(1) Geometrie. Vorlesung Computergraphik 3 S. Müller U N I V E R S I T Ä T KOBLENZ LANDAU

Größe: px
Ab Seite anzeigen:

Download "(1) Geometrie. Vorlesung Computergraphik 3 S. Müller U N I V E R S I T Ä T KOBLENZ LANDAU"

Transkript

1 (1) Geometrie Vorlesung Computergraphik 3 S. Müller KOBLENZ LANDAU

2 KOBLENZ LANDAU Organisatorisches

3 Vorlesung CG 2+3 Die Veranstaltung besteht aus 2 Teilen, wobei in der Mitte und am Ende eine Klausur geschrieben wird. Für den Diplomstudiengang bilden beide Noten die CG2-Veranstaltung im Hauptdiplom CV. Für Bachelor zählt der zweite Teil als CG2. Für Master der erste Teil als CG3. Keine Voraussetzungen zur Teilnahme an der Klausur KOBLENZ LANDAU S. Müller - 3 -

4 Übersicht zur Vorlesung CG 3: Kurven und Flächen Delaunay, Voronoi, Winged-Edge, B-Splines, NURBS, Flächen, Meshes Wissenschaftliche technische Visualisierung Grundlagen, Volumenrendering KOBLENZ LANDAU S. Müller - 4 -

5 Punkte Sie sind oft das Ergebnis von Digitalisierungsverfahren, wie etwa Laserscans, bildgebenden Verfahren, Radarscans etc. Problem: Triangulierung zur Oberflächenerzeugung (lineare Interpolation, planare Unterteilung) oder höherwertigere Funktionen (Dank an P. Neugebauer, Polygon Technology GmbH) KOBLENZ LANDAU S. Müller - 5 -

6 Problem der Triangulierung Triangulierung nicht eindeutig Schlecht: Triangulierung mit kleinen Dreieckswinkeln KOBLENZ LANDAU S. Müller - 6 -

7 Delaunay-Triangulierung Anzahl der Triangulierungen einer endlichen Punktmenge S ist endlich, d.h. es gibt eine optimale Triangulierung, die den minimalen Winkel maximiert. Analoge Definition: für jedes Dreieck ist kein weiterer Punkt im Umkreis des Dreiecks Ansatz für die Delaunay-Triangulierung KOBLENZ LANDAU S. Müller - 7 -

8 Algorithmus (grob ) Suche einen Punkt am Rand (z.b. x-koordinate) Suche nächstgelegenen Punkt (kürzester Abstand) Schleife über alle Punkte Berechne Winkel im Dreieck am neuen Punkt Wähle Dreieck mit max. Winkel Rekursion über 2 neue Kanten Schleife über alle Punkte im vorderen Halbraum Berechne Winkel im Dreieck am neuen Punkt Wähle Dreieck mit max. Winkel KOBLENZ LANDAU S. Müller Typische Daten: Dreiecks/Polygon-Netze ( Meshes ) Delanuay liefert immer die konvexe Hülle

9 Diskussion Es gibt eine Reihe von interessanten Algorithmen zur Implementierung Minimierung vom Rechenzeitaufwand Aber: das Ergebnis ist immer das gleiche Wichtiger Vertreter für Divide & Conquer Teile Punktmenge in 2 Hälften Berechne Triangulierung für beide Hälften Füge Hälften zusammen Das ganze rekursiv delaunay.vcproj KOBLENZ LANDAU S. Müller - 9 -

10 Delaunay Eine Delaunay-Traingulierung ist eindeutig in dem Sinne, dass alle minimalen Winkel maximiert werden Allerdings kann es mehrere solcher Lösungen geben Beispiel: KOBLENZ LANDAU S. Müller

11 Ist das eine Delaunay-Triangulierung? Delaunay Triangulierung Definition 2: Kein Eckpunkt liegt innerhalb des Umkreises eines anderen Dreiecks Antwort: Nein! KOBLENZ LANDAU S. Müller

12 Konvexe Hülle Ein Problem der Delaunay- Triangulierung ist, daß als Resultat immer die konvexe Hülle entsteht. Daher braucht man Algorithmen, die nachträglich die Kanten entfernen, die man nicht haben will Typische Verfahren arbeiten auf Klassifikationen von Winkeln oder Kanten Definitiv ein schwieriges Problem KOBLENZ LANDAU S. Müller

13 Triangulierung in 3D? Auch mit Delaunay? Im Prinzip ja, allerdings mit Tetraedern Minimaler Winkel in der Tetraeder-Spitze maximieren (Raumwinkel) Problem: welche der drei Flächen kann ich wegwerfen? Hier gibt es verschiedene Metriken KOBLENZ LANDAU S. Müller

14 Voronoi Diagramm Def.: Die Menge aller Punkte, die näher zum Punkt P sind, als zu allen anderen Punkten Der duale Graph zur Delaunay Triangulierung Einfacher Algorithmus Nimm die Delaunay-Kanten Berechne Schnittpunkt der Mittelsenkrechten VoronoiMove.exe KOBLENZ LANDAU S. Müller

15 Typische Datenstruktur object Object surface surface surface Surfaces polygon polygon polygon polygon polygon Edges/ vertices Vertex Polygons e 0 e 1 e 2 e 3 e n Edges Edge v 0 v 1 v 2 v 3 v n Vertices Wie berechnet man Nachbarn? KOBLENZ LANDAU S. Müller

16 Probleme Viele Kanten müssen in beide Richtungen definiert sein Kante 3-5 und Nachbarschaftsinformationen werden oft gebraucht: 3 Gegeben ist ein Dreieck, welches sind die Nachbar-Dreiecke? Gegeben ist eine Kante, welche Dreiecke haben diese gemeinsam? Gegeben ist ein Eckpunkt, zu welchen Flächen gehört er? Gegeben ist ein Eckpunkt, zu welchen Kanten gehört er? KOBLENZ LANDAU S. Müller

17 Adaptive Unterteilung Typische Datenstruktur: Quadtree Unterteilung in 4 selbstähnliche Objekte 3 Adaptive Oberflächenunterteilung wird oft gebraucht, um Geometrie da zu erzeugen, wo sie gebraucht wird Radiosity: Adaption der Schattenkanten Deformation: Adaption der Krafteinwirkung KOBLENZ LANDAU S. Müller

18 Adaptive Unterteilung: Subdivide Implementierung der Routine Subdivide (für Dreiecke) Generiere 3 neue Punkte 3 Seitenhalbierenden der Vaterkanten Generiere 4 neue Kinderknoten Schreibe die Eckpunkte im richtigen Uhrzeigersinn in die neuen Kinderknoten KOBLENZ LANDAU S. Müller

19 Nachbarschaftssuche im Quadtree Min. Breite Min. Höhe Problem Dann nach oben/unten etc. herantasten KOBLENZ LANDAU S. Müller Man darf nur auf gleicher Ebene suchen

20 Winged-Edge Datenstruktur Topologische Datenstruktur Typischer Tradeoff zwischen Speicherplatz und Rechenzeit Nachbarschaftssuche effizient möglich Shirley: This data structure makes edges the fist-class citizen of the data structure Alle Nachbarschaftsinformationen mit gleichem Aufwand abfragbar Für jede Kante Anfangs- und Endpunkt Benachbarte Fläche links/rechts Nachfolgende Kante links/rechts Vorausgehende Kante links/rechts Es gibt auch kleinere Datenstrukturen, Z.B. Weglassen des Vorgängers Wir können die Nachfolger im Kreis ablaufen bis wir bei Original sind (mehr Rechenzeit, weniger Speicher) KOBLENZ LANDAU S. Müller

21 Winged-Edge Datenstruktur Jede Kante wird nur einmal abgespeichert Die konkrete Speicherung ist nicht eindeutig, führt aber immer zum gleichen Ergebnis A b d 0 a 1 c e B edge vertex 1 vertex 2 face links face rechts Vorg. links Nachf. links Vorg. rechts Nachf. rechts a B A 0 1 c b d e KOBLENZ LANDAU S. Müller

22 Winged-Edge: Beispiel a D e 3 edge vertex 1 vertex 2 face links face rechts Vorg. links Nachf. links Vorg. rechts Nachf. rechts A b 0 c f 1 d C a A D 3 0 f e c b b A B 0 2 a c d f c B D 0 1 b a e d 2 B d B C 1 2 c e f b vertex edge face edge e C D 1 3 d c a f A a 0 a f C A 3 2 e a b d B d 1 c Zusätzlich speichert man sich (je nach Bedarf) Einstiegspointer für jede Ecke oder Fläche KOBLENZ LANDAU S. Müller C D d e 2 3 d a

23 Beispiele edge vertex 1 vertex 2 face links face rechts Vorg. links Nachf. links Vorg. rechts Nachf. rechts a A D 3 0 f e c b b A B 0 2 a c d f Verfolgen von Kanten Entscheidung ob Nachfolger rechts/links abhängig von Kantenrichtung Zeichne Fläche 0 Z.B. gegen den Uhrzeigersinn Kanten von 0 verfolgen, bis Anfang wieder erreicht wird. Nachbarflächen von Fläche 1 Kanten von 1 verfolgen, bis Anfang wieder erreicht und Nachflächen einsammeln Welche Fläche grenzt an A? Übung c B D 0 1 b a e d d B C 1 2 c e f b e C D 1 3 d c a f f C A 3 2 e a b d KOBLENZ LANDAU S. Müller A vertex edge A B C D 2 b a 0 c B a d d e D f 1 d e face C edge a c d a

24 KOBLENZ LANDAU Nachtrag

25 Polygon: Flächenberechnung Die Fläche im Polygon kann tatsächlich als Summe aller (vorzeichenbehafteten) Dreiecksflächen berechnet werden (also für konkave und konvexe Polygone gleich). F 1 r i 1 r i = + 2 n KOBLENZ LANDAU S. Müller

26 KOBLENZ LANDAU S. Müller Parameterdarstellung X A B C ( ) ( ) A C t A B s A X + + = ( ) C t B s A t s X + + = 1 C t B s A r X + + = t s r =1 Interpretation der Koordinaten als Gewichte/Gewichtungen im Dreieck Bi-Lineare Interpolation (Analog zu Gouraud-Shading) A X B = 1 t C X A B C =1 r X B C =1 s A

27 Baryzentrische Koordinaten Man betrachte ein masseloses Dreieck mit einem beliebigen Punkt P innerhalb der Dreiecksgrenzen. Die baryzentrischen Koordinaten von P sind diejenigen Gewichte m i, mit denen die Eckpunkte versehen werden müssen, damit ihr Schwerpunkt P ist. Die Summe aller Gewichte beträgt in diesem Zusammenhang 1 ; Bronstein & Semendjajew m 1 m P 1 + m2 + m3 = 1 m 2 m 3 (bary : (gr.) schwer ) KOBLENZ LANDAU S. Müller

(13) Hot Topics. Vorlesung Computergrafik T. Grosch

(13) Hot Topics. Vorlesung Computergrafik T. Grosch (13) Hot Topics Vorlesung Computergrafik T. Grosch Heute Vorstellung der besten Flugsimulatoren Hot Topics T. Grosch - - Warum Hot Topics? Typischerweise i Computergrafik 1 : Grundlagen, konstant Computergrafik

Mehr

Voronoi Diagramme und Delaunay Triangulation

Voronoi Diagramme und Delaunay Triangulation Voronoi Diagramme und Delaunay Triangulation Verfasser: Arbeit im Rahmen des Informatik-Seminars FS 2016 an der Berner Fachhochschule BFH Lukas Weber (lukas.weber@students.bfh.ch) Betreuer: Peter Schwab

Mehr

Übung zur Vorlesung Algorithmische Geometrie

Übung zur Vorlesung Algorithmische Geometrie Übung zur Vorlesung Algorithmische Geometrie Dipl.-Math. Bastian Rieck Arbeitsgruppe Computergraphik und Visualisierung Interdisziplinäres Zentrum für Wissenschaftliches Rechnen 8. Mai 2012 B. Rieck (CoVis)

Mehr

Algorithmische Geometrie 1. Einführung

Algorithmische Geometrie 1. Einführung Algorithmische Geometrie 1. Einführung JProf. Dr. Heike Leitte Computergraphik und Visualisierung Algorithmische Geometrie Veranstaltung: 2 SWS Vorlesung: Mi, 9:15 10:45 1 SWS Übung: Do 14:00 16:00 Übungen:

Mehr

PROJEKT / SEMINAR DIGITALE FABRIKATION DI

PROJEKT / SEMINAR DIGITALE FABRIKATION DI CONTOURLINES Applikation zur digitalen Fabrikation von Höhenschicht-Modellen PROJEKT / SEMINAR DIGITALE FABRIKATION DI Martin Emmerer Matr.Nr.95 30 952 1 Zielsetzung Höhenlinien, auch Isohypsen, Niveaulinien

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Clippen in 2D und 3D Graphische DV und BV, Regina Pohle, 19. Clippen in 2D und 3D 1 Einordnung in die Inhalte der Vorlesung Einführung

Mehr

2.5. Aufgaben zu Dreieckskonstruktionen

2.5. Aufgaben zu Dreieckskonstruktionen 2.5. Aufgaben zu Dreieckskonstruktionen Aufgabe 1 Zeichne das Dreieck AC mit A( 1 2), (5 0) und C(3 6) und konstruiere seinen Umkreis. Gib den Radius und den Mittelpunkt des Umkreises an. Aufgabe 2 Konstruiere

Mehr

SS 2005 FAU Erlangen 20.6.2005. Eine Wegeplanungs-Strategie. Jeremy Constantin, Michael Horn, Björn Gmeiner

SS 2005 FAU Erlangen 20.6.2005. Eine Wegeplanungs-Strategie. Jeremy Constantin, Michael Horn, Björn Gmeiner SS 2005 FAU Erlangen 20.6.2005 Voronoi Diagramm Eine Wegeplanungs-Strategie Jeremy Constantin, Michael Horn, Björn Gmeiner Grundseminar: Umgebungsexploration und Wegefindung mit Robotern am Beispiel "Katz

Mehr

Routing Algorithmen. Begriffe, Definitionen

Routing Algorithmen. Begriffe, Definitionen Begriffe, Definitionen Routing (aus der Informatik) Wegewahl oder Verkehrslenkung bezeichnet in der Telekommunikation das Festlegen von Wegen für Nachrichtenströme bei der Nachrichtenübermittlung über

Mehr

12. Modelle für 3D-Objekte und -Szenen

12. Modelle für 3D-Objekte und -Szenen 12. Modelle für 3D-Objekte und -Szenen Modell: Abbild der Realität, welches bestimmte Aspekte der Realität repräsentiert (und andere ausblendet) mathematische Modelle symbolische Modelle Datenmodelle Experimentalmodelle

Mehr

Geometrie I. Sebastian Redinger Informatik 2 Programmiersysteme Martensstraße Erlangen

Geometrie I. Sebastian Redinger Informatik 2 Programmiersysteme Martensstraße Erlangen Geometrie I Sebastian Redinger 01.07.2015 Informatik 2 Programmiersysteme Martensstraße 3 91058 Erlangen Gliederung Grundlagen CCW Polygone Picks Theorem Konvexe Hülle - Graham Scan - Jarvis March 2 Gliederung

Mehr

Grundlagen der 3D-Modellierung

Grundlagen der 3D-Modellierung April 28, 2009 Inhaltsverzeichnis 1 Einführung 2 Direkte Darstellungsschemata 3 Indirekte Darstellungsschemata 4 Parametrische Kurven und Freiformflächen 5 Abschluss Motivation Vom physikalischen Körper

Mehr

Grundlagen der Programmierung

Grundlagen der Programmierung Grundlagen der Programmierung Dr. Tom Kamphans 1. Vorlesung 12.10.2016 1 Organisatorisches Vorlesung: Mittwochs 14:00 15:30, Raum F 201 Übung: Mittwochs 15:45 19:00, Raum F 225 Übung: alle zwei Wochen

Mehr

Dynamische Programmierung. Problemlösungsstrategie der Informatik

Dynamische Programmierung. Problemlösungsstrategie der Informatik als Problemlösungsstrategie der Informatik und ihre Anwedung in der Diskreten Mathematik und Graphentheorie Fabian Cordt Enisa Metovic Wissenschaftliche Arbeiten und Präsentationen, WS 2010/2011 Gliederung

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

Flächenberechnung mit Integralen. Flächenberechnung mit Integralen. Flächenberechnung mit Integralen. Flächenberechnungen mit Integralen

Flächenberechnung mit Integralen. Flächenberechnung mit Integralen. Flächenberechnung mit Integralen. Flächenberechnungen mit Integralen Flächenberechnungen mit Integralen Aufgabe 1: Gegeben sei die Funktion = 44. = 44 Aufgaben und Lösungen a) Berechnen Sie die Fläche, die die Kurve mit den Koordinatenachsen einschließt. b) Berechnen Sie

Mehr

Aufgaben zur Übung der Anwendung von GeoGebra

Aufgaben zur Übung der Anwendung von GeoGebra Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,

Mehr

(1) Einführung. Vorlesung CV-Integration S. Müller/D. Paulus U N I V E R S I T Ä T KOBLENZ LANDAU

(1) Einführung. Vorlesung CV-Integration S. Müller/D. Paulus U N I V E R S I T Ä T KOBLENZ LANDAU (1) Einführung Vorlesung CV-Integration S. Müller/D. Paulus KOBLENZ LANDAU Ziel In vielen Bereichen der Forschung und auch der täglichen Anwendungen wächst das Fachgebiet der Bildverarbeitung und der Computergraphik

Mehr

Mesh-Visualisierung. Von Matthias Kostka. Visualisierung großer Datensätze

Mesh-Visualisierung. Von Matthias Kostka. Visualisierung großer Datensätze Mesh-Visualisierung Von Matthias Kostka Übersicht Einführung Streaming Meshes Quick-VDR Rendering virtueller Umgebung Rendering mit PC-Clustern Zusammenfassung 2 Mesh Untereinander verbundene Punkte bilden

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung

Mehr

Leica 3D Disto CAD-Werkzeuge

Leica 3D Disto CAD-Werkzeuge Leica 3D Disto CAD-Werkzeuge Wann werden sie benötigt? um Fenster, Türen und andere Wanddetails zu messen um verdeckte Punkte zu messen 90 um Ecken von genau 90.000 zu erzeugen 45 um Sollmaße zu erzeugen

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

2.4A. Reguläre Polyeder (Platonische Körper)

2.4A. Reguläre Polyeder (Platonische Körper) .A. Reguläre Polyeder (Platonische Körper) Wie schon in der Antike bekannt war, gibt es genau fünf konvexe reguläre Polyeder, d.h. solche, die von lauter kongruenten regelmäßigen Vielecken begrenzt sind:

Mehr

D C. Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.

D C. Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten. V. Körper, Flächen und Punkte ================================================================= 5.1 Körper H G E F D C A B Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.

Mehr

(7) Normal Mapping. Vorlesung Computergraphik II S. Müller. Dank an Stefan Rilling U N I V E R S I T Ä T KOBLENZ LANDAU

(7) Normal Mapping. Vorlesung Computergraphik II S. Müller. Dank an Stefan Rilling U N I V E R S I T Ä T KOBLENZ LANDAU (7) Normal Mapping Vorlesung Computergraphik II S. Müller Dank an Stefan Rilling Einleitung Die Welt ist voller Details Viele Details treten in Form von Oberflächendetails auf S. Müller - 3 - Darstellung

Mehr

:= Modellabbildung. Bildsynthese (Rendering) Bildsynthese

:= Modellabbildung. Bildsynthese (Rendering) Bildsynthese Geometrisches Modell bestehend aus Datenstrukturen zur Verknüpfung geometrischer Primitive, welche eine Gesamtszene beschreiben Bildsynthese := Modellabbildung Pixelbasiertes Modell zur Darstellung eines

Mehr

Tropische Kurven zählen. Enumerative Geometrie. Alg. Geometrie. Beispiel Strategie. Geometrie. Kurven Multiplizität Correspondence Theorem Ergebnisse

Tropische Kurven zählen. Enumerative Geometrie. Alg. Geometrie. Beispiel Strategie. Geometrie. Kurven Multiplizität Correspondence Theorem Ergebnisse Alg. Ebene e Hannah Markwig Technische Universität Kaiserslautern 6. Juli 2006 Alg. Inhalt 1 () 2 3 Der Algorithmus zum Zählen ebener 4 Der Algorithmus Alg. Algebraische Geometrische Objekte sind Nullstellengebilde

Mehr

Darstellung von Kurven und Flächen

Darstellung von Kurven und Flächen Darstellung von Kurven und Flächen Proseminar Computergraphik, 10. Juni 2008 Christoph Dähne Seite 1 Inhalt Polygonnetze 3 Knotenliste 3 Kantenliste 3 Parametrisierte kubische Kurven 4 Definition 4 Stetigkeit

Mehr

Triangulierung von einfachen Polygonen

Triangulierung von einfachen Polygonen Triangulierung von einfachen Polygonen Tobias Kyrion Inhaltsverzeichnis 1.1 Die Problemstellung....................... 1 2.1 Ein naiver Algorithmus...................... 2 3.1 Zerlegung in monotone Teilpolygone..............

Mehr

16. All Pairs Shortest Path (ASPS)

16. All Pairs Shortest Path (ASPS) . All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e

Mehr

Bearbeite die folgenden Aufgaben mit Hilfe der Lerneinheit im Internet. Notiere Deine Lösungen auf dem Arbeitsblatt.

Bearbeite die folgenden Aufgaben mit Hilfe der Lerneinheit im Internet. Notiere Deine Lösungen auf dem Arbeitsblatt. Name: Arbeitsblatt zur Aufgabe "Dreiecksfläche" Datum: Bearbeite die folgenden Aufgaben mit Hilfe der Lerneinheit im Internet. Notiere Deine Lösungen auf dem Arbeitsblatt. Die Lerneinheit findest Du unter

Mehr

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg 19.04.2011

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg 19.04.2011 Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 19.04.2011 Überlagern von Kartenebenen Beispiel: Gegeben zwei

Mehr

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS) Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,

Mehr

Erweiterung: Flächeninhalt mit Vorzeichen. a b, P, Q, R gegen Uhrzeigersinn a b, P, Q, R im Uhrzeigersinn

Erweiterung: Flächeninhalt mit Vorzeichen. a b, P, Q, R gegen Uhrzeigersinn a b, P, Q, R im Uhrzeigersinn Flächeninhalte Flächeninhalt eines Dreiecks: R A(PQR)= 1 2 = 1 2 a b sin α a b P b α a c Q Erweiterung: Flächeninhalt mit Vorzeichen A(PQR)= 1 2 1 2 a b, P, Q, R gegen Uhrzeigersinn a b, P, Q, R im Uhrzeigersinn.

Mehr

Kostenmaße. F3 03/04 p.188/395

Kostenmaße. F3 03/04 p.188/395 Kostenmaße Bei der TM nur ein Kostenmaß: Ein Schritt (Konfigurationsübergang) kostet eine Zeiteinheit; eine Bandzelle kostet eine Platzeinheit. Bei der RAM zwei Kostenmaße: uniformes Kostenmaß: (wie oben);

Mehr

Non-Photorealistic Rendering

Non-Photorealistic Rendering Übersicht 1. Motivation und Anwendungen 2. Techniken - Cel Shading - Konturlinien - Hatching Einführung Traditionelle Computergraphik Ziel: Fotorealismus Einführung Motivation Bewusste Vermeidung von

Mehr

Computer Graphik I Polygon Scan Conversion

Computer Graphik I Polygon Scan Conversion 11/23/09 lausthal omputer raphik I Polygon Scan onversion. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Klassifikation der Polygone Konvex Für jedes Punktepaar in einem konvexen Polygon

Mehr

2.2 Funktionen 1.Grades

2.2 Funktionen 1.Grades . Funktionen.Grades (Thema aus dem Bereich Analysis) Inhaltsverzeichnis Was ist eine Funktion.Grades? Die Steigung einer Geraden. Die Definition der Steigung.................................... Die Berechnung

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

6. Algorithmen der Computer-Geometrie

6. Algorithmen der Computer-Geometrie 6. Algorithmen der Computer-Geometrie 1. Einführung 2. Schnitt von zwei Strecken 3. Punkt-in-Polygon-Test 4. Schnitt orthogonaler Strecken 5. Punkteinschlussproblem Geo-Informationssysteme 146 6.1 Computer-Geometrie

Mehr

Hurra, Hurra, die Feuerwehr ist da oder: Schulgeometrie ausnahmsweise realitätsnahe

Hurra, Hurra, die Feuerwehr ist da oder: Schulgeometrie ausnahmsweise realitätsnahe Hurra, Hurra, die Feuerwehr ist da oder: Schulgeometrie ausnahmsweise realitätsnahe Markus Buchtele markus.buchtele buchtele@uni-klu.ac.at http://www www.mathematik.uni-kl.de/~ kl.de/~mamaeusch/ http://www

Mehr

Tag der Mathematik 2013

Tag der Mathematik 2013 Tag der Mathematik 2013 Gruppenwettbewerb Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind nicht zugelassen. Teamnummer Die folgende

Mehr

Bezeichnungen am Dreieck

Bezeichnungen am Dreieck ezeichnungen am Dreieck Verbindet man drei Punkte, die nicht auf einer Geraden liegen, so entsteht ein Dreieck. llgemeine ezeichnungen: Die Eckpunkte des Dreiecks werden mit den uchstaben, und bezeichnet.

Mehr

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel. Aufgabe 1. Wir geben nur zwei von sehr vielen möglichen Strategien.

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel. Aufgabe 1. Wir geben nur zwei von sehr vielen möglichen Strategien. Lösungen Übung 13 Aufgabe 1. Wir geben nur zwei von sehr vielen möglichen Strategien. a) Strategie 1 (nächster Nachbar): Jedes Mal reist der Reisende vom Punkt, wo er gerade ist, zur nächstgelegenen Stadt,

Mehr

Jeder Flächentyp erfordert seine eigenen Modellierungstechniken, die als Set zu diesen Typen gruppiert sind.

Jeder Flächentyp erfordert seine eigenen Modellierungstechniken, die als Set zu diesen Typen gruppiert sind. Modellierung mittels Maya-Software Es werden dafür drei verschiedene Modellflächentypen (modeling surfaces) verwendet : 1. Polygone 2. NURBS verallgemeinerte B-Splines 3. Subdivision surfaces (unterteilte

Mehr

computer graphics & visualization

computer graphics & visualization Entwicklung und Implementierung echtzeitfähiger Verfahren zur Darstellung von reflektierenden Objekten auf GPUs echtzeitfähiger Verfahren zur Darstellung von reflektierenden Objekten auf GPUs Motivation

Mehr

July 04, Geometrie I. Hallo Welt! für Fortgeschrittene. Daniel Uebler

July 04, Geometrie I. Hallo Welt! für Fortgeschrittene. Daniel Uebler July 04, 2012 Geometrie I Hallo Welt! für Fortgeschrittene Daniel Uebler Einleitung Einleitung Algorithmische Geometrie Die algorithmische Geometrie ist der Zweig der Informatik, der Algorithmen zum Lösen

Mehr

5. Wie bringt man einen Vektor auf eine gewünschte Länge? Zuerst bringt man ihn auf die Länge 1, dann multipliziert man mit der gewünschten Länge.

5. Wie bringt man einen Vektor auf eine gewünschte Länge? Zuerst bringt man ihn auf die Länge 1, dann multipliziert man mit der gewünschten Länge. 1. Definition von drei Vektoren sind l.u. 2. Wie überprüft man 3 Vektoren mit Hilfe eines LGS auf lineare Unabhängigkeit? 3. Definition von Basis?... wenn sich der Nullvektor nur als triviale LK darstellen

Mehr

Programmierung 2. Dynamische Programmierung. Sebastian Hack. Klaas Boesche. Sommersemester 2012. hack@cs.uni-saarland.de. boesche@cs.uni-saarland.

Programmierung 2. Dynamische Programmierung. Sebastian Hack. Klaas Boesche. Sommersemester 2012. hack@cs.uni-saarland.de. boesche@cs.uni-saarland. 1 Programmierung 2 Dynamische Programmierung Sebastian Hack hack@cs.uni-saarland.de Klaas Boesche boesche@cs.uni-saarland.de Sommersemester 2012 2 Übersicht Stammt aus den Zeiten als mit Programmierung

Mehr

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum

Mehr

Krümmungsapproximation auf 3D-Modellen

Krümmungsapproximation auf 3D-Modellen Krümmungsapproximation auf 3D-Modellen Mathematische Grundlagen und Approximation Christian Cyrus Matrikelnummer 157707 Fakultät für Informatik Otto-von-Guericke-Universität Magdeburg Diese Ausarbeitung

Mehr

Raum- und Flächenmessung bei Körpern

Raum- und Flächenmessung bei Körpern Raum- und Flächenmessung bei Körpern Prismen Ein Prisma ist ein Körper, dessen Grund- und Deckfläche kongruente Vielecke sind und dessen Seitenflächen Parallelogramme sind. Ist der Winkel zwischen Grund-

Mehr

Logo-Aufgaben mit Verbindung zur Mathematik

Logo-Aufgaben mit Verbindung zur Mathematik Logo-Aufgaben mit Verbindung zur Mathematik Student: Dozent: Prof. Juraj Hromkovic Datum: 13.06.007 Logo-Kenntnisse Für die Lösung der Aufgaben werden folge Logo-Befehle benötigt: Arithmetik: +, -, *,

Mehr

Datenstrukturen. Sommersemester Kapitel 1: Motivation / Grundlagen. Steffen Lange

Datenstrukturen. Sommersemester Kapitel 1: Motivation / Grundlagen. Steffen Lange Datenstrukturen Sommersemester 2010 Steffen Lange 1/1, Folie 1 2010 Prof. Steffen Lange - HDa/FbI - Datenstrukturen Organisatorisches Vorlesung wöchentlich; zwei Blöcke Folien im Netz (/* bitte zur Vorlesung

Mehr

Das Falten-und-Schneiden Problem

Das Falten-und-Schneiden Problem Das Falten-und-Schneiden Problem Kristian Bredies Uttendorf, 14. Februar 2005 Inhalt Einleitung Origami Das Falten-und-Schneiden Problem Mathematische Analyse Flaches Origami Lokale Eigenschaften Faltbarkeit

Mehr

Objektorientierte Programmierung

Objektorientierte Programmierung Unterlagen zur Veranstaltung Einführung in die Objektorientierte Programmierung Mit Processing Alexis Engelke Sommer 2012 Alexis Engelke Inhalt Level 1: Geometrie Hintergrundfarben Punkte, Linien und deren

Mehr

Algorithmen II Vorlesung am 15.11.2012

Algorithmen II Vorlesung am 15.11.2012 Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke Vorlesungsplan 17.10. Einleitung 24.10. Ein- und Ausgabe 31.10. Reformationstag, Einfache Regeln 7.11. Naïve Bayes, Entscheidungsbäume 14.11. Entscheidungsregeln, Assoziationsregeln 21.11. Lineare Modelle,

Mehr

Definition und Begriffe

Definition und Begriffe Merkblatt: Das Dreieck Definition und Begriffe Das Dreieck ist ein Vieleck. In der Ebene ist es die einfachste Figur, die von geraden Linien begrenzt wird. Ecken: Jedes Dreieck hat drei Ecken, die meist

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 1 für die Übung

Mehr

3 Polytope. 3.1 Polyeder

3 Polytope. 3.1 Polyeder 28 3 Polytope 3.1 Polyeder Polytope in der Ebene und im Raum standen neben Kreis und Kugel schon während der griechischen Antike im Mittelpunkt des mathematischen (und philosophischen) Interesses. Durch

Mehr

WF Mathematik: 1. Grundbegriffe der Geometrie

WF Mathematik: 1. Grundbegriffe der Geometrie WF Mathematik: 1. Grundbegriffe der Geometrie Geometrie setzt sich aus den beiden griechischen Wörtern geo (Erde) und metrein (messen) zusammen, bedeutet ursprünglich Erdvermessen. Alle Gegenstände unseres

Mehr

Algorithms for Regression and Classification

Algorithms for Regression and Classification Fakultät für Informatik Effiziente Algorithmen und Komplexitätstheorie Algorithms for Regression and Classification Robust Regression and Genetic Association Studies Robin Nunkesser Fakultät für Informatik

Mehr

Algorithmen und Datenstrukturen Bereichsbäume

Algorithmen und Datenstrukturen Bereichsbäume Algorithmen und Datenstrukturen Bereichsbäume Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Überblick Einführung k-d Baum BSP Baum R Baum Motivation

Mehr

Flüsse, Schnitte, Bipartite Graphen II

Flüsse, Schnitte, Bipartite Graphen II Flüsse, Schnitte, Bipartite Graphen II Jonathan Hacker 06.06.2016 Jonathan Hacker Flüsse, Schnitte, Bipartite Graphen II 06.06.2016 1 / 42 Gliederung Einführung Jonathan Hacker Flüsse, Schnitte, Bipartite

Mehr

Relationen-Algebra und Persistenz Teil I

Relationen-Algebra und Persistenz Teil I Relationen-Algebra und Persistenz Teil I Implementierungskonzepte und Anforderungen an Attributdatentypen LG Datenbanksysteme für neue Anwendungen Inhalt FLOBs DBArrays Attributsdatentypen Folie 2 Bisher:

Mehr

Schwierige Probleme in der Informatik Informationen für die Lehrperson

Schwierige Probleme in der Informatik Informationen für die Lehrperson Schwierige Probleme in der Informatik Informationen für die Lehrperson Thema, Adressaten,... Das Thema dieses Moduls sind NP-vollständige Probleme, also schwierige Probleme in der Informatik. GraphBench

Mehr

Visualisierung von Scheibenaufbauten in Verglasungseinheiten mit Hilfe der neuen Microsoft.net-Framework 3.0 Technologie

Visualisierung von Scheibenaufbauten in Verglasungseinheiten mit Hilfe der neuen Microsoft.net-Framework 3.0 Technologie Visualisierung von Scheibenaufbauten in Verglasungseinheiten mit Hilfe der neuen Microsoft.net-Framework 3.0 Technologie Diplomarbeit zur Erlangung des akademischen Grades Diplom Mathematiker (FH) vorgelegt

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

Inhaltsverzeichnis Band 2b Analytische Geometrie. 1. Vektoralgebra

Inhaltsverzeichnis Band 2b Analytische Geometrie. 1. Vektoralgebra Inhaltsverzeichnis Band b Analytische Geometrie Auf der beigefügten CD befinden sich zwei Verzeichnisse: Inhalt_Mathcad und Inhalt_pdf In diesen Verzeichnissen sind alle Mathcad-Dateien (***.xmcd) und

Mehr

Primzahlen zwischen 50 und 60. Primzahlen zwischen 70 und 80. Primzahlen zwischen 10 und 20. Primzahlen zwischen 40 und 50. den Term 2*x nennt man

Primzahlen zwischen 50 und 60. Primzahlen zwischen 70 und 80. Primzahlen zwischen 10 und 20. Primzahlen zwischen 40 und 50. den Term 2*x nennt man die kleinste Primzahl zwischen 0 und 60 zwischen 0 und 10 zwischen 60 und 70 zwischen 70 und 80 zwischen 80 und 90 zwischen 90 und 100 zwischen 10 und 20 zwischen 20 und 0 zwischen 0 und 40 zwischen 40

Mehr

Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist.

Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist. Graphen Definition: Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist. Begriffe: Gerichteter Graph: Alle Kanten haben eine Richtung vom Anfangsknoten

Mehr

Kompakte Graphmodelle handgezeichneter Bilder. Einbeziehung in Autentizierung und Bilderkennung

Kompakte Graphmodelle handgezeichneter Bilder. Einbeziehung in Autentizierung und Bilderkennung Kompakte Graphmodelle handgezeichneter Bilder Einbeziehung in Autentizierung und Bilderkennung Inhaltsverzeichnis 1 Einleitung Das graphische Model.1 Image Thinning................................. 3.

Mehr

Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie

Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie Stefan Schmid TU Berlin & T-Labs, Berlin, Germany Reduktionen in der Berechenbarkeitstheorie Problem: Wie komme ich von hier zum Hamburger Hbf? 2 Beispiel P1 Wie komme ich von hier zum Hamburger Hbf? kann

Mehr

Allerdings ist die Bearbeitung von Standardobjekten vorerst eingeschränkt. Wir wollen uns dies im folgenden Beispiel genauer betrachten.

Allerdings ist die Bearbeitung von Standardobjekten vorerst eingeschränkt. Wir wollen uns dies im folgenden Beispiel genauer betrachten. 7. KURVEN UND KNOTEN INFORMATION: Sämtliche Objekte bestehen in CorelDRAW aus Linien oder Kurven. So ist ein Rechteck ein Gebilde aus einem Linienzug, ein Kreis hingegen besteht aus einer Kurve. Zum Bearbeiten

Mehr

Lösungen Crashkurs 7. Jahrgangsstufe

Lösungen Crashkurs 7. Jahrgangsstufe Lösungen Crashkurs 7. Jahrgangsstufe I. Symmetrie und Grundkonstruktionen 1. 2. Jede Raute hat die Eigenschaften: a, b, d, e, g. 3. Der gesuchte Treffpunkt befindet sich dort, wo die Mittelsenkrechte der

Mehr

Vektorgeometrie - Teil 1

Vektorgeometrie - Teil 1 Vektorgeometrie - Teil 1 MNprofil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 14. März 2016 Inhaltsverzeichnis 1 Einführung & die analytische Darstellung der

Mehr

Maturitätsprüfung Mathematik

Maturitätsprüfung Mathematik Maturitätsprüfung 007 Mathematik Klasse 4bN Kantonsschule Solothurn Mathematisch-naturwissenschaftliches Maturitätsprofil Name: Note: Hinweise zur Bearbeitung der Prüfung: Zur Lösung der Aufgaben stehen

Mehr

2. Repräsentationen von Graphen in Computern

2. Repräsentationen von Graphen in Computern 2. Repräsentationen von Graphen in Computern Kapitelinhalt 2. Repräsentationen von Graphen in Computern Matrizen- und Listendarstellung von Graphen Berechnung der Anzahl der verschiedenen Kantenzüge zwischen

Mehr

Lineare (Un-)Gleichungen und lineare Optimierung

Lineare (Un-)Gleichungen und lineare Optimierung Lineare (Un-)Gleichungen und lineare Optimierung Franz Pauer Institut für Mathematik Universität Innsbruck Lehrer/innen/fortbildungstag Wien 2010 9. April 2010 Eine Maximumsaufgabe Eine Firma stellt aus

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt

Mehr

Teil III: Routing - Inhalt I. Literatur. Geometric Routing. Voraussetzungen. Unit Disk Graph (UDG) Geometric Routing 29

Teil III: Routing - Inhalt I. Literatur. Geometric Routing. Voraussetzungen. Unit Disk Graph (UDG) Geometric Routing 29 1 29 Teil III: Routing - Inhalt I Literatur Compass & Face Routing Bounded & Adaptive Face Routing Nicht Ω(1) UDG E. Kranakis, H. Singh und Jorge Urrutia: Compass Routing on Geometric Networks. Canadian

Mehr

DLR_School_Lab- Versuch Haftmagnet

DLR_School_Lab- Versuch Haftmagnet Drucksachenkategorie DLR_School_Lab- Versuch Haftmagnet Untersuchung von Haftmagneten durch Messungen und numerische Simulation nach der Finite- Elemente-Methode (FEM) Version 3 vom 30. 6. 2014 Erstellt

Mehr

Fachbereich Informatik. Lehrgebiet Praktische Informatik VI. Diplomarbeit

Fachbereich Informatik. Lehrgebiet Praktische Informatik VI. Diplomarbeit Fachbereich Informatik Lehrgebiet Praktische Informatik VI Diplomarbeit Das Voronoi-Diagramm von Liniensegmenten und eine Anwendung auf ein Problem mit zusammengesetzten Metriken eingereicht im: März 2002

Mehr

Iterative Methods for Improving Mesh Parameterizations

Iterative Methods for Improving Mesh Parameterizations Iterative Methods for Improving Mesh Parameterizations Autoren: Shen Dong & Michael Garland, SMI 07 Nicola Sheldrick Seminar Computergrafik April 6, 2010 Nicola Sheldrick (Seminar Computergrafik)Iterative

Mehr

Grundlegende Geometrie (Vorlesung mit integriertem Praxiskurs) Di 10 12 Audimax

Grundlegende Geometrie (Vorlesung mit integriertem Praxiskurs) Di 10 12 Audimax Renate Rasch WS 09/10 Grundlegende Geometrie (Vorlesung mit integriertem Praxiskurs) Di 10 12 Audimax Literatur: Franke M.: M:Didaktik der Geometrie. Zur Geometrievorlesung gehören praktische Übungen (Bitte

Mehr

Lk Mathematik 12 Analytische Geometrie Arbeitsblatt A.1

Lk Mathematik 12 Analytische Geometrie Arbeitsblatt A.1 Lk Mathematik 2 Analytische Geometrie Arbeitsblatt A.. Die Grundäche eines Spielplatzes liegt in der x - -Ebene. Auf ihm steht eine innen begehbare, senkrechte, quadratische Pyramide aus Holz mit den Eckpunkten

Mehr

Computer Graphik I Polygon Scan Conversion

Computer Graphik I Polygon Scan Conversion omputer raphik I Polygon Scan onversion lausthal Klassifikation der Polygone Konvex Für jedes Punktepaar in einem konvexen Polygon liegt die Verbindung auch innerhalb des Polygons. Zachmann lausthal University,

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2007 4. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Traversierung Durchlaufen eines Graphen, bei

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (20 Graphen) T. Lauer

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (20 Graphen) T. Lauer Vorlesung Informatik 2 Algorithmen und Datenstrukturen (20 Graphen) T. Lauer 1 Motivation Wie komme ich am besten von Freiburg nach Ulm? Was ist die kürzeste Rundreise durch eine gegebene Menge von Städten?

Mehr

Kapiteltests zum Leitprogramm Binäre Suchbäume

Kapiteltests zum Leitprogramm Binäre Suchbäume Kapiteltests zum Leitprogramm Binäre Suchbäume Björn Steffen Timur Erdag überarbeitet von Christina Class Binäre Suchbäume Kapiteltests für das ETH-Leitprogramm Adressaten und Institutionen Das Leitprogramm

Mehr

Über die regelmäßigen Platonischen Körper

Über die regelmäßigen Platonischen Körper Hermann König, Mathematisches Seminar Studieninformationstage an der Universität Kiel Über die regelmäßigen Platonischen Körper Winkelsumme im n-eck Zerlegung eines ebenen n-ecks in (n-2) Dreiecke, oben

Mehr

Erinnerung. Arbeitsschritte der Computergraphik. Modellierung. Animation. Rendering. Ausgabemedium. Generierung

Erinnerung. Arbeitsschritte der Computergraphik. Modellierung. Animation. Rendering. Ausgabemedium. Generierung Erinnerung Arbeitsschritte der Computergraphik Modellierung Animation Generierung Ausgabemedium Graphik/-Pipeline Wandelt die Beschreibung einer Szene im dreidimensionalen Raum in eine zweidimensionale

Mehr

Wie modelliere ich einen Bilderrahmen?

Wie modelliere ich einen Bilderrahmen? Wie modelliere ich einen Bilderrahmen? Hallo, dieses Tutorial sollte Anfängern zeigen wie man in Blender einen Schnitt durch verschiedenste Profile erstellen kann und diese dann auch anordnet und miteinander

Mehr

Alles zu seiner Zeit Projektplanung heute

Alles zu seiner Zeit Projektplanung heute Alles zu seiner Zeit Projektplanung heute Nicole Megow Matheon Überblick Projektplanung Planen mit Graphentheorie Maschinenscheduling Ein 1 Mio. $ Problem Schwere & leichte Probleme? Zeitplanungsprobleme?

Mehr

Hallo Welt für Fortgeschrittene. Geometrie I. Lukas Batz. Informatik 2 Programmiersysteme Martensstraße Erlangen

Hallo Welt für Fortgeschrittene. Geometrie I. Lukas Batz. Informatik 2 Programmiersysteme Martensstraße Erlangen Hallo Welt für Fortgeschrittene Geometrie I Lukas Batz Informatik 2 Programmiersysteme Martensstraße 3 91058 Erlangen Gliederung Grundlagen Vektoren Geradengleichungen Skalar- und Kreuzprodukt Abstand

Mehr

Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik

Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Kürzeste Wege in Graphen Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Gliederung Einleitung Definitionen Algorithmus von Dijkstra Bellmann-Ford Algorithmus Floyd-Warshall Algorithmus

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens aw@awilkens.com Überblick Grundlagen Definitionen Elementare Datenstrukturen Rekursionen Bäume 2 1 Datenstruktur Baum Definition eines Baumes

Mehr

Domain-independent. independent Duplicate Detection. Vortrag von Marko Pilop & Jens Kleine. SE Data Cleansing

Domain-independent. independent Duplicate Detection. Vortrag von Marko Pilop & Jens Kleine. SE Data Cleansing SE Data Cleansing Domain-independent independent Duplicate Detection Vortrag von Marko Pilop & Jens Kleine http://www.informatik.hu-berlin.de/~pilop/didd.pdf {pilop jkleine}@informatik.hu-berlin.de 1.0

Mehr

Computergrafik 2010 Oliver Vornberger. Kapitel 18: Beleuchtung

Computergrafik 2010 Oliver Vornberger. Kapitel 18: Beleuchtung Computergrafik 2010 Oliver Vornberger Kapitel 18: Beleuchtung 1 Ausgangslage am Ende der Viewing Pipeline liegt vor: P A Materialeigenschaften P B P C 2 Beleuchtungmodelle lokal: Objekt, Lichtquellen,

Mehr