Mathematik. Vorlesung im Bachelor-Studiengang Business Administration (Modul BWL 1A) an der FH Düsseldorf im Wintersemester 2008/09

Größe: px
Ab Seite anzeigen:

Download "Mathematik. Vorlesung im Bachelor-Studiengang Business Administration (Modul BWL 1A) an der FH Düsseldorf im Wintersemester 2008/09"

Transkript

1 Mathematik Vorlesug im Bachelor-Studiegag Busiess Admiistratio (Modul BWL A) a der FH Düsseldorf im Witersemester 2008/09 Dozet: Dr. Christia Kölle Teil I Fiazmathematik, Lieare Algebra, Lieare Optimierug (Äderuge vorbehalte) Stad:

2 Gliederug (). Fiazmathematik.. Folge ud Reihe.2. Abschreibuge.3. Zis- ud Ziseszisrechug.4. Reterechug.5. Tilgugsrechug.6. Ivestitiosrechug 2

3 Gliederug (2) 2. Lieare Algebra 2.. Matrixbegriffe 2.2. Matrizeoperatioe 2.3. Lieare Gleichugssysteme 3. Lieare Optimierug 3.. Formulierug eies lieare Programms 3.2. Graphische Lösugsmethode 3.3. Simplex-Verfahre 3

4 Literaturhiweise Grudlage der Verastaltug ist: Wirtschaftsmathematik, Peters, H., 2. Aufl., Als Ergäzuge werde empfohle: Akkerboom, H.; Peters, H.: Wirtschaftsmathematik Übugsbuch, Schwarze, J.: Math. für Wirtschaftswiss. Bd., Grudlage, 2. Aufl., Schwarze, J.: Math. für Wirtschaftswiss. Bd. 3, Lieare Algebra, Lieare Optimierug ud Graphetheorie, 2. Aufl.,

5 . Fiazmathematik - Lerziele Prizip der arithmetische ud geometrische Folge ud Reihe beherrsche, Abschreibuge als Awedug vo Folge ud Reihe verstehe, Fragestelluge der Zis- ud Ziseszisrechug bearbeite, Berechug vo Effektivzissätze verstehe, Reterechug, isbesodere Reteed- ud barwerte, sowohl auf jährlicher als auch uterjähriger Basis, beherrsche, wichtigste Tilgugsforme kee ud i der Lage sei, eie Tilgugspla aufzustelle, wichtigste Kezahle der dyamische Ivestitiosrechug azuwede ud ökoomisch zu iterpretiere 5

6 .. Folge ud Reihe Def.: (Zahle-)Folge, durch die jeder atürliche Zahl eie reele Zahl zugeordet wird: A {,2,3,., } lr falls A edlich > edliche Folge falls A uedlich > uedliche Folge Folgeelemet a t (t,2,3, ) 6

7 ... Arithmetische Folge () Def.: Folge, bei der die Differez (d) zweier beachbarter Folgeelemete kostat ist: a t a d t Bsp.: Umsatzplaug der ächste 5 Jahre: Jahr Szeario Folgeelemet a a 2 a 3 a 4 a 5 Plazahle weise eie Umsatzdifferez vo EUR 6 Mio. p. a. auf. 7

8 ... Arithmetische Folge (2) Ableitug der Gesetzmäßigkeit durch Rekursio ( Rückführug ) jedes Folgeelemetes a t auf das Afagselemet a : a 2 a a d 8 a a 2d 4 a a 3d 20 a t a t- d a (t-)d für alle t ud t ln ( allgemeies Bildugsgesetz für arithmetische Folge bei gegebeem Afagselemet a ud kostatem Abstad d) 8

9 ..2. Arithmetische Reihe () Def. Reihe: Summe der Folgeelemete; sofer es sich um eie arithmetische Folge hadelt, spricht ma vo eier arithmetische Reihe: at t falls a t eie arithmetische Folge: s s t [ a ( t ) d] a d t t t t d a X d 9

10 ..2. Arithmetische Reihe (2) s t [ a ( t ) d] a d t t t t d a X d X ( 2 ) ( Gaußscher Trick ) s d ( 2 ) (a d) ( allgemeies Bildugsgesetz für arithmetische Reihe) 0

11 ..2. Arithmetische Reihe (3) Bsp.: Erwartete Gesamtumsatz der erste 5 Jahre: s s d ( 2 ) (a d) 5 (5 ) s56 (2 6)

12 ..3. Geometrische Folge () Def.: Folge, bei der Quotiet (q) zweier beachbarter Folgeelemete kostat ist: g t g t q Bsp.: Umsatzplaug der ächste 5 Jahre: Jahr Szeario Folgeelemet g g 2 g 3 g 4 g 5 Plazahle weise jedes Jahr eie Umsatzverdoppelug auf. 2

13 ..3. Geometrische Folge (2) Ableitug der Gesetzmäßigkeit durch Rekursio ( Rückführug ) jedes Folgeelemetes g t auf das Afagselemet g : g 2 g g 2 g g 2 2 g 2 2 g g 3 2 g 2 3 g t g q t- für alle t ud t ln ( allgemeies Bildugsgesetz für geometrische Folge bei gegebeem Afagselemet g ud kostatem Quotiete q) 3

14 ..3. Geometrische Folge (3) - Beispiele g t g q t- erwarteter Umsatz im Jahr 5: g geometrische Folge 00; 20; 44; 72,8; hat Quotiete q,2; gesucht ist das 7. Folgeelemet: g 7 00, ,84 geometrische Folge 00; 50; 25; 2,5; hat Quotiete q 0,5; gesucht ist das. Folgeelemet: g 00 0,5-0,

15 FiMa, Lieare Algebra Witersemester 2008/ Geometrische Reihe () q 0, q q q g > s Y ( allgemeies Bildugsgesetz für geometrische Reihe) q q q q... q q q 2 0 Y 2 t q g q g g t t t t t s Def.: Summe der Folgeelemete der geometrische Folge ( Gaußscher Trick )

16 ..4. Geometrische Reihe (2) - Beispiele q g q > 0, q q erwarteter Umsatz der erste 5 Jahre: s s Agestellter hat ei aktuelles Jahreseikomme (t 0; g ) vo EUR Wie hoch wird sei Eikomme i 0 Jahre (t 0; g ) sei, we er mit eier jährliche Steigerugsrate vo 5 % rechet? s, , ,36 6

17 ..4. Geometrische Reihe (3) Kovergez/Divergez Was passiert, we die Azahl der Folgeelemet eier geometrische Reihe sehr groß werde ( uedliche geometrische Reihe )? falls q > > Summe der Folgeelemete wird beliebig groß ( divergiert ) falls 0 < q < > Summe der Folgeelemete ähert sich eiem edliche Grezwert ( kovergiert ) 7

18 ..4. Geometrische Reihe (4) Grezwertbetrachtug Gesucht wird q lim s s lim g g lim q q q Für 0 < q < wird q für sehr große Werte vo beliebig klei, d. h. geht gege 0; im Ergebis bleibt stehe, so daß die uedliche geometrische Reihe eie edliche Grezwert hat. g q Bsp.: geometrische Folge 00; 50; 25; 2,5;, mit 0 < q 0,5 < ; g q 0,5 s 8

19 .2. Abschreibuge () Frage: Eie Maschie hat eie Kaufpreis vo EUR ud eie voraussichtliche Nutzugsdauer vo 0 Jahre. I welchem Zeitraum wird der mit der Nutzug der Maschie verbudee Aufwad ( Werteverzehr) i der Gewi- ud Verlustrechug ( GuV ) erfaßt: Alles im Jahr der Aschaffug oder verteilt über die 0 Jahre Nutzugsdauer oder och aders? Atwort: Der mit der Nutzug vo Wirtschaftsgüter verbudee Werteverzehr spiegelt sich als (plamäßige) Abschreibug über die erwartete Nutzugsdauer (Absetzug für Abutzug, AfA) i der GuV wieder. I der Bilaz des Uterehmes wird jeweils der Restbuchwert ausgewiese. 9

20 .2. Abschreibuge (2) Die Abschreibugsmethode hägt vom jeweilige Wirtschaftsgut ab: Grudstücke werde grudsätzlich icht abgeschriebe, da mit ihrer Nutzug kei Werteverzehr verbude ist, Gebäude im Betriebsvermöge werde liear ( gleichmäßig über die Nutzugsdauer) abgeschriebe, bewegliche Wirtschaftsgüter des Alagevermöges köe i D seit 2008 ur och liear (vorher auch degressiv fallede Rate über die Nutzugsdauer) abgeschriebe werde, Soderregeluge bestehe für Wirtschaftsgüter, die erhebliche Leistugsschwakuge uterliege, bspw. Taxe. 20

21 .2.. Lieare ud geometrisch degressive Abschreibug Abkürzuge: betriebsgewöhliche Nutzugsdauer t Zeitpukt (t,,) c Jährlicher Abschreibugssatz K 0 K t Aschaffugs- oder Herstellkoste Buchwert ach t Jahre K Buchwert am Ede der Abschreibugsdauer (0 oder Schrottwert) a (a t ) Abschreibugsbetrag (zum Zeitpukt t) 2

22 .2.. Lieare Abschreibug Bsp.: Uterehmer kauft Maschie mit Aschaffugskoste vo EUR ud eier betriebsgewöhliche Nutzugsdauer ( Abschreibugszeitraum) vo 8 Jahre: Lieare Abschreibugsmethode: Wert zu Abschreibug Restbuchwert Jahr Jahresbegi im Jahr

23 .2.2. Geometrisch-degressive Abschreibug () Geometrisch-degressive Abschreibugsmethode (20 % vom Restbuchwert p. a.): Jahr Wert zu Jahresbegi Abschreibug im Jahr Restbuchwert

24 .2.2. Geometrisch-degressive Abschreibug (2) Geometrisch-degressive Abschreibugsmethode (20 % p. a. vom Restbuchwert): Jahr Wert zu Jahresbegi Abschreibug im Jahr Restbuchwert K 0 K 0 c K 0 - K 0 c K 0 (-c) 2 K 0 (-c) K 0 (-c) c K 0 (-c) - K 0 (-c) c K 0 (-c) 2 3 K 0 (-c) 2 K 0 (-c) 2 c K 0 (-c) 3 t K 0 (-c) t- K 0 (-c) t- c K 0 (-c) t 24

25 .2.2. Geometrisch-degressive Abschreibug (3) Geometrisch-degressive Abschreibug ist eie geometrische Folge, mit Abschreibugsbetrag im Jahre t: a K t 0 (-c)t- c Restbuchwert ach t Jahre: K t K 0 (-c) t Bsp.: c 0,2; K 0 EUR ; Frage: AfA im 5. Jahr ud Restbuchwert? a (-0,2)5-0, K (-0,2)

26 .2.3. Geometrisch-degressive ud lieare Abschreibug Da die geometrisch-degressive Abschreibug icht ach Ablauf der betriebsgewöhliche Nutzugsdauer zur Vollabschreibug führt, erfolgt i der Praxis die Kombiatio der beide Methode. Der Wechsel erfolgt i dem Jahr, i dem die lieare AfA erstmals über der geometrisch-degressive liegt. Jahr Wert zu Jahresbegi lieare AfA geo-degr. AfA Restbuchwert AfA- Methode geo-degr geo-degr geo-degr liear liear liear liear liear 26

27 .3.. Lieare Verzisug () Frage: Sparer eröffet am 25. April ei mit,5 % p. a. verzistes Sparbuch, auf das er sofort EUR.000 eizahlt. Weitere Ei-/Auszahluge erfolge icht. Wie hoch ist das Guthabe am 3. Dezember? Atwort: Der Alagezeitraum beträgt 245 Tage (dt. Zismethode 360 Tage p. a. ud 30 Tage p. M.): Zise:, , Guthabe am 3. Dezember: EUR.000 EUR 0,2 EUR.00,2. 27

28 .3.. Lieare Verzisug (2) Abkürzuge: K 0 T Afagsbestad des Kapitals Verzisugsdauer i Tage p Zisfuß (z. B. p,5 EUR,5 Zise auf EUR 00 Kapital) p i 00 Zissatz, bezoge auf EUR (z. B. 0,05,5 Cet auf EUR ) Z T Ziszahlug/-belastug für T Tage K T Edbestad ach T Tage (Afagskapital Ziszahlug) 28

29 .3.. Lieare Verzisug (3) Z T K 0 p 00 T 360 K 0 i T 360 ud K T K 0 Z T K 0 ( i T 360 ) Bsp. :K ( 0, ).00,

30 .3.. Lieare Verzisug (4) Frage: Wie wird ei laufedes Koto ( Girokoto ) abgerechet (quartalsweise Abrechug, dt. Zismethode, % p. a. für Guthabe)? Bsp.: Kotostad: : EUR Habe Beweguge: : EUR :./. EUR : EUR.000 Asatz: Aufteilug des Quartals i Zeititervalle, dere Summe 90 Tage ergibt. 30

31 .3.. Lieare Verzisug (5) Z , , , , ,0 360 ( ) 0, ,50 Ziszahle ( Bestad x Tage) 3

32 .3.. Lieare Verzisug (6) Text Valuta Soll Habe Saldo Tage T Ziszahle Vortrag Eizahlug Auszahlug Eizahlug Abschluß Σ 90 Σ Z 0, ,

33 .3.. Lieare Verzisug (7) Frage: Kude erhält folgede Rechug über EUR 0.000: zahlbar ierhalb vo 7 Tage abzüglich 3 % Skoto oder Zahlug ierhalb vo 2 Tage etto. Für welche Zahlugsform soll er sich etscheide? Atwort: Kude zahlt etweder EUR i 7 Tage oder EUR Tage später. Aders formuliert: Der Lieferat gewährt dem Kude eie Kredit vo EUR für eie Laufzeit vo 4 Tage, für de EUR 300 Zise fällig werde. Etscheidug hägt vom äquivalete Jahreszis ĩ ab: Z i i 0, ,53 %

34 .3.. Lieare Verzisug (7) Frage: Sparer zahlt auf Sparvertrag (Verzisug 2,5 % p. a.) jeweils zum Moatsede EUR 00 (r) ei. Das Guthabe betrug am Vorjahres-ede EUR Wie hoch ist das Guthabe am 3. Dezember? t Rate r Guthabe Zistage Zise x ( /2) x ( /2) 0,025/2 ( x 00) x ( /2) 0,025/2 (5.000 x 00) x ( /2) 0,025/2 ( x 00) x ( /2) 0,025/2 ( x 00) x ( /2) 0,025/2 ( x 00) Σ Z2 34

35 .3.. Lieare Verzisug (8) Z 2 0,025 2 [ ( ) ] (arith. Reihe mit a, d, ) 0, , (*) K Z , , ( 0,025 ) , , ,75 35

36 .3.. Lieare Verzisug (9) Allgemeie Formulierug für regelmäßige Zahluge K 0 Afagsbestad des Kapitals (im Bsp. EUR 5.000) m Azahl der Periode (im Bsp. 2 Moate) R regelmäßige Rate (im Bsp. EUR 00) i Zissatz als Dezimalzahl (im Bsp. 0,025) Z m K m Zise ach m Periode Kapital ach m Periode 36

37 FiMa, Lieare Algebra Witersemester 2008/ Lieare Verzisug (0) (aufgeziste Rate) (aufgezistes Afagskapital) ( ) Zahlug achsch. Edbestad bei 2m m i K K 2m m r m K i r m K Z r m K K achschüssige Zahluge für 2m m r m K i wird zu : Z * M m m m i m r

38 .3.. Lieare Verzisug () (*) wird zu : Z M m i K0 m r 2m für vorschüssige Zahluge K m K 0 i m m r i 2m Edbestad bei vorsch. Zahlug (aufgezistes Afagskapital) (aufgeziste Rate) 38

39 .3.2. Ziseszisrechug () Frage: Sparer legt für 4 Jahre EUR.000 zu 5 % p. a. a. Wie hoch ist das Guthabe ach 4 Jahre? K K x 0, x ( 0,05) K 0 x ( 0,05).050 K 2 K K x 0,05 K x,05 K 0 x ( 0,05) 2.02,50 K 3 K 2 K 2 x 0,05 K 2 x,05 K 0 x ( 0,05) 3.57,63 K 4 K 3 K 3 x 0,05 K 3 x,05 K 0 x ( 0,05) 4.25,5 K 4.25, ,5 (Afagskapital) (Zise) (Ziseszise) 39

40 .3.2. Ziseszisrechug (2) Allgemeie Formulierug für de Ziseszis K 0 Afagsbestad des Kapitals (im Bsp. EUR.000) Azahl der Periode (im Bsp. 4 Jahre) i Zissatz als Dezimalzahl (im Bsp. 0,05) q Zisfaktor ( i) K Edkapital ach Periode Formel für Edkapital bei jährlicher Aufzisug: K K 0 x (i) m K 0 x q m 40

Prof. Dr. Günter Hellmig. Klausurenskript Finanzmathematik

Prof. Dr. Günter Hellmig. Klausurenskript Finanzmathematik Prof. Dr. Güter Hellig lausureskript Fiazatheatik Ihalt: lausur vo WS 9/. Eifache Zise: Vorschüssigkeit ud Nachschüssigkeit. Reterechug: Reteedwert ud Retebarwert 3. Tilgugsrechug: Tilgugspla bei Ratetilgug

Mehr

Unendliche Folge Eine Folge heißt unendlich, wenn die Anzahl der Glieder unbegrenzt ist.

Unendliche Folge Eine Folge heißt unendlich, wenn die Anzahl der Glieder unbegrenzt ist. . Folge ud Reihe.... Folge..... Grudlage.....2 Arithmetische Folge... 2..3 Geometrische Folge... 2.2 Reihe... 2.2. Grudlage... 2.2.2 Arithmetische Reihe... 2.2.3 Geometrische Reihe... 3.3 Eiige spezielle

Mehr

Prof. Dr. Günter Hellmig. Aufgabenskript Finanzmathematik

Prof. Dr. Günter Hellmig. Aufgabenskript Finanzmathematik Prof. Dr. Güter Hellmig Aufgabeskript Fiazmathematik Ihalt: Aufgabe -: Eifache achschüssige Zise Aufgabe : Eifache vorschüssige Zise Aufgabe 4-5: Ziseszise bei Zisasammlug Aufgabe 6-: Ziseszise bei Zisauszahlug

Mehr

1.1 Berechnung des Endwerts einer Einmalanlage bei linearer ganzjähriger Verzinsung nach n Verzinsungsjahren

1.1 Berechnung des Endwerts einer Einmalanlage bei linearer ganzjähriger Verzinsung nach n Verzinsungsjahren Forelsalug zur Fiazatheatik 1. Eifache Zisrechug (lieare Verzisug) 1.1 Berechug des Edwerts eier Eialalage bei liearer gazjähriger Verzisug ach Verzisugsjahre p = 1 + = ( 1+ i ) 1 1.2 Berechug des Gegewartswerts

Mehr

Finanzmathematische Formeln und Tabellen

Finanzmathematische Formeln und Tabellen Jui 2008 Dipl.-Betriebswirt Riccardo Fischer Fiazmathematische Formel ud Tabelle Arbeitshilfe für Ausbildug, Studium ud Prüfug im Fach Fiaz- ud Ivestitiosrechug Dieses Werk, eischließlich aller seier Teile,

Mehr

3. Tilgungsrechnung. 3.1. Tilgungsarten

3. Tilgungsrechnung. 3.1. Tilgungsarten schreier@math.tu-freiberg.de 03731) 39 2261 3. Tilgugsrechug Die Tilgugsrechug beschäftigt sich mit der Rückzahlug vo Kredite, Darlehe ud Hypotheke. Dabei erwartet der Gläubiger, daß der Schulder seie

Mehr

Mathematik für Wirtschaftswissenschaftler Beispiele, Graken, Beweise. c Uwe Jensen

Mathematik für Wirtschaftswissenschaftler Beispiele, Graken, Beweise. c Uwe Jensen Mathematik für Wirtschaftswisseschaftler Beispiele, Grake, Beweise c Uwe Jese 8. Oktober 2007 Ihaltsverzeichis 4 Folge, Reihe, Grezwerte, Stetigkeit 47 4. Folge ud Reihe............................ 47

Mehr

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v Tao De / Pa JiaWei Ihrig/Pflaumer Fiazmathematik Oldeburg Verlag 1999 1..Ei Darlehe vo. DM soll moatlich mit 1% verzist ud i Jahre durch kostate Auitäte getilgt werde. Wie hoch sid a) die Moatsrate? b)

Mehr

Lerneinheit 2: Grundlagen der Investition und Finanzierung

Lerneinheit 2: Grundlagen der Investition und Finanzierung Lereiheit 2: Grudlage der Ivestitio ud Fiazierug 1 Abgrezug zu de statische Verfahre Durchschittsbetrachtug wird aufgegebe Zeitpukt der Zahlugsmittelbewegug explizit berücksichtigt exakte Erfassug der

Mehr

WS 2000/2001. zeitanteiliger nomineller Jahreszinssatz für eine unterjährige Verzinsungsperiode bei einfachen Zinsen

WS 2000/2001. zeitanteiliger nomineller Jahreszinssatz für eine unterjährige Verzinsungsperiode bei einfachen Zinsen Aufgabe 1: WS 2000/2001 Aufgabe 1: (4 P (4 Pukte) Gebe Sie die Formel zur Bestimmug des relative sowie des koforme Zissatzes a ud erläuter Sie die Uterschiede bzw. Gemeisamkeite der beide Zisfüße. Lösug:

Mehr

Finanzmathematik für HAK

Finanzmathematik für HAK Fiazmathematik für HAK Dr.Mafred Gurter 2008. Kapitalverzisug bei der Bak mit lieare (eifache) Zise währed des Jahres Beispiel : Ei Kapital vo 3000 wird mit 5% für 250 Tage verzist. Wie viel bekommt ma

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Studiegag Betriebswirtschaft Fach Wirtschaftsmathematik Art der Leistug Studieleistug Klausur-Kz. BW-WMT-S1 040508 Datum 08.05.004 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich: Verwede

Mehr

Finanzwirtschaftliche Formeln

Finanzwirtschaftliche Formeln Bueffelcoach Olie Service Bilazbuchhalter Übersichte Fiazwirtschaft Fiazwirtschaftliche Formel AuF Aufzisugsfaktor ( 1+ i) Zist eie heutige Wert mit Zis ud Ziseszis für Jahre auf, hilft also bei der Frage,

Mehr

FINANZMATHEMATIK. 1. Zinsen und Zinseszinsen. Finanzmathematik 81

FINANZMATHEMATIK. 1. Zinsen und Zinseszinsen. Finanzmathematik 81 Fiazmathematik 8 FINANZMATHEMATIK. Zise ud Ziseszise Die Zise als Preis für die Zurverfügugstellug vo Geld bilde das zetrale Elemet i der Fiazmathematik. Hierbei sid verschiedee Arte der Verzisug zu uterscheide.

Mehr

Bewertung von Anleihen

Bewertung von Anleihen Bewertug vo Aleihe Arithmetik der Aleihebewertug: Überblick Zerobods ud Koupoaleihe Ziskurve: Spot Zise ud Yield to Maturity Day cout Kovetioe Replikatio ud Arbitrage Forward Zise Yield ud ex post realisierte

Mehr

Methodische Grundlagen der Kostenkalkulation

Methodische Grundlagen der Kostenkalkulation Methodische Grudlage der Kostekalkulatio Plaugsebee Gebrauchsgüter Die i der ladwirtschaftliche Produktio eigesetzte Produktiosmittel werde i Gebrauchsgüter ud Verbrauchsgüter uterteilt. Zu de Gebrauchsgüter

Mehr

1. Ein Kapital von 5000 ist zu 6,5% und ein Kapital von 4500 zu 7% auf 12 Jahre angelegt. Wie groß ist der Unterschied der Endkapitalien?

1. Ein Kapital von 5000 ist zu 6,5% und ein Kapital von 4500 zu 7% auf 12 Jahre angelegt. Wie groß ist der Unterschied der Endkapitalien? Fiazmathematik Aufgabesammlug. Ei Kapital vo 5000 ist zu 6,5% ud ei Kapital vo 4500 zu 7% auf 2 Jahre agelegt. Wie groß ist der Uterschied der Edkapitalie? 2. Wa erreicht ei Kapital eie höhere Edwert,

Mehr

Prof. Dr.-Ing. Bernd Kochendörfer. Bauwirtschaft und Baubetrieb. Investitionsrechnung

Prof. Dr.-Ing. Bernd Kochendörfer. Bauwirtschaft und Baubetrieb. Investitionsrechnung ud Baubetrieb A Ivestitiosrechug ud Baubetrieb Ivestitiosbegriff Bilazorietierter Ivestitiosbegriff Umwadlug vo Geldkapital i adere Forme vo Vermöge Aktiva Passiva Zahlugsorietierter Ivestitiosbegriff

Mehr

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i D. Reterechug 1.1. Jährliche Retezahluge 1.1.1. Vorschüssige Retezahluge Ausgagspukt: Über eie edliche Zeitraum wird aus eiem Kapital (Retebarwert RBW v,i ), das ziseszislich agelegt ist, jeweils zu Begi

Mehr

Höhere Finanzmathematik. Sehr ausführliches Themenheft (d. h. mit Theorie) Aber auch mit vielen Trainingsaufgaben

Höhere Finanzmathematik. Sehr ausführliches Themenheft (d. h. mit Theorie) Aber auch mit vielen Trainingsaufgaben Expoetielles Wachstum Höhere Fiazmathematik Sehr ausführliches Themeheft (d. h. mit Theorie) Aber auch mit viele Traiigsaufgabe Es hadelt sich um eie Awedug vo Expoetialfuktioe (Wachstumsfuktioe) Datei

Mehr

Lernhilfe in Form eines ebooks

Lernhilfe in Form eines ebooks Ziseszisrechug Lerhilfe i Form eies ebooks apitel Thema Seite 1 Vorwort ud Eiführug 2 2 Theorie der Ziseszisrechug 5 3 Beispiele ud Beispielrechuge 12 4 Testaufgabe mit Lösuge 18 Zis-Ziseszis.de 212 Seite

Mehr

Planen und Organisieren von Arbeitsabläufen. Kostenrechnung

Planen und Organisieren von Arbeitsabläufen. Kostenrechnung osterechug Bei der Vorkalkulatio werde die eies Erzeugisses vor der Herstellug ermittelt. Sie ist Grudlage für ei Preisagebot. Die Nachkalkulatio wird ach der Herstellug eies Erzeugisses durchgeführt.

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

Dynamische Investitionsrechnung

Dynamische Investitionsrechnung Fiazierug (Mitschrifte aus Vorlesuge a der FH Merseburg/ Feiiger) Dyamische Ivestitiosrechug - berücksichtigt mehrere oder alle Ivestitioe eier Periode (bei statisch wird ur mit eier Periode gerechet,

Mehr

Einführung in die Investitionsrechnung

Einführung in die Investitionsrechnung Eiführug i die Ivestitiosrechug Geld ud / oder Zeit Frage: Wie viel ist mei Geld morge wert? Wie viel muss ma jährlich zahle, um i Jahre eie bestimmte Betrag gespart zu habe? Wie lage muss bei eiem gegebee

Mehr

Zahlenfolgen, Grenzwerte und Zahlenreihen

Zahlenfolgen, Grenzwerte und Zahlenreihen KAPITEL 5 Zahlefolge, Grezwerte ud Zahlereihe. Folge Defiitio 5.. Uter eier Folge reeller Zahle (oder eier reelle Zahlefolge) versteht ma eie auf N 0 erlarte reellwertige Futio, die jedem N 0 ei a R zuordet:

Mehr

Lösungen zu Kontrollfragen

Lösungen zu Kontrollfragen Lehrstuhl für Fiazwirtschaft Lösuge zu Kotrollfrage Fiazwirtschaft Prof. Dr. Thorste Poddig Fachbereich 7: Wirtschaftswisseschaft 2 Forme der Fremdfiazierug (Kapitel 6) Allgemeier Überblick 89. Ma ka die

Mehr

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung Herzlich willkomme zur der Aufgabesammlug Um sich schell ierhalb der ca. 35. Mathematikaufgabe zu orietiere, beutze Sie ubedigt das Lesezeiche Ihres Acrobat Readers: Das Ico fide Sie i der liks stehede

Mehr

Aufgabenblatt 4. A1. Definitionen. Lösungen. Zins = Rate Zinskurve = Zinsstruktur Rendite = Yield

Aufgabenblatt 4. A1. Definitionen. Lösungen. Zins = Rate Zinskurve = Zinsstruktur Rendite = Yield Augabeblatt 4 Lösuge A. Deiitioe Zis = Rate Ziskurve = Zisstruktur Redite = Yield A. Deiitioe Zerobod = Nullkupoaleihe = Zero coupo bod Aleihe, die vor Ede der Lauzeit keie Zahluge leistet ud am Ede der

Mehr

Factoring. Alternative zur Bankfinanzierung?

Factoring. Alternative zur Bankfinanzierung? Factorig Alterative zur Bakfiazierug? Beschreibug Factorig Im Factorigverfahre schließ e Uterehme ud Factor eie Vertrag, auf desse Grudlage alle kü ftige Forderuge des Uterehmes laufed gekauft werde. Zuvor

Mehr

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110 Name, Vorame Matrikel-Nr. Studiezetrum Studiegag Fach Art der Leistug Klausur-Kz. Betriebswirtschaft Wirtschaftsmathematik Studieleistug Datum 10.11.2001 BW-WMT-S12 011110 Verwede Sie ausschließlich das

Mehr

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I Uiversität des Saarlades Fakultät für Mathematik ud Iformatik Witersemester 2003/04 Prof. Dr. Joachim Weickert Dr. Marti Welk Dr. Berhard Burgeth Lösuge der Aufgabe zur Vorbereitug auf die Klausur Mathematik

Mehr

Klausur Grundlagen der Investition und Finanzierung

Klausur Grundlagen der Investition und Finanzierung Fachhochschule Bochum /Fachhochschule Müster /Fachhochschule Südwestfale (Weiterbildeder) Verbudstudiegag Techische Betriebswirtschaft Prof. Dr. Wolfgag Hufagel / Prof. Dr. Wifried Rimmele/ Fachhochschule

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Istitut für tochastik Prof. Dr. N. Bäuerle Dipl.-Math.. Urba Lösugsvorschlag 9. Übugsblatt zur Vorlesug Fiazmathematik I Aufgabe Ei euartiges Derivat) Wir sid i eiem edliche, arbitragefreie Fiazmarkt,

Mehr

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222 Korrekturrichtliie zur Studieleistug Wirtschaftsmathematik am..007 Betriebswirtschaft BB-WMT-S-07 Für die Bewertug ud Abgabe der Studieleistug sid folgede Hiweise verbidlich: Die Vergabe der Pukte ehme

Mehr

Folgen und Reihen Glege 03/01

Folgen und Reihen Glege 03/01 Folge ud Reihe Glege 03/0 I diesem Script werde folgede Theme behadelt: Folge (Eiführug)... Arithmetische Folge... Geometrische Folge...3 Mootoie...4 Kovergez...5 Grezwert...6 Schrake...7 Arithmetische

Mehr

Gliederung. Value-at-Risk

Gliederung. Value-at-Risk Value-at-Risk Dr. Richard Herra Nürberg, 4. Noveber 26 IVS-Foru Gliederug Modell Beispiel aus der betriebliche Altersversorgug Verteilug des Gesatschades Value-at-Risk ud Tail Value-at-Risk Risikobeurteilug

Mehr

Innerbetriebliche Leistungsverrechnung

Innerbetriebliche Leistungsverrechnung Ierbetriebliche Leistugsverrechug I der Kostestellerechug bzw. im Betriebsabrechugsboge (BAB ist ach der Erfassug der primäre Kostestellekoste das Ziel, die sekudäre Kostestellekoste, also die Koste der

Mehr

Unternehmensbewertung und Aktienanalyse von Karina Liebenstein & Bartholomäus Fietzek

Unternehmensbewertung und Aktienanalyse von Karina Liebenstein & Bartholomäus Fietzek Uterehmesbewertug ud Aktieaalyse vo Karia Liebestei & Bartholomäus Fietzek Uterehmesbewertug Es gibt kei allgemei verbidliches Verfahre, soder eie Vielzahl vo Methode Sie diee zur Bewertug vo Uterehme

Mehr

Mathematik der Lebensversicherung. Dr. Karsten Kroll GeneralCologne Re

Mathematik der Lebensversicherung. Dr. Karsten Kroll GeneralCologne Re atheatik der Lebesersicherug r. Karste Kroll GeeralCologe Re atheatik der Lebesersicherug atheatische Grudasätze iskotiuierliche ethode: Sätliche Leistuge erfolge zu bestite Zeitpukte ie Zeititeralle dazwische

Mehr

17. Kapitel: Die Investitionsplanung

17. Kapitel: Die Investitionsplanung ABWL 17. Kapiel: Die Ivesiiosplaug 1 17. Kapiel: Die Ivesiiosplaug Leifrage des Kapiels: Welche Type vo Ivesiiosobjeke gib es? Wie läss sich die Voreilhafigkei eies Ivesiiosobjeks fesselle? Wie ka aus

Mehr

Übungsaufgaben zur Investitionsrechnung

Übungsaufgaben zur Investitionsrechnung Übugsaufgabe zur Ivestitiosrechug Übugsaufgabe (Statische Ivestitiosrechug): Ihre Uterehmug plat die Aschaffug eier eue Maschie. Zur Wahl stehe die beide Alterative A ud B. Folgede Date sid für die beide

Mehr

Die grundsätzlichen Aufgaben der Investitionsrechnung Unterschiedliche Verfahren der Investitionsrechnung

Die grundsätzlichen Aufgaben der Investitionsrechnung Unterschiedliche Verfahren der Investitionsrechnung 2 Ivestitio 2.1 Grudlage der Ivestitiosrechug Lerziele Dieses Kapitel vermittelt: Die grudsätzliche Aufgabe der Ivestitiosrechug Uterschiedliche Verfahre der Ivestitiosrechug 2.1.1 Ivestitiosbegriffe ud

Mehr

2. Diophantische Gleichungen

2. Diophantische Gleichungen 2. Diophatische Gleichuge [Teschl05, S. 91f] 2.1. Was ist eie diophatische Gleichug ud wozu braucht ma sie? Def D2-1: Eie diophatische Gleichug ist eie Polyomfuktio i x,y,z,, bei der als Lösuge ur gaze

Mehr

e) ( 4a + 8b + 9a + 18b ) : a + 2b f) 2 log (x) + 3 log (2y) 0.5 log (z)

e) ( 4a + 8b + 9a + 18b ) : a + 2b f) 2 log (x) + 3 log (2y) 0.5 log (z) Mathematik 1 Test SELBSTTEST MATHEMATIK 1. Forme Sie die folgede Terme um: a) y y y y + y : ( ) ( ) b) ( 9 ) 18 c) 5 3 3 3 d) 6 5 4 ( 7 y ) 3 4 5 ( 14 y ) e) ( 4a + 8b + 9a + 18b ) : a + b f) log () +

Mehr

Wirtschaftsingenieurwesen Wirtschaftsmathematik Prüfungsleistung WI-WMT-P12 040703. Studiengang Fach Art der Leistung Klausur-Knz. Datum 03.07.

Wirtschaftsingenieurwesen Wirtschaftsmathematik Prüfungsleistung WI-WMT-P12 040703. Studiengang Fach Art der Leistung Klausur-Knz. Datum 03.07. Studiegag Fach Art der Leistug Klausur-Kz. Wirtschaftsigeieurwese Wirtschaftsmathematik Prüfugsleistug WI-WMT-P 040703 Datum 03.07.004 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich:

Mehr

Skript Mathematik. Inhaltsverzeichnis

Skript Mathematik. Inhaltsverzeichnis Skript Mathematik Ihaltsverzeichis Folge ud Reihe.... Arithmetische Folge ud Reihe.... Geometrische Folge ud Reihe.... Aufgabe... Zis- ud Ziseszisrechug...4. Eifache Verzisug...4. Ziseszisrechug...5. Gemischte

Mehr

Kapitel 6: Quadratisches Wachstum

Kapitel 6: Quadratisches Wachstum Kapitel 6: Quadratisches Wachstum Dr. Dakwart Vogel Ui Esse WS 009/10 1 Drei Beispiele Beispiel 1 Bremsweg eies PKW Bremsweg Auto.xls Ui Esse WS 009/10 Für user Modell des Bremsweges gilt a = a + d a =

Mehr

3 Die Außenfinanzierung durch Fremdkapital (Kreditfinanzierung)

3 Die Außenfinanzierung durch Fremdkapital (Kreditfinanzierung) 3 Die Außefiazierug durch Fremdkapital (Kreditfiazierug) 3.1 Die Charakteristika ud Forme der Kreditfiazierug Aufgabe 3.1: Idealtypische Eigeschafte vo Eige- ud Fremdkapital Stelle Sie die idealtypische

Mehr

Aktueller Status hinsichtlich der angekündigten Kursgewinnsteuer

Aktueller Status hinsichtlich der angekündigten Kursgewinnsteuer ÄNDERUNGEN IM JAHR 2011 Aktueller Status hisichtlich der ageküdigte Kursgewisteuer Abei möchte wir Sie über wesetliche Ihalte aus der Regierugsvorlage Budgetbegleitgesetz 2011-2014 vom 30.11.2010 zur Kursgewibesteuerug

Mehr

Zur Definition. der wirksamen. Wärmespeicherkapazität

Zur Definition. der wirksamen. Wärmespeicherkapazität Ao. Uiv. Prof. Dipl.-Ig. Dr. tech. Klaus Kreč, Büro für Bauphysik, Schöberg a Kap, Österreich Zur Defiitio der wirksae Wärespeicherkapazität vo Ao. Uiv. Prof. Dipl.-Ig. Dr. tech. Klaus Kreč Büro für Bauphysik

Mehr

10. FOLGEN, REIHEN, GRENZWERTE

10. FOLGEN, REIHEN, GRENZWERTE Folge, Reihe, Grezwerte 0. FOLGEN, REIHEN, GRENZWERTE 0.. Folge (a) Defiitio Betrachtet ma bei eier Fuktio ur jee Fuktioswerte, die sich durch Eisetze vo Argumete aus de atürliche Zahle ergebe, so erhält

Mehr

Investitionsrechnungen in der Wohnungswirtschaft

Investitionsrechnungen in der Wohnungswirtschaft Wohugswirschafliche Theorie I Vorlesug vom 28. 1. 24 Folie Ivesiiosrechuge i der Wohugswirschaf Dr. Joachim Kircher Isiu Wohe ud Umwel GmbH (IWU) Theoreische Grudlage Eiführug 1. Ivesoregruppe 2. Besoderheie

Mehr

ANLAG Anlagenbuchführung

ANLAG Anlagenbuchführung ANLAG Alagebuchführug Ihaltsverzeichis 1 Leistugsbeschreibug... 3 2 Itegratio i das Ageda-System... 4 3 Highlights... 5 3.1 Alagegüter aus der Buchugserfassug überehme... 5 3.2 Zugag oder Vortrag... 7

Mehr

Investitionsentscheidungsrechnung Annuitäten Methode

Investitionsentscheidungsrechnung Annuitäten Methode Mit Hilfe der köe folgede Ivestitioe beurteilt werde: eizele Ivestitioe alterative Ivestitiosobjekte optimale Ersatzzeitpukte Seite 1 Folgeder Zusammehag besteht zwische der Kapitalbarwertmethode ud der

Mehr

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

Das FSB Geldkonto. Einfache Abwicklung und attraktive Verzinsung. +++ Verzinsung aktuell bis zu 3,7% p.a. +++

Das FSB Geldkonto. Einfache Abwicklung und attraktive Verzinsung. +++ Verzinsung aktuell bis zu 3,7% p.a. +++ Das FSB Geldkoto Eifache Abwicklug ud attraktive Verzisug +++ Verzisug aktuell bis zu 3,7% p.a. +++ zuverlässig servicestark bequem Kompeteter Parter für Ihr Wertpapiergeschäft Die FodsServiceBak zählt

Mehr

... a ik) i=1...m, k=1...n A = = ( a mn

... a ik) i=1...m, k=1...n A = = ( a mn Zurück Stad: 4..6 Reche mit Matrize I der Mathematik bezeichet ma mit Matrix im Allgemeie ei rechteckiges Zahleschema. I der allgemeie Darstellug habe die Zahle zwei Idizes, de erste für die Zeileummer,

Mehr

Preisblatt. Service. über Netzanschlüsse Erdgas, Trinkwasser, Strom und Fernwärme, Baukostenzuschüsse und sonstige Kosten. Gültig ab 1.

Preisblatt. Service. über Netzanschlüsse Erdgas, Trinkwasser, Strom und Fernwärme, Baukostenzuschüsse und sonstige Kosten. Gültig ab 1. Preisblatt über Netzaschlüsse Erdgas, Trikwasser, Strom ud Ferwärme, Baukostezuschüsse ud sostige Koste Gültig ab 1. Jui 2015 Service Preisblatt Netzaschluss ud sostige Koste zu de Ergäzede Bestimmuge

Mehr

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert.

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert. Prof. Dr. H. Rommelfager: Etscheidugstheorie, Kaitel 3 7 3. Etscheidug bei Risiko (subjektive oder objektive) Eitrittswahrscheilichkeite für das Eitrete der mögliche Umweltzustäde köe vom Etscheidugsträger

Mehr

Gebraucht, aber sicher!

Gebraucht, aber sicher! Gebraucht, aber sicher! Die Gebrauchtwage-Services: Fiazprodukte Lagzeit-Garatie Versicheruge Fiazprodukte Gaz ach meiem Geschmack. Die FLEXIBLEN Fiazprodukte der PEUGEOT Bak. Hier dreht sich alles ur

Mehr

Investition und Finanzierung

Investition und Finanzierung Ivestitio ud Fiazierug - Vorlesug 11 - Prof. Dr. Raier Elsche Prof. Dr. Raier Elsche - 186 - Eiheitskursfeststellug Kursfeststellug ach dem Meistausführugsprizip durch Börsemakler. Kaufaufträge Verkaufsaufträge

Mehr

2 Wahl des Betriebsrats

2 Wahl des Betriebsrats 2 Wahl des Betriebsrats Übersicht R R Stadardprobleme aus diesem Kapitel 1 1. Wer ist wahlberechtigt?.. 1 2. Soderküdigugsschutz bei Wahle.... 2 3. Afechtug ud Nichtigkeit vo Betriebsratswahle.... 3 4.

Mehr

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008 Stochasti ud ihre Didati Refereti: Iris Wiler 10.11.2008 Aufgabe: Führe Sie i der Seudarstufe II die Biomialoeffiziete als ombiatorisches Azahlproblem ei. Erarbeite Sie mit de Schülerie ud Schüler mithilfe

Mehr

Kapitel 6: Statistische Qualitätskontrolle

Kapitel 6: Statistische Qualitätskontrolle Kapitel 6: Statistische Qualitätskotrolle 6. Allgemeies Für die Qualitätskotrolle i eiem Uterehme (produzieredes Gewerbe, Diestleistugsuterehme, ) gibt es verschiedee Möglichkeite. Statistische Prozesskotrolle

Mehr

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable Allgemeie Lösuge der -dimesioale Laplace-Gleichug ud ihre komplexe Variable Dr. rer. at. Kuag-lai Chao Göttige, de 4. Jauar 01 Abstract Geeral solutios of the -dimesioal Laplace equatio ad its complex

Mehr

Aufgabenblatt 6. Anpassung Beta an Verschuldungsgrad: Problem

Aufgabenblatt 6. Anpassung Beta an Verschuldungsgrad: Problem ufgabeblatt 6 Lösuge 1 passug Beta a Verschuldugsgrad: Problem Fall 1: I der Vergageheit war der Verschuldugsgrad geriger als heute. Das empirisch ermittelte Beta ist a die aktuelle Verschuldug azupasse

Mehr

Bestimmte Gegenstände können drei Jahre lang mit einem festen Wert angesetzt werden, wenn folgende Voraussetzungen

Bestimmte Gegenstände können drei Jahre lang mit einem festen Wert angesetzt werden, wenn folgende Voraussetzungen 2.1 Ivetur 2.1.4 Bewertug der Vermögesgegestäde 2.1.4.1 Eizelbewertug Grudsätzlich sid bei eier Ivetur die Vermögesgegestäde eizel zu erfasse ud etspreched zu bewerte.esgibtzweiausahme vomgrudsatz dereizelbewertug.

Mehr

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist. Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,

Mehr

Investitionsund Finanzierungsplanung mittels Kapitalwertmethode, Interner Zinsfuß

Investitionsund Finanzierungsplanung mittels Kapitalwertmethode, Interner Zinsfuß Ivesiiosud Fiazierugsplaug miels Kapialwermehode, Ierer Zisfuß Bearbeie vo Fraka Frid, Chrisi Klegel WI. Aufgabe: Eie geplae Ivesiio mi Aschaffugsausgabe vo.,- läss jeweils zum Jahresede die folgede Eiahme

Mehr

Versicherungstechnik

Versicherungstechnik Operatios Research ud Wirtschaftsiformati Prof. Dr. P. Recht // Dipl.-Math. Rolf Wedt DOOR Versicherugstechi Übugsblatt 3 Abgabe bis zum Diestag, dem 03..205 um 0 Uhr im Kaste 9 Lösugsvorschlag: Vorbereituge

Mehr

PrivatKredit. Direkt ans Ziel Ihrer Wünsche

PrivatKredit. Direkt ans Ziel Ihrer Wünsche PrivatKredit Direkt as Ziel Ihrer Wüsche Erlebe Sie eue Freiräume. Leiste Sie sich, was Ihe wichtig ist. Sie träume scho seit lagem vo eier eue Aschaffug, wie z. B.: eiem eue Auto eue Möbel Oder es stehe

Mehr

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft Wisseschaftliches Arbeite Studiegag Eergiewirtschaft - Auswerte vo Date - Prof. Dr. Ulrich Hah WS 01/013 icht umerische Date Tet-Date: Datebak: Name, Eigeschafte, Matri-Tabelleform Spalte: übliche Aordug:

Mehr

LS Retail. Die Branchenlösung für den Einzelhandel auf Basis von Microsoft Dynamics NAV

LS Retail. Die Branchenlösung für den Einzelhandel auf Basis von Microsoft Dynamics NAV LS Retail Die Brachelösug für de Eizelhadel auf Basis vo Microsoft Dyamics NAV akquiet Focus auf das Wesetliche User Focus liegt immer auf der Wirtschaftlichkeit: So weig wie möglich, soviel wie ötig.

Mehr

Finanzmathematik. srdp orientierte. Seminar in Salzburg, HLW Annahof. Inhalt: I Display und Screenshots 2. II Grundbegriffe 3

Finanzmathematik. srdp orientierte. Seminar in Salzburg, HLW Annahof. Inhalt: I Display und Screenshots 2. II Grundbegriffe 3 Semiar i Salzburg, HLW Aahof srdp orietierte Fiazmathematik mit TI 82 stats Ihalt: I Display ud Screeshots 2 II Grudbegriffe 3 III Eifache Verzisug 3 IV Ziseszis 4 VI Äquivalezprizip 4 VII Uterjährige

Mehr

Musterlösung zu Übungsblatt 2

Musterlösung zu Übungsblatt 2 Prof. R. Padharipade J. Schmitt C. Schießl Fuktioetheorie 25. September 15 HS 2015 Musterlösug zu Übugsblatt 2 Aufgabe 1. Reelle Fuktioe g : R R stelle wir us üblicherweise als Graphe {(x, g(x)} R R vor.

Mehr

Informatik II Dynamische Programmierung

Informatik II Dynamische Programmierung lausthal Iformatik II Dyamische Programmierug. Zachma lausthal Uiversity, ermay zach@i.tu-clausthal.de Zweite Techik für de Algorithmeetwurf Zum Name: "Dyamische " hat ichts mit "Dyamik" zu tu, soder mit

Mehr

Aufgaben und Lösungen der Probeklausur zur Analysis I

Aufgaben und Lösungen der Probeklausur zur Analysis I Fachbereich Mathematik AG 5: Fuktioalaalysis Prof. Dr. K.-H. Neeb Dipl.-Math. Rafael Dahme Dipl.-Math. Stefa Wager ATECHNISCHE UNIVERSITÄT DARMSTADT SS 007 19. Jui 007 Aufgabe ud Lösuge der Probeklausur

Mehr

1 Analysis T1 Übungsblatt 1

1 Analysis T1 Übungsblatt 1 Aalysis T Übugsblatt A eier Weggabelug i der Wüste lebe zwei Brüder, die vollkomme gleich aussehe, zwische dee es aber eie gewaltige Uterschied gibt: Der eie sagt immer die Wahrheit, der adere lügt immer.

Mehr

Übersicht. über die Vorlesung Solarenergie. Vorläufige Terminplanung Vorlesung Solarenergie WS 2005/2006 Stand: 10.11.2005

Übersicht. über die Vorlesung Solarenergie. Vorläufige Terminplanung Vorlesung Solarenergie WS 2005/2006 Stand: 10.11.2005 Übersicht über die Vorlesug Solareergie Vorläufige Termiplaug Vorlesug Solareergie WS 2005/2006 Stad: 10.11.2005 Termi Thema Dozet Di. 25.10. Wirtschaftliche Lemmer/Heerig Aspekte/Eergiequelle Soe Fr.

Mehr

2. Einführung in die Geometrische Optik

2. Einführung in die Geometrische Optik 2. Eiührug i die Geometrische Optik 2. Allgemeie Prizipie 2.. Licht ud Materie Optische Ssteme werde ür de Spektralbereich zwische dem extreme Ultraviolette ( m) ud dem thermische Irarote (Q-Bad bei 2

Mehr

Nachklausur - Analysis 1 - Lösungen

Nachklausur - Analysis 1 - Lösungen Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:

Mehr

KASSENBUCH ONLINE Online-Erfassung von Kassenbüchern

KASSENBUCH ONLINE Online-Erfassung von Kassenbüchern KASSENBUCH ONLINE Olie-Erfassug vo Kassebücher Ihaltsverzeichis 1 Leistugsbeschreibug... 3 2 Itegratio i das Ageda-System... 4 3 Highlights... 5 3.1 Ituitive Olie-Erfassug des Kassebuchs... 5 3.2 GoB-sicher

Mehr

Unter einer Rente versteht man eine regelmässige und konstante Zahlung

Unter einer Rente versteht man eine regelmässige und konstante Zahlung 8 Aweduge aus der Fazmathematk Perodsche Zahluge: Rete ud Leasg Uter eer Rete versteht ma ee regelmässge ud kostate Zahlug Bespele: moatlche Krakekassepräme, moatlche Altersrete, perodsches Spare, verteljährlcher

Mehr

Musteraufgaben mit Lösungen zur Zinseszins- und Rentenrechnung

Musteraufgaben mit Lösungen zur Zinseszins- und Rentenrechnung Musteaufgabe mit Lösuge zu Ziseszis- ud Reteechug Dieses Dokumet ethält duchgeechete Musteaufgabe zu Ziseszis- ud Reteechug mit Lösuge, die ma mit eiem hadelsübliche Schultascheeche (mit LO- ud y x -Taste

Mehr

Beste Voraussetzungen für Ihren Erfolg. rs2 ACCOUNTING & CONTROLLING

Beste Voraussetzungen für Ihren Erfolg. rs2 ACCOUNTING & CONTROLLING Beste Voraussetzuge für Ihre Erfolg. rs2 ACCOUNTING & CONTROLLING Optimiertes Rechugswese begleitet wirtschaftliche Erfolg. Komplett itegriert. Wir ware auf der Suche ach eier itegrierte Lösug. rs2 bildet

Mehr

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen:

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen: 61 6.2 Grudlage der mathematische Statistik 6.2.1 Eiführug i die mathematische Statistik I der mathematische Statistik behadel wir Masseerscheiuge. Wir habe es deshalb im Regelfall mit eier große Zahl

Mehr

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer vo Prof. Dr. Ig. Dirk Rbe FH Emde/Leer Überblick: Folge ud Reihe Folge: Zhlefolge ( ) ; ; ; ist eie geordete Liste vo Zhle ( IN) : Glieder der Folge f(): Bildugsgesetz (eplizit i oder rekursiv) z.b.: (

Mehr

4. Auf welchen Betrag würde ein Kapital von 100,- anwachsen, wenn es bei jährlicher Verzinsung zu 6 % 30 Jahre lang auf Zinseszinsen steht.

4. Auf welchen Betrag würde ein Kapital von 100,- anwachsen, wenn es bei jährlicher Verzinsung zu 6 % 30 Jahre lang auf Zinseszinsen steht. Ziseszisechug. Auf welche Betag wächst ei Kapital vo K 0 bei jähliche Vezisug zu p % i Jahe a. a. K 0 5.200,- p 4 ½ % 6 Jahe b. K 0 3.250,- p 6 % 7 Jahe c. K 0 7.500,- p 5 ½ % 5 Jahe d. K 0 8.320,- p 5

Mehr

Die effektive Zinssatzberechnung bei Krediten. Dr. Jürgen Faik. - Bielefeld, 22.03.2007 -

Die effektive Zinssatzberechnung bei Krediten. Dr. Jürgen Faik. - Bielefeld, 22.03.2007 - Die effektive issatzbeechug bei edite D Jüge Faik - Bielefeld, 22327 - Eileitug: um isbegiff Ich wede i de kommede Stude zum Thema Die effektive issatzbeechug bei edite votage Nach eileitede Wote zum isbegiff

Mehr

Übungsblatt 1 zur Vorlesung Angewandte Stochastik

Übungsblatt 1 zur Vorlesung Angewandte Stochastik Dr Christoph Luchsiger Übugsblatt 1 zur Vorlesug Agewadte Stochastik Repetitio WT Herausgabe des Übugsblattes: Woche 9, Abgabe der Lösuge: Woche 1 (bis Freitag, 1615 Uhr), Rückgabe ud Besprechug: Woche

Mehr

FIBU Kontoauszugs- Manager

FIBU Kontoauszugs- Manager FIBU Kotoauszugs- Maager Ihaltsverzeichis 1 Leistugsbeschreibug... 3 2 Highlights... 4 2.1 Buchugsvorschläge i der Buchugserfassug... 4 2.2 Vergleichstexterstellug zur automatische Vorkotierug... 5 2.3

Mehr

Versuch 13/1 NEWTONSCHE INTERFERENZRINGE Blatt 1 NEWTONSCHE INTERFERENZRINGE

Versuch 13/1 NEWTONSCHE INTERFERENZRINGE Blatt 1 NEWTONSCHE INTERFERENZRINGE Versuch 3/ NEWTONSCHE INTERFERENZRINGE Blatt NEWTONSCHE INTERFERENZRINGE Die Oberfläche vo Lise hat im allgemeie Kugelgestalt. Zur Messug des Krümmugsradius diet das Sphärometer. Bei sehr flacher Krümmug

Mehr

Kapitel 4: Stationäre Prozesse

Kapitel 4: Stationäre Prozesse Kapitel 4: Statioäre Prozesse M. Scheutzow Jauary 6, 2010 4.1 Maßerhaltede Trasformatioe I diesem Kapitel führe wir zuächst de Begriff der maßerhaltede Trasformatio auf eiem Wahrscheilichkeitsraum ei ud

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n,

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n, f : a P UNIVERSIÄ DES SAARLANDES FACHRICHUNG 6. MAHEMAIK Prof. Dr. Rolad Speicher M.Sc. obias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 202 Musterlösug zu Blatt Aufgabe. Zeige Sie durch Abwadlug

Mehr

ffiduüffiffiffi NETHTS"UI{D tr tr tr tr tr tr tr tr tr ne Unterlagen/Belege E R B H R AT U N ü bei Kindern zwischen 18 und 25 Jahren:

ffiduüffiffiffi NETHTSUI{D tr tr tr tr tr tr tr tr tr ne Unterlagen/Belege E R B H R AT U N ü bei Kindern zwischen 18 und 25 Jahren: ffiduüffiffiffi NETHTS"UI{D 5TE Al lgemei LN E R B H R AT U N ü e Uterlage/Belege Bei Neuaufahme:Agabe der ldetifikatiosummer, Telefoummer/E-Mail-Adresse Steuerbescheid des Vorjahres ud - soweit Sie das

Mehr

Physikalische Grundlagen: Strahlengang durch optische Systeme

Physikalische Grundlagen: Strahlengang durch optische Systeme ieser Text ist ür iteressierte Leser gedacht, die sich über die klausur-relevate, physiologische Grudlage hiaus mit der Optik des Auges beschätige wolle! Physikalische Grudlage: Strahlegag durch optische

Mehr

Geodäten im hyperbolischen Raum und Zahlentheorie

Geodäten im hyperbolischen Raum und Zahlentheorie Petridis, Yiais Geodäte im hyperbolische Raum ud Zahletheorie Tätigkeitsbericht 2006 Geodäte im hyperbolische Raum ud Zahletheorie Petridis, Yiais Max-Plack-Istitut für Mathematik, Bo Forschugsbereich

Mehr

x 2 + 2 m c Φ( r, t) = n q n (t) φ n ( r) (5) ( + k 2 n ) φ n ( r) = 0 (6a)

x 2 + 2 m c Φ( r, t) = n q n (t) φ n ( r) (5) ( + k 2 n ) φ n ( r) = 0 (6a) Quatisierug eies skalare Feldes Das Ziel ist eigetlich das elektromagetische Feld zu quatisiere, aber wie ma scho a de MAXWELLsche Gleichuge sehe ka, ist es zu kompliziert, um damit zu begie. Außerdem

Mehr