Berechnung MCR unter Solvency II

Größe: px
Ab Seite anzeigen:

Download "Berechnung MCR unter Solvency II"

Transkript

1 Berechnung MCR unter Solvency II Berechnung MCR unter Solvency II Die Wahl des richtigen Risikomaßes Sina Wiesinger 29. März 2018

2 Überblick 1 Einleitung 2 Grundlagen 3 Eigenschaften von Risikomaßen 4 Risikomaße 5 Praxis

3 Einleitung Einleitung Aufbau Solvency II: Säule 1: Eigenmittelanforderungen Solvenzkapitalerfordernis Mindestkapitalerfordernis Säule 2: Aufsichtsrechliches Prüfungsverfahren Säule 3: Marktdisziplin

4 Grundlagen Risiko als Zufallsvariable Was ist Risiko? Risiko ist die Gefahr der Abweichung von Vermögenswerten und Schäden von den Erwartungen

5 Grundlagen Risiko als Zufallsvariable Definition (Risiko) (Ω, σ) ist ein Messraum. Eine reelwertige Zuvallsvariable X auf (Ω, σ) heißt Risiko, wenn X den zukünftigen Wert einer finanziellen Position am Ende einer Betrachungsperiode (0,T) darstellt. Der Raum aller interessierenden Risiken wird mit X bezeichnet. X sei ein Vektorraum, der die konstanten Funktionen erhält. Alle X X seien reelwertig und beschränkt. Die betrachtete Periode ist in unserem Fall ein Jahr. Definition (Risikomaß) Eine Abbildung ρ : X R heißt Risikomaß.

6 Eigenschaften von Risikomaßen Anforderung an Risikomaße aus praktischer Sicht Welche Eigenschaften sollte ein Risikomaß haben? Die Erfassung der Risikopositionen muss vollständig sein. Das Risiko muss in Geldeinheiten gemessen werden. Die Interpretation soll ökonomisch leicht verständlich sein. Das Verfahren sollte leicht zu ermitteln sein. Besonders soll es keine speziellen Anforderungen oder spezielle Verteilungsfunktion benötigen. Es soll objektiv bestimmbar sein, um einen Vergleich zu ermöglichen.

7 Eigenschaften von Risikomaßen Kohärenz und Konvexität Definition (monetäres Risikomaß) Eine Abbildung ρ : X R heißt monetäres Risikomaß, wenn für alle X,X 1,X 2 X die folgenden Bedingungen erfüllt sind: Monotonie: Wenn X 1 X 2 ist, dann gilt ρ(x 1 ) ρ(x 2 ). Translationsequivarianz: Für m R gilt ρ(x +m) = ρ(x) m

8 Eigenschaften von Risikomaßen Kohärenz und Konvexität Definition Ein monetäres Risikomaß ist kohärent, wenn es subadditiv ist, das heißt ρ(x 1 +X 2 ) ρ(x 1 )+ρ(x 2 ) für alle X 1,X 2 X. Außerdem muss es positiv homogen sein, was bedeutet, dass: ρ(λx) = λρ(x) für λ 0. Wenn man die Monotonie durch Positivität ersetzt erhält man ein äquivalentes Axiomsystem für Kohärenz. Definition Ein Maß ρ heißt positiv, wenn für alle X X mit X 0 gilt, dass ρ(x) 0 ist. Vorallem sind positiv homogene Risikomaße auch normiert, das bedeutet, dass ρ(0) = 0.

9 Eigenschaften von Risikomaßen Kohärenz und Konvexität Definition (Konvexität) Ein monetäres Risikomaß heißt konvex, wenn für X 1,X 2 X und für ein λ [0,1] gilt ρ(λx 1 +(1 λ)x 2 ) λρ(x 1 )+(1 λ)ρ(x 2 ).

10 Eigenschaften von Risikomaßen Charaktisierung von Risikomaßen durch ihre Akzeptanzmengen Akzeptanzmengen Definition (Akzeptanzmenge) Eine Akzeptanzmenge unter einem Risikomaß ist definiert als A ρ := {X X ρ(x) 0}. Unterscheidung zwischen akzeptablen und inakzeptablen Risiken.

11 Eigenschaften von Risikomaßen Robuste Darstellung kohärenter Risikomaße kohärentes Risikomaß mithilfe eines Erwartungswerts der Form ρ(x) = sup Q Q E Q [ X] darstellen Risikomaß mit Penalty-Funktion β korriegieren Theorem (Darstellung konvexer Risikomaße) Es ist möglich, des konvexe Risikomaß ρ : X R als ρ(x) = max Q M 1.f (E Q [ X] β min (Q)) für alle X X. dargestellt werden. Dabei ist β min (Q) = sup X Aρ E Q [ X] für Q M 1,f. Zustätzlich ist β min die minimale penalty-funktion, die ρ darstellt. Das bedeutet, dass für jede beliebige penalty-funktion gilt: β(q) β min (Q) für alle Q M 1,f

12 Eigenschaften von Risikomaßen Verteilungsinvarianz Wert ρ(x) hängt nur von Verteilung der Zufallsvariable X ab und nicht von der Struktur des Wahrscheinlichkeitsraumes. Definition (Verteilungsinvarianz) Ein monetäres Risikomaß ρ auf X := L (Ω,σ,P) wird verteilungsinvariant genannt, falls ρ(x) = ρ(y) immer dann gilt, wenn X und Y dieselbe Verteilung unter P haben.

13 Risikomaße Definition (Worst-Case Risikomaß) X sei der Vektorraum aller beschränkten und messbaren Funktionen auf einem Messraum (Ω,σ). Das Worst-Case Risikomaß ρ max ist für alle X X definiert als ρ max (X) := inf ω Ω X(ω). Gilt als konservativstes Risikomaß. Es gilt für jedes monetäres, normiertes Risikomaß auf X ρ(x) ρ(inf X(ω)) = ρ(0) inf X(ω) = inf X(ω) = ρ max ω Ω ω Ω ω Ω

14 Risikomaße Value-at-Risk Definition (Quantile) Sei X X mit Verteilungsfunktion F X und sei α (0,1). Dann ist q + α(x) = inf{x R F X (x) > α} = sup{x R F X α} das obere α-quantil von F X und q α(x) = inf{x R F X (x) α} = sup{x R F X < α} das untere α-quantil von F X. Eine reele Zahl q α heißt α-quantil von X, wenn gilt dass P(X q α ) = F X (q α ) α und P(X < q α ) α. Die Menge aller α-quantile ist [q α(x),q + α(x)]

15 Risikomaße Value-at-Risk Definition (Value-at-Risk) Der Value-at-Risk zum Niveau α (0,1) ist definiert als VaR α (x) := q + α(x) = q 1 α ( X). Besonders für kleinen α interessant. Ziel: Wahrscheinlichkeit einen Velust zu erzielen ist kleiner als α

16 Risikomaße Value-at-Risk Theorem (Eigenschaften des VaR) Für X X mit Verteilungsfunktion F X und α (0,1) ist der VaR α (x) monoton fallend, translationsequivariant, positiv homogen und verteilungsinvariant.

17 Risikomaße Value-at-Risk Ist der Value-at-Risk subadditiv? Example Wir nehmen zwei unabhängige Bonds X 1,X 2 mit identischem Auszahlungsprofil. Mit einer Ausfallwahrscheinlichkeit von 0,04 wird ein Verlust von 100 generiert, sonst ein Gewinn/Verlust von 0. Damit gilt VaR 0,95(X 1) = VaR 0,95(X 2) = VaR 0,95(X 1)+VaR 0,95(X 2) = 0. Die Zufallsvariable X 1 +X 2 hat somit die Verteilung: P(X 1 +X 2 = 0) = 0,96 2 = 0,9216 P(X 1 +X 2 = 100) = 2 0,04 0,96 = 0,076 P(X 1 +X 2 = 200) = 0,04 2 = 0,0016 Also ist VaR 0,95(X 1 +X 2) > 0 = Var 0,95(X 1)+Var 0,95(X 2) und damit keine Subadditivität gegeben.

18 Risikomaße Kritik am Value-at-Risk Positives: kann auf alle Arten von Finanzpositionen und Risiken angewendet werden Ermittlung von Einzelpositionen Einheit: lost money

19 Risikomaße Kritik am Value-at-Risk Negatives: VaR ist nicht subadditiv nur ein Punkt an der Verteilung nicht verträglich mit der stochastischen Dominanz zweiter Ordnung

20 Risikomaße Kritik am Value-at-Risk Example Sei α = 0,0275 vorgegeben. Es folgt, 1 α = 0,9725. Wir betrachten nun zwei verschiedene Portfolios F und G, die für x { 5, 4, 3, 2, 1, 0,3,4} mit Wahrscheinlichkeiten f(x) und g(x) annehmen. Die Verteilungen sind gegeben durch: x f(x) g(x) -5 0,005 0,01-4 0,01 0, ,015 0,01-2 0,015 0,02-1 0,03 0,03 0 0,225 0, ,4 0,4 4 0,3 0,3 Erwartungswert beider Portfolios = 2,23. VaR 0,0275(F) = 3 und VaR 0,0275(G) = 2 Nach dem Value-at-Risk Konzept ist also F riskanter als G.

21 Risikomaße Expected Exceeded Measures Expected Exceeded Measures neue Risikomaße, bei denen zwei Punkte beachtet wurden: nicht nur ein Punkt an der Verteilung; sondern auch der linke Tail miteinbezogen Das Risikomaß ist kohärent, besonders sollte es subadditiv sein. Dazu gehören: Expected Shortfall, Average Value-at-Risk, Tail Value-at-Risk, Conditional Value-at-Risk

22 Risikomaße Expected Exceeded Measures Average Value-at-Risk Definition (Average Value-at-Risk) Es sei E[ X] <. Dann wird der Tail Mean (TM) zum Niveau α (0,1] definiert durch TM α = α 1 (E[X1 (X q α (X)) ]+q α(x)(α P[X q α(x)])). Der Average Value-at-Risk wird nun definiert als der Negative Tail-Mean AVaR α (X) = TM α (X)

23 Risikomaße Expected Exceeded Measures Theorem (Integraldarstellung des AVaR) Sei X X mit E[X ] < und einem festen α (0,1). Sei nun TM α (X) = α 1 α 0 q u (X)du Damit ist der AVaR α α AVaR α (X) = α 1 qu (X)du = α 1 VaR u (X)du 0 0

24 Risikomaße Expected Exceeded Measures Eigenschaften des Average Value-at-Risk Der Average Value-at-Risk erfüllt alle von uns geforderten Anforderungen. Das heißt er ist: Kohärenz (insbesondere ist er subadditiv) Verteilungsinvarianz Konsistent zur stochastischen Dominanz zweiter Ordnung

25 Risikomaße Expected Exceeded Measures Kritik am Avarage Value-at-Risk Positiv: erfüllt alle Anforderungen an ein Risikomaß Aussage über Überschaden möglich Negativ Benötigt große Menge an Daten über den linken Tail Falsche Daten falsches Ergebnis bei Multivariat Normalverteilten Risiken besteht Zusammenhang zwischen VaR und AVaR

26 Praxis MCR Berechnung in der Praxis 1 Basis ist ein Value-at-Risk mit einer 85-% Sicherheit 2 Absolutwerte: 1 Nichtlebensversicherunge 2,5 Millionen Euro 2 Lebensversicherungen 3,7 Millionen Euro 3 Rückversicherung 3,6 Millionen Euro 3 bei Nichteinhaltung kann Geschäftszulassung widerrufen werden MCR = min{max{mcr Nichtleben +MCR Leben ;25% SCR}45% SCR}

27 Praxis Mindestkapitalanforderungen in Österreich Praxis in Österreich 1 Studie von EY aus Juni Alle österreichischen Versicherungen erfüllen MCR Vorgaben 3 im Durchschnitt ist der MCR um 257 % überschritten

28 Praxis Mindestkapitalanforderungen in Österreich Abbildung: MCR-Quote nach Art des Versicherungsunternehmens

29 Praxis Mindestkapitalanforderungen in Österreich Vielen Dank für die Aufmerksamkeit!

Dynamische Risikomaße

Dynamische Risikomaße Dynamische Risikomaße in der Unternehmenssteuerung Jochen Wolf FH Koblenz Ulm, 24.01.2012 Wolf FH Koblenz Dynamische Risikomaße Ulm, 24.01.2012 1 / 31 statische Risikomaße Agenda 1 statische Risikomaße

Mehr

Fakultät Wirtschaftswissenschaften Lehrstuhl für Quantitative Verfahren, insbesondere Statistik. Risikomaße Prof. Dr.

Fakultät Wirtschaftswissenschaften Lehrstuhl für Quantitative Verfahren, insbesondere Statistik. Risikomaße Prof. Dr. Fakultät Wirtschaftswissenschaften Lehrstuhl für Quantitative Verfahren, insbesondere Statistik Risikomaße 2016 Prof. Dr. Stefan Huschens ii Vorbemerkung Das vorliegende Skript ist aus einer Lehrveranstaltung

Mehr

Beispiel 6 (Multivariate Normalverteilung)

Beispiel 6 (Multivariate Normalverteilung) Beispiel 6 (Multivariate Normalverteilung) Sei X N(µ,Σ). Es existiert eine Matrix A IR d k, sodass X d = µ+az wobei Z N k (0,I) und AA T = Σ. Weiters gilt Z = RS wobei S ein gleichmäßig verteilter Zufallsvektor

Mehr

Zufallsvariable, Verteilung, Verteilungsfunktion

Zufallsvariable, Verteilung, Verteilungsfunktion Kapitel 5 Zufallsvariable, Verteilung, Verteilungsfunktion 5.1 Zufallsvariable Sei (Ω, A, P ) ein beliebiger Wahrscheinlichkeitsraum. Häufig interessiert nicht ω selbst, sondern eine Kennzahl X(ω), d.h.

Mehr

Kompaktskript zur Vorlesung Stochastische Risikoanalyse

Kompaktskript zur Vorlesung Stochastische Risikoanalyse Kompaktskript zur Vorlesung Stochastische Risikoanalyse Friedrich-Schiller-Universität Jena Wirtschaftswissenschaftliche Fakultät Lehrstuhl für Wirtschafts- und Sozialstatistik Prof. Dr. P. Kischka Sommersemester

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

bav Risikomanagement in der betrieblichen Altersversorgung FaRis & DAV Symposium, Köln, 14. Juni 2013

bav Risikomanagement in der betrieblichen Altersversorgung FaRis & DAV Symposium, Köln, 14. Juni 2013 Risikomanagement in der betrieblichen Altersversorgung FaRis & DAV Symposium, Köln, 14. Juni 2013 3. Bewertung von biometrischen Risiken in der bav Fachhochschule Köln, Schmalenbach Institut für Wirtschaftswissenschaften

Mehr

Kompaktskript zur Vorlesung Stochastische Risikoanalyse

Kompaktskript zur Vorlesung Stochastische Risikoanalyse Kompaktskript zur Vorlesung Stochastische Risikoanalyse Friedrich-Schiller-Universität Jena Wirtschaftswissenschaftliche Fakultät Lehrstuhl für Wirtschafts- und Sozialstatistik Prof. Dr. P. Kischka Sommersemester

Mehr

Risiko und Stochastische Dominanz

Risiko und Stochastische Dominanz Risiko und Stochastische Dominanz DISSERTATION der Universität St. Gallen, Hochschule für Wirtschafts-, Rechts- und Sozialwissenschaften (HSG) zur Erlangung der Würde eines Doktors der Wirtschaftswissenschaften

Mehr

Stochastik I. Vorlesungsmitschrift

Stochastik I. Vorlesungsmitschrift Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

Erwartungswert als Integral

Erwartungswert als Integral Erwartungswert als Integral Anton Klimovsky Gemischte ZVen, allgemeine ZVen, Erwartungswert für allgemeine ZVen, Lebesgue-Integral bzgl. WMaß, Eigenschaften des Integrals, Lebesgue-Maß, Lebesgue-Integral

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

Portfoliotheorie, Risikomanagenient und die Bewertung von Derivaten

Portfoliotheorie, Risikomanagenient und die Bewertung von Derivaten Jürgen Kremer Portfoliotheorie, Risikomanagenient und die Bewertung von Derivaten Zweite, vollständig überarbeitete und erweiterte Auflage 45J Springer Inhaltsverzeichnis Teill Ein-Perioden- Wertpapiermärkte

Mehr

Reelle Zufallsvariablen

Reelle Zufallsvariablen Kapitel 3 eelle Zufallsvariablen 3. Verteilungsfunktionen esultat aus der Maßtheorie: Zwischen der Menge aller W-Maße auf B, nennen wir sie W B ), und der Menge aller Verteilungsfunktionen auf, nennen

Mehr

Wie kann man Risiko messen?

Wie kann man Risiko messen? Wie kann man Risiko messen? Karl Mosler Universität zu Köln Symposium DAGStat & BfR: Was bedroht unser Leben wirklich? Statistische Bewertung von Gesundheitsrisiken Berlin, 19. April 2013 Karl Mosler Universität

Mehr

Bewertung von biometrischen Risiken in der bav

Bewertung von biometrischen Risiken in der bav Bewertung von biometrischen Risiken in der bav Ralf Knobloch Fachhochschule Köln Gliederung 1. Biometrische Risiken in der bav 2. Das Modell 3. Risikomaße 4. Einfaches Beispiel 5. Schlussbemerkungen 2

Mehr

Solvency II und die Standardformel

Solvency II und die Standardformel Fakultät Mathematik und Naturwissenschaften Institut für Mathematische Stochastik Solvency II und die Standardformel Festkolloquium 20 Jahre (neue) Versicherungsmathematik an der TU Dresden Sebastian Fuchs

Mehr

Nachteile: STD existiert nur für Verteilungen mit E(FL 2 ) <, d.h. nicht ansetzbar bei leptokurtischen ( fat tailed ) Verlustverteilungen;

Nachteile: STD existiert nur für Verteilungen mit E(FL 2 ) <, d.h. nicht ansetzbar bei leptokurtischen ( fat tailed ) Verlustverteilungen; Risikomaße basierend auf die Verlustverteilung Sei F L := F Ln+1 die Verteilung der Verlust L n+1. Die Parameter von F Ln+1 werden anhand von historischen Daten entweder direkt oder mit Hilfe der Risikofaktoren

Mehr

Risikomessung mit dem Conditional Value-at-Risk

Risikomessung mit dem Conditional Value-at-Risk Jendrik Hanisch Risikomessung mit dem Conditional Value-at-Risk Implikationen für das Entscheidungsverhalten. Bibliothek j k Mit einem Geleitwort von \* \, -^ Prof. Dr. Wolfgang Kürsten A; Verlag Dr. Kovac

Mehr

Schwache Konvergenz. Ivan Lecei. 18. Juni Institut für Stochastik

Schwache Konvergenz. Ivan Lecei. 18. Juni Institut für Stochastik Institut für Stochastik 18. Juni 2013 Inhalt 1 2 3 4 5 Nach ZGWS konvergiert für n F n (x) = P{ X 1+...+X n np npq x} gegen F(x) = 1 2π x e 1 2 u2 du, wenn die X i unabhängig und bernoulliverteilt sind

Mehr

2 Zufallsvariable und Verteilungsfunktionen

2 Zufallsvariable und Verteilungsfunktionen 8 2 Zufallsvariable und Verteilungsfunktionen Häufig ist es so, dass den Ausgängen eines Zufallexperiments, d.h. den Elementen der Ereignisalgebra, eine Zahl zugeordnet wird. Das wollen wir etwas mathematischer

Mehr

Stochastik. 1. Wahrscheinlichkeitsräume

Stochastik. 1. Wahrscheinlichkeitsräume Stochastik 1. Wahrscheinlichkeitsräume Ein Zufallsexperiment ist ein beliebig oft und gleichartig wiederholbarer Vorgang mit mindestens zwei verschiedenen Ergebnissen, bei dem der Ausgang ungewiß ist.

Mehr

Maximale Generatoren Integral Stochastischer Ordnungen - Fortsetzung Eigenschaften von stochastischen Ordnungen Kleine Generatoren

Maximale Generatoren Integral Stochastischer Ordnungen - Fortsetzung Eigenschaften von stochastischen Ordnungen Kleine Generatoren Universität Hamburg Fachbereich Mathematik Schwerpunkt Mathematische Statistik und Stochastische Prozesse Bundesstr. 55 D-20146 Hamburg Maximale Generatoren Integral Stochastischer Ordnungen - Fortsetzung

Mehr

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := Definition 2.34. Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := x f(x)dx der Erwartungswert von X, sofern dieses Integral existiert. Entsprechend wird die Varianz V(X)

Mehr

Oldenburger Forschungsprojekte zur Umsetzung von Solvency II bei KMVU

Oldenburger Forschungsprojekte zur Umsetzung von Solvency II bei KMVU Oldenburger Forschungsprojekte zur Umsetzung von Solvency II bei KMVU 1. Oldenburger Versicherungstag 29.8.2007 Angelika May, Dietmar Pfeifer, Doreen Straßburger Gliederung 1. Warum Forschung mit / für

Mehr

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1 24 14 Metrische Räume 14.1 R n als euklidischer Vektorraum Die Menge R n = {(x 1,..., x n ) x i R} versehen mit der Addition und der skalaren Multiplikation x + y = (x 1 + y 1,..., x n + y n ) λx = (λx

Mehr

8. Formelsammlung. Pr[ ] = 0. 0 Pr[A] 1. Pr[Ā] = 1 Pr[A] A B = Pr[A] Pr[B] DWT 8.1 Gesetze zum Rechnen mit Ereignissen 203/467 Ernst W.

8. Formelsammlung. Pr[ ] = 0. 0 Pr[A] 1. Pr[Ā] = 1 Pr[A] A B = Pr[A] Pr[B] DWT 8.1 Gesetze zum Rechnen mit Ereignissen 203/467 Ernst W. 8. Formelsammlung 8.1 Gesetze zum Rechnen mit Ereignissen Im Folgenden seien A und B, sowie A 1,..., A n Ereignisse. Die Notation A B steht für A B und zugleich A B = (disjunkte Vereinigung). A 1... A

Mehr

1.3 Zufallsvariablen

1.3 Zufallsvariablen 1.3 Zufallsvariablen Beispiel Irrfahrt zwischen drei Zuständen Start in G bei t = 0, Zeithorizont T N Grundraum σ-algebra Ω = {ω = (ω 0, ω 1,..., ω T ) {G, R, B} T +1, ω 0 = G} Wahrscheinlichkeitsmaß P

Mehr

4. Verteilungen von Funktionen von Zufallsvariablen

4. Verteilungen von Funktionen von Zufallsvariablen 4. Verteilungen von Funktionen von Zufallsvariablen Allgemeine Problemstellung: Gegeben sei die gemeinsame Verteilung der ZV en X 1,..., X n (d.h. bekannt seien f X1,...,X n bzw. F X1,...,X n ) Wir betrachten

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 11. November 2010 1 Erwartungswert und Varianz Erwartungswert Varianz und Streuung Rechenregeln Binomialverteilung

Mehr

Zulassungsprüfung Stochastik,

Zulassungsprüfung Stochastik, Zulassungsprüfung Stochastik, 10.10.14 Wir gehen stets von einem Maßraum (Ω, A, µ) bzw. einem Wahrscheinlichkeitsraum (Ω,A,P) aus. Die Borel σ-algebra auf R n wird mit B n bezeichnet, das Lebesgue Maß

Mehr

Bestimmung des Conditional Value-at-Risk (CVaR) bei Normal- bzw. Lognormalverteilung

Bestimmung des Conditional Value-at-Risk (CVaR) bei Normal- bzw. Lognormalverteilung Mannheimer Manuskripte u Risikotheorie, Portfolio Management und Versicherungswirtschaft r. 4 Bestimmung des Conditional Value-at-Risk (CVaR bei ormal- bw. Lognormalerteilung on PETER ALBRECHT UD SVE KORYCIORZ

Mehr

Bootstrap-Methoden zur Ermittlung kritischer Werte für asymptotische FWER-Kontrolle

Bootstrap-Methoden zur Ermittlung kritischer Werte für asymptotische FWER-Kontrolle Bootstrap-Methoden zur Ermittlung kritischer Werte für asymptotische FWER-Kontrolle [Dudoit, van der Laan, Pollard: Multiple Testing. Part I Single-Step Procedures for Control of General Type-I-Error Rates]

Mehr

Scheinklausur zur Vorlesung Stochastik II

Scheinklausur zur Vorlesung Stochastik II Institut für Mathematische Stochastik WS 2007/2008 Universität Karlsruhe 25. 02. 2008 Dr. B. Klar Scheinklausur zur Vorlesung Stochastik II Muster-Lösung Dauer: 90 Minuten Name: Vorname: Matrikelnummer:

Mehr

Kompaktskript zur Vorlesung Statistische Verfahren der Risikoanalyse

Kompaktskript zur Vorlesung Statistische Verfahren der Risikoanalyse Kompaktskript zur Vorlesung Statistische Verfahren der Risikoanalyse Friedrich-Schiller-Universität Jena Wirtschaftswissenschaftliche Fakultät Lehrstuhl für Wirtschafts- und Sozialstatistik Prof. Dr. P.

Mehr

Wichtige Klassen reeller Funktionen

Wichtige Klassen reeller Funktionen 0 Wichtige Klassen reeller Funktionen Monotone Funktionen sind i.a. unstetig, aber man kann etwas über das Grenzwertverhalten aussagen, wenn man nur einseitige Grenzwerte betrachtet. Definition 0. : Sei

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

5 Erwartungswerte, Varianzen und Kovarianzen

5 Erwartungswerte, Varianzen und Kovarianzen 47 5 Erwartungswerte, Varianzen und Kovarianzen Zur Charakterisierung von Verteilungen unterscheidet man Lageparameter, wie z. B. Erwartungswert ( mittlerer Wert ) Modus (Maximum der Wahrscheinlichkeitsfunktion,

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

67 Zufallsvariable, Erwartungswert, Varianz

67 Zufallsvariable, Erwartungswert, Varianz 67 Zufallsvariable, Erwartungswert, Varianz 67.1 Motivation Oft möchte man dem Resultat eines Zufallsexperiments eine reelle Zahl zuordnen. Der Gewinn bei einem Glücksspiel ist ein Beispiel hierfür. In

Mehr

Unabhängige Zufallsvariablen

Unabhängige Zufallsvariablen Kapitel 9 Unabhängige Zufallsvariablen Die Unabhängigkeit von Zufallsvariablen wird auf die Unabhängigkeit von Ereignissen zurückgeführt. Im Folgenden sei Ω, A, P ) ein Wahrscheinlichkeitsraum. Definition

Mehr

Grundlagen der Wahrscheinlichkeitstheorie

Grundlagen der Wahrscheinlichkeitstheorie Priv.-Doz. Dr. H. Steinacker Wintersemester 2013/2014 Grundlagen der Wahrscheinlichkeitstheorie betrachte Wiederholungen eines Experimentes, gleicher Vorbereitung (z.b. Würfeln, Dart werfen, Doppelspaltexperiment,...)

Mehr

Kapitel VII - Funktion und Transformation von Zufallsvariablen

Kapitel VII - Funktion und Transformation von Zufallsvariablen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VII - Funktion und Transformation von Zufallsvariablen Markus Höchstötter Lehrstuhl

Mehr

Strassen Type Theorems Proseminar Stochastik

Strassen Type Theorems Proseminar Stochastik Strassen Type Theorems Proseminar Stochastik Cecelie Hector Universität Hamburg Fachbereich Mathematik SoSe 2004 Vortrag am 25.06.04 Definition (a). Ein topologischer Raum E heißt polnisch, wenn es eine

Mehr

CERA - Klausur Quantitative Methoden des ERM

CERA - Klausur Quantitative Methoden des ERM CERA - Klausur Quantitative Methoden des ERM 3.05.0 Hinweise: Als Hilfsmittel ist ein Taschenrechner zugelassen. Die Gesamtpunktzahl beträgt 0. Die Klausur ist bestanden, wenn mindestens 48 Punkte erreicht

Mehr

Varianz und Kovarianz

Varianz und Kovarianz KAPITEL 9 Varianz und Kovarianz 9.1. Varianz Definition 9.1.1. Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X : Ω eine Zufallsvariable. Wir benutzen die Notation (1) X L 1, falls E[ X ]

Mehr

Finanzmathematik I. Die Mitarbeiter von 28. September 2017

Finanzmathematik I. Die Mitarbeiter von  28. September 2017 Finanzmathematik I Die Mitarbeiter von http://mitschriebwiki.nomeata.de/ 28. September 2017 Inhaltsverzeichnis Inhaltsverzeichnis 2 Vorwort 5 I. Einführung in die Theorie der Finanzmärkte 7 1.1. Präferenzen.............................................

Mehr

Klausur zur Vorlesung Stochastik II

Klausur zur Vorlesung Stochastik II Institut für Stochastik WS 007/008 Universität Karlsruhe. 0. 008 r. B. Klar Klausur zur Vorlesung Stochastik II Muster-Lösung auer: 90 Minuten Name: Vorname: Matrikelnummer: iese Klausur hat bestanden,

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Interne Solvenzmodelle für Non-Life Versicherungen in in der Schweiz

Interne Solvenzmodelle für Non-Life Versicherungen in in der Schweiz Prüfungskolloquium SAV Prüfungskolloquium SAV Interne Solvenzmodelle für Non-Life Versicherungen in in der Schweiz Biel, Biel, 23.11.2006 23.11.2006 Sandra Sandra Fehlmann Fehlmann Agenda Historischer

Mehr

Finanzmathematische Modelle und Simulation

Finanzmathematische Modelle und Simulation Finanzmathematische Modelle und Simulation WS 9/1 Rebecca Henkelmann In meiner Ausarbeitung Grundbegriffe der Stochastik I, geht es darum die folgenden Begriffe für die nächsten Kapitel einzuführen. Auf

Mehr

Ludwig-Maximilians-Universität. Konvexe Analysis mit Anwendung auf Risikofunktionale. Prof. Dr. G. Svindland

Ludwig-Maximilians-Universität. Konvexe Analysis mit Anwendung auf Risikofunktionale. Prof. Dr. G. Svindland Ludwig-Maximilians-Universität Konvexe Analysis mit Anwendung auf Risikofunktionale Prof. Dr. G. Svindland Inhaltsverzeichnis 1 Einführung in die konvexen Risikomaße 1 1.1 Konvexe Risikomaße/Motivation.........................

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Lösungsvorschlag studienbegleitende Klausur Finanzmathematik I Aufgabe (7 Punkte) Vorgelegt sei ein Wahrscheinlichkeitsraum (Ω, F, P) und

Mehr

Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen

Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen Georg Bol georg.bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de Stetige Verteilungen Definition: Sei

Mehr

Mathematische Ökonometrie

Mathematische Ökonometrie Mathematische Ökonometrie Ansgar Steland Fakultät für Mathematik Ruhr-Universität Bochum, Germany ansgar.steland@ruhr-uni-bochum.de Skriptum zur LV im SoSe 2005. Diese erste Rohversion erhebt keinen Anspruch

Mehr

12 Erwartungswerte. Erwartungswerte 111. Überblick

12 Erwartungswerte. Erwartungswerte 111. Überblick Erwartungswerte 111 12 Erwartungswerte Zur Motivation der Begrisbildung wird zunächst der Erwartungswert im diskreten Fall als Reihenwert eingeführt. Der allgemeine, auf dem Integral basierende Erwartungswert

Mehr

Konfidenzbereiche. Kapitel Grundlagen. Wir gehen wieder von einem allgemeinen (parametrischen) statistischen Modell aus,

Konfidenzbereiche. Kapitel Grundlagen. Wir gehen wieder von einem allgemeinen (parametrischen) statistischen Modell aus, Kapitel 4 Konfidenzbereiche 4.1 Grundlagen Wir gehen wieder von einem allgemeinen parametrischen statistischen Modell aus, M, A, P ϑ ; sei eine Funktion des Parameters gegeben, die einen interessierenden

Mehr

Kapitel II Kontinuierliche Wahrscheinlichkeitsräume

Kapitel II Kontinuierliche Wahrscheinlichkeitsräume Kapitel II Kontinuierliche Wahrscheinlichkeitsräume 1. Einführung 1.1 Motivation Interpretation der Poisson-Verteilung als Grenzwert der Binomialverteilung. DWT 1.1 Motivation 211/476 Beispiel 85 Wir betrachten

Mehr

2 Zufallsvariable, Verteilungen, Erwartungswert

2 Zufallsvariable, Verteilungen, Erwartungswert 2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments

Mehr

Weihnachtsaufgaben. a) Welche Urnenmodelle gibt es? Stelle zu jedem Modell ein konkretes Beispiel auf, welches durch dieses Modell beschrieben wird.

Weihnachtsaufgaben. a) Welche Urnenmodelle gibt es? Stelle zu jedem Modell ein konkretes Beispiel auf, welches durch dieses Modell beschrieben wird. Weihnachtsaufgaben Diese Aufgaben dienen dazu die in der Vorlesung und den Übungen eingeführten Begriffe zu verstehen und zu vertiefen, die Bearbeitung ist freiwillig Das Blatt wurde von den Übungsleitern

Mehr

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit 3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit Lernziele dieses Kapitels: Mehrdimensionale Zufallsvariablen (Zufallsvektoren) (Verteilung, Kenngrößen) Abhängigkeitsstrukturen Multivariate

Mehr

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s X. Zufallsgrößen ================================================================= 10.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

Schwache Konvergenz von Wahrscheinlichkeitsmaßen

Schwache Konvergenz von Wahrscheinlichkeitsmaßen Schwache Konvergenz von Wahrscheinlichkeitsmaßen 6. Juli 2010 Inhaltsverzeichnis 1 Definition 2 3 Lindeberg-Bedingung Interpretation Definition Motivation (Konvergenz von Wahrscheinlichkeitsmaßen) Sind

Mehr

4 Differenzierbarkeit einer konjugierten Funktion

4 Differenzierbarkeit einer konjugierten Funktion 4 Differenzierbarkeit einer konjugierten Funktion (Eingereicht von Corinna Vits) 4.1 Differenzierbarkeit 1.Ordnung Theorem 4.1.1: Sei f ConvR n strikt konvex. Dann ist int dom und f ist stetig differenzierbar

Mehr

Diskrete Zufallsvariablen (Forts.) I

Diskrete Zufallsvariablen (Forts.) I 9 Eindimensionale Zufallsvariablen Diskrete Zufallsvariablen 9.4 Diskrete Zufallsvariablen (Forts.) I T (X ) ist endlich oder abzählbar unendlich, die Elemente von T (X ) werden daher im Folgenden häufig

Mehr

Punktschätzer Optimalitätskonzepte

Punktschätzer Optimalitätskonzepte Kapitel 1 Punktschätzer Optimalitätskonzepte Sei ein statistisches Modell gegeben: M, A, P ϑ Sei eine Funktion des Parameters ϑ gegeben, γ : Θ G, mit irgendeiner Menge G, und sei noch eine Sigma-Algebra

Mehr

Übungsscheinklausur,

Übungsscheinklausur, Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 27 Prof. Dr. F. Liese Übungsscheinklausur, 3.7.27 Dipl.-Math. M. Helwich Name:...

Mehr

Bestimmte Zufallsvariablen sind von Natur aus normalverteilt. - naturwissenschaftliche Variablen: originär z.b. Intelligenz, Körpergröße, Messfehler

Bestimmte Zufallsvariablen sind von Natur aus normalverteilt. - naturwissenschaftliche Variablen: originär z.b. Intelligenz, Körpergröße, Messfehler 6.6 Normalverteilung Die Normalverteilung kann als das wichtigste Verteilungsmodell der Statistik angesehen werden. Sie wird nach ihrem Entdecker auch Gaußsche Glockenkurve genannt. Die herausragende Stellung

Mehr

4. Gemeinsame Verteilung und Grenzwertsätze

4. Gemeinsame Verteilung und Grenzwertsätze 4. Gemeinsame Verteilung und Grenzwertsätze Häufig in der Praxis: Man muss mehrere (n) ZV en gleichzeitig betrachten (vgl. Statistik I, Kapitel 6) Zunächst Vereinfachung: Betrachte n = 2 Zufallsvariablen

Mehr

4. Gemeinsame Verteilung und Grenzwertsätze

4. Gemeinsame Verteilung und Grenzwertsätze 4. Gemeinsame Verteilung und Grenzwertsätze Häufig in der Praxis: Man muss mehrere (n) ZV en gleichzeitig betrachten (vgl. Statistik I, Kapitel 6) Zunächst Vereinfachung: Betrachte n = 2 Zufallsvariablen

Mehr

Copula Funktionen. Eine Einführung. Nils Friewald

Copula Funktionen. Eine Einführung. Nils Friewald Copula Funktionen Eine Einführung Nils Friewald Institut für Managementwissenschaften Abteilung Finanzwirtschaft und Controlling Favoritenstraße 9-11, 1040 Wien friewald@imw.tuwien.ac.at 13. Juni 2005

Mehr

12 Ungleichungen. Wir beginnen mit einer einfachen Ungleichung über die Varianz. Satz 35 Es sei X eine zufällige Variable.

12 Ungleichungen. Wir beginnen mit einer einfachen Ungleichung über die Varianz. Satz 35 Es sei X eine zufällige Variable. 12 Ungleichungen Wir beginnen mit einer einfachen Ungleichung über die Varianz. Satz 35 Es sei X eine zufällige Variable. Dann gilt: min c R E(X c)2 = Var X. Beweis: Für alle reellen Zahlen c R gilt: E(X

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Streuungsparameter Varianz Var(X) bzw. σ 2 : [x i E(X)] 2 f(x i ), wenn X diskret Var(X)

Mehr

Vergleich von Entscheidungsträgern bzgl. ihrer Risikoaversion:

Vergleich von Entscheidungsträgern bzgl. ihrer Risikoaversion: Ist das Arrow-Pratt-Maß der absoluten Risikoaversion bekannt, so lässt sich daraus die Nutzenfunktion bestimmen: Mithilfe der Substitution y := U (w) dy = U (w)dw gilt: und daher U (w) U (w) dw = A a (w)dw

Mehr

Kapitel 4. Stochastische Grundlagen. 4.1 Filtrationen und Stoppzeiten

Kapitel 4. Stochastische Grundlagen. 4.1 Filtrationen und Stoppzeiten Kapitel 4 Stochastische Grundlagen An dieser Stelle möchte ich auf einige stochastische Grundlagen eingehen, die bisher im Kapitel 3 Anwendung gefunden haben und im Folgenden Anwendung finden werden. Grundproblem

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 29 UNIVERSITÄT KARLSRUHE Blatt 6 Priv.-Doz. Dr. D. Kadelka Dipl.-Math. W. Lao Übungen zur Vorlesung Stochastische Prozesse Musterlösungen Aufgabe 27: Sei X eine R + -wertige

Mehr

Aufgabe Punkte

Aufgabe Punkte Institut für Mathematik Freie Universität Berlin Carsten Hartmann, Stefanie Winkelmann Musterlösung für die Nachklausur zur Vorlesung Stochastik I im WiSe 20/202 Name: Matr.-Nr.: Studiengang: Mathematik

Mehr

Wir gehen wieder von einem allgemeinen (parametrischen) statistischen Modell aus, (

Wir gehen wieder von einem allgemeinen (parametrischen) statistischen Modell aus, ( Kapitel 4 Konfidenzbereiche Wir gehen wieder von einem allgemeinen parametrischen statistischen Modell aus, M, A, P ϑ ; sei eine Funktion des Parameters gegeben, die einen interessierenden Teil-Parameter

Mehr

Kapitel 3 Schließende Statistik

Kapitel 3 Schließende Statistik Motivation Grundgesamtheit mit unbekannter Verteilung F Stichprobe X 1,...,X n mit Verteilung F Realisation x 1,...,x n der Stichprobe Rückschluss auf F Dr. Karsten Webel 160 Motivation (Fortsetzung) Kapitel

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Stetige Zufallsvariable Verteilungsfunktion: Dichtefunktion: Integralrechnung:

Mehr

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung 2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung Die einfachste Verteilung ist die Gleichverteilung, bei der P(X = x i ) = 1/N gilt, wenn N die Anzahl möglicher Realisierungen von

Mehr

Wahrscheinlichkeitstheorie Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen

Wahrscheinlichkeitstheorie Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen Wahrscheinlichkeitstheorie Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen Georg Bol bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de

Mehr

Kapitel 6. Verteilungsparameter. 6.1 Der Erwartungswert Diskrete Zufallsvariablen

Kapitel 6. Verteilungsparameter. 6.1 Der Erwartungswert Diskrete Zufallsvariablen Kapitel 6 Verteilungsparameter Wie bei einem Merkmal wollen wir nun die Lage und die Streuung der Verteilung einer diskreten Zufallsvariablen durch geeignete Maßzahlen beschreiben. Beginnen wir mit Maßzahlen

Mehr

Der Entscheidungsträger wählt aus einer Menge von Alternativen, dem Aktionenraum A = {a 1, a 2, a m }.

Der Entscheidungsträger wählt aus einer Menge von Alternativen, dem Aktionenraum A = {a 1, a 2, a m }. 1 Grundlagen Entscheidungstheorie: Der Entscheidungsträger wählt aus einer Menge von Alternativen, dem Aktionenraum A = {a 1, a 2, a m }. Annahmen: Der Entscheidungsträger ist gezwungen, eine der betrachteten

Mehr

Übungen zu bedingten Erwartungswerten. Tutorium Stochastische Prozesse 13. Dezember 2016

Übungen zu bedingten Erwartungswerten. Tutorium Stochastische Prozesse 13. Dezember 2016 Übungen zu bedingten Erwartungswerten Tutorium Stochastische Prozesse 13. Dezember 2016 Bedingter Erwartungswert Definition Sei X eine reellwertige Zufallsvariable auf (Ω, A, P), so dass E[ X ]

Mehr

Pareto optimale lineare Klassifikation

Pareto optimale lineare Klassifikation Seminar aus Maschinellem Lernen Pareto optimale lineare Klassifikation Vesselina Poulkova Betreuer: Eneldo Loza Mencía Gliederung 1. Einleitung 2. Pareto optimale lineare Klassifizierer 3. Generelle Voraussetzung

Mehr

Einführung und Grundlagen

Einführung und Grundlagen Kapitel 1 Einführung und Grundlagen Generelle Notation: Ω, A, P sei ein W-Raum im Hintergrund nie weiter spezifiziert Die betrachteten Zufallsvariablen seien auf Ω definiert, zb X : Ω, A M, A, wobei M,

Mehr

Erwartungswert und Varianz von Zufallsvariablen

Erwartungswert und Varianz von Zufallsvariablen Kapitel 7 Erwartungswert und Varianz von Zufallsvariablen Im Folgenden sei (Ω, A, P ) ein Wahrscheinlichkeitsraum. Der Erwartungswert von X ist ein Lebesgue-Integral (allerdings allgemeiner als in Analysis

Mehr

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 23. Bemerkung Integralbegriffe für Funktionen f : R d R (i) Lebesgue-Integral (Vorlesung Analysis IV). Spezialfall: (ii) Uneigentliches Riemann-Integral

Mehr

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 4

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 4 TUM, Zentrum Mathematik Lehrstuhl für Mathematische Physik WS 3/4 Prof. Dr. Silke Rolles Thomas Höfelsauer Felizitas Weidner Tutoraufgaben: Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge

Mehr

Eindimensionale Zufallsvariablen

Eindimensionale Zufallsvariablen Eindimensionale Grundbegriffe Verteilungstypen Diskrete Stetige Spezielle Maßzahlen für eindimensionale Erwartungswert Varianz Standardabweichung Schwankungsintervalle Bibliografie Bleymüller / Gehlert

Mehr

Definition 18 (Die verallgemeinerte Pareto Verteilung (GPD)) Die standard GPD G γ : ) 1/γ. G γ,ν,β = 1 (1 + γ x ν β

Definition 18 (Die verallgemeinerte Pareto Verteilung (GPD)) Die standard GPD G γ : ) 1/γ. G γ,ν,β = 1 (1 + γ x ν β Die POT Methode (Peaks over Threshold) Definition 18 (Die verallgemeinerte Pareto Verteilung (GPD)) Die standard GPD G γ : G γ (x) = { 1 (1 + γx) 1/γ für γ 0 1 exp{ x} für γ = 0 wobei x D(γ) D(γ) = { 0

Mehr

2. Übung zur Vorlesung Statistik 2

2. Übung zur Vorlesung Statistik 2 2. Übung zur Vorlesung Statistik 2 Aufgabe 1 Welche der folgenden grafischen Darstellungen und Tabellen zeigen keine (Einzel-)Wahrscheinlichkeitsverteilung? Kreuzen Sie die richtigen Antworten an und begründen

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr 1.4.2 Kontinuierliche Zufallsvariablen als Grenzwerte diskreter Zufallsvariablen Sei X eine kontinuierliche Zufallsvariable. Wir können aus X leicht eine diskrete Zufallsvariable konstruieren, indem wir

Mehr

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über

Mehr

Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm.

Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm. Veranstaltung: Statistik für das Lehramt 16.12.2016 Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm Erwartungswert Varianz Standardabweichung Die Wahrscheinlichkeitsverteilung

Mehr

Vorlesung 8a. Kovarianz und Korrelation

Vorlesung 8a. Kovarianz und Korrelation Vorlesung 8a Kovarianz und Korrelation 1 Wir erinnern an die Definition der Kovarianz Für reellwertige Zufallsvariable X, Y mit E[X 2 ] < und E[Y 2 ] < ist Cov[X, Y ] := E [ (X EX)(Y EY ) ] Insbesondere

Mehr

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Dozent: Volker Krätschmer Fakultät für Mathematik, Universität Duisburg-Essen, WS 2012/13 1. Präsenzübung Aufgabe T 1 Sei (Z 1,...,

Mehr