Steinerbäume. Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering

Größe: px
Ab Seite anzeigen:

Download "Steinerbäume. Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering"

Transkript

1 Steinerbäume Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering Verfasser Flamur Kastrati Betreuer Prof. Dr. habil. Thomas Thierauf

2 1 Zusammenfassung Das Steinerbaumproblem ist ein Problem in der Mathematik, speziell in der Graphentheorie, welches sich mit dem kürzesten Pfad in einem Graphen beschäftigt. Das Problem ist eine Verallgemeinerung des minimalen Spannbaums, mit der Besonderheit, das man zusätzliche Knoten, auch Steinerpunkte genannt, zur eigentlichen Knotenmenge und Kanten zur Kantenmenge hinzufügen kann, um die Gesamtlänge der Pfade zusätzlich zu verkürzen. 1 Einleitung Ein altes, dennoch bis in unsere Zeit reichendes mathematisches Problem, wird seit Jahrhunderten von vielen Mathematikern aufs Neue entdeckt und definiert. Das sogenannte Steinerbaumproblem, welches nach dem Schweizer Mathematiker Jacob Steiner benannt wurde. Das Problem beschreibt einen Graphen mit einer Menge von Punkten P 1,..., P n, die so zusammenhängen, dass (i) jeder Knoten, mit jedem beliebigen anderen Knoten über eine oder mehreren Kanten verbunden ist und (ii) die Gesamtlänge aller Kanten (gemessen mit Bedacht auf einigen vordefinierten Kostenfunktionen) minimal ist. Die genannten Bedingungen erinnern an den minimalen Spannbaum, und tatsächlich ist der Steinerbaum eine Verallgemeinerung dessen. Genau so, wie der minimale Spannbaum verbreitet ist, besitzt auch der Steinerbaum in vielen Bereichen seine Wichtigkeit. Wie zum Beispiel in der Elektrotechnik, wo man sich optimale Positionen von Transistoren auf einem integrierten Schaltkreis berechnen lassen kann. Das Steinerbaumproblem klingt sehr simpel, ist jedoch nicht umsonst ein seit Jahrhunderten bekanntes Problem. In dieser Ausarbeitung wird hauptsächlich auf das Steinerbaumproblem näher eingegangen. Die allgemeine Beschreibung und einen Algorithmus zum Steinerbaum. Zusätzlich der Beweis, dass das Problem ein schwieriges ist und eine Approximation zum Problem. Alle Informationen zu dieser Ausarbeitung wurden aus dem Buch [PDHJP02] entnommen. 2 Steinerbäume Bevor wir zum Theorem des Steinerbaumproblems kommen, müssen noch einige kleine Dinge geklärt werden. Man darf hier nicht vergessen, dass das Steinerbaumproblem ein anderes Problem ist, als das des minimalen Spannbaums. Der Steinerbaum besitzt zu der normal gegebenen endlichen Knotenmenge (den Terminalen) noch eine endliche Anzahl freier Knoten (den Steinerpunkten oder auch Nicht-Terminalen). Diese Nicht-Terminalen Punkte werden dazu eingesetzt, die Gesamtlänge des Steinerbaums zusätzlich zu minimieren. Es gibt zwei verschieden Arten des Steinerbaumproblems. Bei dem einen sind verschiedene Steinerpunkte bereits gegeben und bei dem anderen kann man die Steinerpunkte frei Wählen. In dieser Ausarbeitung werden wir uns lediglich der ersteren Variante mit den bereits gegebenen Nicht-Terminalen zuwenden. Dann gibt es da noch folgende Lemmata. Die Lemmata werden in dieser Ausarbeitung nicht bewiesen, da sie bereits in den Vorlesungen ausführlich besprochen wurden. Dies dient als Hilfestellung zum eigentlichen Steinerbaum Theorem.

3 2 1. Lemma 2.1 (a) Sei G = (V, E) ein Wald mit n Knoten und mit c 1 Komponenten, dann ist E = n c 2. Korollar 2.2 (a) Jeder Baum T mit n Knoten, besitzt genau n 1 Kanten. 3. Korollar 2.3 (b) Jeder Baum T hat mindesten 2 Blätter.. Lemma 2. (b) Graph G = (V, E) ist genau dann ein zusammenhängender Graph, wenn es einen Spannbaum enthält. 2.1 Theorem Theorem 2.5 Sei G = (V, E) mit einer Anzahl n Knoten und mit folgenden Behauptungen gegeben: (i) G ist ein Baum. (ii) Für jedes Paar x, y V und x y besitzt G exakt einen Pfad von x nach y. (iii) G ist minimal Zusammenhängend. (d.h., G ist Zusammenhängend und für alle {x, y} E gilt: G {x, y} ist nicht zusammenhängend) (iv) G ist maximal azyklisch. (d.h., G ist azyklisch und für alle {x, y} / E gilt: G + {x, y} ist zyklisch) (v) G ist azyklisch und E = n 1 (vi) G ist zusammenhängend und E = n 1 Beweis: Sei G ein Baum, x, y V und x y. Da G ein zusammenhängender Baum ist, gibt es mindestens einen Weg von x nach y. G ist zudem azyklisch und jedes Paar Knoten sind über mindestens einem Weg verbunden. Dies zeigt, dass (i) (ii). Die Implikationen (ii) (iii) und (iii) (iv) sind selbstverständlich. (iv) (v) und (v) (vi) stimmen durch Lemma (a) und (vi) (i) ist auch wahr, da wir durch Lemma (b) wissen, dass jeder zusammenhängende Graph einen Spannbaum enthält. E(T ) = n 1 wird durch Korollar (a) abgedeckt. Dieses Wissen würde ausreichen, um einen minimalen Spannbaum zu beschreiben. Aber wie wäre es, wenn wir das Problem etwas interessanter gestalten. Nehmen wir an, es gibt eine Teilmenge K V aus einem zusammenhängenden Graphen G = (V, E). Mit dieser Teilmenge K (möglicherweise aber auch mit einigen zusätzliche Knoten), suchen wir einen Teilgraphen von G, der ebenfalls zusammenhängend ist und eine möglichst minimale Anzahl an Kanten besitzt. Durch Lemma 2 und können wir aber bereits sagen, dass jeder Teilgraph (zusammenhängend) nicht mehr als V 1 Kanten haben darf und somit minimal ist. Außerdem können wir auch festhalten, dass alle Blätter Elemente aus der Menge K sein müssen.

4 3 2.2 Definition Die bisher gesammelten Informationen führen zu folgender Definition: Ein Teilgraph T von G wird Steinerbaum für K genannt, wenn T ein Baum ist und alle Knoten aus K besitzt (d.h., K V (T )) und alle Blätter aus T Elemente in K sind. Die Knoten K werden auch Terminale von T genannt, wohingegen V (T )\K Steinerpunkte (oder auch Nichtterminale) genannt werden. Ein minimaler Steinerbaum für K in G ist ein Steinerbaum T mit minimaler Anzahl Kanten. Jetzt können wir, den Steinerbaumproblem einen passenden Namen geben: Minimum Steiner Problem in Graphs Geg.: Ein zusammenhängender Graph G = (V, E) und eine Menge T V aus Terminalen. Ges.: Einen minimalen Steinerbaum für K in G. Sprich, einen Steinerbaum T für K mit E(T ) = min{ E(T ) T ist ein Steinerbaum für K in G } Dieses Problem sieht zunächst einfach aus, ist aber aus Sicht eines Algorithmus ein nicht triviales und in vielen Aspekten herausforderndes. Von der praktischen Seite aus ist es oft erwünscht eine komplexere Version des Problems zu analysieren. Ein Gewichteter Graph N = (V, E, l), bestehend aus G = (V, E) und l : E(G) R 0, welches eine Funktion ist, die jeder Kante einen positiven Wert anrechnet. Dieser Wert kann als Länge, Gewicht oder anderes betrachtet werden. Die Länge eines Teilgraphen H von G lässt sich also wie folgt berechnen: l(h) = e E(H) l(e) (die Summe aller Kantenwerte) Ist der Graph ein ungerichteter Graph, wird die Gesamtsumme aller Kanten gleich deren Anzahl gesetzt (wird auch die Länge von H genannt, gekennzeichnet H ). Man kann sich hier vorstellen, dass man jeder Kante den Wert 1 zugeschrieben hat. Für zwei Knoten v und w, kennzeichnen wir mit P (v, w) die Länge des kürzesten Pfades von v nach w. Mit diesem Wissen, können wir eine Definition dieser Version des Steinerbaumproblems erstellen. Minimum Steiner Problem in Networks / Weighted Graph Geg.: Ein Gewichteter Graph N = (V, E, l) und eine Menge T V aus Terminalen. Ges.: Einen minimalen Steinerbaum für K in N. Sprich, einen Steinerbaum T für K mit l(t ) = min{ l(t ) T ist ein Steinerbaum für K in N } 2.3 Komplexität Es wurde des Öfteren gesagt, dass das Steinerbaumproblem ein schwieriges Problem sei. Und tatsächlich liegt das Steinerbaumproblem in der Komplexitätsklasse der NP-Vollständigen Probleme. Der Beweis dazu wird durch eine Reduktion von 3Sat auf Minimum Steiner Problem in Graphs (Spg) erbracht. Theorem 2.6 Das Steinerbaumproblem ist NP-Vollständig. Beweis: Die Vollstaendigkeit erhaelt man durch eine Reduktion vom 3Sat auf Spg. Zunächst suchen wir einen Graphen G = (V, E) mit einer Menge Terminalen K und einer Schranke B, so dass G den Steinerbaum T nach K enthält und die Schranke B nicht überschreitet. Eine weitere Bedingung ist, dass der Graph G nur genau dann konstruiert werden kann, wenn es

5 ein 3Sat Konstrukt gibt, welches erfüllbar ist. Startpunkt ist eine Formel F (x 1,..., x n ) = C 1 C 2 C m. Daraus wird eine beliebige Instanz für 3Sat mit Variablen x 1,..., x n und Klauseln C 1,..., C m konstruiert. Der Graph G wird wie folgt konstruiert. Zuerst, verbinden wir die Knoten u und v mit einem variablen Pfad, gezeigt in Abbildung 2.1. x 1 x 2 x j x n 1 x n u v x 1 x 2 x j x n 1 x n Abbildung 2.1: Transformation von 3Sat auf Spg: Der Variablen Pfad Als nächstes kreieren wir für jede Klausel C i einen Knoten mit Verbindungen zu den einzelnen Literalen, die zu der jeweiligen Klausel gehören. Die Pfadlänge beträgt t = 2n + 1. Als Terminale Menge wählen wir K = {u, v} {C 1,..., C m } und setzten B auf B = 2n+t m. C i x 1 x 2 x j x n 1 x n u v x 1 x 2 x j x n 1 x n Abbildung 2.2: Klausel C i = x 2 x j x n. Die Gestrichelte Linie zeigen auf die einzelnen Literale der Klausel C i mit einer Pfadlänge t = 2n + 1 Nehmen wir an, die 3Sat Instanz wäre Erfüllbar. Um einen Steinerbaum nach K zu konstruieren, starten wir zunächst mit dem Pfad von u nach v, welches eine erfüllende Belegung P darstellt. Das heißt, dass wir x i P haben, wenn x i wahr ist und x i P, wenn nicht wahr. Weiterhin müssen wir beachten, dass für jede Klausel, dessen Knoten C i über einen Pfad der Länge t mit P verbunden ist. Somit erhalten wie einen Steinerbaum nach K mit einer Gesamtlänge von 2n + t m = B Gehen wir nun einen Schritt weiter. Sei T ein Steinerbaum nach K mit einer Gesamtlänge von nicht mehr als B. Trivialerweise ist jeder Klausel-Knoten C i mit dem variierbaren Pfad verbunden. Gehen wir für einen Moment davon aus, dass es eine Klausel C i0 gibt, die auf mindestens zwei Wegen mit dem variierbaren Pfad verbunden ist. Somit hätten wir

6 5 E(T ) (m + 1) t > B, und das dürfte nicht sein. Dies zeigt uns, dass u und v nur auf dem variierbaren Pfad verbunden werden können, welches mindestens 2n Kanten voraussetzt. Da jede Klausel mindestens t Kanten braucht, um C i mit dem variierbaren Pfad zu verbinden, schließen wir daraus, dass der Pfad u nach v exakt 2n Kanten besitzt und, dass jede Klausel exakt t Kanten benutzen muss, um mit diesem Pfad verbunden zu sein. Somit gibt der Pfad von u nach v eine erfüllbare Belegung wieder. Die Beobachtung, dass diese Konstruktion leicht in polynomieller Zeit erhalten werden kann, erschließt den Beweis des Theorems. 3 Approximationsalgorithmus In diesem Kapitel werden wir einen simplen Approximationsalgorithmus vorstellen, der auf einer Minimum Spanning Tree Berechnung aufbaut. Der Algorithmus ist eine 2- Approximation. Um die Notation zu verkürzen, werden wir folgende Schreibweisen in diesem Kapitel benutzen. N = (V, E, l; K) steht für ein Steinerproblem in einem zusammenhängenden gewichteten Graphen mit positiven Längenfunktion l 0 und einer Menge Terminalen K. Jedes Steinerproblem N = (V, E, l; K) verbinden wir mit einem complete distance network(cdn ) N D = (K, E D, l D ). Ein CDN ist kurz gesagt ein Graph, aufbauend auf der Menge Terminalen K, worin jede Kante die Länge des kürzesten Pfades der korrespondierenden zwei Terminalen besitzt. Das Steinerproblem N und der CDN werden wie folgt miteinander assoziiert. Die Knotenmenge des N D ist gleich der Menge Terminalen K, die Kantenmenge [ (K ) ] ist mit E D = 2 gegeben und die Längenfunktion l D fügt zu jeder Kante {x, y} E D die Länge des kürzesten Pfades von x nach y in N ein. Zusätzlich kürzen wir die Länge eines minimalen Steinerbaums in N mit Knoten aus der Menge Terminalen K mit smt(n) ab. 3.1 Simpler Algorithmus Die ausschlaggebende Idee vom folgenden Lemma dieses Algorithmus ist, dass wir die Länge eines minimalen Spannbaums in einem gewichteten Graphen mit der Länge eines minimalen Steinerbaums im korrespondierenden CDN relativieren. Sprich, wir erzeugen uns einen minimalen Spannbaum und benutzen die erzeugten Pfade als Wegweiser für den minimalen Steinerbaum. Lemma 3.1 Sei N = (V, E, k; K) ein Steinerproblem, dann erfüllt jeder minimale Spannbaum T im CDN N D die Ungleichung l D (T ) ( ) 2 2 k smt(n). k = K bezeichnet die Kardinalität der Menge Terminalen. Beweis: Sei S opt ein beliebiger minimaler Steinerbaum in N. Stellen wir uns nun S opt als zweidimensionalen planaren Graphen vor, und dass wir einen Weg W am Rand der Kanten entlang haben. Auf diesem Weg W besuchen wir jeden Terminal genau ein und jede Kante zwei mal. Die Gesamtlänge ist dementsprechend genau doppelt so lang, wie die Länge von S opt. Sei t die Anzahl der Blätter in S opt. Dann besitzt Weg W t k Pfade zwischen den aufeinanderfolgenden Blättern in S opt. Nun entfernen wir den längsten Pfad in W. Dieser

7 Abbildung 3.3: Illustriert den Beweis von Lemma 3.1. Der Weg W besteht aus den Pfaden 1-2, 2-3,..., 7-8 und 8-1. Um den Weg W zu erhalten, entfernen wir den Weg von 7 nach 8. Pfad wäre aus dem Beispiel in der Abbildung 3.3 der Pfad 7 nach 8. Die Länge des übrig bleibenden Weges W beträgt jetzt nicht mehr als das (1 1 t )-fache des Weges W. Jetzt sieht man, dass wenn man den Weg W folgt, man ganz einfach einen Spannbaum (und sogar einen Pfad) mit einer maximalen Länge von W in N D aufziehen kann. Durch diese Beobachtung können wir nun den Beweis von Lemma 3.1 schlussfolgern. Beispiel 3.2 Gewichteter Graph N = (V, E, k; K) mit 2 e v 3 v 2 2 e v v 1 2 e 2 e v 0 1 v k 2 e v k 1 V = {v 0, v 1,..., v k }, K = V \{v 0 }, E = {{v i, v i+1 } 1 i k} {{v k, v 1 }} {{v 0, v i } 1 i k}, { 1, if v 0 e l(e) = 2 e, sonst zeigt, dass Schranke aus Lemma 3.1 die Bestmögliche ist. Aus den Vorlesungen wissen wir, dass der minimale Spannbaum leicht zu berechnen ist. Eine kurze Wiederholung: Ein minimaler Spannbaum ist ein Spannbaum mit minimaler Gesamtlänge der Summe der Kanten. Ein minimaler Steinerbaum ist dann minimal, wenn die Summe aller Kanten zwischen den Terminalen minimal ist. In Lemma 3.1 sahen wir auch, dass die Länge des minimalen Spannbaums aus einem complete distance network (kurz: cdn) für eine 2-Approximation des minimalen Steinerbaums sorgt. Genau genommen kann man den minimalen Spannbaum dafür benutzen, einen Steinerbaum zu erzeugen, dessen Länge nicht die doppelte Länge des minimalen Steinerbaums überschreitet.

8 7 Algorithmus 3.3 (MST-Algorithm) Input: Gewichteter Graph N = (V, E, l; K). Output: Steinerbaum S K für N. (1) Berechne den complete distance network N D = (K, E D, l D ). (2) Berechne einen minimalen Spannbaum T D in N D. (3) Wandle T D in einen gewichteten Teilgraphen N[T D ] um, indem jede Kante aus T D durch den Korrespondierenden kürzesten Pfad ersetzt wird. () Berechne einen minimalen Spannbaum T für N[T D ]. (5) Wandle T in einen Steinerbaum S K für N um, indem nacheinander jeder Blattknoten entfernt wird, der kein Terminal ist. Das Abbild 3. zeigt die verschiedenen Schritte des Algorithmus. Man sollte dort auch sehen, wieso die Schritte () und (5) unabdingbar sind. Theorem 3.2 Sei N = (V, E, l; K) ein gewichteter Graph. Dann berechnet der MST- Algorithm in polynomieller Zeit einen Steinerbaum S K für N aus, so dass l(s K ) ( 2 2 k ) smt(n). Beweis: Lemma 3.1 zufolge ist l D (T ) ( 2 2 k ) smt(n).somit haben die aufeinanderfolgenden Schritte (3), () und (5) die Eigenschaften l(t D ) geql(t ) l(s K ). N = (V, E, l 1; K) (1): N D = (K, E D, l D ) (2): T D (3) N[T D ] (): T (5): S K Abbildung 3.: Illustriert die einzelnen Schritte des MST-Algorithm Eine direkte Analyse des MST-Algorithm zeigt, dass der am meisten Zeit brauchende Teil des Algorithmus, die Berechnung des CDN N D ist. Dieser gewichtete Graph wird durch einen k kürzesten Wege Algorithmus mit Laufzeit O(n log n + m) berechnet.

9 8 Literatur [PDHJP02] Prof. Dr. Angelika Steger Prof. Dr. Hans Juergen Prömel. The Steiner Tree Problem, A Tour through Graphs, Algorithms, and Complexity. Friedr. Vieweg & Sohn Verlagsgesellschaft mbh, 1st edition, 2002.

Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn

Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn Ein 5.55-Approximationsalgorithmus für das VPND-Problem Lars Schäfers Inhalt Einführung:

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Algorithmen II Vorlesung am 15.11.2012

Algorithmen II Vorlesung am 15.11.2012 Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS) Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,

Mehr

Gliederung. Definition Wichtige Aussagen und Sätze Algorithmen zum Finden von Starken Zusammenhangskomponenten

Gliederung. Definition Wichtige Aussagen und Sätze Algorithmen zum Finden von Starken Zusammenhangskomponenten Gliederung Zusammenhang von Graphen Stark Zusammenhängend K-fach Zusammenhängend Brücken Definition Algorithmus zum Finden von Brücken Anwendung Zusammenhangskomponente Definition Wichtige Aussagen und

Mehr

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É.

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Tardos Janick Martinez Esturo jmartine@techfak.uni-bielefeld.de xx.08.2007 Sommerakademie Görlitz Arbeitsgruppe 5 Gliederung

Mehr

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel 3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 3. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Algorithmen für Graphen Fragestellungen: Suche

Mehr

Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik

Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Kürzeste Wege in Graphen Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Gliederung Einleitung Definitionen Algorithmus von Dijkstra Bellmann-Ford Algorithmus Floyd-Warshall Algorithmus

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V

Mehr

Die Klassen P und NP. Dr. Eva Richter. 29. Juni 2012

Die Klassen P und NP. Dr. Eva Richter. 29. Juni 2012 Die Klassen P und NP Dr. Eva Richter 29. Juni 2012 1 / 35 Die Klasse P P = DTIME(Pol) Klasse der Probleme, die sich von DTM in polynomieller Zeit lösen lassen nach Dogma die praktikablen Probleme beim

Mehr

8 Diskrete Optimierung

8 Diskrete Optimierung 8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von

Mehr

Das Dilemma des Einbrechers Wer die Wahl hat, hat die Qual!

Das Dilemma des Einbrechers Wer die Wahl hat, hat die Qual! Das Dilemma des Einbrechers Wer die Wahl hat, hat die Qual! 0kg 4000 Euro Luster 5,5 kg, 430.- Laptop 2,0 kg, 000.- Schatulle 3,2 kg, 800.- Uhr 3,5 kg, 70.- Schwert,5 kg, 850.- Bild 3,4 kg, 680.- Besteck

Mehr

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984)

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) NP-Vollständigkeit Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) 0 Übersicht: Einleitung Einteilung in Klassen Die Klassen P und NP

Mehr

Anmerkungen zur Übergangsprüfung

Anmerkungen zur Übergangsprüfung DM11 Slide 1 Anmerkungen zur Übergangsprüfung Aufgabeneingrenzung Aufgaben des folgenden Typs werden wegen ihres Schwierigkeitsgrads oder wegen eines ungeeigneten fachlichen Schwerpunkts in der Übergangsprüfung

Mehr

Approximationsalgorithmen: Klassiker I. Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling

Approximationsalgorithmen: Klassiker I. Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling Approximationsalgorithmen: Klassiker I Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling VO Approximationsalgorithmen WiSe 2011/12 Markus Chimani

Mehr

Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13)

Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13) Berlin, 21. Februar 2013 Name:... Matr.-Nr.:... Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13) 1 2 3 4 5 6 7 8 9 Σ Bearbeitungszeit: 90 min. max. Punktezahl:

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume Effiziente Algorithmen und Datenstrukturen I Kapitel 9: Minimale Spannbäume Christian Scheideler WS 008 19.0.009 Kapitel 9 1 Minimaler Spannbaum Zentrale Frage: Welche Kanten muss ich nehmen, um mit minimalen

Mehr

Wiederholung zu Flüssen

Wiederholung zu Flüssen Universität Konstanz Methoden der Netzwerkanalyse Fachbereich Informatik & Informationswissenschaft SS 2008 Prof. Dr. Ulrik Brandes / Melanie Badent Wiederholung zu Flüssen Wir untersuchen Flüsse in Netzwerken:

Mehr

Formale Systeme. Binary Decision Diagrams. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. Binary Decision Diagrams. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS / KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2007 4. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Traversierung Durchlaufen eines Graphen, bei

Mehr

Alles zu seiner Zeit Projektplanung heute

Alles zu seiner Zeit Projektplanung heute Alles zu seiner Zeit Projektplanung heute Nicole Megow Matheon Überblick Projektplanung Planen mit Graphentheorie Maschinenscheduling Ein 1 Mio. $ Problem Schwere & leichte Probleme? Zeitplanungsprobleme?

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Komplexitätstheorie Einführung und Überblick (Wiederholung)

Komplexitätstheorie Einführung und Überblick (Wiederholung) Literatur C. Papadimitriou UC Berkeley Zum Komplexitätsbegriff Strukturelle Komplexität Average Case Analyse Effiziente Algorithmen Logische Komplexität Beschreibungssprachen: SQL Kolmogorov Komplexität

Mehr

Erzeugung zufälliger Graphen und Bayes-Netze

Erzeugung zufälliger Graphen und Bayes-Netze Erzeugung zufälliger Graphen und Bayes-Netze Proseminar Algorithmen auf Graphen Georg Lukas, IF2000 2002-07-09 E-Mail: georg@op-co.de Folien: http://op-co.de/bayes/ Gliederung 1. Einleitung 2. einfache

Mehr

Algorithmische Methoden für schwere Optimierungsprobleme

Algorithmische Methoden für schwere Optimierungsprobleme Algorithmische Methoden für schwere Optimierungsprobleme Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund

Mehr

Undirected Single-Source Shortest Paths with Positive Integer Weights in Linear Time

Undirected Single-Source Shortest Paths with Positive Integer Weights in Linear Time Universität Konstanz Mathematisch-naturwissenschaftliche Sektion Fachbereich Mathematik und Statistik Wintersemester 2001/02 Mikkel Thorup: Undirected Single-Source Shortest Paths with Positive Integer

Mehr

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5) Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff

Mehr

Graphen: Datenstrukturen und Algorithmen

Graphen: Datenstrukturen und Algorithmen Graphen: Datenstrukturen und Algorithmen Ein Graph G = (V, E) wird durch die Knotenmenge V und die Kantenmenge E repräsentiert. G ist ungerichtet, wenn wir keinen Start- und Zielpunkt der Kanten auszeichnen.

Mehr

Vorlesung 3 MINIMALE SPANNBÄUME

Vorlesung 3 MINIMALE SPANNBÄUME Vorlesung 3 MINIMALE SPANNBÄUME 72 Aufgabe! Szenario: Sie arbeiten für eine Firma, die ein Neubaugebiet ans Netz (Wasser, Strom oder Kabel oder...) anschließt! Ziel: Alle Haushalte ans Netz bringen, dabei

Mehr

Algorithmen und Datenstrukturen (WS 2007/08) 63

Algorithmen und Datenstrukturen (WS 2007/08) 63 Kapitel 6 Graphen Beziehungen zwischen Objekten werden sehr oft durch binäre Relationen modelliert. Wir beschäftigen uns in diesem Kapitel mit speziellen binären Relationen, die nicht nur nur besonders

Mehr

PROSEMINAR ONLINE ALGORITHMEN

PROSEMINAR ONLINE ALGORITHMEN PROSEMINAR ONLINE ALGORITHMEN im Wintersemester 2000/2001 Prof. Dr. Rolf Klein, Dr. Elmar Langetepe, Dipl. Inform. Thomas Kamphans (Betreuer) Vortrag vom 15.11.2000 von Jan Schmitt Thema : Finden eines

Mehr

Stackelberg Scheduling Strategien

Stackelberg Scheduling Strategien Stackelberg Scheduling Strategien Von Tim Roughgarden Präsentiert von Matthias Ernst Inhaltsübersicht Einleitung Vorbetrachtungen Stackelberg Strategien Ergebnisse Seminar Algorithmische Spieltheorie:

Mehr

Algorithmentheorie. 13 - Maximale Flüsse

Algorithmentheorie. 13 - Maximale Flüsse Algorithmentheorie 3 - Maximale Flüsse Prof. Dr. S. Albers Prof. Dr. Th. Ottmann . Maximale Flüsse in Netzwerken 5 3 4 7 s 0 5 9 5 9 4 3 4 5 0 3 5 5 t 8 8 Netzwerke und Flüsse N = (V,E,c) gerichtetes Netzwerk

Mehr

Approximationsalgorithmen

Approximationsalgorithmen Ausarbeitung zum Thema Approximationsalgorithmen im Rahmen des Fachseminars 24. Juli 2009 Robert Bahmann robert.bahmann@gmail.com FH Wiesbaden Erstellt von: Robert Bahmann Zuletzt berarbeitet von: Robert

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 1 Programm des

Mehr

Das P versus N P - Problem

Das P versus N P - Problem Das P versus N P - Problem Dr. Michael Huber Habilitationsvortrag eines der sieben Milleniumsprobleme des Clay Mathematics Institute A gift to Mathematics from Computer Science (Steve Smale) Überblick

Mehr

Binäre lineare Optimierung mit K*BMDs p.1/42

Binäre lineare Optimierung mit K*BMDs p.1/42 Binäre lineare Optimierung mit K*BMDs Ralf Wimmer wimmer@informatik.uni-freiburg.de Institut für Informatik Albert-Ludwigs-Universität Freiburg Binäre lineare Optimierung mit K*BMDs p.1/42 Grundlagen Binäre

Mehr

Approximationsalgorithmen

Approximationsalgorithmen Makespan-Scheduling Kapitel 4: Approximationsalgorithmen (dritter Teil) (weitere Beispiele und Illustrationen an der Tafel) Hilfreiche Literatur: Vazarani: Approximation Algorithms, Springer Verlag, 2001.

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt 4

Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt 4 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter H. Schmitt David Farago, Christoph Scheben, Mattias Ulbrich Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt

Mehr

Kompakte Graphmodelle handgezeichneter Bilder. Einbeziehung in Autentizierung und Bilderkennung

Kompakte Graphmodelle handgezeichneter Bilder. Einbeziehung in Autentizierung und Bilderkennung Kompakte Graphmodelle handgezeichneter Bilder Einbeziehung in Autentizierung und Bilderkennung Inhaltsverzeichnis 1 Einleitung Das graphische Model.1 Image Thinning................................. 3.

Mehr

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005 Paradigmen im Algorithmenentwurf Problemlösen Problem definieren Algorithmus entwerfen

Mehr

Maximizing the Spread of Influence through a Social Network

Maximizing the Spread of Influence through a Social Network 1 / 26 Maximizing the Spread of Influence through a Social Network 19.06.2007 / Thomas Wener TU-Darmstadt Seminar aus Data und Web Mining bei Prof. Fürnkranz 2 / 26 Gliederung Einleitung 1 Einleitung 2

Mehr

Kompakte Graphmodelle handgezeichneter Bilder

Kompakte Graphmodelle handgezeichneter Bilder Kompakte Graphmodelle handgezeichneter Bilder Einbeziehung in Authentizierung und Bilderkennung Inhaltsverzeichnis Seminar Mustererkennung WS 006/07 Autor: Stefan Lohs 1 Einleitung 1 Das graphische Modell.1

Mehr

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c)

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) 5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) mit V = {1,...,n} und E {(v, w) 1 apple v, w apple n, v 6= w}. c : E!

Mehr

Graphenalgorithmen und lineare Algebra Hand in Hand Vorlesung für den Bereich Diplom/Master Informatik

Graphenalgorithmen und lineare Algebra Hand in Hand Vorlesung für den Bereich Diplom/Master Informatik Vorlesung für den Bereich Diplom/Master Informatik Dozent: Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes

Mehr

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011 Graphen: Einführung Vorlesung Mathematische Strukturen Zum Ende der Vorlesung beschäftigen wir uns mit Graphen. Graphen sind netzartige Strukturen, bestehend aus Knoten und Kanten. Sommersemester 20 Prof.

Mehr

3. Musterlösung. Problem 1: Boruvka MST

3. Musterlösung. Problem 1: Boruvka MST Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner. Musterlösung Problem : Boruvka MST pt (a) Beweis durch Widerspruch. Sei T MST von G, e die lokal minimale Kante eines

Mehr

Codierung, Codes (variabler Länge)

Codierung, Codes (variabler Länge) Codierung, Codes (variabler Länge) A = {a, b, c,...} eine endliche Menge von Nachrichten (Quellalphabet) B = {0, 1} das Kanalalphabet Eine (binäre) Codierung ist eine injektive Abbildung Φ : A B +, falls

Mehr

Flüsse in Netzwerken. Seminar über Algorithmen SoSe 2005. Mike Rohland & Julia Schenk

Flüsse in Netzwerken. Seminar über Algorithmen SoSe 2005. Mike Rohland & Julia Schenk Flüsse in Netzwerken Seminar über Algorithmen SoSe 2005 Mike Rohland & Julia Schenk Inhalt Einführung Definition Maximale Flüsse Schnitte Restgraphen Zunehmende Wege Max-Fluss Min-Schnitt Theorem Ford-Fulkerson

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen Der Tragödie IV. Theyl Peter F. Stadler & Konstantin Klemm Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, University

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Kapitel 2 Markus Lohrey Universität Leipzig http://www.informatik.uni-leipzig.de/~lohrey/rand WS 2005/2006 Markus Lohrey (Universität Leipzig) Randomisierte Algorithmen WS 2005/2006

Mehr

Informatik III. Christian Schindelhauer Wintersemester 2006/07 24. Vorlesung 26.01.2007

Informatik III. Christian Schindelhauer Wintersemester 2006/07 24. Vorlesung 26.01.2007 Informatik III Christian Schindelhauer Wintersemester 26/7 24. Vorlesung 26..27 NP-Vollständigkeit Gegeben ein unbekanntes NP-Problem X, sollte man nicht nur nach einem Algorithmus mit polynomieller Laufzeit

Mehr

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2 1 2 Notation für Wörter Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg w a is die Anzahl der Vorkommen von a in w Beispiel: abba

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung

Mehr

Maximaler Fluß und minimaler Schnitt. Von Sebastian Thurm sebastian.thurm@student.uni-magedburg.de

Maximaler Fluß und minimaler Schnitt. Von Sebastian Thurm sebastian.thurm@student.uni-magedburg.de Maximaler Fluß und minimaler Schnitt Von Sebastian Thurm sebastian.thurm@student.uni-magedburg.de Maximaler Fluß und minimaler Schnitt Wasist das? Maximaler Fluss Minimaler Schnitt Warumtut man das? Logistische

Mehr

B-Bäume I. Algorithmen und Datenstrukturen 220 DATABASE SYSTEMS GROUP

B-Bäume I. Algorithmen und Datenstrukturen 220 DATABASE SYSTEMS GROUP B-Bäume I Annahme: Sei die Anzahl der Objekte und damit der Datensätze. Das Datenvolumen ist zu groß, um im Hauptspeicher gehalten zu werden, z.b. 10. Datensätze auf externen Speicher auslagern, z.b. Festplatte

Mehr

Programmierpraktikum Diskrete Optimierung Steiner-Baum-Probleme. Stephan Held held@or.uni-bonn.de Sommersemester 2014

Programmierpraktikum Diskrete Optimierung Steiner-Baum-Probleme. Stephan Held held@or.uni-bonn.de Sommersemester 2014 Programmierpraktikum Diskrete Optimierung Steiner-Baum-Probleme Stephan Held held@or.uni-bonn.de Sommersemester 2014 1 Problemformulierung Das Minimum Steiner-Baum-Problem (MST) ist wie folgt definiert.

Mehr

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de Datenbankanwendung Wintersemester 2014/15 Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern smichel@cs.uni-kl.de Wiederholung: Anfragegraph Anfragen dieses Typs können als Graph dargestellt werden: Der

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Algorithmische Methoden der Netzwerkanalyse

Algorithmische Methoden der Netzwerkanalyse Algorithmische Methoden der Netzwerkanalyse Marco Gaertler 9. Dezember, 2008 1/ 15 Abstandszentralitäten 2/ 15 Distanzsummen auf Bäumen Lemma Sei T = (V, E) ein ungerichteter Baum und T s = (V S, E s )

Mehr

Vorlesung Theoretische Informatik

Vorlesung Theoretische Informatik Vorlesung Theoretische Informatik Automaten und Formale Sprachen Hochschule Reutlingen Fakultät für Informatik Masterstudiengang Wirtschaftsinformatik überarbeitet von F. Laux (Stand: 09.06.2010) Sommersemester

Mehr

S=[n] Menge von Veranstaltungen J S kompatibel mit maximaler Größe J

S=[n] Menge von Veranstaltungen J S kompatibel mit maximaler Größe J Greedy-Strategie Definition Paradigma Greedy Der Greedy-Ansatz verwendet die Strategie 1 Top-down Auswahl: Bestimme in jedem Schritt eine lokal optimale Lösung, so dass man eine global optimale Lösung

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesungen 5 und 6 Programm

Mehr

Künstliche Intelligenz Maschinelles Lernen

Künstliche Intelligenz Maschinelles Lernen Künstliche Intelligenz Maschinelles Lernen Stephan Schwiebert Sommersemester 2009 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Maschinelles Lernen Überwachtes Lernen

Mehr

Wasserfall-Ansätze zur Bildsegmentierung

Wasserfall-Ansätze zur Bildsegmentierung Wasserfall-Ansätze zur Bildsegmentierung von Philipp Jester Seminar: Bildsegmentierung und Computer Vision 16.01.2006 Überblick 1. Problemstellung 2. Wiederholung: Wasserscheiden-Ansätze 3. Der Wasserfall-Ansatz

Mehr

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56 5 Beweistechniken Übersicht 5.1 Drei wichtige Beweistechniken................................. 55 5. Erklärungen zu den Beweistechniken............................ 56 Dieses Kapitel ist den drei wichtigsten

Mehr

Bäume und Wälder. Bäume und Wälder 1 / 37

Bäume und Wälder. Bäume und Wälder 1 / 37 Bäume und Wälder Bäume und Wälder 1 / 37 Bäume Ein (ungerichteter) Baum ist ein ungerichteter Graph G = (V, E), der zusammenhängend ist und keine einfachen Kreise enthält. Bäume und Wälder 2 / 37 Bäume

Mehr

Datenstrukturen und Algorithmen SS07

Datenstrukturen und Algorithmen SS07 Datenstrukturen und Algorithmen SS07 Datum: 27.6.2007 Michael Belfrage mbe@student.ethz.ch belfrage.net/eth Programm von Heute Online Algorithmen Update von Listen Move to Front (MTF) Transpose Approximationen

Mehr

Maximale s t-flüsse in Planaren Graphen

Maximale s t-flüsse in Planaren Graphen Maximale s t-flüsse in Planaren Graphen Vorlesung Algorithmen für planare Graphen June 1, 2015 Ignaz Rutter INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg

Mehr

Statistische Untersuchungen zu endlichen Funktionsgraphen

Statistische Untersuchungen zu endlichen Funktionsgraphen C# Projekt 1 Name: Statistische Untersuchungen zu endlichen Funktionsgraphen Aufgabe: Basierend auf dem Abschnitt 2.1.6. Random mappings, Kap.2, S 54-55, in [1] sollen zunächst für eine beliebige Funktion

Mehr

Dynamische Optimierung. Kapitel 4. Dynamische Optimierung. Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206

Dynamische Optimierung. Kapitel 4. Dynamische Optimierung. Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206 Kapitel 4 Dynamische Optimierung Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206 Inhalt Inhalt 4 Dynamische Optimierung Allgemeiner Ansatz und Beispiele Stochastische dynamische

Mehr

Zeichnen von Graphen. graph drawing

Zeichnen von Graphen. graph drawing Zeichnen von Graphen graph drawing WS 2006 / 2007 Gruppe: D_rot_Ala0607 Christian Becker 11042315 Eugen Plischke 11042351 Vadim Filippov 11042026 Gegeben sei ein Graph G = (V; E) Problemstellung V E =

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 27. Aussagenlogik: Logisches Schliessen und Resolution Malte Helmert Universität Basel 28. April 2014 Aussagenlogik: Überblick Kapitelüberblick Aussagenlogik: 26.

Mehr

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung Gliederung der Vorlesung. Fallstudie Bipartite Graphen. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Pfade. Traveling Salesman Problem. Flüsse in Netzwerken

Mehr

Punktbeschriftung in Dynamischen Karten

Punktbeschriftung in Dynamischen Karten Vorlesung Algorithmische Kartografie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Benjamin Niedermann Martin Nöllenburg 28.05.2015 1 Übungen Nachtrag 1) Überlegen Sie sich, wie man den

Mehr

Konzepte der Informatik

Konzepte der Informatik Konzepte der Informatik Vorkurs Informatik zum WS 2011/2012 26.09. - 30.09.2011 17.10. - 21.10.2011 Dr. Werner Struckmann / Christoph Peltz Stark angelehnt an Kapitel 1 aus "Abenteuer Informatik" von Jens

Mehr

Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung

Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung Ulrich Loup 24.03.2006 Prüfungsstoff: Alegebra I, Analysis IV, Graphentheorie I Prüfer: Prof. Dr. Wilhelm Plesken Protokollant: Dipl.

Mehr

Paper Computer Science Experiment. Computation (NP-Vollständigkeit) Steinerbäume

Paper Computer Science Experiment. Computation (NP-Vollständigkeit) Steinerbäume Paper Computer Science Experiment Great Principles of Computing Computation (NP-Vollständigkeit) Thema Steinerbäume Unterrichtsform Entdeckendes Lernen, Einzelarbeit, Lernen am Modell Voraussetzung Bäume

Mehr

Effiziente Algorithmen I

Effiziente Algorithmen I H 10. Präsenzaufgabenblatt, Wintersemester 2015/16 Übungstunde am 18.01.2015 Aufgabe Q Ein Reiseveranstalter besitzt ein Flugzeug, das maximal p Personen aufnehmen kann. Der Veranstalter bietet einen Flug

Mehr

Approximationsalgorithmen

Approximationsalgorithmen Approximationsalgorithmen Seminar im Sommersemester 2008 Sebastian Bauer, Wei Cheng und David Münch Herausgegeben von Martin Nöllenburg, Ignaz Rutter und Alexander Wolff Institut für Theoretische Informatik

Mehr

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r )

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r ) Definition B : Menge der binären Bäume, rekursiv definiert durch die Regeln: ist ein binärer Baum sind t l, t r binäre Bäume, so ist auch t =, t l, t r ein binärer Baum nur das, was durch die beiden vorigen

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

Approximation in Batch and Multiprocessor Scheduling

Approximation in Batch and Multiprocessor Scheduling Approximation in Batch and Multiprocessor Scheduling Tim Nonner IBM Research Albert-Ludwigs-Universität Freiburg 3. Dezember 2010 Scheduling Zeit als Ressource und Beschränkung Formaler Gegeben sind Jobs

Mehr

Satz. Für jede Herbrand-Struktur A für F und alle t D(F ) gilt offensichtlich

Satz. Für jede Herbrand-Struktur A für F und alle t D(F ) gilt offensichtlich Herbrand-Strukturen und Herbrand-Modelle Sei F eine Aussage in Skolemform. Dann heißt jede zu F passende Struktur A =(U A, I A )eineherbrand-struktur für F, falls folgendes gilt: 1 U A = D(F ), 2 für jedes

Mehr

Routing Algorithmen. Begriffe, Definitionen

Routing Algorithmen. Begriffe, Definitionen Begriffe, Definitionen Routing (aus der Informatik) Wegewahl oder Verkehrslenkung bezeichnet in der Telekommunikation das Festlegen von Wegen für Nachrichtenströme bei der Nachrichtenübermittlung über

Mehr

Primzahlzertifikat von Pratt

Primzahlzertifikat von Pratt Primzahlzertifikat von Pratt Daniela Steidl TU München 17. 04. 2008 Primzahltests in der Informatik "Dass das Problem, die Primzahlen von den Zusammengesetzten zu unterscheiden und letztere in ihre Primfaktoren

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Ulrich Furbach. Sommersemester 2014

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Ulrich Furbach. Sommersemester 2014 Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Ulrich Furbach Institut für Informatik Sommersemester 2014 Furbach Grundlagen d. Theoretischen Informatik:

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen

Mehr

Fully dynamic algorithms for the single source shortest path problem.

Fully dynamic algorithms for the single source shortest path problem. Fully dynamic algorithms for the single source shortest path problem. Michael Baur Wintersemester 2001/2002 Zusammenfassung Im folgenden Paper werde ich Algorithmen für das dynamische Kürzeste-Wege-Problem

Mehr

Was bisher geschah. Aufgaben: Diagnose, Entscheidungsunterstützung Aufbau Komponenten und Funktion

Was bisher geschah. Aufgaben: Diagnose, Entscheidungsunterstützung Aufbau Komponenten und Funktion Was bisher geschah Daten, Information, Wissen explizites und implizites Wissen Wissensrepräsentation und -verarbeitung: Wissensbasis Kontextwissen Problemdarstellung fallspezifisches Wissen repräsentiert

Mehr

Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise:

Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise: Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 192 Beispiel Bsp.: Betrachte Schlussweise in: 1 Wenn es regnet, dann wird die Straße nass. R N

Mehr

Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik. Seminar Entscheidungsverfahren für logische Theorien. Endliche Modelle.

Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik. Seminar Entscheidungsverfahren für logische Theorien. Endliche Modelle. Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik Seminar Entscheidungsverfahren für logische Theorien Tobias Hebel Koblenz, am 18.02.2005 Inhaltsverzeichnis 1 Einleitung... 3 2 Grundlagen...

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

Periodische Fahrpläne und Kreise in Graphen

Periodische Fahrpläne und Kreise in Graphen Periodische Fahrpläne und Kreise in Graphen Vorlesung Algorithmentechnik WS 2009/10 Dorothea Wagner Karlsruher Institut für Technologie Eisenbahnoptimierungsprozess 1 Anforderungserhebung Netzwerkentwurf

Mehr

Klausur für Studiengänge INF und IST

Klausur für Studiengänge INF und IST Familienname: Matrikelnummer: Studiengang: (bitte ankreuzen) INF IST MED Vorname: Email-Adresse: Immatrikulationsjahr: Klausur für Studiengänge INF und IST sowie Leistungsschein für Studiengang Medieninformatik

Mehr