Fields of Visual Words Entwicklung eines Distanzmaßes zwischen Bildern über dem Modell der Fields of Visual Words André Viergutz 1 Inhalt Einführung. Einordnung der Arbeit in die zugrunde liegenden Konzepte Das Modell der Fields

Mehr

Oracle GridControl Tuning Pack. best Open Systems Day April 2010. Unterföhring. Marco Kühn best Systeme GmbH marco.kuehn@best.de

Oracle GridControl Tuning Pack. best Open Systems Day April 2010. Unterföhring. Marco Kühn best Systeme GmbH marco.kuehn@best.de Oracle GridControl Tuning Pack best Open Systems Day April 2010 Unterföhring Marco Kühn best Systeme GmbH marco.kuehn@best.de Agenda GridControl Overview Tuning Pack 4/26/10 Seite 2 Overview Grid Control

Mehr

Praktikum: Erweiterung eines Machine Learning Frameworks. Author: Richard Stein Betreuer: Oren Halvani Abgabe:

Praktikum: Erweiterung eines Machine Learning Frameworks. Author: Richard Stein Betreuer: Oren Halvani Abgabe: Praktikum: Erweiterung eines Machine Learning Frameworks Author: Richard Stein Betreuer: Oren Halvani Abgabe: 11.04.2016 Zusammenfassung In dieser Arbeit wird ein Framework zur Textanalyse mittels maschinellem

Mehr

Fortgeschrittene Statistik Logistische Regression

Fortgeschrittene Statistik Logistische Regression Fortgeschrittene Statistik Logistische Regression O D D S, O D D S - R A T I O, L O G I T T R A N S F O R M A T I O N, I N T E R P R E T A T I O N V O N K O E F F I Z I E N T E N, L O G I S T I S C H E

Mehr

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen?

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen? 1 Kombinatorik Aus einer Grundgesamtheit mit n Elementen wird eine Stichprobe k Elementen entnommen. Dabei kann die Stichprobe geordnet oder ungeordnet sein. "Geordnet" bedeutet, dass die Reihenfolge der

Mehr

Data Mining - Wiederholung

Data Mining - Wiederholung Data Mining - Wiederholung Norbert Fuhr 9. Juni 2008 Problemstellungen Problemstellungen Daten vs. Information Def. Data Mining Arten von strukturellen Beschreibungen Regeln (Klassifikation, Assoziations-)

Mehr

2 Evaluierung von Retrievalsystemen

2 Evaluierung von Retrievalsystemen 2. Evaluierung von Retrievalsystemen Relevanz 2 Evaluierung von Retrievalsystemen Die Evaluierung von Verfahren und Systemen spielt im IR eine wichtige Rolle. Gemäß der Richtlinien für IR der GI gilt es,...

Mehr

6. Bayes-Klassifikation. (Schukat-Talamazzini 2002)

6. Bayes-Klassifikation. (Schukat-Talamazzini 2002) 6. Bayes-Klassifikation (Schukat-Talamazzini 2002) (Böhm 2003) (Klawonn 2004) Der Satz von Bayes: Beweis: Klassifikation mittels des Satzes von Bayes (Klawonn 2004) Allgemeine Definition: Davon zu unterscheiden

Mehr

Grundlegende Eigenschaften von Punktschätzern

Grundlegende Eigenschaften von Punktschätzern Grundlegende Eigenschaften von Punktschätzern Worum geht es in diesem Modul? Schätzer als Zufallsvariablen Vorbereitung einer Simulation Verteilung von P-Dach Empirische Lage- und Streuungsparameter zur

Mehr

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden Inhaltsverzeichnis Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3 Warum Statistik? 3 Checkpoints 4 Daten 4 Checkpoints 7 Skalen - lebenslang wichtig bei der Datenanalyse

Mehr

zu große Programme (Bildschirmseite!) zerlegen in (weitgehend) unabhängige Einheiten: Unterprogramme

zu große Programme (Bildschirmseite!) zerlegen in (weitgehend) unabhängige Einheiten: Unterprogramme Bisher Datentypen: einfach Zahlen, Wahrheitswerte, Zeichenketten zusammengesetzt Arrays (Felder) zur Verwaltung mehrerer zusammengehörender Daten desselben Datentypes eindimensional, mehrdimensional, Array-Grenzen

Mehr

Datamining-Cup 2012 - TeamFK i. Datamining-Cup 2012 - TeamFK

Datamining-Cup 2012 - TeamFK i. Datamining-Cup 2012 - TeamFK i Datamining-Cup 2012 - TeamFK ii Inhaltsverzeichnis 1 Programme und Datenvorverarbeitung 1 2 Vorbetrachtung der Daten 2 2.1 Zeitintervalle..................................................... 2 2.2 Mittelwert

Mehr

2. Programmierung in C

2. Programmierung in C 2. Programmierung in C Inhalt: Überblick über Programmiersprachen, Allgemeines zur Sprache C C: Basisdatentypen, Variablen, Konstanten Operatoren, Ausdrücke und Anweisungen Kontrollstrukturen (Steuerfluss)

Mehr

SPSS III Mittelwerte vergleichen

SPSS III Mittelwerte vergleichen SPSS III Mittelwerte vergleichen A Zwei Gruppen ------------ Zwei-Stichproben t-test Beispieldatei: Seegräser Fragestellung: Unterscheidet sich die Anzahl der Seegräser in Gebieten mit und ohne Seeigelvorkommen

Mehr

Kapitel 6. Zusammenfassung der wichtigsten Ergebnisse dieser Arbeit

Kapitel 6. Zusammenfassung der wichtigsten Ergebnisse dieser Arbeit Kapitel 6 Zusammenfassung der wichtigsten Ergebnisse dieser Arbeit 159 160 Kapitel 6. Zusammenfassung der Ergebnisse Im Fokus der vorliegenden Arbeit steht die Frage nach der Eignung verschiedener Matchingverfahren

Mehr

Praktikum Ingenieurinformatik. Termin 4. Funktionen, numerische Integration

Praktikum Ingenieurinformatik. Termin 4. Funktionen, numerische Integration Praktikum Ingenieurinformatik Termin 4 Funktionen, numerische Integration 1 Praktikum Ingenieurinformatik Termin 4 1. Funktionen. Numerische Integration, Trapezverfahren 1.1. Funktionen Eine Funktion ist

Mehr

Einführung in Heuristische Suche

Einführung in Heuristische Suche Einführung in Heuristische Suche Beispiele 2 Überblick Intelligente Suche Rundenbasierte Spiele 3 Grundlagen Es muss ein Rätsel / Puzzle / Problem gelöst werden Wie kann ein Computer diese Aufgabe lösen?

Mehr

Java 8. Elmar Fuchs Grundlagen Programmierung. 1. Ausgabe, Oktober 2014 JAV8

Java 8. Elmar Fuchs Grundlagen Programmierung. 1. Ausgabe, Oktober 2014 JAV8 Java 8 Elmar Fuchs Grundlagen Programmierung 1. Ausgabe, Oktober 2014 JAV8 5 Java 8 - Grundlagen Programmierung 5 Kontrollstrukturen In diesem Kapitel erfahren Sie wie Sie die Ausführung von von Bedingungen

Mehr

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn 16. Januar 2014 Übersicht Stand der Kunst im Bilderverstehen: Klassifizieren und Suchen Was ist ein Bild in Rohform? Biologische

Mehr

Steueranweisungen. Eike Schallehn Grundlagen der Informatik für Ingenieure Wintersemester 08/09 2 32

Steueranweisungen. Eike Schallehn Grundlagen der Informatik für Ingenieure Wintersemester 08/09 2 32 Steueranweisungen Bisher Programme mit Funktionen als einfache Folge von Befehlen Ablauf von Programmen darüber hinaus steuerbar über Bedingte Ausführung: Ausführung von Programmteilen (Befehlen oder Programmblöcken)

Mehr

Grundlagen der Programmierung

Grundlagen der Programmierung Grundlagen der Programmierung 8. Vorlesung 25.05.2016 1 Ausdrücke "Befehle", die ein Ergebnis liefern 3 + 4 sin(x) x < 10 getchar() Ausdrücke können Teil eines anderen Ausdrucks sein x = sin( x + y ) Auswertung:

Mehr

Stichprobenauslegung. für stetige und binäre Datentypen

Stichprobenauslegung. für stetige und binäre Datentypen Stichprobenauslegung für stetige und binäre Datentypen Roadmap zu Stichproben Hypothese über das interessierende Merkmal aufstellen Stichprobe entnehmen Beobachtete Messwerte abbilden Schluss von der Beobachtung

Mehr

Bayes sches Lernen: Übersicht

Bayes sches Lernen: Übersicht Bayes sches Lernen: Übersicht Bayes sches Theorem MAP, ML Hypothesen MAP Lernen Minimum Description Length Principle Bayes sche Klassifikation Naive Bayes Lernalgorithmus Teil 5: Naive Bayes + IBL (V.

Mehr

Data Mining und Text Mining Einführung. S2 Einfache Regellerner

Data Mining und Text Mining Einführung. S2 Einfache Regellerner Data Mining und Text Mining Einführung S2 Einfache Regellerner Hans Hermann Weber Univ. Erlangen, Informatik 8 Wintersemester 2003 hans.hermann.weber@gmx.de Inhalt Einiges über Regeln und Bäume R1 ein

Mehr

VS PLUS

VS PLUS VS PLUS Zusatzinformationen zu Medien des VS Verlags Statistik II Inferenzstatistik 2010 Übungsaufgaben und Lösungen Inferenzstatistik 2 [Übungsaufgaben und Lösungenn - Inferenzstatistik 2] ÜBUNGSAUFGABEN

Mehr

Computer Vision: AdaBoost. D. Schlesinger () Computer Vision: AdaBoost 1 / 10

Computer Vision: AdaBoost. D. Schlesinger () Computer Vision: AdaBoost 1 / 10 Computer Vision: AdaBoost D. Schlesinger () Computer Vision: AdaBoost 1 / 10 Idee Gegeben sei eine Menge schwacher (einfacher, schlechter) Klassifikatoren Man bilde einen guten durch eine geschickte Kombination

Mehr

Dr. Heidemarie Keller

Dr. Heidemarie Keller Reliabilität und Validität der deutschen Version der OPTION Scale Dr. Heidemarie Keller Abteilung für Allgemeinmedizin, Präventive und Rehabilitative Medizin Philipps-Universität Marburg EbM & Individualisierte

Mehr

Kapitel ML:IV (Fortsetzung)

Kapitel ML:IV (Fortsetzung) Kapitel ML:IV (Fortsetzung) IV. Statistische Lernverfahren Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen ML:IV-18 Statistical Learning c STEIN 2005-2011 Satz 3 (Bayes)

Mehr

Wiederholung Hypothesentests Zusammenfassung. Hypothesentests. Statistik I. Sommersemester Statistik I Hypothesentests I (1/36)

Wiederholung Hypothesentests Zusammenfassung. Hypothesentests. Statistik I. Sommersemester Statistik I Hypothesentests I (1/36) Statistik I Sommersemester 2009 Statistik I I (1/36) Wiederholung Grenzwertsatz Konfidenzintervalle Logik des 0.0 0.1 0.2 0.3 0.4 4 2 0 2 4 Statistik I I (2/36) Zum Nachlesen Agresti/Finlay: Kapitel 6+7

Mehr

Biostatistik Erne Einfuhrung fur Biowissenschaftler

Biostatistik Erne Einfuhrung fur Biowissenschaftler Matthias Rudolf Wiltrud Kuhlisch Biostatistik Erne Einfuhrung fur Biowissenschaftler PEARSON Studium Inhaltsverzeichnis Vorwort xi Kapitel 1 Einfiihrung 1 1.1 Biostatistik als Bestandteil biowissenschafllicher

Mehr

Fragenkatalog zur Vorlesung "Grundlagen des Data Mining" (WS 2006/07)

Fragenkatalog zur Vorlesung Grundlagen des Data Mining (WS 2006/07) Fragenkatalog zur Vorlesung "Grundlagen des Data Mining" (WS 2006/07) 1. Grenzen Sie die Begriffe "Daten" und "Wissen" mit je 3 charakteristischen Eigenschaften gegeander ab. 2. Nennen Sie vier verschiedene

Mehr

Algorithmentheorie Randomisierung. Robert Elsässer

Algorithmentheorie Randomisierung. Robert Elsässer Algorithmentheorie 03 - Randomisierung Robert Elsässer Randomisierung Klassen von randomisierten Algorithmen Randomisierter Quicksort Randomisierter Primzahltest Kryptographie 2 1. Klassen von randomisierten

Mehr

3.4.1 Referenzwerte für das fetale Schätzgewicht in der SSW

3.4.1 Referenzwerte für das fetale Schätzgewicht in der SSW 60 3.4 Die Bedeutung des fetalen und des mütterlichen Gewichts in der 21.-24.SSW als prädiktiver Parameter für das Geburtsgewicht bei Geburt in der 36.-43.SSW 3.4.1 Referenzwerte für das fetale Schätzgewicht

Mehr

Customization (Zuschneiden)

Customization (Zuschneiden) Customization (Zuschneiden) Anpassen der (Graph)Datenstruktur an die Anwendung. I Ziel: schnell, kompakt. I benutze Entwurfsprinzip: make the common case fast I Listen vermeiden Mögliches Problem: Software-Engineering-Alptraum

Mehr

C.3 Funktionen und Prozeduren

C.3 Funktionen und Prozeduren C3 - Funktionen und Prozeduren Funktionsdeklarationen in Pascal auch in Pascal kann man selbstdefinierte Funktionen einführen: Funktionen und Prozeduren THEN sign:= 0 Funktion zur Bestimmung des Vorzeichens

Mehr

Korrelation - Regression. Berghold, IMI

Korrelation - Regression. Berghold, IMI Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines

Mehr

8. Entscheidungstheorie: Selektion oder Klassifikation

8. Entscheidungstheorie: Selektion oder Klassifikation 8. Entscheidungstheorie: Selektion oder Klassifikation 1 8. Entscheidungstheorie: Selektion oder Klassifikation 1 8.1. Kategorisierung von Personalentscheidungsproblemen... 3 8.1.1. Selektion... 3 8.1.2.

Mehr