Zusammengesetzte Beanspruchungen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Zusammengesetzte Beanspruchungen"

Transkript

1 Zusammengeseze Beanspruchungen Lieraur Lesen Sie zu diesem Thema bie das Kapiel D 3 im Handbuch Maschinenbau. Übungsaufgaben finden Sie in der Aufgabensammlung TM (Böge) Nr.97 bis Nr.949 Allgemeines In der Praxis kommen neben den uner behandelen Grundbeanspruchungen auch zusammengeseze Beanspruchungen or. Von zusammengesezen Beanspruchungen sprich man, wenn mehrere Grundbeanspruchungsaren gleichzeiig aufreen. Dieser Umsand is in Baueilen of anzureffen, or allem wenn die Wirklinien äußerer Kräfe in einem beliebigen Winkel erlaufen oder außerhalb der Sabmie angreifen. Die hier zu behandelnden zusammengesezen Beanspruchungen einschließlich der zugehörigen Baueilauslegungen sezen sich aus folgenden Beanspruchungen zusammen: Zug und Biegung Druck und Biegung Biegung und Torsion Abscheren und Torsion Zu beachen is, dass bei zusammengesezen Beanspruchungen einzelne Belasungen of so gering sind, dass sie ernachlässig werden können. Sand _Zusammengeseze Beanspruchung.doc

2 Zug bzw. Druck und Biegung Zug-, Druck- und Biegebelasungen erursachen Normalspannungen, die parallel erlaufen und rechwinklig zur Querschnisfläche des Sabes sehen. Für die Berechnung der Baueilfesigkei werden diese Normalspannungen im ersen Schri separa mi Hilfe der Haupgleichungen für Zug-, Druck- und Biegespannungen berechne. Im Anschluss werden sie zur Ermilung der Gesamspannung wie parallele Vekoren addier bzw. subrahier. Haupgleichungen: σ b Mb / W σ z F / A σ d F / A Die resulierende Normalspannung: σ res σ b ± σ z ± σ d Sand _Zusammengeseze Beanspruchung.doc

3 Aufgabenbeispiel: Mi einer Schraubzwinge wird eine Spannkraf on F 3000N aufgebrach. Für das innere Kräfesysem werden im Bereich des Bügels folgende Were ermiel: F N F 3000N und M b F 0,1m 360Nm Bei einem recheckigen Bügelquerschni on 30x8mm ergeben sich: A 8mm 30mm 40mm² W b h² / ² / 6 100mm³ Daraus errechnen sich folgende Spannungen: Zugspannung: σ z F N / A 3000N / 40mm² 1,5 N/mm² Biegespannung: σ b M b / W Nmm / 100mm³ 300N/mm² Sand _Zusammengeseze Beanspruchung.doc

4 Spannungsereilung Über den Querschni des Bügels berache ergib sich die folgende Spannungsereilung: (Darsellung der Spannung nich maßsäblich) Maximal aufreende Druckspannung: Maximal aufreende Zugspannung: σ res Druck σ bd - σ z 300N/mm² - 1,5N/mm² 87,5N/mm² σ res Zug σ bz + σ z 300N/mm² + 1,5N/mm² 31,5N/mm² Sand _Zusammengeseze Beanspruchung.doc

5 Aufgabe 1: Zug und Biegung Aufgabensellung: Ein im Boden erankeres Rohr räg die Las F 1 50kN. Zusäzlich süz sich ein seilicher Träger mi einer Kraf on F 6kN auf dem Rohrprofil ab. Es handel sich um ein nahloses Sahlrohr nach DIN448 mi dem Außendurchmesser D 114,3mm und 1mm Wandsärke. In welchem Querschni wird das Profil am särksen belase? Berechnen Sie die dor herrschende Normalspannung σ res, die sich aus der Druck- und der Biegespannung zusammensez. Sand _Zusammengeseze Beanspruchung.doc

6 Aufgabe : Zug und Biegung Aufgabensellung: Der skizziere Winkelhebel soll für eine Kraf on F 1 3kN dimensionier werden. Als zulässige Biegespannung wird ein Wer on σ b 10 N/mm² orgegeben. Das Bauerhälnis b zu h soll in beiden Hebelarmen 1 zu 4 beragen. Berechnen Sie: Die Hebelkraf F Die Querschnismaße h und b uner der Annahme reiner Biegebeanspruchung. Die resulierende Normalspannung im gefährdeen Querschni des waagerech liegenden Hebelarms. Sand _Zusammengeseze Beanspruchung.doc

7 Biegung und Torsion Werden Baueile wie beispielsweise Geriebewellen auf Torsion und auf Biegung beanspruch, reen zeigleich Normalspannungen (Biegespannungen) und Schubspannungen (Torsionsspannungen) auf. Normalspannungen sehen senkech auf der Querschnisfläche, Schubspannungen liegen im Querschni. Da der Werksoff auf beide Spannungsaren unerschiedliche reagier, is eine einfache Addiion dieser Spannungen nich möglich. Sand _Zusammengeseze Beanspruchung.doc

8 Vergleichsspannung σ und Ansrengungserhälnis α 0 Da Normal- und Schubspannungen nich addier werden können, muss zur Ermilung der Gesambelasung eine Vergleichsspannung besimm werden. Die Vergleichsspannung is diejenige Spannung, die auf das Werksück in ewa die gleiche Belasung ausüb wie Normalund Schubspannungen zusammen. Dazu werden Normal- und Schubspannungen geomerisch addier und mi einem Korrekurfakor muliplizier. Bei zähen Werksoffen finde die Berechnung der Vergleichsspannung auf Basis der Gesaländerungshypohese sa. Versuchsergebnisse wurden mi den oben beschriebenen Annahmen erglichen und zu einer Gleichung weierenwickel. σ σ b + 3 ( α τ ) 0 σ bzul Der Fakor α 0 wird als Ansrengungserhälnis bezeichne und is abhängig on den Grenzfesigkeisweren des bereffenden Werksoffs. α 0 σ 1, 73 τ bgrenz Grenz Bei der für Wellen ypischen Werksoff und Belasungskonsellaion kann näherungsweise mi dem Wer α 0 0,7 gerechne werden, wenn die Fesigkeiswere nich bekann sind. Sand _Zusammengeseze Beanspruchung.doc

9 Biegung und Torsion - Das Vergleichsmomen M Wirken in einem Baueil mehrere Normalspannungen, is deren Summe das Maß für die Auslegung der Abmessungen dieses Baueils. Anders bei Wellen, bei denen sich Biege- und Torsionsspannungen überlagern. Hier wird auf Basis des Biege- und des Torsionsmomens ein Vergleichsmomen besimm. Vergleichsmomen und der zulässige Spannungswer des erwendeen Werksoffs ergeben dann die Ausgangsdaen zur Ermilung des erforderlichen Wellendurchmessers. Zur Berechnung des Vergleichmomenes on Wellen läss sich die Gleichung für die Vergleichsspannung weier enwickeln. Dazu werden die Biege- und die Torsionshaupgleichung in die orhandene Gleichung eingesez: σ σ b + 3 ( α τ ) 0 σ bzul σ b M b W τ M W p M W σ M b M + 3 α 0 W 4W Das Ergebnis is die Gleichung für das Vergleichsmomen: M M + α b 0,75 ( 0 M ) Sand _Zusammengeseze Beanspruchung.doc

10 Biegung und Torsion - Der erforderliche Wellendurchmesser d erf Ausgehend on einem Kreis- bzw. Kreisringquerschni bei Wellen läss sich der erforderliche Durchmesser d erf für die Enwurfsberechnung on Wellen aus der Biegehaupgleichung ableien: Gleichung für Vollwellen: d erf 3 3 M π σ bzul 3 M Gleichung für Hohlwellen: erf 3 4 π σ ( 1 q ) d bzul d Außendurchmesser der Welle / Hohlwelle d i Innendurchmesser der Hohlwelle q d i / d (Verhälnis Innen- zu Außendurchmesser) Achung! Die Einhei des Vergleichsmomens M muss or dem Einsezen in die Gleichung in [Nmm] umgerechne werden. Sand _Zusammengeseze Beanspruchung.doc

11 Aufgabenbeispiel: Biegung und Torsion (Vergleichsmomen und erforderlicher Wellendurchmesser) Auf der Zwischenwelle des Geriebes der Verholwinde sind die Zahnräder und 3 plazier. Das Zahnrad wird mi einer angenialen Umfangskraf on F kn angerieben. Die Welle aus Vergüungssahl besiz eine zulässige Biegespannung on σ zul 100 N/mm² und eine zulässige Torsionsspannung on τ zul 80N/mm² Aufgabensellung: Berechnen Sie: die Lagerkräfe in den Lagern C und D das Torsionsmomen M der Welle die Biegemomene in Höhe der Zahnräder 3 und. das Vergleichsmomen M und den erforderlichen Wellendurchmesser d erf Zeichnen Sie die Verläufe der Querkraf, des Biegemomens und des Torsionsmomens Sand _Zusammengeseze Beanspruchung.doc

12 Aufgabenbeispiel: Biegung und Torsion - Lösung Berechnung der Lagerkräfe F C und F D : ΣM C 0 -F 3 0,139m + F 0,389m + F D 0,474m F3 0,139m F 0,389m F D 0, 474m 100kN 0,139m kn 0,389m F D 11, 3kN 0,474m ΣF y 0 F C F 3 + F + F D F C F 3 - F - F D 100kN kn 11,3kN 66,7kN Berechnung des Torsionsmomens M : F 0,99m kn 0,99m M 10, 9kNm Berechnung der Biegemomene: M b3 - F C 0,139m -66,7kN 0,139m -9,7kNm M bmax M b - F C 0,389m + F 3 0,5m -66,7kN 0,389m + 100kN 0,5m -66,7kN -0,95kNm M b3 M bmax Sand _Zusammengeseze Beanspruchung.doc

13 Aufgabenbeispiel: Biegung und Torsion - Lösung Berechung des Vergleichsmomens M : M bmax 9,7kNm M 10,9kNm σ bzul 100N / mm² α 0 0,7 3 80N / mm² 3 τ zul M M + α M ) b 0,75 ( 0 M ( 9,7kNm)² + 0,75 (0,7 10,9kNm)² 11, 5kNm Berechung des erforderlichen Wellendurchmessers d erf : d 3 M π σ Nmm π 100N / mm² 3 3 erf 105, 4 bzul mm gewähl 110mm Sand _Zusammengeseze Beanspruchung.doc

14 Aufgabe 3: Biegung und Torsion (Vergleichsmomen und erforderlicher Wellendurchmesser) Aufgabensellung: Besimmen Sie den am särksen gefährdeen Querschni der Geriebewelle aus E335. Die zulässige Biegespannung beräg σ zul 65 N/mm², das Ansrengungserhälnis α 0 0,7. Als maximales Torsionsmomen wurden M 15,4Nm, als maximales Biegemomen M b 150Nm ermiel. Besimmen Sie das in diesem Querschni wirkende Vergleichmomen M. Berechnen Sie den erforderlichen Durchmesser d erf für die Geriebewelle. Lösungshinweis: Die Schaubilder geben Aufschluss über die Belasung der Welle. Die durch die Querkräfe herorgerufene Abscherspannung kann im Vergleich zur Biege- und Torsionsspannung ernachlässig werden. Im Bereich des Lagers B befinde sich das maximale Biegemomen. Die Belasung auf Torsion is zwischen der rechen und der mileren Riemenscheibe am größen. Die maximale Belasung der Welle is somi an der Lagerselle B zu erwaren. Sand _Zusammengeseze Beanspruchung.doc

15 Aufgabe 4: Biegung und Torsion (Vergleichsmomen und erforderlicher Wellendurchmesser) Eine Welle wird über ein Keenrad angerieben. Die Kee des Keenrades wird on Hand mi einer Kraf on F H 150N beäig. Am gegenüberliegenden Ende der Welle befinde sich eine Keilriemenscheibe. Die auf die Keilriemenscheibe wirkende Querkraf sowie die Lagerkräfe wurden bereis ermiel. Die zulässige Biegespannung σ bzul des Werksoffs beräg 50N/mm², die zulässige Torsionsspannung τ zul 40 N/mm² Aufgabensellung: a) Tragen Sie den Verlauf der Querkraf F q über die Länge der Welle in ein Diagramm ein. b) Berechnen Sie das Drehmomen M der Welle sowie die Biegemomene M b1 und M b in Höhe der Lager A und B und besimmen Sie das maximale Biegemomen M bmax. c) Sellen Sie die Verläufe des Biegemomenes M b und des Torsionsmomenes M über die Länge der Welle jeweils in einem Diagramm dar. d) Berechnen Sie das Ansrengungserhälnis α 0 und das Vergleichsmomen M sowie den erforderlichen Wellendurchmesser d erf. Sand _Zusammengeseze Beanspruchung.doc

f ( x) = x + x + 1 (quadratische Funktion) f '( x) = x + (Ableitungsfunktion)

f ( x) = x + x + 1 (quadratische Funktion) f '( x) = x + (Ableitungsfunktion) R. Brinkmann hp://brinkmann-du.de Seie.. Tangene und Normale Tangenenseigung Die Seigung eines Funkionsgraphen in einem Punk P ( f ( ) ) is gleichbedeuend mi der Seigung der Tangene in diesem Punk. Nachfolgend

Mehr

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 www.mahe-aufgaben.com Abiurprüfung Mahemaik 009 (Baden-Würemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (7 Punke) Das Schaubild P einer Polynomfunkion drien Grades ha den Wendepunk W(-/-) und

Mehr

1.Kräfte, Fachwerk. 14,7 kn. Bestimmen Sie mit Hilfe des Sinussatzes die Stabkraft F1. 20 kn

1.Kräfte, Fachwerk. 14,7 kn. Bestimmen Sie mit Hilfe des Sinussatzes die Stabkraft F1. 20 kn 1.Kräfte, Fachwerk # Aufgaben Antw. P. Ein Wandkran wird durch eine Masse m mit F G über eine feste Rolle belastet. 1 Die beiden Stäbe sind Rohre mit einem Durchmesser-Verhältnis d/d = λ = 0,8. Die zulässige

Mehr

tgt HP 2008/09-5: Wagenheber

tgt HP 2008/09-5: Wagenheber tgt HP 2008/09-5: Wagenheber Das Eigengewicht des Wagenhebers ist im Vergleich zur Last F vernachlässigbar klein. l 1 500,mm I 2 220,mm I 3 200,mm I 4 50,mm F 15,kN α 1 10, α 2 55, β 90, 1 Bestimmen Sie

Mehr

tgt HP 2005/06-2: Exzenterantrieb

tgt HP 2005/06-2: Exzenterantrieb tgt HP 2005/06-2: Exzenterantrieb Der Exzenter wird über eine Welle, die mit einem Getriebe und Motor verbunden ist, angetrieben. Die Kraft wird über Tellerstößel und Stange übertragen, an deren oberen

Mehr

Institut für Allgemeine Mechanik der RWTH Aachen

Institut für Allgemeine Mechanik der RWTH Aachen Insiu für Allgemeine Mecanik der RWTH Aacen Prof. Dr.-Ing. D. Weicer 7.Übung Mecanik II SS 7 4.6.7 Abgabeermin 7.Übung:.6.7 4: Ur. Aufgabe Zwei fläcengleice Querscnie a) und b) werden wie dargesell belase.

Mehr

Musterlösung zum Grundlagenbeispiel Getriebewelle Klausur Maschinenelemente, 29. Oktober 1999

Musterlösung zum Grundlagenbeispiel Getriebewelle Klausur Maschinenelemente, 29. Oktober 1999 . Musterlösung zum Grundlagenbeispiel Getriebewelle Klausur Maschinenelemente, 29. Oktober 1999 13. Januar 23 1 Riemenkräfte Abbildung 1 zeigt die Kräfte und Momente, die auf die freigeschnittene untere

Mehr

Rheinische Fachhochschule Köln

Rheinische Fachhochschule Köln Rheinische Fachhochschule Köln Matrikel-Nr. Nachname Dozent Ianniello e-mail: Semester Klausur Datum Fach Urteil BM I, S 3 K8 Juli 13 Kinetik+Kinematik Genehmigte Hilfsmittel: Ergebnis: Punkte Taschenrechner

Mehr

tgt HP 2000/01-1: Bahnschranke

tgt HP 2000/01-1: Bahnschranke tgt HP 000/01-1: Bahnschranke Die Bahnschranke ( Abb.1 ) wird durch einen hydraulisch betätigten Kolben (Abb. ) um das Lager B geschwenkt. Bei geschlossener Schranke ist der Kolben wirkungslos. Abb.1 Daten:

Mehr

tgt HP 1993/94-1: Getriebewelle

tgt HP 1993/94-1: Getriebewelle tgt HP 1993/94-1: Getriebewelle l 1 45 mm l 2 35 mm l 3 60 mm l 4 210 mm F 1 700 N F 2 850 N F 3 1300 N An der unmaßstäblich skizzierten Getriebewelle aus E295 sind folgende Teilaufgaben zu lösen: Teilaufgaben:

Mehr

Aufgaben zur Festigkeit

Aufgaben zur Festigkeit Aufgaben zur estigkeit : Maimale Länge eines Drahtes l Wie lang darf ein Stahldraht mit R m =40 N/mm maimal sein, damit er nicht abreißt? Dichte von Stahl ρ=7850 kg/m 3 Lösung: = G A R m G = A l g l= G

Mehr

Name: Punkte: Note: Ø:

Name: Punkte: Note: Ø: Name: Punke: Noe: Ø: Kernfach Physik Abzüge für Darsellung: Rundung: 4. Klausur in K am 5. 5. 0 Ache auf die Darsellung und vergiss nich Geg., Ges., Formeln, Einheien, Rundung...! Angaben: e =,60 0-9 C

Mehr

Rheinische Fachhochschule Köln

Rheinische Fachhochschule Köln Rheinische Fachhochschule Köln Matrikel-Nr. Nachname Dozent Ianniello Semester Klausur Datum Fach Urteil BM, Ing. K 8 11.7.14 Kinetik, Kinematik Genehmigte Hilfsmittel: Punkte Taschenrechner Literatur

Mehr

7 Erzwungene Schwingung bei Impulslasten

7 Erzwungene Schwingung bei Impulslasten Einmassenschwinger eil I.7 Impulslasen 53 7 Erzwungene Schwingung bei Impulslasen Impulslasen im echnischen Allag sind zum Beispiel Soß- oder Aufprallvorgänge oder Schläge. Die Las seig dabei in kurzer

Mehr

Ministerium für Schule und Weiterbildung NRW M LK HT 4 Seite 1 von 9. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs

Ministerium für Schule und Weiterbildung NRW M LK HT 4 Seite 1 von 9. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs Seie von 9 Unerlagen für die Lehrkraf Abiurprüfung 9 Mahemaik, Leisungskurs. Aufgabenar Lineare Algebra/Geomerie ohne Alernaive. Aufgabensellung siehe Prüfungsaufgabe. Maerialgrundlage 4. Bezüge zu den

Mehr

Kommunikationstechnik I

Kommunikationstechnik I Kommunikaionsechnik I Prof. Dr. Sefan Weinzierl Muserlösung 5. Aufgabenbla 1. Moden 1.1 Erläuern Sie, was in der Raumakusik uner Raummoden versanden wird. Der Begriff einer sehenden Welle läss sich am

Mehr

Institut für Maschinenelemente und Konstruktionstechnik Klausur KT1 (alt KT2) SS 2011 Dr.-Ing. S. Umbach I

Institut für Maschinenelemente und Konstruktionstechnik Klausur KT1 (alt KT2) SS 2011 Dr.-Ing. S. Umbach I Klausur KT1 (alt KT) SS 011 Dr.-Ing. S. Umbach I 30.08.011 Name, Vorname: Unterschrift: Matrikel- Nr.: Klausurbedingungen: Zugelassene Hilfsmittel sind dokumentenechtes Schreibzeug und Taschenrechner.

Mehr

Leistungselektronik Grundlagen und Standardanwendungen. Übung 3: Kommutierung

Leistungselektronik Grundlagen und Standardanwendungen. Übung 3: Kommutierung Lehrsuhl für Elekrische Anriebssyseme und Leisungselekronik Technische Universiä München Arcissraße 1 D 8333 München Email: eal@ei.um.de Inerne: hp://www.eal.ei.um.de Prof. Dr.-Ing. Ralph Kennel Tel.:

Mehr

Rheinische Fachhochschule Köln

Rheinische Fachhochschule Köln Rheinische Fachhochschule Köln Matrikel-Nr. Nachname Dozent Ianniello Musterlösung Semester Klausur BM, Ing.II K Datum 1.7.1 Genehmigte Hilfsmittel: Fach Urteil Statik +Festigkeit Ergebnis: Punkte Taschenrechner

Mehr

tgt HP 1990/91-2: Frontlader

tgt HP 1990/91-2: Frontlader tgt HP 1990/91-2: Frontlader Die Schaufel eines Frontladers ist mit der Kraft F = 30 kn belastet. F ist auf eine Auslegerseite bezogen. Der Ausleger kann mit dem Hydraulikzylinder l um den Drehpunkt G

Mehr

Masse, Kraft und Beschleunigung Masse:

Masse, Kraft und Beschleunigung Masse: Masse, Kraf und Beschleunigung Masse: Sei 1889 is die Einhei der Masse wie folg fesgeleg: Das Kilogramm is die Einhei der Masse; es is gleich der Masse des Inernaionalen Kilogrammprooyps. Einzige Einhei

Mehr

2. Torsion geschlossener Profile

2. Torsion geschlossener Profile Berache werden Balken mi einem konanen einzelligen gechloenen dünnwandigen Hohlquerchni, die durch ein konane Torionmomen M x belae werden. A B () D C M x x y Prof. Dr. Wandinger 5. Dünnwandige Profile

Mehr

Lineare Algebra I - Lösungshinweise zur Klausur

Lineare Algebra I - Lösungshinweise zur Klausur Insiu für Mahemaik Winersemeser 0/3 Universiä Würzburg 0 Februar 03 Prof Dr Jörn Seuding Dr Anna von Heusinger Frederike Rüppel Lineare Algebra I - Lösungshinweise zur Klausur Aufgabe : (0 Punke) Zeigen

Mehr

,QVWLWXWI U6FKLIIVWHFKQLN'XLVEXUJ,6' 6&+,))6)(67,*.(,7. hexqjvdxijdehq + KHUH6FKLIIVIHVWLJNHLW

,QVWLWXWI U6FKLIIVWHFKQLN'XLVEXUJ,6' 6&+,))6)(67,*.(,7. hexqjvdxijdehq + KHUH6FKLIIVIHVWLJNHLW ,6' 5)'5,+$%,/+-6&+/h7(5 ',/,5/8 hexqjvdxjdehq + KHUH6FKLVHVWLJNHLW Duisburg,. Dezember 999 can. arch. nav Chrisian Weißenborn URÃ'U,QJÃKDELOÃ+Ã-Ã6FKO WHU 'LSO,QJÃ5ÃOXP nhalsverzeichnis BALKENTRAGWERKE....

Mehr

tgt HP 2007/08-5: Krabbenkutter

tgt HP 2007/08-5: Krabbenkutter tgt HP 2007/08-5: Krabbenkutter Zum Fang von Krabben werden die Ausleger in die Waagrechte gebracht. Die Fanggeschirre werden zum Meeresboden abgesenkt. Nach Beendigung des Fanges werden die Ausleger in

Mehr

5 Festigkeitslehre Die Aufgabe der Festigkeitslehre

5 Festigkeitslehre Die Aufgabe der Festigkeitslehre 5 Festigkeitslehre 5.1.1 Die Aufgabe der Festigkeitslehre Wir betrachten die technische Zeichnung einer Getriebewelle. Sie enthält sämtliche zur Herstellung nötigen Maße. Beispielsweise sehen wir sofort,

Mehr

K5_15-09_L.Docx Seite 1 von 17

K5_15-09_L.Docx Seite 1 von 17 K5 Technische Mechanik Täuschungsversuche führen zum Ausschluss und werden als Fehlversuch gewertet. Elektronische Geräte sowie nicht zugelassene Unterlagen bitte vom Tisch räumen. Mit Annahme der Klausur

Mehr

Lösung Klausur. p(t) = (M + dm)v p(t + dt) = M(v + dv) + dm(v + dv u) Wir behalten nur die Terme der ersten Ordnung und erhalten.

Lösung Klausur. p(t) = (M + dm)v p(t + dt) = M(v + dv) + dm(v + dv u) Wir behalten nur die Terme der ersten Ordnung und erhalten. T1 I. Theorieeil a) Zur Zei wird ein Pake der Masse dm mi der Geschwindigkei aus der Rakee ausgesoÿen. Newon's zweies Gesez läss sich schreiben als dp d = F p( + ) p() = F d = Av2 d Der Impuls des Sysems

Mehr

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 Abiurprüfung Mahemaik 0 (Baden-Würemberg) Berufliche Gymnasien Analysis, Aufgabe. (8 Punke) Die Abbildung zeig das Schaubild einer Funkion h mi der Definiionsmenge [-7 ; 4]. Die Funkion H is eine Sammfunkion

Mehr

TM 2 Übung, Aufgaben an der Tafel , Prof. Gerling, SS 2013

TM 2 Übung, Aufgaben an der Tafel , Prof. Gerling, SS 2013 TM Übung, Aufgaben an der Tafel 9.4.3, Prof. Gerling, SS 03 Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Wir erheben keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

Rheinische Fachhochschule Köln

Rheinische Fachhochschule Köln Rheinische Fachhochschule Köln Matrikel-Nr. Nachname Dozent Ianniello Semester Klausur Datum BP I, S K5 Genehmigte Hilfsmittel: Fach Urteil Technische Mechanik Ergebnis: Punkte Taschenrechner Literatur

Mehr

Drehmomentwellenberechnung mit TEL1-PCM

Drehmomentwellenberechnung mit TEL1-PCM Drehmomenwellenberechnung mi TL1-PC Ds 1-Knl Telemeriesysem TL1-PC wird vorwiegend für roierende pplikionen eingesez, wie z.b. zur Überrgung von Drehmomenen, chwingungen oder Temperuren von drehenden Wellen,

Mehr

Geradlinige Bewegung Krummlinige Bewegung Kreisbewegung

Geradlinige Bewegung Krummlinige Bewegung Kreisbewegung 11PS KINEMATIK P. Rendulić 2011 EINTEILUNG VON BEWEGUNGEN 1 KINEMATIK Die Kinemaik (Bewegunglehre) behandel die Geezmäßigkeien, die den Bewegungabläufen zugrunde liegen. Die bei der Bewegung aufreenden

Mehr

1.Torsion # Frage Antw. P.

1.Torsion # Frage Antw. P. 1.Torsion # Frage Antw. P. 1 Der skizzierte Schalthebel mit Schaltwelle wird durch die Kraft F = 1 kn belastet. Die zulässigen Spannungen beträgt für eine Torsion 20 N/mm 2. a b 2 3 4 Bestimmen Sie das

Mehr

tgt HP 1981/82-1: Spannen beim Fräsen

tgt HP 1981/82-1: Spannen beim Fräsen tgt HP 1981/8-1: Spannen beim Fräsen Zum Spannen von größeren Werkstücken verwendet man Spanneisen. Teilaufgaben: 1 Welche Spannkraft F Sp ist erforderlich, um das Werkstück gegen ein Verschieben mit der

Mehr

2.4 Ermittlung unbekannter Kräfte im zentralen Kräftesystem

2.4 Ermittlung unbekannter Kräfte im zentralen Kräftesystem Ermittlung unbekannter Kräfte im zentralen Kräftesystem.4 Ermittlung unbekannter Kräfte im zentralen Kräftesystem ( Lehrbuch: Kapitel.3.) Gegebenenfalls auftretende Reibkräfte werden bei den folgenden

Mehr

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff Die Bioverfügbarkei is eine Messgröße dafür, wie schnell und in welchem Umfang ein Arzneimiel resorbier wird und am Wirkor zur Verfügung seh. Zur Messung der Bioverfügbarkei wird die Wirksoffkonzenraion

Mehr

Name. Vorname. Legi-Nr. Ermüdungsfestigkeit Welle-Nabe-Verbindung L/2

Name. Vorname. Legi-Nr. Ermüdungsfestigkeit Welle-Nabe-Verbindung L/2 Dimensionieren Prof. Dr. K. Wegener ame Vorname Legi-r. Zusatzübung 1: Passfederverbindung Voraussetzungen F F Flächenpressung zwischen Bauteilen M Last Ermüdungsfestigkeit Welle-abe-Verbindung F/ L/ F/

Mehr

Rheinische Fachhochschule Köln

Rheinische Fachhochschule Köln Rheinische Fachhochschule Köln Matrikel-Nr. Nachname Dozent Ianniello Semester Klausur Datum Fach Urteil BM3, Ing.I K8 6.3.13 Kinetik+Kinematik Genehmigte Hilfsmittel: Ergebnis: Punkte Taschenrechner Formelsammlungen

Mehr

Abiturprüfung Mathematik 2010 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 ( )( ) und der Normalen von K

Abiturprüfung Mathematik 2010 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 ( )( ) und der Normalen von K Abiurprüfung Mhemik (Bden-Würemberg) Berufliche Gymnsien Anlysis, Aufgbe. Für jedes * is die Funkion f gegeben durch f (x) = x x + x +, x Ds Schubild von f is K. ( )( ).. (4 Punke) Zeichnen Sie K und K

Mehr

Zeit (in h) Ausflussrate (in l/h)

Zeit (in h) Ausflussrate (in l/h) Aufgabe 6 (Enwicklung einer Populaion): (Anforderungen: Inerpreaion von Schaubildern; Inegralfunkion in der Praxis) Von einer Populaion wird - jeweils in Abhängigkei von der Zei - die Geburenrae (in Individuen

Mehr

Rheinische Fachhochschule Köln

Rheinische Fachhochschule Köln Rheinische Fachhochschule Köln Matrikel-Nr. Nachname Dozent Ianniello Semester Klausur Datum Fach Urteil BM4, Ing.II K8 14.7.11 Kinetik+Kinematik Genehmigte Hilfsmittel: Ergebnis: Punkte Taschenrechner

Mehr

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge Dr. Dirk Windelberg Leibniz Universiä Hannover Mahemaik für Ingenieure Mahemaik hp://www.windelberg.de/agq 14 Kurven in Parameerdarsellung, Tangenenvekor und Bogenlänge Aufgabe 14.1 (Tangenenvekor und

Mehr

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl Typ A: Separierbare Differenialgleichungen I Gegeben sei die Differenialgleichung y () = f () g(y) in einem Bereich D der (, y) Ebene. Gil g(y) 0, so lassen sich die Variablen und y rennen: y () g(y) =

Mehr

24.1 Mindestzuverlässigkeit und Aussagewahrscheinlichkeit

24.1 Mindestzuverlässigkeit und Aussagewahrscheinlichkeit 24 Versuche ohne Ausfälle Success un 24. Mindeszuverlässigkei und Aussagewahrscheinlichkei Um eine Aussage üer die Zuverlässigkei eines Baueiles oder einer Baugruppe zu erhalen, werden vor der eigenlichen

Mehr

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen Dr. G. Lechner Mahemaische Mehoden der klassischen Physik Zusammenfassung Differenialgleichungen In der Vorlesung wurden drei unerschiedliche Typen von Differenialgleichungen (DGL) besprochen, die jeweils

Mehr

Wiederholklausur Technische Mechanik WIM

Wiederholklausur Technische Mechanik WIM 1.) (2+6+2 Punkte) Eine Spätzlepresse, an der nur senkrechte Kräfte wirken, soll untersucht werden. Der Zylinder in welchem sich der Teig befindet hat eine Grundfläche von A = ²/2. A B R a.) Welche Kraft

Mehr

Universität Ulm Samstag,

Universität Ulm Samstag, Universiä Ulm Samsag, 5.6. Prof. Dr. W. Arend Robin Nika Sommersemeser Punkzahl: Lösungen Gewöhnliche Differenialgleichungen: Klausur. Besimmen Sie die Lösung (in möglichs einfacher Darsellung) folgender

Mehr

Lösungen zu den Aufgaben aus PHYSIK UND TECHNIK. Heine-Prommersberger

Lösungen zu den Aufgaben aus PHYSIK UND TECHNIK. Heine-Prommersberger Lösungen zu den Aufgaben aus PHYSIK UND TECHNIK Heine-Prommersberger Lösungen zu den Aufgaben aus PHYSIK UND TECHNIK Heine-Prommersberger Handwerk und Technik 1 Einleitung 1.4 Aufgaben 1 und 2 Seite 15

Mehr

5. Übungsblatt zur Linearen Algebra II

5. Übungsblatt zur Linearen Algebra II Fachbereich Mahemaik Prof. J. Bokowski Dennis Frisch, Nicole Nowak Sommersemeser 27 5., 8. und 2. Mai 5. Übungsbla zur Linearen Algebra II Gruppenübung Aufgabe G (Hüllen) In dieser Aufgabe soll es darum

Mehr

Konstruktions-/Zeichenaufgabe 4M WS 02/03

Konstruktions-/Zeichenaufgabe 4M WS 02/03 Konstruktions-/Zeichenaufgabe 4M WS 02/03 Konstruieren einer Spindellagerung für eine Tischfräse Technische Daten der Tischfräse: Antriebsleistung: Nenndrehzahl: Spindellänge: 6,3 KW 3000 Umdrehungen /

Mehr

Flugzeugaerodynamik I Lösungsblatt 3

Flugzeugaerodynamik I Lösungsblatt 3 Flugzeugaerodynam I Lösungsbla 3 Lösung Aufgabe 5 geg: dünnes Profil a) ges: A 1 mi m (1) f 0.01 () Annahme Amosphärendaen: Abschäzung der Ansrömmachzahl U 1 50m/s (3) ρ 1 1.kg/m 3 (4) α 1 10 o (5) dc

Mehr

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2 Fachrichung Physik Physikalisches Grundprakikum Ersell: Bearbeie: Versuch: L. Jahn SR M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher Akualisier: am 29. 03. 2010 Srömung im Rohr Inhalsverzeichnis

Mehr

Grundlagen der Elektrotechnik II Übungsaufgaben

Grundlagen der Elektrotechnik II Übungsaufgaben Grundlagen der Elekroechnik II Übungsaufgaben 24) ransiene -eihenschalung Die eihenschalung einer Indukiviä ( = 100 mh) und eines Widersands ( = 20 Ω) wird zur Zei = 0 an eine Gleichspannungsquelle geleg.

Mehr

B Konstruktion. Werktstoff 16MnCr5 (1.7131): Vorgegebene Werte:

B Konstruktion. Werktstoff 16MnCr5 (1.7131): Vorgegebene Werte: B Konstruktion Tabelle1 Vorgegebene Werte: Drehzahl [1/min] Startleistung [kw] Planetengetriebe Eingang 3520 377 Planetengetriebe Ausgang 565 369 Eingriffswinkel α 20.00 0.3491 Verzahnungsqualität Q 5

Mehr

Flugzeugaerodynamik I Lösungsblatt 2

Flugzeugaerodynamik I Lösungsblatt 2 Flugzeugaerodynamik I Lösungsbla 2 Lösung Aufgabe Bei der vorliegenden Aufgabe handel es sich um die Nachrechenaufgabe der Skele Theorie. a) Der Koeffizien A 1 is durch die Wölbung des gegebenen Skeles

Mehr

Pflichtmodul Stahlbau - Bachelor

Pflichtmodul Stahlbau - Bachelor Prof. Dr.-Ing. Dirk Werner 115 3.5 Normal- und Schubspannungen aus Torsion Torsion is ein Überbegriff für Beanspruchungen bzw. die Wirkung von Beanspruchungen auf Baueile (Säbe), welche die Baueile um

Mehr

tgtm HP 2015/16-1: Bergbahn

tgtm HP 2015/16-1: Bergbahn tgtm HP 05/6-: Bergbahn tgtm HP 05/6-: Bergbahn (Pflichtaufgabe) Bei der Bergbahn e.k. soll ein neuer Wagentyp einer Standseilbahn überprüft werden. Die Abmessungen des Wagens lassen sich der abgebildeten

Mehr

Kapitel : Exponentielles Wachstum

Kapitel : Exponentielles Wachstum Wachsumsprozesse Kapiel : Exponenielles Wachsum Die Grundbegriffe aus wachsum 1.xmcd werden auch hier verwende! Wir verwenden im Beispiel 2 auch fas die gleiche Angabe wie in Beispiel 1 - lediglich eine

Mehr

Übungen zur Einführung in die Physik II (Nebenfach)

Übungen zur Einführung in die Physik II (Nebenfach) Übungen zur Einführung in ie Physik Nebenfach --- Muserlösung --- Aufgabe: Konensaorenlaung Ein mi Glimmer ε r = 8 gefüller Plaenkonensaor mi er Fläche A=6 cm un einem Plaenabsan = 5 μm enlä sich wegen

Mehr

Inhaltsverzeichnis. 1 Getriebeauslegung Übersetzung Zähnezahlen Zahnradgeometrie Abtriebswelle 5.

Inhaltsverzeichnis. 1 Getriebeauslegung Übersetzung Zähnezahlen Zahnradgeometrie Abtriebswelle 5. Inhaltsverzeichnis 1 Getriebeauslegung 2 1.1 Übersetzung........................... 2 1.2 Zähnezahlen........................... 3 1.3 Zahnradgeometrie........................ 4 2 Abtriebswelle 5 Literatur

Mehr

WORKING PAPERS Arbeitspapiere der Betrieblichen Finanzwirtschaft

WORKING PAPERS Arbeitspapiere der Betrieblichen Finanzwirtschaft WORKING PAPERS Arbeispapiere der Berieblichen Finanzwirschaf Lehrsuhl für Beriebswirschafslehre, insbes. Beriebliche Finanzwirschaf Bfw29V/03 Zusandsabhängige Bewerung mi dem sochasischen Diskonierungsfakor

Mehr

GETE ELEKTRISCHES FELD: DER KONDENSATOR: Elektrische Feldstärke: E r. Hr. Houska Testtermine: und

GETE ELEKTRISCHES FELD: DER KONDENSATOR: Elektrische Feldstärke: E r. Hr. Houska Testtermine: und Schuljahr 22/23 GETE 3. ABN / 4. ABN GETE Tesermine: 22.1.22 und 17.12.2 Hr. Houska houska@aon.a EEKTRISCHES FED: Elekrisch geladene Körper üben aufeinander Kräfe aus. Gleichnamige geladene Körper sießen

Mehr

Das Torsionsmoment ergibt sich aus dem Abstand des Schnittufers mal der Windkraft

Das Torsionsmoment ergibt sich aus dem Abstand des Schnittufers mal der Windkraft 1. Zeichen eindeutige Fehler in der oberen Hälfte: eine Körperkante uviel / falsch eine Körperkante u wenig Doppelpassungen am Lager Doppelpassung am Zahnrad Lagerung -> Loslagerung falsch, da falsche

Mehr

2.2 Rechnen mit Fourierreihen

2.2 Rechnen mit Fourierreihen 2.2 Rechnen mi Fourierreihen In diesem Abschni sollen alle Funkionen als sückweise seig und -periodisch vorausgesez werden. Ses sei ω 2π/. Wir sezen jez aus Funkionen neue Funkionen zusammen und schauen,

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppiz, Dr. I. Rbak 8. Gruppenübung zur Vorlesung Höhere Mahemaik Sommersemeser 9 Prof. Dr. M. Sroppel Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe H. Konvergenzverhalen

Mehr

Prüfung zum Fach Regelungstechnik für Studierende Lehramt an beruflichen Schulen (Diplom/Bachelor)

Prüfung zum Fach Regelungstechnik für Studierende Lehramt an beruflichen Schulen (Diplom/Bachelor) Technische Universiä München Lehrsuhl für Regelungsechnik Prof. Dr.-Ing. B. Lohmann Prüfung zum Fach Regelungsechnik 7.9. für Sudierende Lehram an beruflichen Schulen (Diplom/Bachelor) Name: Vorname: Mar.-Nr.

Mehr

Biegung

Biegung 2. Biegung Wie die Normalkraft resultiert auch das Biegemoment aus einer Normalspannung. Das Koordinatensystem des Balkens wird so gewählt, dass die Flächenschwerpunkte der Querschnitte auf der x-achse

Mehr

Investitionsrechnung in der öffentlichen Verwaltung

Investitionsrechnung in der öffentlichen Verwaltung GablerPLUS Zusazinformaionen zu Medien des Gabler Verlags Invesiionsrechnung in der öffenlichen Verwalung Rechenmehoden zur prakischen Bewerung von Invesiionsvorhaben 2011 1. Auflage Kapiel 3 Saische und

Mehr

Statische und dynamische Analyse eines Schildersystems. Esslingen

Statische und dynamische Analyse eines Schildersystems. Esslingen Statische und dynamische Analyse eines Schildersystems für Gebrüder Hohl GmbH Esslingen Dipl.-Ing. Torsten Wehner Lerchenstraße 23 72649 Wolfschlugen wehner@zinsmath.de 3. Dezember 2002 Inhaltsverzeichnis

Mehr

tgt HP 2010/11-1: Flugzeug

tgt HP 2010/11-1: Flugzeug tgt HP 010/11-1: Flugzeug Teilaufgaben: 1 Von dem abgebildeten Kleinflugzeug sind folgende Daten bekannt: Daten: Masse des Motors m1 90,kg Masse des Flugzeugs m 40,kg l1 1350,mm l 150,mm l3 3300,mm l4

Mehr

Drehmomentwellenberechnung Jan 2009

Drehmomentwellenberechnung Jan 2009 Drehmomenwellenberechnung Jn 009.) Berechnung der mpfindlichkei von Torsionsmesssellen Die mi der Torsion einer Welle gesezmäßig verbundenen Dehnungen uf der Wellenoberfläche lssen sich mi Dehnungsmesssreifen

Mehr

Zeitreihenökonometrie

Zeitreihenökonometrie Zeireihenökonomerie Kapiel 4 Schäzung univariaer Zeireihenmodelle Y = c+ α Y + + α Y + ε + βε + + β ε p p q q Problem: Direke Schäzung der Parameer α,, αp und β,, βq über OLS nich möglich, da die Residuen

Mehr

5 Festigkeitslehre. Inneres Kräftesystem und Beanspruchungsarten

5 Festigkeitslehre. Inneres Kräftesystem und Beanspruchungsarten 116 5 Festigkeitslehre Inneres Kräftesystem und Beanspruchungsarten 651 Ein Drehmeißel ist nach Skizze eingespannt und durch die Schnittkraft F s = 12 kn belastet. Die Abmessungen betragen l = 40 mm, b

Mehr

Ganzrationale Funktionenscharen. 4. Grades. Umfangreiche Aufgaben. Lösungen ohne CAS und GTR. Alle Methoden ganz ausführlich. Datei Nr.

Ganzrationale Funktionenscharen. 4. Grades. Umfangreiche Aufgaben. Lösungen ohne CAS und GTR. Alle Methoden ganz ausführlich. Datei Nr. Ganzraionale Funkionenscharen. Grades Umfangreiche Aufgaben Lösungen ohne CAS und GTR Alle Mehoden ganz ausführlich Daei Nr. 7 Sand 3. Sepember 06 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

INPUT-EVALUATION DER ZHW: PHYSIK SEITE 1. Serie 1

INPUT-EVALUATION DER ZHW: PHYSIK SEITE 1. Serie 1 INPUT-EVALUATIN DER ZHW: PHYSIK SEITE 1 Serie 1 1. Zwei Personen ziehen mi je 500 N an den Enden eines Seils. Das Seil ha eine Reissfesigkei von 600 N. Welche der vier folgenden Aussagen is physikalisch

Mehr

tgt HP 2004/05-1: Traktor

tgt HP 2004/05-1: Traktor tgt HP 200/05-1: Traktor Ein Traktor mit Seilwinde und Stützschild wird zur Holzernte eingesetzt. Daten l 1 600 mm F G1 16 kn l 2 1000 mm F G2 kn l 3 1600 mm l 1300 mm l 5 800 mm Teilaufgaben: 1 Ermitteln

Mehr

7.3. Partielle Ableitungen und Richtungsableitungen

7.3. Partielle Ableitungen und Richtungsableitungen 7.3. Parielle Ableiungen und Richungsableiungen Generell vorgegeben sei eine Funkion f von einer Teilmenge A der Ebene R oder allgemeiner des n-dimensionalen Raumes R n nach R. Für x [x 1,..., x n ] aus

Mehr

3.2 Festlegung der relevanten Brandszenarien

3.2 Festlegung der relevanten Brandszenarien B Anwendungsbeispiel Berechnungen Seie 70.2 Feslegung der relevanen Brandszenarien Eine der wichigsen Aufgaben beim Nachweis miels der Ingenieurmehoden im Brandschuz is die Auswahl und Definiion der relevanen

Mehr

TECHNISCHE MECHANIK. Übungen zur Elastostatik. Prof. Dr.-Ing. Andreas Ettemeyer Prof. Dr.-Ing. Oskar Wallrapp Dr. Bernd Schäfer

TECHNISCHE MECHANIK. Übungen zur Elastostatik. Prof. Dr.-Ing. Andreas Ettemeyer Prof. Dr.-Ing. Oskar Wallrapp Dr. Bernd Schäfer TECHNISCHE MECHANIK Übungen zur Elastostatik Prof. Dr.-Ing. Andreas Ettemeyer Prof. Dr.-Ing. Oskar Wallrapp Dr. Bernd Schäfer Fachhochschule München Fachbereich 06 - Feinwerk- und Mikrotechnik Technische

Mehr

Vorbesprechung zur Übung 2

Vorbesprechung zur Übung 2 WS 09/10 Vorbesrechung zur Übung 2 Berechnung von Verbindungselementen Teil 1, am 08.12.09 (MB) / 16.12.09 (LB): 1. Allgemeiner Teil, Einführung zu Verbindungselementen Poweroint- Präsentation Überblick/Inhalt:

Mehr

Analysis: Ganzrationale Funktionen Analysis Ganzrationale Funktionen Differenzialrechnung, Extrem- und Wendepunkte

Analysis: Ganzrationale Funktionen Analysis Ganzrationale Funktionen Differenzialrechnung, Extrem- und Wendepunkte www.mahe-aufgaben.com Analysis: Ganzraionale Funkionen Analysis Ganzraionale Funkionen Differenzialrechnung, Exrem- und Wendepunke Gymnasium Klasse 0 Alexander Schwarz www.mahe-aufgaben.com Juni 0 www.mahe-aufgaben.com

Mehr

Maschinenelementebeleg SS 2005 "Getriebe"-Berechnungen

Maschinenelementebeleg SS 2005 Getriebe-Berechnungen Maschinenelementebeleg SS 005 "Getriebe"-Berechnungen berechnet und erstellt von KCalive Gruppe: A - F, Ä www.bombentrichter.de (ehem. mw.rb-x.de) Gliederung. Profilverschiebung. Zahnradgeometrien 3. Passfederlänge

Mehr

Lehrstuhl für Maschinenelemente Prof. Dr.-Ing. B.-R. Höhn WS 2009/2010

Lehrstuhl für Maschinenelemente Prof. Dr.-Ing. B.-R. Höhn WS 2009/2010 Lehrstuhl für Maschinenelemente TU München Prof. Dr.-Ing. B.-R. Höhn WS 2009/2010 Übung 1b: Festigkeitsrechnung Nachrechnung einer Getriebewelle Bild 1: Schematische Getriebedarstellung Bild 1 zeigt das

Mehr

Berechnungen am Wankelmotor

Berechnungen am Wankelmotor HTL Saalfelen Wankelmoor Seie von 7 Schmihuber Heinrich heinrich_schmihuber@homail.com Berechnungen am Wankelmoor Link zur Beispielsübersich Mahemaische / Fachliche Inhale in Sichworen: Linieninegral,

Mehr

SIT-LOCK 6 - selbst zentrierend

SIT-LOCK 6 - selbst zentrierend 6 - selbst zentrierend Spannsatz mit einfachem Konus, einsetzbar für mittlere Drehmomente. Selbst zentrierend mit guter Konzentrizität. Eine geringfügige axiale Verschiebung der Nabe ist bei der Montage

Mehr

Grundlagen zur Berechung der Durchbiegung

Grundlagen zur Berechung der Durchbiegung Tel +41 41 494 94 94 decorative Holzwerkstoffe Fax +41 41 494 94 49 Willisauerstrasse 37 www.kronospan.com info@kronospan.ch Grundlagen zur Berechung der Durchbiegung Inhaltsverzeichnis 1. Vorbemessung

Mehr

um (x + X) 4 auszurechnen verwenden wir den Binomischen Lehrsatz (a+b) n = a n + ( n 1 )a n-1* b 1 + + b n ( n k ) = in Gleichung einsetzen

um (x + X) 4 auszurechnen verwenden wir den Binomischen Lehrsatz (a+b) n = a n + ( n 1 )a n-1* b 1 + + b n ( n k ) = in Gleichung einsetzen Mahemaik I Übungsaufgaben 8 Lösungsorschläge on T. Meyer Era-Mahemaik-Übung: 005--06 Aufgabe Berechnen Sie die Ableiung der Funkion f an einer beliebigen Selle 0 ohne Verwendung irgendwelcher Vorkennnisse

Mehr

Lösung Abiturprüfung 2000 Grundkurs (Baden-Württemberg)

Lösung Abiturprüfung 2000 Grundkurs (Baden-Württemberg) Lösung Abiurprüfung 2 Grundkurs (Baden-Würemberg) Analysis, Aufgabe I.1. a) ( x) = 1 [( x)3 9 ( x)]= 1 ( x3 + 9x)= 1 ( x3 9x) = ( x) Somi is (x ) punksymmerisch zum Ursprung. ( x) = 1 (x3 9x)= x(x 2 9)=

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies is ein abgegebener Übungszeel aus dem Modul physik311. Dieser Übungszeel wurde nih korrigier. Es handel sih lediglih um meine Abgabe und keine Muserlösung. Alle Übungszeel zu diesem Modul

Mehr

1.1. Grundbegriffe zur Mechanik

1.1. Grundbegriffe zur Mechanik ... Die geradlinig gleichförmige Bewegung.. Grundbegriffe zur Mechanik Ein Körper beweg sich geradlinig und gleichförmig enlang der -Achse, wenn seine Geschwindigkei (eloci) 0 konsan bleib. Srecke Zeiabschni

Mehr

Rheinische Fachhochschule Köln

Rheinische Fachhochschule Köln Rheinische Fachhochschule Köln Matrikel-Nr. Nachname Dozent Ianniello e-mail: Semester Klausur Datum Fach Urteil BM K8 März 4 Kinetik+Kinematik Genehmigte Hilfsmittel: Ergebnis: Punkte Taschenrechner Literatur

Mehr

tgt HP 1982/83-2: Getriebewelle

tgt HP 1982/83-2: Getriebewelle tgt HP 198/83-: Getriebewelle Die Getriebewelle wird über das Zahnrad 3 mit einem Drehmoment M d 70 Nm angetrieben; über das Zahnrad werden 70% dieses Drehmoments abgeleitet. Die Welle ist in den Lagern

Mehr

Aufgabensammlung Teil 2: Funktionen mit Parametern Funktionenscharen. Aufgaben im Abiturstil

Aufgabensammlung Teil 2: Funktionen mit Parametern Funktionenscharen. Aufgaben im Abiturstil ANALYSIS Gebrochen raionale Funkionen Aufgabensammlung Teil : Funkionen mi Parameern Funkionenscharen Aufgaben im Abiursil Die Lösungen aller verwendeen Abiuraufgaben sammen von mir Neu eingerichee Sammlung

Mehr

1. Mathematische Grundlagen und Grundkenntnisse

1. Mathematische Grundlagen und Grundkenntnisse 8 1. Mahemaische Grundlagen und Grundkennnisse Aufgabe 7: Gegeben sind: K = 1; = 18; p = 1 (p.a.). Berechnen Sie die Zinsen z. 18 1 Lösung: z = 1 = 5 36 Man beache, dass die kaufmännische Zinsformel als

Mehr

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild:

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild: Ein Nezgerä, auch Nezeil genann, is eine elekronische Schalungen die die Wechselspannung aus dem Sromnez (230V~) in eine Gleichspannung umwandeln kann. Ein Nezgerä sez sich meisens aus folgenden Komponenen

Mehr

Stammgruppe trifft sich zum Museumsrundgang Experte erklärt jeweils sein Plakat

Stammgruppe trifft sich zum Museumsrundgang Experte erklärt jeweils sein Plakat Fachag Mahemaik: Kurvenscharen Ablauf: 1. Sunde Gemeinsame Einsiegsaufgabe. Sunde Sammgruppenaufgaben Sammgruppen (a bis 6 Schüler) Jedes Gruppenmiglied erhäl eine unerschiedliche Aufgabe A, B, C, D in

Mehr

Herbst 2010 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik II für Maschinenbau. Musterlösungen (ohne Gewähr)

Herbst 2010 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik II für Maschinenbau. Musterlösungen (ohne Gewähr) Seite 1/14 rage 1 ( 2 Punkte) Ein Stab mit kreisförmiger Querschnittsfläche wird mit der Druckspannung σ 0 belastet. Der Radius des Stabes ist veränderlich und wird durch r() beschrieben. 0 r () Draufsicht:

Mehr

Abiurprüfung Mahemaik 013 Baden-Würemberg (ohne CAS) Wahleil - Aufgaben Analysis A 1 Aufgabe A 1.1 Der Querschni eines 50 Meer langen Bergsollens wird beschrieben durch die x-achse und den Graphen der

Mehr

3.4 Systeme linearer Differentialgleichungen

3.4 Systeme linearer Differentialgleichungen 58 Kapiel 3 Invarianen linearer Transformaionen 34 Syseme linearer Differenialgleichungen Die Unersuchung der Normalformen von Marizen soll nun auf die Lösung von Differenialgleichungssysemen angewende

Mehr