Institut für math.-naturw. Grundlagen Physikalisches Anfängerpraktikum

Größe: px
Ab Seite anzeigen:

Download "Institut für math.-naturw. Grundlagen Physikalisches Anfängerpraktikum"

Transkript

1 Institut für ath.-naturw. Grundlagen Physikalisches Anfängerpraktiku Versuch W3: alorietrie. Aufgabenstellung Bestiung der Wärekapazität eines alorieters Bestiung der spezifischen Wärekapazität fester örper Bestiung der spezifischen Verdapfungswäre (spezifischen Verdapfungsenthalpie) von Wasser. Literatur Hering, artin, Stohrer, Physik für Ingenieure, VDI-Verlag, ap (u. Übung 3-3-), ap , Walcher, Praktiku der Physik, Teubner, ap. 3. Geschke (Hrsg.), Physikalisches Praktiku, Teubner, ap Grundlagen Zur Durchführung des Versuches üssen folgende Begriffe bekannt sein: Wäre, Wärekapazität, spezifische und olare Wärekapazität, Gesetz von Dulong-Petit, alorieter, ischungsversuch, latente Wäre bei Phasenübergängen 3. Wäre und Wärekapazität Die Wäreenge Q als Energiefor hat die SI-Einheit: Q (oule) und ist eine therodynaische Prozessgröße: d. h. sie hängt von den Bedingungen (vo Prozess) ab, unter denen sie eine örper zu- oder abgeführt wird (z. B. isobar, isochor). Besonders bei Gasen uss wegen der nicht vernachlässigbaren therischen Ausdehnung zwischen der, unter konstante Druck getauschter Wäre Qp und der, bei konstante Voluen QV unterschieden werden (Vergl. Versuch W5)! Für die Wäreenge Q gilt folgende (übliche) Vorzeichenkonvention: zugeführte/aufgenoene Wäre: Q 0 abgeführte/abgegebene Wäre: Q 0 Die eine örper zu- oder abgeführte Wäreenge Q führt entweder zu einer Teperaturänderung oder zu einer Aggregatzustandsänderung (Phasenübergang). Anerkung: Die Teperaturänderung kann als in der Einheit C (Celsius) oder als T in der Einheit (elvin) gewählt werden. Es gilt also: ( C) T() Die Urechnung zwischen den Teperaturwerten geessen auf den beiden Skalen (elvin/celsius) erfolgt nach der Zahlenwertgleichung: / C T / Physiklabor (IFG) Versuch W3 Seite / 6

2 Institut für ath.-naturw. Grundlagen Physikalisches Anfängerpraktiku Die Wäreenge Q verhält sich proportional zu der hervorgerufenen Teperaturänderung : Q C. Die Proportionalitätskonstante C wird als Wärekapazität des örpers bezeichnet und ist nach der Gleichung C Q diejenige Wäreenge, die ein örper für eine Teperaturänderung T aufnit bzw. abgibt. Für die Einheit gilt: Q C. Es ist sinnvoll, die Wärekapazität C eines örpers auf die asse oder auf die Stoffenge n zu beziehen und erhält so die C spezifische Wärekapazität c it der Einheit C c bzw. kg C olare Wärekapazität C und C C. n n ol C it der olasse ergibt sich die Urechnungsforel: C c. n Die stoffart -spezifische Wärekapazität c wird tabelliert und ist für große Teperaturintervalle teperaturabhängig, sodass in diese Fall die gesate Wäre für eine Teperaturerhöhung von auf durch das Integral Physiklabor (IFG) Versuch W3 Seite / 6 Q c( )d berechnet werden uss. Für den Teperaturbereich der in diese Versuch untersucht wird, gelten die Wärekapazitäten als konstant und für die Berechnung der getauschten Wäreengen gelten folgende Beziehungen: Q C oder Q c oder Q n C. Wärekapazität fester örper, Gesetz von Dulong-Petit Nach de Gesetz von Dulong-Petit hat die olare Wärekapazität für die eisten festen Stoffe bei gewöhnlicher Teperatur (Zierteperatur) den allgeeinen Wert: C 3 R ( R 8.3 ist die allgeeine Gaskonstante). Diese Regel kann an it ol de Gleichverteilungssatz der Energie erklären, nach de jede Freiheitsgrad eines Atos (oleküls) i ittel die gleiche Energie E k T 3 (it k.38 0 Boltzann-onstante) zukot. Betrachtet an die Atoe i ristallgitter eines festen örpers als lineare haronische Oszillatoren und rechnet jeweils 3 Freiheitsgrade (3 Raurichtungen) für die potentielle und die kinetische Energie, so erhält 3 an für ein ol Substanz (also für N A Atoe ) genau die, durch das Gesetz von Dulong-Petit gegebene, olare Wärekapazität eines festen örpers: CV 6 k N A 3 R 4,94.Tatsächlich ist die olare Wärekapazität eines ol realen Festkörpers eist kleiner als der Wert nach Dulong-Petit. Erst bei hohen Teperaturen erreicht die Wärekapazität asyptotisch den Grenzwert C 3 R. Eine Erklärung für die Teperaturabhängigkeit der Wärekapazität und de Einfrieren der Freiheitsgrade bei tiefen Teperaturen liefert die Quantenphysik des Festkörpers!

3 Institut für ath.-naturw. Grundlagen Physikalisches Anfängerpraktiku 3. Phasenuwandlungen (Übergänge zwischen Aggregatzuständen) Phasenuwandlungen finden ier bei konstant bleibender Teperatur statt, obwohl Wäre zu- oder abgeführt wird (auch latente Wäre genannt). Sie hängt ab von der Art des Phasenübergangs (z. B. zwischen fest, flüssig und gasförig) und von der Art des Stoffes, sowie von seiner enge. Die auf die asse bezogene latente Wäre bezeichnet an als die spezifische latente Wäre (Einheit kg ). Die für eine Phasenuwandlung erforderliche latente Wäreenge, wird bei ugekehrten Übergang wieder frei. Den Phasenübergang aus de flüssigen Aggregatzustand in den gasförigen nennt an Verdapfen einer Flüssigkeit. U eine Flüssigkeit (in diese Versuch Wasser) bei konstante Druck zu verdapfen wird dieser zunächst fühlbare Wäre bis zu Erreichen der Siedeteperatur (für Wasser S 00 C, abhängig vo Luftdruck) zugeführt. Zur Uwandlung aus de flüssigen in den gasförigen Zustand uss anschließend (bei konstant bleibender Siedeteperatur) die (latente) Verdapfungswäre zugeführt werden. Nachde die ganze Wasserenge verdapft ist, kann die Teperatur des entstandenen Wasserdapfes unter weiterer Wärezufuhr über die Siedeteperatur erhöht werden. 3.3 Bestiung von Wärekapazitäten it eine alorieter nach der ischungsethode Bei eine ischungsversuch werden örper unterschiedlicher Teperaturen in therischen ontakt gebracht. Nach eine Wäreaustausch gelangen die örper ins therische Gleichgewicht (Teperaurausgleich findet statt). Geschieht dieser Wäreaustausch zwischen den örpern in eine gut wäreisolierten Gefäß, de alorieter (also öglichst ohne Wäreverluste an die äußere Ugebung), gilt nach de Energieerhaltungssatz: Qab Q auf Wird nun ein Probekörper der asse auf die Teperatur erhitzt und anschließend in ein it kalte Wasser der asse und der Teperatur gefülltes alorieter (asse ) gegeben, kann aus de Teperaturanstieg des Wassers auf die Gleichgewichtsteperatur die spezifische Wärekapazität c dieses örpers bestit werden: c ( ) cw ( ) C ( ) Dazu uss die spezifische Wärekapazität des Wassers c W (Literaturwert) und die Wärekapazität (des a Wäreaustausch itbeteiligten) alorieters C bekannt sein. Diese kann aus einer ischung heißes Wasser/kaltes Wasser bestit werden. c ) c ( ) C ( ) W ( W orrektur wegen unvollkoener Wäreisolierung I Idealfall (vollkoen wäreisoliertes alorieter) wären die Teperaturen (vor de ischen) und (nach eine unendlich schnellen Wäreaustausch) i alorieter zeitlich konstant. In Wirklichkeit (alorieter nicht ideal isoliert) sind (wegen den auftretenden Wäreverlusten an die Ugebung) die Teperaturen vor und nach der ischung i alorieter nicht konstant, sie nähern sich exponentiell der Ugebungsteperatur an (bei kleine Wäreaustausch annähernd linear). Physiklabor (IFG) Versuch W3 Seite 3 / 6

4 Institut für ath.-naturw. Grundlagen Physikalisches Anfängerpraktiku Des Weiteren lässt sich ein augenblicklicher Wäreaustausch nicht realisieren, weswegen die geessene ischungsteperatur nicht de Wert entspricht, der sich für den Fall eines idealisierten (unendlich schnellen) Teperaturausgleiches einstellen würde. Die ischungsteperatur i alorieter kann also nicht direkt geessen werden, sie lässt sich jedoch graphisch durch Extrapolation aus eine Teperatur-Zeit-Diagra folgender Weise bestien: Während des ischvorgangs wird der Teperatur-Zeit-Verlauf (t) aufgenoen bestehend aus: Vorkurve (alorieterteperatur vor de Einbringen des waren örpers) Hauptkurve (Wäreentwicklung bei Einbringen des waren örpers) Nachkurve (alorieterteperatur nach de Einbringen des waren örpers). Anschließend wird (geäß nebenstehender Abbildung) die Vorkurve vorwärts, die Nachkurve rückwärts extrapoliert und eine parallele Gerade zur Teperaturachse so wählt, dass die beidseits liegenden Flächen F und F gleich groß sind. Hinweis: Die Flächengleichheit kann an durch nuerische oder graphische Integration sowie durch Auszählen von Quadraten auf illieterpapier feststellen. Der Teperaturverlauf ist ausreichend lange zu essen! Die Schnittpunkte dieser Geraden it der extrapolierten Vorkurve bzw. Nachkurve liefern die korrigierten Teperaturen und für den ischungsvorgang! 3.4 essdatenerfassung Zur Aufnahe der Teperatur-Zeit-urve (t) ist das ALEO-Datenerfassungsgerät und zwei NiCr-Ni Theroeleente zu verwenden. Die Teperaturwerte werden vo essgerät über die serielle Schnittstelle auf einen angeschlossenen PC übertragen. it Hilfe eines Labview-Progras wird die Teperatur-Zeit-urve direkt angezeigt bzw. kann zwecks Auswertung sofort ausgedruckt werden. Alle assen werden durch Wägung bestit. Physiklabor (IFG) Versuch W3 Seite 4 / 6

5 Institut für ath.-naturw. Grundlagen Physikalisches Anfängerpraktiku 4. essprogra 4. Bestien Sie zuerst die asse des leeren alorieters und wiegen Sie anschließend etwa 50 g kaltes Leitungswasser ein. Nehen Sie den Teperatur-Zeitverlauf i alorieter 5 inuten lang auf (Vorkurve) und fügen Sie dann etwas die gleiche asse heißes Wasser hinzu. Die Teperatur sollte etwa 40 45C betragen und wird unittelbar vor de des heißen Wassers Zugießen geessen. Der Teperaturverlauf wird erneut 5 inuten lang aufgezeichnet (Nachkurve). Für die Aufnahe von Vor- und Nachkurve ist ein essintervall von 30 s ausreichend, unittelbar vor bis kurz nach de ischungsvorgang sollte das essintervall auf 5 s ugestellt werden. Danach wird durch eine zweite Wägung die asse ges der sich i alorieter befindlichen Wasserenge bestit und daraus die asse des hinzugegebenen heißen Wassers als Differenz ges erittelt. it den (aus der ausgedruckten Teperatur-Zeit-Aufzeichnung) graphisch bestiten Teperaturen und ist die Wärekapazität des alorieters C sofort zu berechnen. Hinweis: Die Wärekapazität des alorieters kann von der Füllhöhe abhängen. Die Vorgaben wurden so gewählt, dass bei allen essungen die Füllhöhe etwa gleich ist. 4. Der abgewogene Probekörper (aus essing oder Aluiniu) der asse wird auf die (geessene) Siedeteperatur des kochenden Wassers erhitzt und dann in etwa 50 g (in das alorieter eingewogene) kaltes Leitungswasser eingebracht. Wie unter 4. beschrieben wird auch bei dieser ischung der Teperatur-Zeitverlauf aufgezeichnet und daraus graphisch und bestit. 4.3 it Hilfe eines Tauchsieders der elektrischen Leistung P (a Leistungsesser ehrals abzulesen) wird Wasser i alorieter zu ochen gebracht. alorieter und Stativ des Tauchsieders stehen auf der Waage, u die verdapfte Wasserenge als Gewichtsabnahe beobachten zu können. it der Stoppuhr werden die Zeiten geessen, u eine asse von 50 g, 00 g und 50 g Wasser zu verdapfen. (essung wird it fliegende Start durchgeführt, Zwischenzeiten werden notiert, ohne die Zeitessung zu unterbrechen!) Physiklabor (IFG) Versuch W3 Seite 5 / 6

6 Institut für ath.-naturw. Grundlagen Physikalisches Anfängerpraktiku 5. Auswertung 5. Bestien Sie aus Ihren essungen zu 4. die Wärekapazität C des alorieters, einschließlich der essunsicherheit. Für die Fehlerfortpflanzung bietet sich hier das nuerische Differenzieren ( Naturethode ) an. Vergleichen Sie Ihr Ergebnis it de aus der alorieterasse spezifischen Wärekapazität von Aluiniu Wärekapazität des alorieters! und der c abgeschätzten Wert für die 5. Berechnen Sie aus Ihren essungen zu 4. die spezifische Wärekapazität c des etalls einschließlich der essunsicherheit und vergleichen Sie Ihr Ergebnis it de Literaturwert der spezifischen Wäre des untersuchten aterials. Berechnen Sie die olare Wärekapazität C des etalls und vergleichen Sie diese it de Literaturwert und der Vorhersage des Gesetzes von Dulong-Perit! 5.3 Berechnen Sie aus Ihren essungen zu 4.3 die spezifische Verdapfungswäre r (einschließlich der essunsicherheit) für die drei Einzelessungen und bilden Sie aus den drei Einzelergebnissen den (gewichteten) ittelwert. Vergleichen Sie das Endergebnis it de Literaturwert der spezifischen Verdapfungswäre für Wasser! Folgende Angaben zu den Genauigkeiten der verwendeten Geräte sind zu beachten: essgerät ALEO 390-8: ± (0,03% vo esswert + Digits) Leistungsesser E 65: ± (% vo esswert+3 Digits) Waage SARTORIUS CPA60P: Ablesbarkeit bis 500g: 0,0 g Al Literaturwerte: Wasser: essing: Aluiniu: c W c es c Al 487 kg sing 386 kg 897 kg r 570 es Al sing 3 kg 64,0 6, kg ol kg ol Physiklabor (IFG) Versuch W3 Seite 6 / 6

Hochschule Heilbronn Technik Wirtschaft Informatik Heilbronn University Institut für math.-naturw. Grundlagen

Hochschule Heilbronn Technik Wirtschaft Informatik Heilbronn University Institut für math.-naturw. Grundlagen Technik Wirtschaft Inforatik Institut für ath-naturw Grundlagen Versuch : Kalorietrie 1 Aufgabenstellung Bestiung der Wärekapazität eines Kalorieters Bestiung der spezifischen Wärekapazität Festkörpern

Mehr

3.3 Wärme als Energieform

3.3 Wärme als Energieform 3.3 Wäre als Energiefor Erinnere: Herleitung der Zustandsgleichung p V=n R T hatten wir die Teperatur eingeführt als Basisgröße die proportional zur Molekülenergie sein soll: 1 3 ε kin = u = kt d.h.: zur

Mehr

Spezifische Wärmekapazität

Spezifische Wärmekapazität W03 Spezifische Wärekapazität Durch Mischungsexperiente erden neben der Wärekapazität des verendeten Kalorieters die spezifische Wärekapazität eines festen Körpers und zeier Flüssigkeiten bestit. 1. Theoretische

Mehr

PHY. Kalorimetrie Versuch: 9

PHY. Kalorimetrie Versuch: 9 Testat Kalorietrie Versuch: 9 Mo Di Mi Do Fr Datu: Abgabe: Fachrichtung Se. Kalorietrie 1. Einleitung Die Kalorietrie bezeichnet die Messung von Wäreengen, die an physikalische, cheische oder biologische

Mehr

HS D. V 301 : Kalorimeter. Gruppe : Versuchstag: Namen, Matrikel Nr.: Vorgelegt: Hochschule Düsseldorf Fachbereich EI. Physikalisches Praktikum

HS D. V 301 : Kalorimeter. Gruppe : Versuchstag: Namen, Matrikel Nr.: Vorgelegt: Hochschule Düsseldorf Fachbereich EI. Physikalisches Praktikum Physikalisches aktiku Braun, ochotta Gruppe : Naen, atrikel Nr.: HS D Hochschule Düsseldorf Physikalisches aktiku Versuchstag: Vorgelegt: Testat : V 301 : Kalorieter Zusaenfassung: Physikalisches aktiku

Mehr

Institut für Abfallwirtschaft und Altlasten, TU-Dresden Seminar Thermische Abfallbehandlung - Veranstaltung 4 - Dampfkraftprozesse

Institut für Abfallwirtschaft und Altlasten, TU-Dresden Seminar Thermische Abfallbehandlung - Veranstaltung 4 - Dampfkraftprozesse Institut für Abfallwirtschaft und Altlasten, TU-Dresden Seinar Therische Abfallbehandlung - Veranstaltung 4 - Dapfkraftprozesse Dresden, 09. Juni 2008 Dipl.- Ing. Christoph Wünsch, Prof. Dr.- Ing. habil.

Mehr

Spezifische Erstarrungs- und Verdampfungsenthalpie des Wassers (Latente Wärme)

Spezifische Erstarrungs- und Verdampfungsenthalpie des Wassers (Latente Wärme) Spezifische Erstarrungs- und Verdapfungsenthalpie des Wassers (Latente Wäre) Stichworte: Erster Hauptsatz der Therodynaik, Kalorieter, Phasenuwandlung, Latente Wäre 1 Grundlagen Solange ein cheisch einheitlicher

Mehr

Beispiel: Gegeben ist folgender Hebel mit den Kräften F

Beispiel: Gegeben ist folgender Hebel mit den Kräften F Gynasiu Münchberg Grundwissen Physik Jahrgangsstufe 8 (G8) Stand: Juli 007 Seite von 6. Energie Hebel Thea Erklärung und Beispiele Drehoent = Kraft Hebelar, kurz: M = F a (dabei wird nur die Koponente

Mehr

Versuch MG: Molmassenbestimmung eines Gases nach der Methode von Dumas

Versuch MG: Molmassenbestimmung eines Gases nach der Methode von Dumas Dies ist ein Beispielprotokoll zu fiktiven Versuch Molassenbestiung, das Ihnen insbesondere für die physikalischcheischen Versuche (GMS, ABS, BSP, MWG, LFG) aufzeigt, wie Ihr Protokoll auszusehen hat.

Mehr

2. GV: Ideale Gasgesetze

2. GV: Ideale Gasgesetze Physik Praktiku I: WS 2005/06 Protokoll zu Praktiku 2. GV: Ideale Gasgesetze Protokollanten Jörg Mönnich - Anton Friesen - Betreuer Holger Versuchstag Dienstag, 06.12.2005 Einleitung Der Zustand eines

Mehr

Versuch 3. Kalorimetrie. Versuchsziel:

Versuch 3. Kalorimetrie. Versuchsziel: Versuch 3 Kalorietrie Versuchsziel: Cheische und dait auch physiologische Reaktionen sind ier it der Produktion oder de Verbrauch von Wäre verknüpft. Bis zur Mitte des 9. Jahrhunderts nah an an, daß Wäre

Mehr

Wärmemenge, spezifische Wärmekapazität, molare Wärmekapazität, Kalorimetrie, Dulong-Petitsches Gesetz.

Wärmemenge, spezifische Wärmekapazität, molare Wärmekapazität, Kalorimetrie, Dulong-Petitsches Gesetz. W1 Spezifische Wärmekapazität von festen Stoffen Stoffgebiet: Wärmemenge, spezifische Wärmekapazität, molare Wärmekapazität, Kalorimetrie, Dulong-Petitsches Gesetz. Versuchsziel: Bestimmung der spezifischen

Mehr

W04. Phasenübergänge I. 1. Theoretische Grundlagen 1.1 Bestimmung von Wärmemengen (Kalorimetrie)

W04. Phasenübergänge I. 1. Theoretische Grundlagen 1.1 Bestimmung von Wärmemengen (Kalorimetrie) W04 Physikalisches Praktiku Phasenübergänge I Das Autreten latenter Wäreengen ist ein ichtiges Phänoen von Phasenübergängen. I vorliegenden Versuch soll die speziische Schelzäre von Eis bestit erden. 1.

Mehr

Versuch W2 - Verdampfungswärme von Wasser. Gruppennummer: lfd. Nummer: Datum:

Versuch W2 - Verdampfungswärme von Wasser. Gruppennummer: lfd. Nummer: Datum: Ernst-Moritz-Arndt Universität Greifsald Institut für Physik Versuch W - Verdapfungsäre von Wasser Nae: Mitarbeiter: Gruppennuer: lfd. Nuer: atu: 1. Aufgabenstellung 1.1. Versuchsziel Bestien Sie die spezifische

Mehr

Bestimmung der spezifischen Wärmekapazität fester Körper

Bestimmung der spezifischen Wärmekapazität fester Körper - B02.1 - Versuch B2: Bestimmung der spezifischen Wärmekapazität fester Körper 1. Literatur: Demtröder, Experimentalphysik, Bd. I Bergmann-Schaefer, Lehrbuch der Physik, Bd.I Walcher, Praktikum der Physik

Mehr

Die Maxwell-Boltzmann-Verteilung

Die Maxwell-Boltzmann-Verteilung Die Maxwell-Boltzann-Verteilung Sebastian Meiss 5. Oktober 8 Mit der Maxwell-Boltzann-Verteilung kann an Aussagen über die Energie- bzw. Geschwindigkeitsverteilung von Teilchen in eine Syste beschreiben.

Mehr

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg Institut für hysikalische Cheie lbert-ludwigs-universität Freiburg Lösungen zu 8. Übungsblatt zur Vorlesung hysikalische Cheie I SS 00 rof. Dr. Bartsch 8. (5 unkte) Benzol erstarrt unter at bei 5,5 C;

Mehr

Der Joule-Thomson Effekt

Der Joule-Thomson Effekt Der Joule-hoson Effekt Einleitung Der Joule-hoson Effekt bezeichnet die eeraturänderung eines realen Gases bei einer adiabatischen Voluenveränderung. Der Effekt wird großtechnisch zu Beisiel i Linde- Verfahren

Mehr

Versuch Nr.53. Messung kalorischer Größen (Spezifische Wärmen)

Versuch Nr.53. Messung kalorischer Größen (Spezifische Wärmen) Versuch Nr.53 Messung kalorischer Größen (Spezifische Wärmen) Stichworte: Wärme, innere Energie und Enthalpie als Zustandsfunktion, Wärmekapazität, spezifische Wärme, Molwärme, Regel von Dulong-Petit,

Mehr

2. Klausur zur Vorlesung Einführung in die physikalische Chemie für Lehramtskandidaten Modul 4, Wintersemester 05/06

2. Klausur zur Vorlesung Einführung in die physikalische Chemie für Lehramtskandidaten Modul 4, Wintersemester 05/06 . Klausur zur Vorlesung Einführung in die hysikalische Cheie für Lehratskandidaten Modul 4, Winterseester 5/6 3. März 6, 9 5 45 Uhr Nae, Vornae:... Geburtsdatu, -ort:... Matrikelnuer:... Fachseester,.

Mehr

1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen

1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen IV. Wärmelehre 1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen Historisch: Wärme als Stoff, der übertragen und in beliebiger Menge erzeugt werden kann. Übertragung: Wärmezufuhr Joulesche

Mehr

Vorwort. Gernot Wilhelms. Übungsaufgaben Technische Thermodynamik ISBN: Weitere Informationen oder Bestellungen unter

Vorwort. Gernot Wilhelms. Übungsaufgaben Technische Thermodynamik ISBN: Weitere Informationen oder Bestellungen unter Vorwort Gernot Wilhels Übungsaufgaben Technische Therodynaik ISBN: 978-3-446-42514-9 Weitere Inforationen oder Bestellungen unter http://www.hanser.de/978-3-446-42514-9 sowie i Buchhandel. Carl Hanser

Mehr

Suszeptibilitätsmessungen mit der Magnetwaage Mark I von Johnson-Matthey

Suszeptibilitätsmessungen mit der Magnetwaage Mark I von Johnson-Matthey Einführung in hysialisch-cheische ethoden i anorganischcheischen rundratiu (Dilostudiengang Cheie) Ausgegeben seit Soerseester 007 Suszetibilitätsessungen it der agnetwaage ar I von Johnson-atthey are

Mehr

O. Sternal, V. Hankele. 5. Thermodynamik

O. Sternal, V. Hankele. 5. Thermodynamik 5. Thermodynamik 5. Thermodynamik 5.1 Temperatur und Wärme Systeme aus vielen Teilchen Quelle: Wikimedia Commons Datei: Translational_motion.gif Versuch: Beschreibe 1 m 3 Luft mit Newton-Mechanik Beschreibe

Mehr

Physikalische Chemie Praktikum. Reale Gase, Kritischer Punkt

Physikalische Chemie Praktikum. Reale Gase, Kritischer Punkt Hochschule Eden / Leer Physikalische Cheie Praktiku Reale Gase, Kritischer Punkt Vers.Nr. 1 April 015 Allgeeine Grundlagen Reale Gase, Kopressionsfaktor (Realgasfaktor), Van der Waals Gleichung, Kritischer

Mehr

Rüdiger Kuhnke. Wärme

Rüdiger Kuhnke. Wärme Rüdiger Kuhnke Wäre Dieses Skriptu deckt i wesentlichen den Inhalt der Lehrpläne für technisch orientierte berufsbildende Schulen ab, dies entspricht etwa de Stoff der Sekundarstufe I. Version 0.2 vo 1.10.2008

Mehr

Kryoskopie = +. 1 cm. Theoretische Grundlagen

Kryoskopie = +. 1 cm. Theoretische Grundlagen Kryoskopie 1 Theoretische Grundlagen Der Dapfdruckerniedrigung eines Lösungsittels in einer Lösung (Raoultsches Gesetz) entspricht eine Siedeteperaturerhöhung und - sofern das reine Lösungsittel auskristallisiert

Mehr

1u = A r = Die relativen Atom-, Molekül- und Ionenmassen. atomare Masseneinheit 1u. relative Atommasse A r :

1u = A r = Die relativen Atom-, Molekül- und Ionenmassen. atomare Masseneinheit 1u. relative Atommasse A r : Die relativen Ato-, Molekül- und Ionenassen atoare Masseneinheit u: u Masse von Kohlenstoffato C u,6655 7 kg relative Atoasse A r : Masse eines Atos A r atoare Masseneinheit u relative Molekülasse M r

Mehr

Spezifische Wärme fester Körper

Spezifische Wärme fester Körper 1 Spezifische ärme fester Körper Die spezifische, sowie die molare ärme von Kupfer und Aluminium sollen bestimmt werden. Anhand der molaren ärme von Kupfer bei der Temperatur von flüssigem Stickstoff soll

Mehr

(VIII) Wärmlehre. Wärmelehre Karim Kouz WS 2014/ Semester Biophysik

(VIII) Wärmlehre. Wärmelehre Karim Kouz WS 2014/ Semester Biophysik Quelle: http://www.pro-physik.de/details/news/1666619/neues_bauprinzip_fuer_ultrapraezise_nuklearuhr.html (VIII) Wärmlehre Karim Kouz WS 2014/2015 1. Semester Biophysik Wärmelehre Ein zentraler Begriff

Mehr

2. Physikschulaufgabe. - Lösungen -

2. Physikschulaufgabe. - Lösungen - Realschule. Physikschulaufgabe Klasse 8 I - Lösungen - Thea: Mechanik der en und Gase 1.1 Versuchsaufbau In eine Präzisionsglasrohr it geschliffener Innenwand befindet sich eine fast reibungsfrei bewegliche

Mehr

Jan Auffenberg. 2. Theorie 2.1 Mathematisches Pendel Um eine Pendelbewegung einfach beschreiben zu können, wendet man folgende Abstraktionen a:

Jan Auffenberg. 2. Theorie 2.1 Mathematisches Pendel Um eine Pendelbewegung einfach beschreiben zu können, wendet man folgende Abstraktionen a: Gruppe 8 Björn Baueier Protokoll zu Versuch M1: Pendel 1. Einleitung Die Eigenschaften und Bewegungen der in diese Versuch untersuchten Fadenund Federpendel, werden durch eine besonders einfache haronische

Mehr

Versuch: Spezifische Wärmekapazität fester Körper

Versuch: Spezifische Wärmekapazität fester Körper ersuch T1 SPEZIFISHE WÄRMEKAPAZITÄT FESTER KÖRPER Seite 1 von 5 ersuch: Spezifische Wärmekapazität fester Körper Anleitung für folgende Studiengänge: Physik, L3 Physik, Biophysik, Meteorologie, hemie,

Mehr

W2 Gasthermometer. 1. Grundlagen: 1.1 Gasthermometer und Temperaturmessung

W2 Gasthermometer. 1. Grundlagen: 1.1 Gasthermometer und Temperaturmessung W2 Gasthermometer Stoffgebiet: Versuchsziel: Literatur: emperaturmessung, Gasthermometer, Gasgesetze Mit Hilfe eines Gasthermometers ist der Ausdehnungs- und Druckkoeffizient von Luft zu bestimmen. Beschäftigung

Mehr

. V2. = p 2 T 1 T 2. Normbedingungen Das Volumen von 1 Mol eines idealen Gases beträgt bei Normbedingungen (1.013 bar, 0 C) Liter.

. V2. = p 2 T 1 T 2. Normbedingungen Das Volumen von 1 Mol eines idealen Gases beträgt bei Normbedingungen (1.013 bar, 0 C) Liter. Wäreausdehnung der Gase LMPG_GASE LABA/B Während bei Flüssigkeiten und Festkörpern die Wäreausdehnung auch von der Art des Stoffes abhängt, ist dies bei Gasen nicht der Fall. Bei konstante Druck und einer

Mehr

Demonstrationsexperimente WS 04/05. Thema: Dichte der Luft Dichtebestimmung mittels Luftgewichtsmesser

Demonstrationsexperimente WS 04/05. Thema: Dichte der Luft Dichtebestimmung mittels Luftgewichtsmesser Deonstrationsexperiente WS 04/05 Thea: Dichte der Luft Dichtebestiung ittels Luftgewichtsesser Monika Schorn 9..004. Versuchsbeschreibung. Materialliste - Luftgewichtsesser (hohle Kugel it Ventil zu Befüllen)

Mehr

W 15 Isothermen realer Gase

W 15 Isothermen realer Gase Faultät für Physi und Geowissenschaften Physialisches Grundpratiu W 15 Isotheren realer Gase Aufgaben 1. Nehen Sie die Isotheren eines Stoffes für acht vorgegebene Teperaturen auf. Beschreiben Sie die

Mehr

Grundlagen der DURCHFLUSSMESSUNG mittels Heißfilmanemometer

Grundlagen der DURCHFLUSSMESSUNG mittels Heißfilmanemometer Grundlagen der DURCHFLUSSMESSUNG ittels Heißfilaneoeter 1/9 Inhaltsverzeichnis: 1. Definitionen 1.1. Luftgeschwindigkeit 1.2. Gasenge 1.. Durchfluss 1..1. Massendurchfluss (Massenstro) 1..2. Voluendurchfluss

Mehr

Gase. Der Druck in Gasen. Auftrieb in Gasen. inkl. Exkurs: Ideale Gase

Gase. Der Druck in Gasen. Auftrieb in Gasen. inkl. Exkurs: Ideale Gase Physik L17 (16.11.212) Der Druck in n inkl. Exkurs: Ideale uftrieb in n 1 Wiederholung: Der Druck in Flüssigkeiten Der Druck in Flüssigkeiten nit it zunehender Tiefe zu: Schweredruck Die oberen Wasserschichten

Mehr

Die Dampfdruckkurve. Aufnahme der Dampfdruckkurve von Wasser und Bestimmung der. Verdampfungsenthalpie

Die Dampfdruckkurve. Aufnahme der Dampfdruckkurve von Wasser und Bestimmung der. Verdampfungsenthalpie Berlin, den 31. Oktober 2000 Die Dapfdruckkurve Aufnahe der Dapfdruckkurve von Wasser und Bestiung der Verdapfungsenthalpie Durch unseren Versuch konnten wir die Gleichung der Dapfdruckkurve von destillierte

Mehr

5.2 Thermische Ausdehnung (thermische Zustandsgleichung)

5.2 Thermische Ausdehnung (thermische Zustandsgleichung) 5.2 herische Ausdehnung (therische Zustandsgleichung) Praktisch alle festen, gasförigen und flüssigen Stoffe dehnen sich bei Erwärung bei konstante Druck aus, vergrößern also ihr Voluen. Alle Stoffe lassen

Mehr

Welcher Bewegungsspielraum ist für die beweglichen Auflager der Brücke zu berücksichtigen?

Welcher Bewegungsspielraum ist für die beweglichen Auflager der Brücke zu berücksichtigen? Ü 4. Längendehnung einer Autobahnbrücke Bei 0 beträgt die Länge einer Autobahnbrücke 60. Die eperaturschwankung beträgt -0 i Winter bis zu +4 i Soer. Der Wäredehnungskoeffizient des bei der Brückenkonstruktion

Mehr

Integrale und partiell molare Lösungsenthalpie

Integrale und partiell molare Lösungsenthalpie Stand: 06/00 I..1 Integrale und partiell olare ösungsenthalpie Ziel des Versuches Die Grundlagen kalorietrischer Messverfahren werden a eispiel der Messung der partiellen olaren ösungsenthalpie deonstriert.

Mehr

Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung.

Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Nullter und Erster Hauptsatz der Thermodynamik. Thermodynamische

Mehr

Physikalisch-chemisches Praktikum

Physikalisch-chemisches Praktikum Physikalisch-cheisches Praktiku Versuch: Oberflächenspannung (Tensioetrie) Datu: 28.03.2008 Gruppe: B23 ars Thiele, Matthias Wolz, Andreas van Kapen 1 Einleitung In diese Versuch wird die Oberflächenspannung

Mehr

Übungsaufgaben. Was für Buchstaben gilt, gilt leider nicht für Zahlen! 4, ,75638

Übungsaufgaben. Was für Buchstaben gilt, gilt leider nicht für Zahlen! 4, ,75638 Übungsaufgaben uat enier Stidue an der elingshcen Cabridge Unirestiät ist es eagl, in wlehcer Rienhnelfoge die Bcuhtsbaen in enie Wrot sethen, das enizg wcihitge dbaei ist, dsas der estre und Izete Bcuhtsbae

Mehr

Bestimmung der Molaren Masse von Dichlormethan mit der Methode nach Dumas 1 (MOL)

Bestimmung der Molaren Masse von Dichlormethan mit der Methode nach Dumas 1 (MOL) Seite 1 Bestimmung der Molaren Masse von Dichlormethan mit der Methode nach Dumas 1 1 Literatur W. Walcher, Praktikum der Physik, Teubner Themengebiet: Thermodynamik Bundesanstalt für Arbeitsschutz und

Mehr

Temperatur.nb. Ã Frage. Ã Antwort Vorbereitung Lehrbuch-Formel Eigentlicher Wirkungsgrad

Temperatur.nb. à Frage. à Antwort Vorbereitung Lehrbuch-Formel Eigentlicher Wirkungsgrad Teperatur.nb Fragesteller: 7. 3.006 Dr. Norbert Südland Bearbeitung: 7. 3.006 4. 3.006 Dr. Norbert Südland Letzte Berechnung: 4. 3.006 Dr. Norbert Südland à 36.1. Frage Gibt es sinnvolle Alternativen zur

Mehr

20. Kinetische Gastheorie

20. Kinetische Gastheorie Wärelehre Kinetische Gastheorie 0. Kinetische Gastheorie... behandelt ideale Gase, d.h., die Gasteilchen verhalten sich wie elastische Kugeln it vernachlässigbare Eigenvoluen.! 0.. Gasdruck und Zustandsgleichung

Mehr

PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe. W 3 - Kalorimetrie

PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe. W 3 - Kalorimetrie 10.08.2008 PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe Versuch: W 3 - Kalorimetrie 1. Grundlagen Definition und Einheit von Wärme und Temperatur; Wärmekapazität (spezifische und molare); Regel von Dulong

Mehr

Ma 10 / 11 Das Newton-Verfahren Na - 4. September 2014

Ma 10 / 11 Das Newton-Verfahren Na - 4. September 2014 Was ist das Newton-Verfahren? Das Newton-Verfahren ist ein nuerisches Verfahren zur näherungsweisen Bestiung einer Nullstelle einer gegeben Funktion. Analytisch exakt können Nullstellen von Geraden von

Mehr

25. Adiabatische Expansion eines idealen Gases 1

25. Adiabatische Expansion eines idealen Gases 1 25. Adiabatische Exansion eines idealen Gases 1 25. ADABASHE EXPANSON ENES DEALEN GASES 1. Aufgabe Für Luft als annähernd ideales Gas sollen sowohl die Molwäre bei konstante Druck, d.h.,, als auch das

Mehr

Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung)

Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung) Versuch Nr. 57 Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung) Stichworte: Dampf, Dampfdruck von Flüssigkeiten, dynamisches Gleichgewicht, gesättigter Dampf, Verdampfungsenthalpie, Dampfdruckkurve,

Mehr

Bericht zu Versuch 2. Molmassenbestimmung nach Victor Meyer

Bericht zu Versuch 2. Molmassenbestimmung nach Victor Meyer Bericht zu Versuch 2 Molassenbestiun nach Victor Meyer Marc Nikoleit Dennis O. Krebs 1. Theoretischer Hinterrund Mit der Gleichun berechnen, es steht p V = n R T lassen sich die verschiedenen Faktoren

Mehr

9 Thermodynamik Temperatur und Wärme

9 Thermodynamik Temperatur und Wärme 9 Therodynaik Teperatur und Wäre Waru ist ei Brücken die Fahrahn durch einen Eisenka unterrochen? Die Antwort auf diese Frage und noch viel ehr Interessantes finden Sie in diese Kapitel. Quelle: wikiedia.org

Mehr

Spezifische Wärmekapazität fester Körper

Spezifische Wärmekapazität fester Körper Version: 14. Oktober 2005 Spezifische Wärmekapazität fester Körper Stichworte Wärmemenge, spezifische Wärme, Schmelzwärme, Wärmekapazität, Wasserwert, Siedepunkt, innere Energie, Energiesatz, Hauptsätze

Mehr

Elastizität und Torsion

Elastizität und Torsion INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 Elastizität und Torsion 1 Einleitung Ein Flachstab, der an den

Mehr

Welche Energieformen gibt es? mechanische Energie elektrische Energie chemische Energie thermische oder Wärmeenergie Strahlungsenergie

Welche Energieformen gibt es? mechanische Energie elektrische Energie chemische Energie thermische oder Wärmeenergie Strahlungsenergie Was ist nergie? nergie ist: eine rhaltungsgröße eine Rechengröße, die es eröglicht, Veränderungen zwischen Zuständen zu berechnen eine Größe, die es erlaubt, dass Vorgänge ablaufen, z.b. das Wasser erwärt

Mehr

Versuch W1: Kalorimetrie

Versuch W1: Kalorimetrie Versuch W1: Kalorimetrie Aufgaben: 1. Bestimmen Sie die Wärmekapazität zweier Kalorimeter (Kalorimeterkonstanten). 2. Bestimmen Sie die spezifische Wärmekapazität von 2 verschiedenen festen Stoffen. 3.

Mehr

Physikalisches Praktikum Bestimmung der Schmelzwärme von Eis

Physikalisches Praktikum Bestimmung der Schmelzwärme von Eis Physikalisches Praktikum Bestimmung der Schmelzwärme von Eis Autoren: Markus Krieger Nicolai Löw Erstellungsdatum: 4. Juni 2000 Disclaimer: Alle von mir im Internet unter http://www.krieger-online.de veröffentlichten

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I W21 Name: Verdampfungswärme von Wasser Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Folgende Fragen

Mehr

Bayern Musterlösung zu Klausur A 1

Bayern Musterlösung zu Klausur A 1 Abitur 011 iese ösung wurde erstellt von anja Reibold Sie ist keine offizielle ösung des Bayerischen Staatsinisterius für Unterricht und Kultus Aufgabe 1: da ein Asteroid it Mond Vorgaben: urchesser: 70k,

Mehr

Chemische Grundgesetze

Chemische Grundgesetze Björn Schulz Berlin,.10.001 p.1 Cheische Grundgesetze Gesetz von der Erhaltung der Masse (Lavoisier 1785) Abbrennen einer Kerze Massenverlust geschlossenes Syste Eisennagel rostet Massenzunahe konstante

Mehr

Gernot Wilhelms. Übungsaufgaben Technische Thermodynamik. ISBN (Buch): ISBN (E-Book):

Gernot Wilhelms. Übungsaufgaben Technische Thermodynamik. ISBN (Buch): ISBN (E-Book): Gernot Wilhels Übungsaufgaben Technische Therodynaik ISBN (Buch): 978--446-45-6 ISBN (E-Book): 978--446-459- Weitere Inforationen oder Bestellungen unter http://www.hanser-fachbuch.de/978--446-45-6 sowie

Mehr

Thermische Charakterisierungen

Thermische Charakterisierungen Makroolekulare Cheie Bachelor-Praktiku Therische Charakterisierungen 1. Überblick Teil A: Differential Scanning Calorietry (DSC) Differential Theral Analysis (DTA) - Untersuchung von therischen Übergängen

Mehr

Uwe Rath Eckleinjarten 13a Bremerhaven

Uwe Rath Eckleinjarten 13a Bremerhaven 8. Ruhende Flüssigkeiten Eine Flüssigkeit ist Materie i flüssigen ggregatzustand, nach einer akroskopischen Definition ein Stoff, welcher einer Foränderung so gut wie keinen, einer Voluenänderung hingegen

Mehr

Protokoll Grundpraktikum I: M5 - Oberflächenspannung

Protokoll Grundpraktikum I: M5 - Oberflächenspannung Protokoll Grundpraktiku I: M5 - Oberflächenspannung Sebastian Pfitzner 28. April 2013 Durchführung: Sebastian Pfitzner (553983), Anna Andrle (550727) Arbeitsplatz:!!Platz!! Betreuer: Stefan Weideann Versuchsdatu:

Mehr

T3 - Wärmekapazität. Nutzen Sie die Fachliteratur, um die nachfolgenden Fragen und Aufgaben zu beantworten:

T3 - Wärmekapazität. Nutzen Sie die Fachliteratur, um die nachfolgenden Fragen und Aufgaben zu beantworten: T3 - Wärmekapazität Ziel des Versuches In diesem Versuch sollen Sie sich mit den Konzepten der Wärmekapazität und der Kalorimetrie vertraut machen. Hierzu bestimmen Sie die Wärmekapazität des zur Verfügung

Mehr

Gasthermometer. durchgeführt am von Matthias Dräger, Alexander Narweleit und Fabian Pirzer

Gasthermometer. durchgeführt am von Matthias Dräger, Alexander Narweleit und Fabian Pirzer Gasthermometer 1 PHYSIKALISCHE GRUNDLAGEN durchgeführt am 21.06.2010 von Matthias Dräger, Alexander Narweleit und Fabian Pirzer 1 Physikalische Grundlagen 1.1 Zustandgleichung des idealen Gases Ein ideales

Mehr

Dichtebestimmung. ρ bzw.

Dichtebestimmung. ρ bzw. M01 Dichtebestiung In diese Versuch sind Dichtebestiungen von festen örpern unterschiedlicher Geoetrien und üssigkeiten nach verschiedenen Methoden durchzuführen. Dabei sind die Messgenauigkeiten der einzelnen

Mehr

Übung 11 Physikalische Eigenschaften der Metalle

Übung 11 Physikalische Eigenschaften der Metalle Werkstoffe und Fertigung II Prof.Dr. K. Wegener Soerseester 2007 C1 Nae Vornae Legi-Nr. Übung 11 Physikalische Eigenschaften der Metalle Musterlösung usgabe: 29.05.2007 bgabe: 31.05.2007 Institut für Werkzeugaschinen

Mehr

Übungsblatt 2 ( )

Übungsblatt 2 ( ) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 01 Übungsblatt (11.05.01) 1) Geschwindigkeitsverteilung eines idealen Gases (a) Durch welche Verteilung lässt sich die Geschwindigkeitsverteilung

Mehr

Festkörper - System steht unter Atmosphärendruck gemessenen Wärmen erhalten Index p : - isoliert

Festkörper - System steht unter Atmosphärendruck gemessenen Wärmen erhalten Index p : - isoliert Kalorimetrie Mit Hilfe der Kalorimetrie können die spezifischen Wärmekapazitäten für Festkörper, Flüssigkeiten und Gase bestimmt werden. Kalorische Grundgleichung: ΔQ = c m ΔT Festkörper - System steht

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 007 Vladimir Dyakonov #7 am 18.01.006 Folien im PDF Format unter: http://www.physik.uni-wuerzburg.de/ep6/teaching.html Raum E143, Tel.

Mehr

Spezifische Wärmekapazität

Spezifische Wärmekapazität Versuch: KA Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: L. Jahn B. Wehner J. Pöthig J. Stelzer am 01. 06. 1997 Bearbeitet: M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher am

Mehr

Übungsaufgabe. Bestimmen Sie das molare Volumen für Ammoniak bei einem Druck von 1 MPa und einer Temperatur von 100 C nach

Übungsaufgabe. Bestimmen Sie das molare Volumen für Ammoniak bei einem Druck von 1 MPa und einer Temperatur von 100 C nach Übungsaufgabe Bestien Sie das olare Voluen für Aoniak bei eine Druck von 1 MPa und einer Teperatur von 100 C nach a) de idealen Gasgesetz b) der Van der Waals-Gleichung c) der Redlich-Kwong- Gleichung

Mehr

1 EMK-Messung thermodynamischer Aktivitäten mit einer Konzentrationszelle

1 EMK-Messung thermodynamischer Aktivitäten mit einer Konzentrationszelle EMK 1.1 1 EMK-Messung therodynaischer ktivitäten it einer Konzentrationszelle 1.1 Grundlagen Je nachde, ob in einer binären flüssigen oder festen Lösung -B die nziehungskräfte zwischen den - und B-eilchen

Mehr

Skript zur Vorlesung

Skript zur Vorlesung Skript zur Vorlesung 1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für

Mehr

Gestufte Hilfen zum Aufgabenblatt Die besonderen Eigenschaften der Entropie

Gestufte Hilfen zum Aufgabenblatt Die besonderen Eigenschaften der Entropie Physik 9 1/5 Dr M Ziegler Gestufte Hilfen zum Aufgabenblatt Die besonderen Eigenschaften der Entropie Zu Aufgabe 1 Hilfe 1: Im Aufgabenblatt Entropie, Temperatur und Masse hast du bereits wichtige Eigenschaften

Mehr

Prozesstechnik-Übung Wintersemester Es ist das Phasendiagramm des Systems Naphthalin/Biphenyl durch thermische Analyse zu bestimmen.

Prozesstechnik-Übung Wintersemester Es ist das Phasendiagramm des Systems Naphthalin/Biphenyl durch thermische Analyse zu bestimmen. Prozesstechnik-Übung Wintersemester 2008-2009 Thermische Analyse 1 Versuchsziel Es ist das Phasendiagramm des Systems Naphthalin/Biphenyl durch thermische Analyse zu bestimmen. 2 Theoretische Grundlagen

Mehr

Physikalisch-Chemisches Grundpraktikum

Physikalisch-Chemisches Grundpraktikum Physikalisch-Cheisches Grundpraktiku Versuch Nuer G3: Bestiung der Oberflächen- spannung it der Blasenethode Gliederung: I. Aufgabenbeschreibung II. Theoretischer Hintergrund III. Versuchsanordnung IV.

Mehr

1. Wärmelehre 1.1. Temperatur. Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités)

1. Wärmelehre 1.1. Temperatur. Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für die Temperatur Prinzip

Mehr

Fachhochschule Flensburg. Die spezifische Wärmekapazität fester Körper

Fachhochschule Flensburg. Die spezifische Wärmekapazität fester Körper Name : Fachhochschule Flensburg Fachbereich Technik Institut für Physik und Werkstoffe Name: Versuch-Nr: W4 Die spezifische Wärmekapazität fester Körper Gliederung: Seite Einleitung 1 Berechnung 1 Versuchsbeschreibung

Mehr

SCHRIFTLICHE ABITURPRÜFUNG 2007 PHYSIK (Grundkursniveau)

SCHRIFTLICHE ABITURPRÜFUNG 2007 PHYSIK (Grundkursniveau) PHYSIK (Grundkursniveau) Einlesezeit: Bearbeitungszeit: 30 Minuten 10 Minuten Aus jede Theenblock ist ein Thea auszuwählen und anzukreuzen. Gewählte Theen: Theenblock Grundlagen Thea G1 Untersuchungen

Mehr

Physikalische Chemie 0 Klausur, 22. Oktober 2011

Physikalische Chemie 0 Klausur, 22. Oktober 2011 Physikalische Chemie 0 Klausur, 22. Oktober 2011 Bitte beantworten Sie die Fragen direkt auf dem Blatt. Auf jedem Blatt bitte Name, Matrikelnummer und Platznummer angeben. Zu jeder der 25 Fragen werden

Mehr

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung.

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Prinzip In einer langen Spule wird ein Magnetfeld mit variabler Frequenz

Mehr

Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007

Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007 Versuch 2 Physik für (Zahn-)Mediziner c Claus Pegel 13. November 2007 1 Wärmemenge 1 Wärme oder Wärmemenge ist eine makroskopische Größe zur Beschreibung der ungeordneten Bewegung von Molekülen ( Schwingungen,

Mehr

Technische Thermodynamik

Technische Thermodynamik Kalorimetrie 1 Technische Thermodynamik 2. Semester Versuch 1 Kalorimetrische Messverfahren zur Charakterisierung fester Stoffe Namen : Datum : Abgabe : Fachhochschule Trier Studiengang Lebensmitteltechnik

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik -. Hauptsatz der Thermodynamik - Prof. Dr. Ulrich Hahn WS 2008/09 Energieerhaltung Erweiterung des Energieerhaltungssatzes der Mechanik Erfahrung: verschiedene

Mehr

1. Wärmelehre 1.1. Temperatur Wiederholung

1. Wärmelehre 1.1. Temperatur Wiederholung 1. Wärmelehre 1.1. Temperatur Wiederholung a) Zur Messung der Temperatur verwendet man physikalische Effekte, die von der Temperatur abhängen. Beispiele: Volumen einer Flüssigkeit (Hg-Thermometer), aber

Mehr

Entmischungsgleichgewichte

Entmischungsgleichgewichte ntischungsgleichgewichte Ideale binäre Mischungen Bei der Behandlung von Mischungserscheinungen in binären ysteen geht an von den beiden betreffenden reinen Koponenten aus. Für den jeweiligen toffengenanteil

Mehr

Mischen von Flüssigkeiten mit verschiedener Temperatur

Mischen von Flüssigkeiten mit verschiedener Temperatur V13 Thema: Wärme 1. Einleitung Ob bei der Regelung der Körpertemperatur, dem Heizen des Zimmers oder zahlreichen technischen Prozessen: Der Austausch von Wärme spielt eine wichtige Rolle. In diesem Versuch

Mehr

C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!)

C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!) Physikalishes Praktiku für Pharazeuten C5: Kalorietrie C. Nahbereitungsteil (NACH der Versuhsdurhführung lesen! 4. Physikalishe Grundlagen 4. Wäre und eeratur s ist wihtig, die egriffe Wäre und eeratur

Mehr

Übung zur Vorlesung PC I Chemische Thermodynamik B.Sc. Blatt 2

Übung zur Vorlesung PC I Chemische Thermodynamik B.Sc. Blatt 2 Prof. Dr. Norbert Ha Soerseester 009.05.009 Übung zur orlesung PC I Cheische Therodynaik B.Sc. Blatt. Abweichungen o idealen erhalten bei Gasen lassen sich durch Angabe des Koressionsfaktors Z = / RT charakterisieren,

Mehr

Gander Daniel, WS 2004 Mayrhofer Reinhard; GEOPHYSICS & GEODYNAMICS TU GRAZ

Gander Daniel, WS 2004 Mayrhofer Reinhard; GEOPHYSICS & GEODYNAMICS TU GRAZ Gander Daniel, WS 004 TECHNISCHE BEICHT st lab: Gravity and Pressure in the Earth s Interior POBLEMSTELLUNG... LÖSUNG UND EGEBNISSE.... Berechnung der Massen.... Berechnung der Schwerebeschleunigung...4.

Mehr

Formel X Leistungskurs Physik WS 2005/2006

Formel X Leistungskurs Physik WS 2005/2006 Die Therodynaik ist die Lehre von der Energie. Sie lehrt Energieforen zu unterscheiden, sie zeigt deren Verknüfungen auf (Energiebilanz, 1. Hautsatz) und sie klärt die Bedingungen und Grenzen für die Uwandelbarkeit

Mehr

Versuch: Mohrsche Waage

Versuch: Mohrsche Waage Versuch M1 MOHRSCHE WAAGE Seite 1 von 5 Versuch: Mohrsche Waage Anleitung für folgende Studiengänge: Physik, L3 Physik, Biophysik, Meteorologie, Cheie, Biocheie, Geowissenschaften, Inforatik Rau: Physik.206

Mehr

1. Wärmelehre 2.4. Die Freiheitsgrade eines Gases. f=5 Translation + Rotation. f=7 Translation + Rotation +Vibration. Wiederholung

1. Wärmelehre 2.4. Die Freiheitsgrade eines Gases. f=5 Translation + Rotation. f=7 Translation + Rotation +Vibration. Wiederholung 1. Wärmelehre 2.4. Die Freiheitsgrade eines Gases Wiederholung Speziische molare Wärmekapazität c m,v = 2 R R = N A k B = 8.315 J mol K =5 Translation + Rotation =7 Translation + Rotation +ibration 1.

Mehr

Über Potenzsummenpolynome

Über Potenzsummenpolynome Über Potenzsuenpolynoe Jörg Feldvoss I Sande 4b, D-21369 Nahrendorf Gerany Einleitung Für jede natürliche Zahl n bezeichnen wir it P n das n-te Potenzsuenpolyno, welches dadurch gegeben ist, dass es für

Mehr

LESA WIRKUNGSGRADBERECHNUNG DAS LESA-MISCHDAMPF-KRAFTWERK. Eine Widerlegung des Zweiten Hauptsatzes der Thermodynamik

LESA WIRKUNGSGRADBERECHNUNG DAS LESA-MISCHDAMPF-KRAFTWERK. Eine Widerlegung des Zweiten Hauptsatzes der Thermodynamik DAS LESA-MISCHDAMPF-RAFTWER WIRUNGSGRADBERECHNUNG Eine Widerlegung des Zweiten Hauptsatzes der Therodynaik Berechnung eines Rankine-reisprozesses it de Geisch Wasser und Benzol Herausgeber der Broschüre

Mehr