Vorlesung 2. Maschinenlernen: Klassische Ansätze I

Größe: px
Ab Seite anzeigen:

Download "Vorlesung 2. Maschinenlernen: Klassische Ansätze I"

Transkript

1 Vorlesung 2 Maschinenlernen: Klassische Ansätze I Martin Giese Martin.giese@tuebingen.mpg.de

2 Übersicht! Statistische Formulierung des überwachten Lernproblems! Einfache Klassifikatoren! Regression

3 I. Statistiche Formulierung des überwachten Lernenproblems

4 Überwachtes Lernen aus Beispielen Inputs Lerner Outputs Beispiele: Datenpaare Input 1 Input 2 Input 3 Output 1 Output 2 Output 3

5 Überwachtes Lernen aus Beispielen Beispiel: Funktionenapproimation! Beispiele Trainingsdaten T {,,,,...,, } L L! Gesucht: Funktion f mit fˆ ˆ! Ziel: gute Vorhersage zukünftiger Testdaten G {,,,,...,, } M M

6 Überwachtes Lernen aus Beispielen Beispiel: Funktionenapproimation Trainingsdaten wahre Funktion f

7 Überwachtes Lernen aus Beispielen Beispiel: Funktionenapproimation ˆ Approimation der Funktion f Trainingsdaten wahre Funktion f

8 Überwachtes Lernen aus Beispielen Beispiel: Funktionenapproimation ˆ Approimation der Funktion f Neue Testdaten wahre Funktion f Generalisierung: Vorhersage der Funktion an Stellen ohne Trainingsdaten

9 Überwachtes Lernen aus Beispielen Beispiel: Funktionenapproimation ˆ Approimation der Funktion f Neue Testdaten wahre Funktion f Gute Generalisierung Generalisierung: Vorhersage der Funktion an Stellen ohne Trainingsdaten

10 Überwachtes Lernen aus Beispielen Beispiel: Funktionenapproimation ˆ Approimation der Funktion f Neue Testdaten wahre Funktion f Schlechte Generalisierung Generalisierung: Vorhersage der Funktion an Stellen ohne Trainingsdaten

11 Überwachtes Lernen aus Beispielen Regression: Ausgangsvariable kontinuierlich! Univariate: eindimensional! Multiple : mehrdimensional Klassifikation: Ausgangsvariable diskret! Einklassen binar! Multiklassen multiclass

12 Statistische Formulierung X und Y. Gemeinsame Verteilungsdichte über X Y: p, p p konstant aber unbekannt! Trainingsdatenpaare: T aus dieser Verteilung {,,,,...,, } L L

13 Statistische Formulierung Rifkin 2002

14 Statistische Formulierung Viele wichtige Lernprobleme können als Funktionenapproimation aufgefasst werden. Regression: und kontinuierlich ˆ fˆ Klassifikation: kontinuierlich, diskret gehört zur Klasse : 1 gehört nicht zur Klasse : -1

15 Statistische Formulierung Kostenfunktion loss function L ˆ, * L fˆ, * wahrer Wert von Definiert die Kosten wenn vorhergesagt wird und der wahre Wert * war. L ˆ Sinvoll: L minimal für f * ˆ ŷ * ŷ

16 Statistische Formulierung Populäre Kostenfunktionen Regression:! L 2 -Fehler L 2 loss L L ˆ, * ˆ *! L 1 -Fehler L 1 loss L ˆ, * ˆ *! ε-unempfindliche Fehlerfunktion ε-insensitive error L ˆ, * ma ˆ * ε,0 2 L L ε ε ˆ * ˆ * ˆ *

17 Statistische Formulierung Populäre Kostenfunktionen Klassifikation:! 0-1-Fehler 0-1 loss L L ˆ, * θ ˆ *! Scharnier -Fehler L 1 hinge loss ˆ * L ˆ, * ma1 ˆ *,0 L 1 ˆ *

18 Statistische Formulierung Wahres Risiko true risk! Entspricht dem Erwartungswert der Kostenfunktion für gegebene Approimationsfunktion f: R[ f ] V f, p, d, Funktional!! Prädiziert erwartete Kosten für neuen Datenpunkt! Problem: p, unbekannt! Dichteschätzung im allgemeinen Fall sehr aufwendig

19 Statistische Formulierung Klassische parametrische Statistik! Annahme dass die prinzipielle Form der Verteilung p, bekannt ist! Schätzung der freien Parameter aus den Daten Klassische nichtparametrische Statistik! Verwendung von Kenngrössen, die verteilungsunabängig sind, aber deren Verteilungsform bekannt ist

20 Statistische Formulierung Empirisches Risiko empirical risk! Gegeben: L Datenpaare l, l! Approimation des wahren Risikos: R 1 L emp [ f ] V f l, l L l 1! Idee: Minimierung des empirischen Risiko! Herleitung von Schranken für die Abweichung: R[ f ] Remp[ f ]

21 Statistische Formulierung Empirisches Risiko empirical risk! Gegeben: L Datenpaare l, l! Approimation des wahren Risikos: R 1 L emp [ f ] V f l, l L l 1

22 Statistische Formulierung Statistische Lerntheorie! Minimierung des empirischen Risiko! Herleitung von Schranken für die Abweichung: R[ f ] Remp[ f ]! Schranken nichtparametrisch, d.h. unabängig vonn der Form der Verteilung p,

23 II. Einfache Klassifikatoren

24 Aufbau eines tpischen Klassifikationssstems Bild Merkmalsetraktion : Merkmalsvektor Piel Kanten Frequenzkomponenten Klassifizierer f : Klassenlabel Stoiber

25 Merkmalsraum 2 Klasse 1 Klasse 2 Merkmalsvektor Merkmalsraum Klasse 3 1

26 Merkmale gut schlecht stark korreliert

27 Nächster-Nachbar-Klassifikator nearest neighbor classifer 2 Klasse 1 Klasse 2! Klassen definiert durch Trainingsbeispiele! Zuordnung zu nächstliegendem Klassenzentrum Klasse 3 Trainingsbeispiele 1

28 Problem 2 Klasse 1 Klasse 2! Klassen nicht immer um Lernbeispiele zentriert Trainingsbeispiele 1

29 Entscheidungsregionen 2! Klassifizieren entspricht Zuordung zu bestimmter Region im Merkmalsraum! Entscheidungsgrenzen decision boundaries 1 1 Entscheidungsgenze

30 Diskriminantenfunktionen f! Jede Klasse assoziiert mit einer Diskriminantenfunktion f k! Zuordnung des Mekmalsvekotors zu der Klasse K mit 2 1 K arg ma k g k

31 Diskriminantenfunktionen Tpische Diskriminantenfunktionen! Linear: f w T + b linearer Klassifikator! Polnominal polnominaler Klassifikator! Linearkombination von Basisfunktionen / Kernfunktionen Supportvektormaschine

32 Statistische Entscheidungstheorie! Ziel: Konstruktion einer Enscheidungsregel f, die Datenpunkt abbildet auf Klassenlabel {0, 1}. Einfaches Beispiel: Indikatorfunktion 0 f 1 falls nicht in Entscheidungsregion falls in Entscheidungsregion R! Kostenfunktion: Erwartung des Fehlers L f, * θ f 0.5 * f 0 0 ist R 0 ist *

33 Statistische Entscheidungstheorie! Generelles Schema aus Signaldetektionstheorie: 0 * 1 f 1 0 Falscher Alarm false alarm, false positive Korrekte Ablehnung correct rejection, negatitive Treffer hit, positive Aussetzer miss, false negative

34 Statistische Entscheidungstheorie! Risikofunktion! Annahme des klassischen Ansatzes: Wahrscheinlichkeitsdichten p bekannt, bzw. aus den Daten bestimmbar ,,, ] [ f P f P R P R P d p f L f R

35 Statistische Entscheidungstheorie! Optimale Entscheidungsfunktion ohne Daten : f const 0 falls P 0 > P 1 1 sonst! Nach Erhebung von Daten : f 0 falls P 0 > P 1 1 sonst

36 Statistische Entscheidungstheorie! Baes Theorem: p P p P p P p P p P p P

37 Baes Klassifikator Diskriminantenfunktionen! Optimale Entscheidungsregel: f 0 falls p 0 P 0 > p 1P 1 1 sonst! Wahrscheinlichkeitsverhältnis likelihood ratio: f p 0 P 0 falls > p 1 P 1 sonst 1 0

38 Baes Klassifikator! Oft Diskriminantenfunktionen geschrieben als log: g0 ln p 0 P 0 ln p 0 + ln P 0 g1 ln p 1P 1 ln p 1 + ln P 1 f 0 falls g0 > g1 1 sonst

39 Baes Klassifikator 1 f 0 * 0 1 C 10 C 11 C 00 C 01! Erweiterung für allgemeinere Kostenfunktion: R[ f ] C C P P f f C 0 + C P f 0 1 P f 1 1 f 0 falls 1 p p 0 C > 1 C sonst C C C10P 1 P 0

40 Baes Klassifikator! Erweiterung für Multiklassenfall: Kostenfunktion: L f k, l 0 falls fl 1 sonst l Diskriminantenfunktionen: g l p lp l oder log Entscheidungsregel: arg ma l f l

41 Baes Klassifikator Spezialfall: Gauss-Verteilungen! Diskriminantenfunktionen: g l ln 1 2σ p lp 2µ l + µ ln p T T T 2 l l l l µ + Quadratischer Term derselbe: g w T + b Linearer Klassifikator!

42 Hierarchische Klassifikatoren! Realisierung von Multiklassenklassifikation durch Kaskadieren von binären Klassifikatoren! Problem: Aussagen über Generalisierungsfehler Mensch Kein Mensch Mann Frau Baer Preiss

43 III. Regression

44 Ziel: Funktionenapproimation f ˆ Datenpunkte

45 Nicht eindeutig lösbar f ˆ Datenpunkte

46 Nicht korrekt gestelltes Problem ill-posed problem Korrekt getelltes Problem Hadarmard! Lösung eistiert! Lösung eindeutig! Lösung hängt stetig von den Daten ab

47 Hpothesenraum! Lösung wird eindeutig durch Einschränkung auf bestimmte Funktionenklasse H! Ausnutzung von A-priori-Information über das Problem freie Parameter! Lineare Funktionen: Beispiele f ˆ! Polnome p-ter Ordnung: fˆ! Linearkombination von Gaussfunktionen: f ˆ p n 0 w n p n 0 n n w e p n 0 m n w n n 2 / 2σ 2

48 Zielraum! Raum Z in dem die wahre Funktion f liegt! Tpischerweise wesentlich allgemeiner als der Hpothesenraum! Beispiele: " Funktionen mit d differenzierbaren Ableitungen " Quadratintegrable Funktionen " Funktionen mit integrierbarer Fouriertransformierter

49 Beispiel: Lineare Regression! Funktionenklasse H : lineare Funktionen f w T + b! Gegeben: Datenpaare { l, l }! Schätzung der Parameter w durch Minimiering des empirischen Risikos: R 1 L T 2 emp w l w l b L l 1! Interpretierbar als Minimierung des erwarteten Risikos falls p, eine Normalverteilung ist

50 Kleinste Quadrate Schätzung! Umschreiben in Matriform mit X [ 1, L ] und [ 1,, L ] T b kann in und w absorbiert werden! 1 R emp w 2 + L 2 T T T w X w XX w! Fehlerminimierung durch Ableiten nach w: R emp w 2 L T XX w 2X 0 wˆ XX T 1 X Normalgleichung

51 Linearkombination nichtlinearer Funktionen! Funktionenklasse H : nichtlineare Funktionen! Lösung: mit zusätzliche Parameter X XX w 1 ˆ T,...,,..., P L L L G G G G m m m m X,...,, 2 1 L T G G G f m m m w

52 Fehleraufteilung! Für den L 2 -Fehler is folgende Aufteilung möglich: d p f E d p E d p f E d p E d p f E d p E d p p f E E d p f f R } {,, { } { { 2 } {,, {, } { {,, ] [ Unabhängig von Unabhängig von f

53 Fehleraufteilung! Konsequenz: Die Regression E { } p d liefert die optimale Approimation für die Funktion f! In der Prais kann diese Funktion nur approimativ geschätzt werden, da nur endlich viele Daten verfügbar sind.

54 Fehlertpen! Schätzfehler: Fehler bei der Approimation der Funktion f ˆ innerhalb des Hpothesenraums H! Approimationsfehler: Abweichung zwischen der bestapproimierenden Funktion f* im Hpothesenraum und der wahren Funktion f! Generalisierungsfehler: Abweichung zwischen der Approimationsfunktion f ˆ und der wahren Funktion f

55 Fehlertpen Approimationsfehler f Zielraum f * Generalisierungssfehler Schätzfehler f ˆ Hpothesenraum Girosi 1997

56 Wichtige Punkte bitte behalten!! Definition des Lernproblems! Nächster-Nachbar-Klassifikator! Baes-Klassifikator! Regressionsproblem! Fehlertpen bei Lernproblemen

57 Literatur Bishop, C.M Neural Networks for Pattern Recognition. Oford Universit Press, UK. Cherkassk, V., Mulier, F Learnijng From Data. John-Wile & Sons Inc, New York. Duda, R.O., Hart, P.E., Stork, D.G Pattern Classification. John- Wile & Sons Inc, New York. Hastie, T., Tibshirani, R., Friedman, J The Elements of Statistical learning Theor. Springer, Berlin. MIT Course 9.520: Statistical Learning Theor and Applications T. Poggio, S. Mukherjee, R. Rifkin

Überblick. Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung

Überblick. Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Grundlagen Überblick Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Klassifikation bei bekannter Wahrscheinlichkeitsverteilung Entscheidungstheorie Bayes- Entscheidungsfunktionen

Mehr

Vorlesung Wissensentdeckung

Vorlesung Wissensentdeckung Gliederung Vorlesung Wissensentdeckung Additive Modelle Katharina Morik, Weihs 1 Merkmalsauswahl Gütemaße und Fehlerabschätzung.6.015 1 von 33 von 33 Ausgangspunkt: Funktionsapproximation Aufteilen der

Mehr

Digitale Bildverarbeitung Einheit 11 Klassifikation

Digitale Bildverarbeitung Einheit 11 Klassifikation Digitale Bildverarbeitung Einheit 11 Klassifikation Lehrauftrag WS 06/07 Fachbereich M+I der FH-Offenburg Dr. Bernard Haasdonk Albert-Ludwigs-Universität Freiburg Ziele der Einheit Verstehen, dass basierend

Mehr

6. Bayes-Klassifikation. (Schukat-Talamazzini 2002)

6. Bayes-Klassifikation. (Schukat-Talamazzini 2002) 6. Bayes-Klassifikation (Schukat-Talamazzini 2002) (Böhm 2003) (Klawonn 2004) Der Satz von Bayes: Beweis: Klassifikation mittels des Satzes von Bayes (Klawonn 2004) Allgemeine Definition: Davon zu unterscheiden

Mehr

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016 Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 1 M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Übungsblatt 3 Maschinelles Lernen und Klassifikation Abgabe online

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Statistik & Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte

Mehr

Projekt 7. Machine Learning. (Matthias Bethge) 7.1 Overtüre

Projekt 7. Machine Learning. (Matthias Bethge) 7.1 Overtüre Projekt 7 Machine Learning Matthias Bethge) 7. Overtüre Alles messen, was messbar ist - und messbar machen, was noch nicht messbar ist. Galileo Galilei 564-642) Ziel der quantitativen Wissenschaft ist

Mehr

Bayes sches Lernen: Übersicht

Bayes sches Lernen: Übersicht Bayes sches Lernen: Übersicht Bayes sches Theorem MAP, ML Hypothesen MAP Lernen Minimum Description Length Principle Bayes sche Klassifikation Naive Bayes Lernalgorithmus Teil 5: Naive Bayes + IBL (V.

Mehr

Seminar Künstliche Intelligenz WS 2013/14 Grundlagen des Maschinellen Lernens

Seminar Künstliche Intelligenz WS 2013/14 Grundlagen des Maschinellen Lernens Seminar Künstliche Intelligenz WS 2013/14 Grundlagen des Maschinellen Lernens Martin Hacker Richard Schaller Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg 19.12.2013 Allgemeine Problemstellung

Mehr

Seminar Data Mining and Learning from Data. Predictive Modeling. Thorsten Holz

Seminar Data Mining and Learning from Data. Predictive Modeling. Thorsten Holz Seminar Data Mining and Learning from Data Predictive Modeling Thorsten Holz Human Language Technology and Pattern Recognition Lehrstuhl für Informatik VI, Computer Science Department RWTH Aachen University

Mehr

Kapitel 5. Bayes Klassifikator

Kapitel 5. Bayes Klassifikator Kapitel 5 Bayes Klassifikator Theoretische Grundlagen Bayes Entscheidungstheorie Allgemeiner Bayes Klassifikator Bayes Klassifikator bei Normalverteilung Parameterschätzung Nichtparametrische Klassifikatoren

Mehr

Vorlesung Maschinelles Lernen

Vorlesung Maschinelles Lernen Vorlesung Maschinelles Lernen Additive Modelle Katharina Morik Informatik LS 8 Technische Universität Dortmund 7.1.2014 1 von 34 Gliederung 1 Merkmalsauswahl Gütemaße und Fehlerabschätzung 2 von 34 Ausgangspunkt:

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente...

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente... Inhaltsverzeichnis 0 Einführung 1 1 Zufallsvorgänge und Wahrscheinlichkeiten 5 1.1 Zufallsvorgänge.......................... 5 1.1.1 Ergebnismengen..................... 6 1.1.2 Ereignisse und ihre Verknüpfung............

Mehr

3.4 Asymptotische Evaluierung von Sch atzer Konsistenz Konsistenz Definition 3.4.1: konsistente Folge von Sch atzer

3.4 Asymptotische Evaluierung von Sch atzer Konsistenz Konsistenz Definition 3.4.1: konsistente Folge von Sch atzer 3.4 Asymptotische Evaluierung von Schätzer 3.4.1 Konsistenz Bis jetzt haben wir Kriterien basierend auf endlichen Stichproben betrachtet. Konsistenz ist ein asymptotisches Kriterium (n ) und bezieht sich

Mehr

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Christian Peukert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2010

Mehr

1 Gemischte Lineare Modelle

1 Gemischte Lineare Modelle 1 Gemischte Lineare Modelle Wir betrachten zunächst einige allgemeine Aussagen für Gemischte Lineare Modelle, ohne zu tief in die mathematisch-statistische Theorie vorzustoßen. Danach betrachten wir zunächst

Mehr

Lineare Klassifikationsmethoden

Lineare Klassifikationsmethoden Universität Ulm Fakultät für Mathematik und Wirtschaftswissenschaften Lineare Klassifikationsmethoden Statistische Lerntheorie und ihre Anwendungen Seminararbeit in dem Institut für Stochastik Prüfer:

Mehr

Computer Vision: AdaBoost. D. Schlesinger () Computer Vision: AdaBoost 1 / 10

Computer Vision: AdaBoost. D. Schlesinger () Computer Vision: AdaBoost 1 / 10 Computer Vision: AdaBoost D. Schlesinger () Computer Vision: AdaBoost 1 / 10 Idee Gegeben sei eine Menge schwacher (einfacher, schlechter) Klassifikatoren Man bilde einen guten durch eine geschickte Kombination

Mehr

I. Deskriptive Statistik 1

I. Deskriptive Statistik 1 I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

Schätzverfahren ML vs. REML & Modellbeurteilung mittels Devianz, AIC und BIC. Referenten: Linda Gräfe & Konstantin Falk

Schätzverfahren ML vs. REML & Modellbeurteilung mittels Devianz, AIC und BIC. Referenten: Linda Gräfe & Konstantin Falk Schätzverfahren ML vs. REML & Modellbeurteilung mittels Devianz, AIC und BIC Referenten: Linda Gräfe & Konstantin Falk 1 Agenda Schätzverfahren ML REML Beispiel in SPSS Modellbeurteilung Devianz AIC BIC

Mehr

Post Data Inferenz. Ein Überblick über Verfahren aus frequentistischer Sichtweise

Post Data Inferenz. Ein Überblick über Verfahren aus frequentistischer Sichtweise 1/23 Post Data Inferenz Ein Überblick über Verfahren aus frequentistischer Sichtweise Betreuung: Marco Cattaneo Referent: Paul Fink München, 14. Januar 2011 2/23 Gliederung 1 2 Relevante Teilmengenn Induzierte

Mehr

Ein Vergleich von Methoden für Multi-klassen Support Vector Maschinen

Ein Vergleich von Methoden für Multi-klassen Support Vector Maschinen Ein Vergleich von Methoden für Multi-klassen Support Vector Maschinen Einführung Auf binären Klassifikatoren beruhende Methoden One-Against-All One-Against-One DAGSVM Methoden die alle Daten zugleich betrachten

Mehr

Maschinelles Lernen Entscheidungsbäume

Maschinelles Lernen Entscheidungsbäume Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Maschinelles Lernen Entscheidungsbäume Paul Prasse Entscheidungsbäume Eine von vielen Anwendungen: Kreditrisiken Kredit - Sicherheiten

Mehr

8. Konfidenzintervalle und Hypothesentests

8. Konfidenzintervalle und Hypothesentests 8. Konfidenzintervalle und Hypothesentests Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Beispiel. Sie wollen den durchschnittlichen Fruchtsaftgehalt eines bestimmten Orangennektars

Mehr

Klassifikation. Franz Pernkopf

Klassifikation. Franz Pernkopf Klassifikation Franz Pernkopf Institute of Communications and Wave Propagation University of Technology Graz Inffeldgasse 16c, 8010 Graz, Austria Tel: +43 316 873 4436 E-Mail: pernkopf@inw.tugraz.at 2004

Mehr

Unsupervised Kernel Regression

Unsupervised Kernel Regression 9. Mai 26 Inhalt Nichtlineare Dimensionsreduktion mittels UKR (Unüberwachte KernRegression, 25) Anknüpfungspunkte Datamining I: PCA + Hauptkurven Benötigte Zutaten Klassische Kernregression Kerndichteschätzung

Mehr

ε heteroskedastisch BINARY CHOICE MODELS Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS?

ε heteroskedastisch BINARY CHOICE MODELS Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS? BINARY CHOICE MODELS 1 mit Pr( Y = 1) = P Y = 0 mit Pr( Y = 0) = 1 P Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS? Y i = X i β + ε i Probleme: Nonsense Predictions

Mehr

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) Principal Component Analysis (PCA) Motivation: Klassifikation mit der PCA Berechnung der Hauptkomponenten Theoretische Hintergründe Anwendungsbeispiel: Klassifikation von Gesichtern Weiterführende Bemerkungen

Mehr

Seminar Textmining SS 2015 Grundlagen des Maschinellen Lernens

Seminar Textmining SS 2015 Grundlagen des Maschinellen Lernens Seminar Textmining SS 2015 Grundlagen des Maschinellen Lernens Martin Hacker Richard Schaller Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg 17.04.2015 Entscheidungsprobleme beim Textmining

Mehr

Anhang B. Regression

Anhang B. Regression Anhang B Regression Dieser Anhang rekapituliert die in der Analysis und Statistik wohlbekannte Methode der kleinsten Quadrate, auch Regression genannt, zur Bestimmung von Ausgleichsgeraden Regressionsgeraden

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Prof. Dr. Michael Havbro Faber 28.05.2009 1 Korrektur zur letzten Vorlesung Bsp. Fehlerfortpflanzung in einer Messung c B a 2 2 E c Var c a b A b 2 2 2 n h( x)

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp Datenanalyse (PHY31) Herbstsemester 015 Olaf Steinkamp 36-J- olafs@physik.uzh.ch 044 63 55763 Einführung, Messunsicherheiten, Darstellung von Messdaten Grundbegriffe der Wahrscheinlichkeitsrechnung und

Mehr

0 Einführung: Was ist Statistik

0 Einführung: Was ist Statistik 0 Einführung: Was ist Statistik 1 Datenerhebung und Messung 2 Univariate deskriptive Statistik 3 Multivariate Statistik 4 Regression 5 Ergänzungen Explorative Datenanalyse EDA Auffinden von Strukturen

Mehr

Bayes Klassifikatoren M E T H O D E N D E S D A T A M I N I N G F A B I A N G R E U E L

Bayes Klassifikatoren M E T H O D E N D E S D A T A M I N I N G F A B I A N G R E U E L Bayes Klassifikatoren M E T H O D E N D E S D A T A M I N I N G F A B I A N G R E U E L Inhalt Grundlagen aus der Wahrscheinlichkeitsrechnung Hypothesenwahl Optimale Bayes Klassifikator Naiver Bayes Klassifikator

Mehr

Statistik II für Betriebswirte Vorlesung 12

Statistik II für Betriebswirte Vorlesung 12 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 12 11. Januar 2013 7.3. Multiple parameterlineare Regression Im Folgenden soll die

Mehr

2.4 Hypothesentests Grundprinzipien statistischer Hypothesentests. Hypothese:

2.4 Hypothesentests Grundprinzipien statistischer Hypothesentests. Hypothese: 2.4.1 Grundprinzipien statistischer Hypothesentests Hypothese: Behauptung einer Tatsache, deren Überprüfung noch aussteht (Leutner in: Endruweit, Trommsdorff: Wörterbuch der Soziologie, 1989). Statistischer

Mehr

Grundlagen von Support Vector Maschinen und Anwendungen in der Bildverarbeitung

Grundlagen von Support Vector Maschinen und Anwendungen in der Bildverarbeitung Grundlagen von Support Vector Maschinen und Anwendungen in der Bildverarbeitung Jan Eichhorn jan.eichhorn@tuebingen.mpg.de Max-Planck-Institut für biologische Kybernetik 72076 Tübingen Danksagung Olivier

Mehr

Künstliche Neuronale Netze und Data Mining

Künstliche Neuronale Netze und Data Mining Künstliche Neuronale Netze und Data Mining Catherine Janson, icasus GmbH Heidelberg Abstract Der Begriff "künstliche Neuronale Netze" fasst Methoden der Informationstechnik zusammen, deren Entwicklung

Mehr

Biostatistik Erne Einfuhrung fur Biowissenschaftler

Biostatistik Erne Einfuhrung fur Biowissenschaftler Matthias Rudolf Wiltrud Kuhlisch Biostatistik Erne Einfuhrung fur Biowissenschaftler PEARSON Studium Inhaltsverzeichnis Vorwort xi Kapitel 1 Einfiihrung 1 1.1 Biostatistik als Bestandteil biowissenschafllicher

Mehr

Mögliche Fehler beim Testen

Mögliche Fehler beim Testen Mögliche Fehler beim Testen Fehler. Art (Irrtumswahrscheinlichkeit α), Zusammenfassung: Die Nullhypothese wird verworfen, obwohl sie zutrifft. Wir haben uns blamiert, weil wir etwas Wahres abgelehnt haben.

Mehr

die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen

die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen Kapitel 8 Schätzung von Parametern 8.1 Schätzmethoden Gegeben seien Beobachtungen Ü Ü ¾ Ü Ò die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen ¾ Ò auffassen. Die Verteilung

Mehr

Datenanalyse mit Excel und Gretl

Datenanalyse mit Excel und Gretl Dozent: Christoph Hindermann christoph.hindermann@uni-erfurt.de Datenanalyse mit Excel und Gretl Teil Titel 2: Gretl 1 Teil 2: Gretl Datenanalyse mit Excel und Gretl Teil Titel 2: Gretl 2 Modellannahmen

Mehr

Rating. { 0 = kein Ausfall des Kreditnehmers i

Rating. { 0 = kein Ausfall des Kreditnehmers i Jörg Lemm Vorlesung Finanzmathematik, WS 06/07 Universität Münster 25.1.2007, 1.2.2007, 8.2.2007 Rating Ratingverfahren versuchen, die Wahrscheinlichkeit dafür zu schätzen, dass ein Kreditnehmer seinen

Mehr

3 Nichtlineare Gleichungssysteme

3 Nichtlineare Gleichungssysteme 3 Nichtlineare Gleichungsssteme 3.1 Eine Gleichung in einer Unbekannten Problemstellung: Gegeben sei die stetige Funktion f(). Gesucht ist die Lösung der Gleichung f() = 0. f() f() a) f ( ) 0 b) f ( )

Mehr

17 Nichtparametrische Schätzer

17 Nichtparametrische Schätzer 17 Nichtparametrische Schätzer In diesem Paragraphen werden kurz einige Möglichkeiten skizziert, auch in nichtparametrischen Modellenzu Schätzern fürinteressierende statistische Größenzugelangen. a Empirische

Mehr

Vortrag zum Paper Results of the Active Learning Challenge von Guyon, et. al. Sören Schmidt Fachgebiet Knowledge Engineering

Vortrag zum Paper Results of the Active Learning Challenge von Guyon, et. al. Sören Schmidt Fachgebiet Knowledge Engineering Vortrag zum Paper Results of the Active Learning Challenge von Guyon, et. al. Sören Schmidt Fachgebiet Knowledge Engineering 11.12.2012 Vortrag zum Paper Results of the Active Learning Challenge von Isabelle

Mehr

Methoden der Datenanalyse AI-basierte Decision Support Systeme WS 2006/07

Methoden der Datenanalyse AI-basierte Decision Support Systeme WS 2006/07 Regression Trees Methoden der Datenanalyse AI-basierte Decision Support Systeme WS 2006/07 Ao.Univ.Prof. Dr. Marcus Hudec marcus.hudec@univie.ac.at Institut für Scientific Computing, Universität Wien 2

Mehr

Kapitel 15* Bayes Klassifikator. Theoretische Grundlagen Bayes Entscheidungstheorie

Kapitel 15* Bayes Klassifikator. Theoretische Grundlagen Bayes Entscheidungstheorie Kapitel 15* Bayes Klassifikator p. 1/56 Bayes Klassifikator Theoretische Grundlagen Bayes Entscheidungstheorie Kapitel 15* Allgemeiner Bayes Klassifikator Parametrische Methoden Normalverteilungen Gaussian

Mehr

Einführung in die Fehlerrechnung und Messdatenauswertung

Einführung in die Fehlerrechnung und Messdatenauswertung Grundpraktikum der Physik Einführung in die Fehlerrechnung und Messdatenauswertung Wolfgang Limmer Institut für Halbleiterphysik 1 Fehlerrechnung 1.1 Motivation Bei einem Experiment soll der Wert einer

Mehr

Automatische Mustererkennung

Automatische Mustererkennung Automatische Mustererkennung Eine Einführung Eine Präsentation von Valentin Kraft Im Modul Digitale Bildverarbeitung Prof. Vogel FH Düsseldorf WS 12/13 Gliederung Anwendungsgebiete / Definition Ziele Zentrales

Mehr

Moderne Methoden der KI: Maschinelles Lernen

Moderne Methoden der KI: Maschinelles Lernen Moderne Methoden der KI: Maschinelles Lernen Prof. Dr.Hans-Dieter Burkhard Vorlesung Entscheidungsbäume Darstellung durch Regeln ID3 / C4.5 Bevorzugung kleiner Hypothesen Overfitting Entscheidungsbäume

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne

Mehr

Berechnung des LOG-RANK-Tests bei Überlebenskurven

Berechnung des LOG-RANK-Tests bei Überlebenskurven Statistik 1 Berechnung des LOG-RANK-Tests bei Überlebenskurven Hans-Dieter Spies inventiv Health Germany GmbH Brandenburger Weg 3 60437 Frankfurt hd.spies@t-online.de Zusammenfassung Mit Hilfe von Überlebenskurven

Mehr

Über statistische Probleme bei der Analyse von Daten aus dem Bereich der Kraftfahrzeugversicherung

Über statistische Probleme bei der Analyse von Daten aus dem Bereich der Kraftfahrzeugversicherung Statistik Über statistische Probleme bei der Analyse von Daten aus dem Bereich der Kraftfahrzeugversicherung Andreas Christmann Universität Dortmund Fachbereich Statistik 44221 Dortmund christmann@statistik.uni-dortmund.de

Mehr

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum

Mehr

Shape Gradient for Image and Video Segmentation

Shape Gradient for Image and Video Segmentation Shape Gradient for Image and Video Segmentation [1] S. Jehan-Besson, A. Herbulot, M. Barlaud und G. Aubert 23. Mai 2007 Martin Schröttner und Michael Schneeberger Mat Vis-Gra SS07 1 Überblick Aktive Konturen

Mehr

Mathematik Übungsblatt - Lösung. b) x=2

Mathematik Übungsblatt - Lösung. b) x=2 Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Sommersemester 204 Technische Informatik Bachelor IT2 Vorlesung Mathematik 2 Mathematik 2 4. Übungsblatt - Lösung Differentialrechnung

Mehr

Hydrologie und Flussgebietsmanagement

Hydrologie und Flussgebietsmanagement Hydrologie und Flussgebietsmanagement o.univ.prof. DI Dr. H.P. Nachtnebel Institut für Wasserwirtschaft, Hydrologie und konstruktiver Wasserbau Gliederung der Vorlesung Statistische Grundlagen Etremwertstatistik

Mehr

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97.

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97. Aufgabenblock 4 Aufgabe ) Da s = 8. cm nur eine Schätzung für die Streuung der Population ist, müssen wir den geschätzten Standardfehler verwenden. Dieser berechnet sich als n s s 8. ˆ = = =.88. ( n )

Mehr

Grundprinzipien der Bayes-Statistik

Grundprinzipien der Bayes-Statistik Grundprinzipien der Bayes-Statistik Karl-Rudolf Koch Zusammenfassung: In drei wesentlichen Punkten unterscheidet sich die Bayes-Statistik von der traditionellen Statistik. Zunächst beruht die Bayes-Statistik

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 9. Dezember 2010 1 Konfidenzintervalle Idee Schätzung eines Konfidenzintervalls mit der 3-sigma-Regel Grundlagen

Mehr

STATISTIK II. Hans-Otfried Müller Institut für Mathematische Stochastik.

STATISTIK II. Hans-Otfried Müller Institut für Mathematische Stochastik. STATISTIK II Hans-Otfried Müller Institut für Mathematische Stochastik http://www.math.tu-dresden.de/sto/mueller 1 Ausgewählte Verfahren der multivariaten Datenanalyse und Statistik Werden bei einer Analyse

Mehr

Untersuchungen zum Thema Tracking Error

Untersuchungen zum Thema Tracking Error Untersuchungen zum Thema Tracking Error J. Fulmek 24. August 2003 1 Einleitung Im Folgenden werden folgende Punkte untersucht: 1. verschiedene in der Literatur übliche Definitionen des Tracking Errors

Mehr

Scheinklausur Stochastik 1 für Studierende des Lehramts und der Diplom-Pädagogik

Scheinklausur Stochastik 1 für Studierende des Lehramts und der Diplom-Pädagogik Universität Karlsruhe (TH) Institut für Stochastik Dr. Bernhard Klar Dipl.-Math. oec. Volker Baumstark Name Vorname Matr.-Nr.: Scheinklausur Stochastik für Studierende des Lehramts und der Diplom-Pädagogik

Mehr

KATA LOGO Mathematik Statistik Roadmap: Von der Hypothese zum p-wert

KATA LOGO Mathematik Statistik Roadmap: Von der Hypothese zum p-wert KATA LOGO Mathematik Statistik Roadmap: Von der Hypothese zum p-wert 0. Das eigentliche Forschungsziel ist: Beweis der eigenen Hypothese H 1 Dafür muss Nullhypothese H 0 falsifiziert werden können Achtung!

Mehr

Kern Fisher Diskriminanten

Kern Fisher Diskriminanten Kern Fisher Diskriminanten Sebastian Mika idalab GmbH & Fraunhofer FIRST Mohrenstraße 63 10117 Berlin email: mika@{first.fraunhofer.de, idalab.com} 1 Einleitung Diese Zusammenfassung meiner Doktorarbeit

Mehr

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn 16. Januar 2014 Übersicht Stand der Kunst im Bilderverstehen: Klassifizieren und Suchen Was ist ein Bild in Rohform? Biologische

Mehr

Data Mining und Knowledge Discovery in Databases

Data Mining und Knowledge Discovery in Databases Data Mining und Knowledge Discovery in Databases Begriffsabgrenzungen... Phasen der KDD...3 3 Datenvorverarbeitung...4 3. Datenproblematik...4 3. Möglichkeiten der Datenvorverarbeitung...4 4 Data Mining

Mehr

Kapitel 4: Binäre Regression

Kapitel 4: Binäre Regression Kapitel 4: Binäre Regression Steffen Unkel (basierend auf Folien von Nora Fenske) Statistik III für Nebenfachstudierende WS 2013/2014 4.1 Motivation Ausgangssituation Gegeben sind Daten (y i, x i1,...,

Mehr

Textmining Klassifikation von Texten Teil 1: Naive Bayes

Textmining Klassifikation von Texten Teil 1: Naive Bayes Textmining Klassifikation von Texten Teil 1: Naive Bayes Dept. Informatik 8 (Künstliche Intelligenz) Friedrich-Alexander-Universität Erlangen-Nürnberg (Informatik 8) Klassifikation von Texten 1: Naive

Mehr

Univariates Datenmaterial

Univariates Datenmaterial Univariates Datenmaterial 1.6.1 Deskriptive Statistik Zufallstichprobe: Umfang n, d.h. Stichprobe von n Zufallsvariablen o Merkmal/Zufallsvariablen: Y = {Y 1, Y 2,..., Y n } o Realisationen/Daten: x =

Mehr

Statistische Methoden der Datenanalyse

Statistische Methoden der Datenanalyse Statistische Methoden der Datenanalyse Vorlesung im Sommersemester 2002 H. Kolanoski Humboldt-Universität zu Berlin Inhaltsverzeichnis Literaturverzeichnis iii 1 Grundlagen der Statistik 3 1.1 Wahrscheinlichkeit..................................

Mehr

Seminar Text- und Datamining Datamining-Grundlagen

Seminar Text- und Datamining Datamining-Grundlagen Seminar Text- und Datamining Datamining-Grundlagen Martin Hacker Richard Schaller Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg 23.05.2013 Gliederung 1 Klassifikationsprobleme 2 Evaluation

Mehr

Personalisierung. Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung. Data Mining.

Personalisierung. Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung. Data Mining. Personalisierung Personalisierung Thomas Mandl Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung Klassifikation Die Nutzer werden in vorab bestimmte Klassen/Nutzerprofilen

Mehr

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion Kapitel 12 Stetige Zufallsvariablen 12.1. Dichtefunktion und Verteilungsfunktion stetig Verteilungsfunktion Trägermenge T, also die Menge der möglichen Realisationen, ist durch ein Intervall gegeben Häufig

Mehr

Prüfungstutorat: Angewandte Methoden der Politikwissenschaft. Polito Seminar Carl Schweinitz 10.12.2014

Prüfungstutorat: Angewandte Methoden der Politikwissenschaft. Polito Seminar Carl Schweinitz 10.12.2014 Prüfungstutorat: Angewandte Methoden der Politikwissenschaft Polito Seminar Carl Schweinitz 10.12.2014 Übersicht 1. Einheiten und Variablen 2. Skalen und ihre Transformation 3. Deskriptive Statistik 4.

Mehr

TEIL 13: DIE EINFACHE LINEARE REGRESSION

TEIL 13: DIE EINFACHE LINEARE REGRESSION TEIL 13: DIE EINFACHE LINEARE REGRESSION Die einfache lineare Regression Grundlagen Die einfache lineare Regression ist ebenfalls den bivariaten Verfahren für metrische Daten zuzuordnen 1 Sie hat einen

Mehr

Theoretical Analysis of Protein-Protein Interactions. Proseminar SS 2004

Theoretical Analysis of Protein-Protein Interactions. Proseminar SS 2004 Theoretical Analysis of Protein-Protein Interactions Proseminar Virtual Screening: Predicting Pairs from Sequence Übersicht Einleitung 1.Modell: Vorhersage von Protein-Interfaces aus Sequenzprofilen und

Mehr

Einführung in die Bayes-Statistik. Helga Wagner. Ludwig-Maximilians-Universität München WS 2010/11. Helga Wagner Bayes Statistik WS 2010/11 1

Einführung in die Bayes-Statistik. Helga Wagner. Ludwig-Maximilians-Universität München WS 2010/11. Helga Wagner Bayes Statistik WS 2010/11 1 Einführung in die Bayes-Statistik Helga Wagner Ludwig-Maximilians-Universität München WS 2010/11 Helga Wagner Bayes Statistik WS 2010/11 1 Organisatorisches Termine: Montag: 16.00-18.00 AU115 Dienstag:

Mehr

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke Vorlesungsplan 17.10. Einleitung 24.10. Ein- und Ausgabe 31.10. Reformationstag, Einfache Regeln 7.11. Naïve Bayes, Entscheidungsbäume 14.11. Entscheidungsregeln, Assoziationsregeln 21.11. Lineare Modelle,

Mehr

7.2.1 Zweite partielle Ableitungen

7.2.1 Zweite partielle Ableitungen 72 72 Höhere Ableitungen 72 Höhere Ableitungen Vektorwertige Funktionen sind genau dann differenzierbar, wenn ihre Koordinatenfunktionen differenzierbar sind Es ist also keine wesentliche Einschränkung,

Mehr

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate Regression ein kleiner Rückblick Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate 05.11.2009 Gliederung 1. Stochastische Abhängigkeit 2. Definition Zufallsvariable 3. Kennwerte 3.1 für

Mehr

Bivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.154

Bivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.154 Bivariate lineare Regression Statistik für SozialwissenschaftlerInnen II p.154 Grundidee und Typen der Regression Die Regressionsanalyse dient zur Quantifizierung des Zusammenhangs und der statistisch

Mehr

Lernen von Entscheidungsbäumen. Volker Tresp Summer 2014

Lernen von Entscheidungsbäumen. Volker Tresp Summer 2014 Lernen von Entscheidungsbäumen Volker Tresp Summer 2014 1 Anforderungen an Methoden zum Datamining Schnelle Verarbeitung großer Datenmengen Leichter Umgang mit hochdimensionalen Daten Das Lernergebnis

Mehr

Anleitung: Standardabweichung

Anleitung: Standardabweichung Anleitung: Standardabweichung So kann man mit dem V200 Erwartungswert und Varianz bzw. Standardabweichung bei Binomialverteilungen für bestimmte Werte von n, aber für allgemeines p nach der allgemeinen

Mehr

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme Newton-Verfahren zur gleichungsbeschränkten Optimierung Armin Farmani Anosheh (afarmani@mail.uni-mannheim.de) 3.Mai 2016 1 Gleichungsbeschränkte Optimierungsprobleme Einleitung In diesem Vortrag geht es

Mehr

1 Zahlen... 1 1.1 Anzahlen... 1 1.2 Reelle Zahlen... 10 1.3 Dokumentation von Messwerten... 12 1.4 Ausgewählte Übungsaufgaben...

1 Zahlen... 1 1.1 Anzahlen... 1 1.2 Reelle Zahlen... 10 1.3 Dokumentation von Messwerten... 12 1.4 Ausgewählte Übungsaufgaben... Inhaltsverzeichnis 1 Zahlen... 1 1.1 Anzahlen... 1 1.2 Reelle Zahlen... 10 1.3 Dokumentation von Messwerten... 12 1.4 Ausgewählte Übungsaufgaben... 14 2 Beschreibende Statistik... 15 2.1 Merkmale und ihre

Mehr

Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Waldinventur und Fernerkundung

Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Waldinventur und Fernerkundung Systematische Stichprobe Rel. große Gruppe von Stichprobenverfahren. Allgemeines Merkmal: es existiert ein festes, systematisches Muster bei der Auswahl. Wie passt das zur allgemeinen Forderung nach Randomisierung

Mehr

GMDS-Tagung 2006 Bioinformatik 1. Assessing the stability of unsupervised learning results in small-sample-size problems

GMDS-Tagung 2006 Bioinformatik 1. Assessing the stability of unsupervised learning results in small-sample-size problems GMDS-Tagung 2006 Bioinformatik 1 Assessing the stability of unsupervised learning results in small-sample-size problems Ulrich Möller Email: Ulrich.Moeller@hki-jena.de Leibniz Institute for Natural Product

Mehr

Regression I. Statistik I. Sommersemester Lineare Regression Zusammenhang und Modell Ein Beispiel: Armut und Gewaltverbrechen Zusammenfassung

Regression I. Statistik I. Sommersemester Lineare Regression Zusammenhang und Modell Ein Beispiel: Armut und Gewaltverbrechen Zusammenfassung Sommersemester 2009 Ein Beispiel: Armut und Gewaltverbrechen Rechtswahl 15 10 5 0 5 10 Arbeitslosigkeit Zum Nachlesen Agresti: 9.1-9.4 Gehring/Weins: 8 Schumann: 8.1-8.2 Was ist ein Zusammenhang? Gemeinsame

Mehr

Modulklausur Multivariate Verfahren

Modulklausur Multivariate Verfahren Name, Vorname Matrikelnummer Modulklausur 31821 Multivariate Verfahren Datum Punkte Note Termin: 28. März 2014, 9.00-11.00 Uhr Erstprüfer: Univ.-Prof. Dr. H. Singer Hinweise zur Bearbeitung der Modulklausur

Mehr

ML-Werkzeuge und ihre Anwendung

ML-Werkzeuge und ihre Anwendung Kleine Einführung: und ihre Anwendung martin.loesch@kit.edu (0721) 608 45944 Motivation Einsatz von maschinellem Lernen erfordert durchdachtes Vorgehen Programmieren grundlegender Verfahren aufwändig fehlerträchtig

Mehr

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten Zufallsgrößen Ergebnisse von Zufallsexperimenten werden als Zahlen dargestellt 0 Einführung Wahrscheinlichkeitsrechnung 2 Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Hypothesentests

Mehr

Kapitel ML:IV (Fortsetzung)

Kapitel ML:IV (Fortsetzung) Kapitel ML:IV (Fortsetzung) IV. Statistische Lernverfahren Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen ML:IV-18 Statistical Learning c STEIN 2005-2011 Satz 3 (Bayes)

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Entscheidungsbäume

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Entscheidungsbäume Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Entscheidungsbäume Christoph Sawade/Niels Landwehr Jules Rasetaharison, Tobias Scheffer Entscheidungsbäume Eine von vielen Anwendungen:

Mehr

Kostenmodell. Daniel Graf, Tobias Pröger. 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016)

Kostenmodell. Daniel Graf, Tobias Pröger. 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016) Kostenmodell Daniel Graf, Tobias Pröger 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016) Erklärung: Diese Mitschrift ist als Ergänzung zur Vorlesung gedacht. Wir erheben keinen Anspruch

Mehr