Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 9

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 9"

Transkript

1 RMG Haßfut Gundwien Mathematik Jahgangtufe 9 Regiomontanu - Gymnaium Haßfut - Gundwien Mathematik Jahgangtufe 9 Wien und Können. Zahlenmengen Aufgaen, Beipiele, Eläuteungen N Z Q R natüliche ganze ationale eelle Zahlen Zahlen Zahlen Zahlen. Wuzeln - N; Z; Q; R a (Quadatwuzel) it diejenige nicht-negative eelle Zahl, deen Quadat a egit. a heißt Radikant de Wuzel, e daf nicht negativ ein! E gilt: a a 5 5 ; 0 0 ; ( ) it nu fü definiet ( ) a a (a, 0),5 5 5 a a (a 0; > 0),5 6,5,5 Die n-te Wuzel (n N) au eine eellen Zahl a 0 it diejenige nichtnegative Zahl, deen n-te Potenz a egit. Scheiweie: n a ode a n und damit fü a > 0 : n m m n a (a ) a Rechnen mit Potenzen mit ationalen Eponenten Fü a, R + und, Q gilt: a a a + a (a ) ( a ) a und und. Binomiche Fomeln ( a + ) a + a + ( a ) a a + ( a + )( a ) a m n a a : a a - a a a : (a : ) 8 ; , 0,5 9 ; 9 9 a a a ( + ) 9 ; - -,5 - -(-,5) : ( ) 6 ; ( ) ( + + 6) ( ) ( + 6) -0, ,8 y 6 0,8 y + 0, y + 0,6 y ( 0,8 y) ( a + )( a ) a ( ) a Seite von 6

2 RMG Haßfut Gundwien Mathematik Jahgangtufe 9. Quadatiche Gleichungen Eine Gleichung de Fom a + + c 0 mit a 0 heißt quadatiche Gleichung. Sondefälle: () Gleichungen vom Typ a + c 0 (Reinquadatiche Gleichung) Löungen emitteln üe - a c () Gleichungen vom Typ a + 0 Löungen emitteln duch Auklammen von a Löungfomel fü quadatiche Gleichungen: Um eine Gleichung de Fom a + + c 0 mit a 0 auf Löungen zu unteuchen, etimmt man zunächt die Dikiminante D a c. - Fall D < 0 hat die Gleichung keine Löung. - Fall D 0 hat die Gleichung genau eine Löung, nämlich - a - Fall D > 0 hat die Gleichung zwei Löungen: / ± a ac 5. Quadatiche Funktion ± a D Zu (): a) 0 0; 5; ) 5 ; - 5, 5 + 0; -9 Diee Gleichung hat in R keine Löung, da Quadate eelle Zahlen nie negativ ind. Zu (): 0 0; Faktoiieen: a auklammen ( 5) 0; 0, 5 Ein Podukt nimmt genau dann den Wet Null an, wenn eine de Faktoen Null it. ) ; a, - 6, c D (-6) - 0 < 0 Keine Löung ) ; a -,, c - 8 D (-) (-8) 0 Genau eine a ) 6 0; a 6,, c D (-) 6 (-) > 0 Zwei Löungen : ( ) ± D ( ) ± ± / a 6 und Eine Funktion de Fom f : a + + c mit a 0 und R heißt quadatiche Funktion. Den zugehöigen Funktiongaphen nennt man Paael. Paaeln haen eine Symmetieache. Ih Schnittpunkt mit de Paael heißt Scheitel. De Gaph de Funktion mit de Gleichung f() heißt Nomalpaael. y +,5,5 Symmetieache:,5 Scheitel: S(,5 ) Nulltellen: 0,5,5 Seite von 6

3 RMG Haßfut Gundwien Mathematik Jahgangtufe 9 Die Gleichung eine quadatichen Funktion kann in de allgemeinen Fom y a + + c ode in de Scheitelfom y a ( S ) + y S (Scheitel: S( S y S )) angegeen weden. Mittel quadatiche Egänzung kann die allgemeine Fom de Funktiongleichung in die Scheitelfom umgewandelt weden. Allgemeine Fom: y + 6 Quadatiche Egänzung: y [ 8 + ] a auklammen y [( 8 + ) + ] quadat. egänzen Man kann die Gleichung auch mithilfe de Nulltellen angeen: - zwei Nulltellen und : y a ( )( ) - eine Nulltelle : y a ( ) Vechieung de Nomalpaael y y [( ) ) -6 + ] inomiche Fomel ( ) + veeinfachen Scheitelfom: y ( ) + (Scheitel: S( )) a, d.h. y + + c ( S ) + y S Leicht ekenna an de Scheitelfom: ) y : keine Vechieung ) y + y S : Vechieung um y S in y-richtung ) y ( S ) : Vechieung um S in -Richtung ) y ( S ) + y S : Vechieung um S in - Richtung und y S in y-richtung Je nach Vechieung kann die neue Paael keine, eine ode zwei Nulltellen haen: y S > 0: y S 0: y S < 0: keine Nulltelle eine Nulltelle zwei Nulltellen Steckung von Nomalpaaeln c 0, d.h. y a a > 0: Die Paael it nach oen offen. a < 0: Die Paael it nach unten offen. a > : Die Paael it enge al die Nomalpaael. 0 < a < : Die Paael it weite al die Nomalpaael. ) y Scheitel: S(0 0); Nulltelle: 0 ) y Scheitel: S(0 ); Nulltellen: ; ) y ( ) Scheitel: S( 0); Nulltelle: ) y ( ) Scheitel: S( ); keine Nulltellen Seite von 6

4 RMG Haßfut Gundwien Mathematik Jahgangtufe 9 Nulltellen etimmen Quadatiche Funktionen können entwede mit Hilfe de Scheitelfom ode, augehend von de allgemeinen Fom, mit Hilfe de Löungfomel fü quadatiche Gleichungen auf Nulltellen unteucht weden. Quadatiche Funktionen können keine, eine ode zwei Nulltellen haen: - Keine Nulltelle: De Scheitel liegt oehal de Ache (y S > 0) und die Paael it nach oen offen (a > 0) ode de Scheitel liegt untehal de Ache (y S < 0) und die Paael it nach unten offen (a < 0). ode: D < 0 - Eine Nulltelle: De Scheitel liegt auf de Ache (y S 0) ode: D 0 - Zwei Nulltellen: De Scheitel liegt oehal de Ache (y S > 0) und die Paael it nach unten offen (a < 0) ode de Scheitel liegt untehal de Ache (y S < 0) und die Paael it nach oen offen (a > 0). ode: D > 0 6. Mehtufige Zufallepeimente Ein Zufallepeiment heißt mehtufig, wenn e au meheen Zufallepeimenten zuammengeetzt it. Zu Veanchaulichung dienen Baumdiagamme. Wahcheinlichkeiten von Egenien zw. Eeignien können mit Hilfe von Pfadegeln etimmt weden.. Pfadegel: Bei einem mehtufigen Zufallepeiment eechnet man die Wahcheinlichkeit fü ein Egeni, indem man die Wahcheinlichkeiten läng de zugehöigen Pfade multipliziet.. Pfadegel: Die Wahcheinlichkeit eine Eeignie it gleich de Summe de Wahcheinlichkeiten de Egenie, die zu dieem Eeigni gehöen. y ( ) + Anzahl de Nulltellen: y S : + 6 de Scheitel liegt oehal de -Ache a - 0,5: die Paael it nach unten geöffnet Die quadatiche Funktion hat zwei Nulltellen. Lage de Nulltellen: ( ) + 0; ( ) - ode und 6 ode: Anzahl de Nulltellen: + 6 0; a - 0,5,, c -6 D (-0,5) (-6) > 0 Die quadatiche Funktion hat zwei Nulltellen. Lage de Nulltellen: ± D ± / ( ± ) a ( 0,5) und 6 In eine Une efinden ich dei weiße und fünf chwaze Kugeln. Au diee Une weden nacheinande zwei Kugeln ohne Zuücklegen gezogen. Egeniaum: Ω {ww, w, w, } Baumdiagamm: Stufe. Stufe Wahcheinlichkeit ww P(ww) 8 8 w 5 w P(w) w P(w) P() Eeigni E Kugeln haen die gleiche Fae : E {ww, } al Teilmenge de Egeniaume Ω 5 P(E) P({ww, }) P(ww) + P() Seite von 6

5 RMG Haßfut Gundwien Mathematik Jahgangtufe 9. Satz de Pythagoa Man nennt die dem echten Winkel gegenüeliegende Seite Hypotenue, die eiden andeen Seiten Katheten. Die Höhe zu Hypotenue zelegt diee in zwei Hypotenuenachnitte. Satz de Pythagoa In jedem echtwinkligen Deieck haen die Quadate üe den Katheten a und zuammen den gleichen Flächeninhalt wie da Quadat üe de Hypotenue c. E gilt: a² + ² c² Kehatz zum Satz de Pythagoa Wenn in einem Deieck ABC mit den Seiten a, und c a² + ² c² gilt, dann hat da Deieck ei C einen echten Winkel. 8. Tigonometie (Sinu, Coinu, Tangen) In einem echtwinkligen Deieck heißt die einem pitzen Winkel gegenüeliegende Kathete eine Gegenkathete, die andee eine Ankathete. : Beechne die fehlende Seitenlänge de echtwinkligen Deieck. (5 cm) (5 cm) + (8 cm) + (8 cm) 89 cm 9, cm : Beechne fü ein echtwinklige Deieck ABC mit echtem Winkel ei C, a 8 cm und c 5 cm die fehlende Seitenlänge. a + c c a 05 cm (5 cm) 5 cm (8 cm) : Beechne den Flächeninhalt de Deieck mit den Seiten cm, y 5 cm und z cm..) Püfe, o da Deieck echtwinklig it. z ( cm) 69 cm + y ( cm) + (5 cm) 69 cm Somit hat da Deieck einen echten Winkel gegenüe de Seite z..) Beechne den Flächeninhalt. A y cm 5 cm 0 cm Gegeen ind,5 cm und α,5. Geucht ind q und h. Ankathete von α Gegenkathete von α Gegenkathete von α inα Hypotenue Ankathete von α Hypotenue Gegenkathete von α Ankathete von α coα tanα Beziehung zwichen Sinu, Coinu und Tangen Fü alle Winkel α mit 0 α 90 gilt: () in α co (90 - α) co α in (90 - α) () in α + co α () tan α inα co α (α 90 ) h in,5 h in,5,5 cm in,5, cm q co,5 q co,5,5 cm co,5, cm Gegeen it in α 0,6. Beechne: a) co α ) tan α a) au () folgt: co α in α 0,6 0,6 co α 0,8 (da 0 α 90 it co α > 0) inα ) tan α co α 0,6 0,8 Seite 5 von 6

6 RMG Haßfut Gundwien Mathematik Jahgangtufe 9 Steigung Eine Geade teigt auf de waageechten Länge um die Höhe y. De Steigungwinkel α it de Winkel gegenüe de Höhe. Die Steigung it dann y m tan α p % 9. Raumgeometie Fü ein Pima und einen Zylinde mit de Gundfläche G, de Mantelfläche M und de Höhe h gilt: V G h Oeflächeninhalt: O G + M Speziell fü einen Zylinde mit dem Gundkeiadiu und de Höhe h gilt: V π h G G De Zile Beg hat die Steigung 6 %. a) Wie goß it de Steigungwinkel α? tan α 6 % 0,6 α 9, ) Um wie viel Mete teigt de Beg ei eine hoizontalen Länge von,0 km? y tan α,0 km 0,6 0,6 km Ein geade Pima, deen Gundfläche ein achenymmetiche Tapez it, hat die Maße a 8, cm, 6, cm, c, cm, h Tapez 5,8 cm und h, cm. Beechne da Volumen und den Oeflächeninhalt. Gundfläche: G (a + c) htapez G (8, cm +, cm) 5,8 cm 6,5 cm Inhalt de Mantelfläche: M π h Oeflächeninhalt: O π + π h π ( + h) Fü eine Pyamide und einen Kegel mit de Gundfläche G, de Mantelfläche M und de Höhe h gilt: Oeflächeninhalt: V G h O G + M Speziell fü einen Kegel mit dem Gundkeiadiu und de Höhe h gilt: V π h Inhalt de Mantelfläche: M π Oeflächeninhalt: O π + π ( + ) π h S h S M G π V G h 6,5 cm, cm cm Oeflächeninhalt: M (a + + c) h M (8, cm + 6, cm +, cm), cm 0,5 cm O G + M 6,5 cm + 0,5 cm 5,5 cm Beechne da Volumen, den Oeflächeninhalt und den Neigungwinkel de Mantellinie eine Kegel mit dem Radiu 8 cm und de Höhe h 6 cm. V π h (8 cm) π 6 cm 0 cm Oeflächeninhalt: + h (8cm) (6cm) 0 cm + O π + π ((8 cm) + 8 cm 0 cm) π 5 cm Neigungwinkel: tan α h 6cm α 8cm α Seite 6 von 6

Grundwissen. 9. Jahrgangsstufe. Mathematik

Grundwissen. 9. Jahrgangsstufe. Mathematik Gundwissen 9. Jahgangsstufe Mathematik Seite 1 1 Reelle Zahlen 1.1 Rechnen mit Quadatwuzeln a ist diejenige nicht negative Zahl, die zum Quadat a egibt. d.h.: ist keine Wuzel aus 4. Eine Wuzel kann nicht

Mehr

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 9

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 9 Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 9 Wissen und Können. Zahlenmengen Aufgaen, Beispiele, Erläuterungen N Z Q R natürliche ganze rationale reelle Zahlen Zahlen Zahlen

Mehr

Grundwissen Mathematik Jahrgangsstufe 9. Bisher bekannte Zahlenmengen: a b = a b. Die üblichen Rechengesetze gelten unverändert.

Grundwissen Mathematik Jahrgangsstufe 9. Bisher bekannte Zahlenmengen: a b = a b. Die üblichen Rechengesetze gelten unverändert. Gundwissen Mathematik Jahgangsstufe I. Reelle Zahlen Eweiteung des Zahlenbeeichs Bishe bekannte Zahlenmengen: Jedes Element a aus N, Z, Q Q ist dastellba duch a= p q mit p Z und q N. Zahlen, die nicht

Mehr

Grundwissen 9. Jahrgangsstufe (G 8) Mathematik. In der Jahrgangsstufe 9 erwerben die Schüler folgendes Grundwissen:

Grundwissen 9. Jahrgangsstufe (G 8) Mathematik. In der Jahrgangsstufe 9 erwerben die Schüler folgendes Grundwissen: Gundwien 9. Jhgngtufe (G 8) Mthemtik In de Jhgngtufe 9 eweben die Schüle folgende Gundwien: Sie ind ich de Notwendigkeit von Zhlenbeeicheweiteungen bewut und können mit Wuzeln und Potenzen umgehen. Sie

Mehr

( ) (L3) ( ) ( ) Gymnasium Neutraubling: Grundwissen Mathematik 9. Jahrgangsstufe. Reelle Zahlen. a ist diejenige nicht negative Zahl, die quadriert a

( ) (L3) ( ) ( ) Gymnasium Neutraubling: Grundwissen Mathematik 9. Jahrgangsstufe. Reelle Zahlen. a ist diejenige nicht negative Zahl, die quadriert a Gymnasium Neutaublin: Gundissen Mathematik. Jahansstufe Wissen und Können Reelle Zahlen Iationale Zahlen sind Zahlen, die nicht als Buch (ationale Zahl) dastellba sind. Eine iationale Zahl hat eine unendliche

Mehr

Mathematische Hilfsmittel der Physik Rechen-Test I. Markieren Sie die richtige(n) Lösung(en):

Mathematische Hilfsmittel der Physik Rechen-Test I. Markieren Sie die richtige(n) Lösung(en): Technische Betiebswitschaft Gundlagen de Physik D. Banget Mat.-N.: Mathematische Hilfsmittel de Physik Rechen-Test I Makieen Sie die ichtige(n) Lösung(en):. Geben Sie jeweils den Wahheitswet (w fü wah;

Mehr

Aufgabe S 1 (4 Punkte)

Aufgabe S 1 (4 Punkte) Aufgabe S 1 (4 Punkte) In ein gleichschenklig-echtwinkliges Deieck mit Kathetenlänge 2 weden zwei Quadate so einbeschieben, dass a) beim esten Quadat eine Seite auf de Hypotenuse liegt und b) beim zweiten

Mehr

Aufgaben zur Bestimmung des Tangentenwinkels von Spiralen

Aufgaben zur Bestimmung des Tangentenwinkels von Spiralen Aufgabenblatt-Spialen Tangentenwinkel.doc 1 Aufgaben zu Bestimmung des Tangentenwinkels von Spialen Gegeben ist die Spiale mit de Gleichung = 0,5 φ, φ im Bogenmaß. (a) Geben Sie die Gleichung fü Winkel

Mehr

Lösungen zu delta 9 neu

Lösungen zu delta 9 neu Lösungen zu delta 9 neu Kann ich das noch? Lösungen zu den Seiten 7 und 8. a) L = { 0} b) L = {6} c) L = {} d) L = { } e) L = { } f) L = g) L = {} h) L = {}. a) Fuchtjoghut b) Eckenanzahl Anzahl de c)

Mehr

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

7 Trigonometrie. 7.1 Defintion am Einheitskreis. Workshops zur Aufarbeitung des Schulsto s Wintersemester 2014/15 7 TRIGONOMETRIE

7 Trigonometrie. 7.1 Defintion am Einheitskreis. Workshops zur Aufarbeitung des Schulsto s Wintersemester 2014/15 7 TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

2.8. Prüfungsaufgaben zum Satz des Pythagoras

2.8. Prüfungsaufgaben zum Satz des Pythagoras .8. üfungsaufgaben zum Satz des ythagoas Aufgabe : Rechtwinkliges Deieck Ein echtwinkliges Deieck mit de Kathete a = 0, m hat die Fläche A = 000 cm. Beechne die estlichen Seitenlängen dieses Deiecks. 000

Mehr

Rechnen mit Quadratwurzeln

Rechnen mit Quadratwurzeln 9. Grundwissen Mathematik Algebra Klasse 9 Rechnen mit Quadratwurzeln Die Quadratwurzel aus a ist diejenige nichtnegative Zahl aus R, deren Quadrat wieder a ergibt. a nennt man Radikand. Man schreibt dafür

Mehr

Zentrale Klausur 2015 Aufbau der Prüfungsaufgaben

Zentrale Klausur 2015 Aufbau der Prüfungsaufgaben Zentale Klausu 2015 Aufbau de Püfungsaufgaben Die Zentale Klausu 2015 wid umfassen: hilfsmittelfeie Aufgaben zu Analysis und Stochastik eine Analysisaufgabe mit einem außemathematischen Kontextbezug eine

Mehr

Lösungen. Mathematik ISME Matura Gegeben ist die Funktionsschar f a (x) = ax e a2 x 2, wobei x R und a > 0 ist. 12 Punkte Vorerst sei a = 2.

Lösungen. Mathematik ISME Matura Gegeben ist die Funktionsschar f a (x) = ax e a2 x 2, wobei x R und a > 0 ist. 12 Punkte Vorerst sei a = 2. Mathematik ISME Matua 5. Gegeen ist die Funktionsscha f a ( = a e a, woei R und a > ist. Punkte Voest sei a =. (a Beechnen Sie i. die Nullstelle ii. die Gleichung de Asymptote fü iii. die Etema iv. die

Mehr

Aufgaben mit Lösungen zum Themengebiet: Geometrie bei rechtwinkligen Dreiecken

Aufgaben mit Lösungen zum Themengebiet: Geometrie bei rechtwinkligen Dreiecken Übungsaufgaben zur Satzgruppe des Pythagoras: 1) Seiten eines rechtwinkligen Dreiecks Sind folgende Aussagen richtig oder falsch? Verbessere, wenn notwendig! Die Katheten grenzen an den rechten Winkel.

Mehr

Aufgaben zur Vorbereitung Technik

Aufgaben zur Vorbereitung Technik Aufgaben zu Vobeeitung Technik Pof. Dipl.-Math. Usula Lunze Seite Test Anhand des ausgegebenen Tests können Sie selbständig emitteln, wo Ihe Schwächen und Lücken liegen. Die Aufgaben sollen soweit wie

Mehr

Grundwissen 9. Klasse

Grundwissen 9. Klasse Grundwissen 9. Klasse ) Rationale und irrationale Zahlen Quadratwurzel b ist diejenige nichtnegative Zahl, die quadriert b ergibt: b b ( 5 ) 5 Die Zahl b heißt Radikand; b 0 : es gibt keine Quadratwurzel

Mehr

Besondere Leistungsfeststellung Mathematik ERSTTERMIN

Besondere Leistungsfeststellung Mathematik ERSTTERMIN Sächsisches Staatsministeium Geltungsbeeich: fü Kultus Schüle de Klassenstufe 10 an allgemeinbildenden Gymnasien Schuljah 011/1 ohne Realschulabschluss Besondee Leistungsfeststellung Mathematik ERSTTERMIN

Mehr

Aufgabe 1 Zeige: Wenn die Summe von 1996 Quadratzahlen durch 8 teilbar ist, dann sind mindestens vier dieser Quadratzahlen gerade.

Aufgabe 1 Zeige: Wenn die Summe von 1996 Quadratzahlen durch 8 teilbar ist, dann sind mindestens vier dieser Quadratzahlen gerade. Landeswettbeweb athematik aden-wüttembeg 996 Runde ufgabe Zeige: Wenn die Summe von 996 Quadatzahlen duch 8 teilba ist, dann sind mindestens vie diese Quadatzahlen geade. Vobemekung Eine Quadatzahl ist

Mehr

DEMO. Einführung in die Grundbegriffe. Mehrstufige Ereignisse Baumdiagramme. Datei Nr Stand 8. Januar Friedrich W.

DEMO. Einführung in die Grundbegriffe. Mehrstufige Ereignisse Baumdiagramme. Datei Nr Stand 8. Januar Friedrich W. Wahcheinlichkeitechnung Teil Einfühung in die Gundegiffe Mehtufige Eeignie Baumdiagamme Datei N. 0 Stand. Janua 0 Fiedich W. Buckel INTERNETBIBLIOTHEK FÜR SCHULMTHEMTIK 0 Wahcheinlichkeit Hinweie zum Inhalt

Mehr

Übungen: Extremwertaufgaben

Übungen: Extremwertaufgaben Übungen: Extemwetufgben.0 Eine Stenwte ht meist die Fom eines Zylindes (Rdius, Höhe h) mit eine oben ufgesetzten Hlbkugel (siehe z. B. die im Bild unten gezeigte Fitz-Weiths-Stenwte in Neumkt). Die gesmte

Mehr

Grundwissen Mathematik 9. Klasse

Grundwissen Mathematik 9. Klasse Welfen-Gymnasium Schongau 1 Grundwissen Mathematik 9. Klasse Wissen Aufgaben/Beispiele Lösungen Quadratwurzeln: a, a 0 ist diejenige nichtnegative Zahl, deren Quadrat a ergibt. D.h.: a ist die nichtnegative

Mehr

2.12 Dreieckskonstruktionen

2.12 Dreieckskonstruktionen .1 Deieckskonstuktionen 53.1 Deieckskonstuktionen.1.1 B aus a, b und c. Keis um mit Radius b 3. Keis um B mit Radius a 4. Schnittpunkt de Keise ist Bemekung: Es entstehen zwei konguente B..1. B aus α,

Mehr

Lösung 1: Die größte Schachtel

Lösung 1: Die größte Schachtel Lösung : Die gößte Schachtel Aufgabenstellung: Aus einem DIN-A-Blatt soll eine offene, quadefömige Schachtel hegestellt weden. Welches Füllvolumen ist maximal möglich, ohne dass etwas aus de Schachtel

Mehr

1 Wahrscheinlichkeitsrechnung und Zufallsvariablen

1 Wahrscheinlichkeitsrechnung und Zufallsvariablen Wahcheinlichkeitechnung und Zufallvaiablen Zoltán Zomoto Veiontand: 8. Mai 0, 09:9 Die nummeieten Felde bitte wähend de Voleung aufüllen. Thi wok i licened unde the Ceative Common Attibution-NonCommecial-ShaeAlike.0

Mehr

Vom Strahlensatz zum Pythagoras

Vom Strahlensatz zum Pythagoras Vom Stahlensatz zum Pythagoas Maio Spengle 28.05.2008 Zusammenfassung Eine mögliche Unteichtseihe, um die Satzguppe des Pythagoas unte Umgehung de Ähnlichkeitsabbildungen diekt aus den Stahlensätzen hezuleiten.

Mehr

Teilbereich 5: Exponential Funktionen 1. Grundkursniveau. Hier eine Musteraufgabe mit Lösung Auf CD alles komplett. Datei Nr

Teilbereich 5: Exponential Funktionen 1. Grundkursniveau. Hier eine Musteraufgabe mit Lösung Auf CD alles komplett. Datei Nr Püfungsaufgaben Mündliches Abitu Analysis Teilbeeich 5: Eponential Funktionen Gundkusniveau Hie eine Musteaufgabe mit Lösung Auf CD alles komplett Datei N. 495 Fiedich Buckel Oktobe 003 INTERNETBIBLIOTHEK

Mehr

Lösungen Grundlagen quadratische Funktionen IV. Ausführliche Lösungen:

Lösungen Grundlagen quadratische Funktionen IV. Ausführliche Lösungen: R. Brinkmann http://brinkmann-du.de Seite 0.0.0 Löungen Grundlagen quadratiche Funktionen IV en: A A Gegeben it die Funktion f(). Zeigen Sie durch Rechnung, da der Graph der Funktion die Ache berührt.

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 DER KREIS

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 DER KREIS ARBEITSBLATT 15 DER KREIS Zunächst einmal wollen wi uns übelegen, was man mathematisch unte einem Keis vesteht. Definition: Ein Keis ist die Menge alle Punkte, die von einem gegebenen Punkt ( Keismittelpunkt)

Mehr

Lösungen Ferienaufgaben Mathematik 8

Lösungen Ferienaufgaben Mathematik 8 Dietrich-Bonhoeffer-Gymnasium Oerasach Lösungen Ferienaufgaen Mathematik 8 8.A Funktionen 8.A. Begriff ) Entscheide in den folgenden Fällen, o eine Funktion vorliegt und egründe Deine Antwort! Jeder Zahl

Mehr

Grundwissen 9. Klasse 9/1. Grundwissen 9. Klasse 9/2

Grundwissen 9. Klasse 9/1. Grundwissen 9. Klasse 9/2 Grundwissen 9. Klasse 9/. Quadratwurzel Definition: a ist diejenige positive Zahl, deren Quadrat a ergibt: a =a z.b. 5=5 Bezeichnung: Die Zahl a unter der Wurzel heißt Radikand. Radikandenbedingung: a

Mehr

1. Schularbeit Mathematik 6B 97/

1. Schularbeit Mathematik 6B 97/ . Schulabeit Mathematik 6B 97/98.0.997. Beechne die fehlenden Fomen de Geaden Vektoielle Fom Koodinatenfom x y t. Auf de Geaden g[a( /6), B(/ )] ist von A aus in Richtung B eine Stecke von d abzutagen.

Mehr

Wahrscheinlichkeitsrechnung. Teil 2. Einführung in die Grundbegriffe. Mehrstufige Ereignisse Baumdiagramme. Datei Nr Stand 2.

Wahrscheinlichkeitsrechnung. Teil 2. Einführung in die Grundbegriffe. Mehrstufige Ereignisse Baumdiagramme. Datei Nr Stand 2. Wahcheinlichkeitechnung Teil Einfühung in die Gundbegiffe Mehtufige Eeignie Baumdiagamme Datei N. 0 Stand. Mäz 009 Fiedich W. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Inhalt Teil befindet ich in de

Mehr

Mecklenburg - Vorpommern

Mecklenburg - Vorpommern Realschulaschlusspüfun 2001 Mathematik E Seite 1 Mecklenu - Vopommen Realschulaschlusspüfun 2001 Esatzaeit Mathematik Realschulaschlusspüfun 2001 Mathematik E Seite 2 Hinweise fü Schüleinnen und Schüle:

Mehr

4.1 Zufallsexperimente

4.1 Zufallsexperimente 4.1 Zufallexpeimente 4.1 Zufallexpeimente 4.1.1 Ein-undmehtufigeZufallexpeimente Datellung duchbaumdiagamme EgebniundEgebnimenge Expeimenteindun au dem Phyikunteicht bekannt undbezeichnen Vogänge, die

Mehr

Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie

Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie Übungsaufgaben zum Püfungsteil Lineae Algeba /Analytische Geometie Aufgabe Von de Ebene E ist folgende Paametefom gegeben: 3 E: x= 4 + 0 + s 3 ;,s 0 3 4 a) Duch geeignete Wahl de Paamete und s ehält man

Mehr

Grundwissen Mathematik Klasse 9

Grundwissen Mathematik Klasse 9 Grundwissen Mathematik Klasse 9. Wurzeldefinition und irrationale Zahlen (MH S. f. / MH S. f.) Wurzel als nichtnegative Lösung der reinquadratischen Gleichung (z:b: 0, ( > 0) 0, 0, ) Begriffe Wurzel, Radikand,

Mehr

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November Seie 3 29. Oktobe 2012 Vozuechnen bis zum 9. Novembe Aufgabe 1: Zwei Schwimme spingen nacheinande vom Zehn-Mete-Tum ins Becken. De este Schwimme lässt sich vom Rand des Spungbetts senkecht heuntefallen,

Mehr

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand:

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand: M 9.1 Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: Quadratwurzeln sind nur für positive Zahlen definiert: ; ; ; ; M 9.2 Reelle Zahlen

Mehr

Grundwissen Mathematik 8. Klasse

Grundwissen Mathematik 8. Klasse Welfen-Gymnasium Schongau 1 Grundwissen Mathematik 8. Klasse Wissen Aufgaen/Beispiele Lösungen Funktionale Zusammenhänge Eindeutige Zuordnungen nennt man in der Mathematik Funktionen. Bei einer Funktion

Mehr

Flächenberechnungen 2b

Flächenberechnungen 2b Flächenbeechnungen b Teil b: Flächenbeechnungen mit Integal (Fotsetzung) Datei N. 8 Juni Fiedich Buckel Intenatsgymnasium Schloß Togelow Inhalt Datei 8. Rechtecksmethoden. Ein estes goßes Beispiel. Heleitung

Mehr

Prof. U. Stephan Studiengang BAU 1. Fachsemester Übung 1 TFH Berlin, FB II LV Mathematik Seite 1 von 5

Prof. U. Stephan Studiengang BAU 1. Fachsemester Übung 1 TFH Berlin, FB II LV Mathematik Seite 1 von 5 Pof U Stepan Studiengang BAU Facemete Übung TFH Belin, FB II LV Matematik Seite von Hinweie: Etellen Sie in den Fällen, wo die Aufgabe keine Skizze entält, et eine Skizze Benutzen Sie die in de Aufgabe

Mehr

α =63, h = 10,2 cm. Zylinder, Kegel, Kugel Aufgabe 1 (Pflichtbereich 1999) Gegeben ist ein Kegel mit:

α =63, h = 10,2 cm. Zylinder, Kegel, Kugel Aufgabe 1 (Pflichtbereich 1999) Gegeben ist ein Kegel mit: Zylinder, Kegel, Kugel Aufgabe (Pflichtbereich 999) Gegeben it ein Kegel mit: α =6, h = 0, cm. Wie groß it die Oberfläche einer volumengleichen Kugel? Aufgabe (Pflichtbereich 000) Ein maiver Kegel mit

Mehr

Aufgabe 1: LKW. Aufgabe 2: Drachenviereck

Aufgabe 1: LKW. Aufgabe 2: Drachenviereck Aufgabe 1: LKW Ein LKW soll duch einen Tunnel mit halbkeisfömigem Queschnitt fahen. Die zweispuige Fahbahn ist insgesamt 6 m beit; auf beiden Seiten befindet sich ein Randsteifen von je 2 m Beite. Wie

Mehr

12. Berechnung reeller Integrale mit dem Residuensatz

12. Berechnung reeller Integrale mit dem Residuensatz 72 Andeas Gathmann 2. Beechnung eelle Integale mit dem esiduensatz Wi haben geade gesehen, dass man mit Hilfe des esiduensatzes nahezu beliebige geschlossene komplexe Kuvenintegale beechnen kann. In diesem

Mehr

Quadratwurzeln. Reelle Zahlen

Quadratwurzeln. Reelle Zahlen M 9. Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: = Quadratwurzeln sind nur für positive Zahlen definiert: 0 25 = 5; 8 = 9; 0,25 = =

Mehr

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand:

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: M 9.1 Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: Quadratwurzeln sind nur für positive Zahlen definiert: 0 25 5; 81 9; 0,25 0,5; 0,0081

Mehr

Landeswettbewerb Mathematik Bayern

Landeswettbewerb Mathematik Bayern Landeswettbeweb Mathematik Bayen ufgaben und Lösungsbeispiele. Runde 007/008 ufgabe In de nebenstehenden Gleichung steht jede Buchstabe fü eine de Ziffen bis 9, wobei keine Ziffen mehfach vokommt. Zeige,

Mehr

1 GN GRUNDWISSEN MATHEMATIK. für die Jahrgangsstufe Reelle Zahlen ℝ :

1 GN GRUNDWISSEN MATHEMATIK. für die Jahrgangsstufe Reelle Zahlen ℝ : Zahlmengen. Reelle Zahlen ℝ : natürliche Zahlen ℕ 0 ganze Zahlen ℤ negative ganze Zahlen Arechende und nichtarechende periodische Dezimalzahlen (Bruchzahlen) rationale Zahlen ℚ reelle Zahlen ℝ nichtarechende

Mehr

Analytische Geometrie

Analytische Geometrie Anlytiche eometie Intention: Eeitung eine Vefhen, mit deen Hilfe mn jede geometiche Aufge duch echnung löen knn. I Vektoen und Vektoäume Pfeile und Vektoen Vektoen ind geichtete ößen. Phyik: Kft, echwindigkeit,

Mehr

Grundlagen IV der Kathetensatz

Grundlagen IV der Kathetensatz Grundlagen IV der Kathetensatz Der Kathetensatz ergibt sich wie auch der Höhensatz aus dem Ähnlichkeitssatz: b a a c = p a a 2 = p c p q b c = q b b 2 = q c c Löse die folgenden Teilaufgaben mithilfe des

Mehr

2. Die Satzgruppe des Pythagoras

2. Die Satzgruppe des Pythagoras Grundwissen Mathematik 9. Klasse Seite von 17 1.4 Rechnen mit reellen Zahlen a) Multiplizieren und Dividieren von reellen Zahlen + Es gilt: a b = a b mit ab R, 0 Beispiele: 18 = 36 = 6 14 14 7 = = a a

Mehr

Prüfung zum Erwerb der Mittleren Reife in Mathematik, Mecklenburg-Vorpommern Prüfung 2011: Aufgaben

Prüfung zum Erwerb der Mittleren Reife in Mathematik, Mecklenburg-Vorpommern Prüfung 2011: Aufgaben Püfung zum Eweb de Mittleen Reife in Mathematik, Mecklenbug-Vopommen Püfung 2011: Aufgaben Abeitsblatt (Pflichtaufgabe 1) Dieses Abeitsblatt ist vollständig und ohne Zuhilfenahme von Tafelwek und Taschenechne

Mehr

Abstandsbestimmungen

Abstandsbestimmungen Abstandsbestimmungen A) Vektoechnungsmethoden (mit Skalapodukt): ) Abstand eines Punktes P von eine Ebene IE im Raum (eine Geade g in de Ebene ): Anmekung: fü Geaden im Raum funktioniet diese Vektomethode

Mehr

Gleichseitige Dreiecke im Kreis. aus der Sicht eines Punktes. Eckart Schmidt

Gleichseitige Dreiecke im Kreis. aus der Sicht eines Punktes. Eckart Schmidt Gleichseitige Deiecke im Keis aus de Sicht eines Punktes Eckat Schmidt Zu einem Punkt und einem gleichseitigen Deieck in seinem Umkeis lassen sich zwei weitee Deiecke bilden: das Lotfußpunktdeieck und

Mehr

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand:

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand: M 9.1 Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: Quadratwurzeln sind nur für positive Zahlen definiert: ; ; ; ; M 9.2 Reelle Zahlen

Mehr

zentral auf einen 5,0 kg schweren Block, der a) Wie weit wird die an einer Wand befestigte Feder dadurch zusammengedrückt?

zentral auf einen 5,0 kg schweren Block, der a) Wie weit wird die an einer Wand befestigte Feder dadurch zusammengedrückt? Impul- und Enegieehaltung ================================================================== 1. Ein 10 g chwee Gechoß tifft mit de Gechwindigkeit v v = 450 km h zental auf einen 5,0 kg chween Block, de

Mehr

Protokoll zum Versuch 6 Physikpraktikum

Protokoll zum Versuch 6 Physikpraktikum Potoko zum Veuch 6 Phyikpktikum Betimmung de Oefächenpnnung eine Seifene: Nmen: tum: Ku/Guppe: Tempetu: C Luftduck: hp Veuchufu Schägohmnomete α p Seifene,Rdiu Seite.Hingmme; 0.06.0 p σ Veucheihe: ± ±

Mehr

7. VEKTORRECHNUNG, ANALYTISCHE GEOMETRIE

7. VEKTORRECHNUNG, ANALYTISCHE GEOMETRIE Vektoechnung Anltische Geometie 7. VEKTORRECHNUNG ANALYTISCHE GEOMETRIE 7.1. Vektoen () Definition Schiet mn einen Punkt P 1 im Koodintensstem in eine ndee Lge P so ist diese Schieung duch Ange des Upunktes

Mehr

Mathematik W18. Mag. Christina Sickinger. Berufsreifeprüfung. Trigonometrie am rechtwinkligen Dreieck

Mathematik W18. Mag. Christina Sickinger. Berufsreifeprüfung. Trigonometrie am rechtwinkligen Dreieck Mathematik W18 Mag. Christina Sickinger Berufsreifeprüfung v 0 Mag. Christina Sickinger Mathematik W18 1 / 41 Das Problem v 0 Mag. Christina Sickinger Mathematik W18 2 / 41 Wir wollen das Problem lösen!

Mehr

M 9.1. Quadratwurzeln. Wie bezeichnet man die Zahl unter der Wurzel? Für welche Zahlen ist die Wurzel definiert? Berechne: Carina Mittermayer (2010)

M 9.1. Quadratwurzeln. Wie bezeichnet man die Zahl unter der Wurzel? Für welche Zahlen ist die Wurzel definiert? Berechne: Carina Mittermayer (2010) M 9.1 Quadratwurzeln Wie wird definiert? Wie bezeichnet man die Zahl unter der Wurzel? Für welche Zahlen ist die Wurzel definiert? Berechne: M 9.2 Reelle Zahlen Was sind irrationale Zahlen? Nenne vier

Mehr

Aufgaben Radialkraft

Aufgaben Radialkraft Aufgaben adialkaft 13. Eine Wachachine chleudet it 800 Udehungen po Minute die Wäche in eine Toel o adiu 6 c. Mit welche Kaft wid dabei ein Waetopfen de Mae 1 g nach außen gedückt? Welche Mae beitzt dieelbe

Mehr

Grundwissen 9. Klasse Mathematik

Grundwissen 9. Klasse Mathematik Grundwissen Mathematik 9. Klasse Seite von 7 Grundwissen 9. Klasse Mathematik. Die reellen Zahlen. Die Quadratwurzel Unter der Quadratwurzel aus a (meist kurz Wurzel aus a ) versteht man die nicht-negative

Mehr

6. Klasse 1. Schularbeit 1999-10-20 Gruppe A + 40.! Bestimme das Monotonieverhalten und berechen den Grenzwert! 4 Punkte

6. Klasse 1. Schularbeit 1999-10-20 Gruppe A + 40.! Bestimme das Monotonieverhalten und berechen den Grenzwert! 4 Punkte 6. Klae 1. Schularbeit 1999-10-0 Gruppe A 1) Betrachte da Wettrennen zwichen Achille und der Schildkröte für folgende Angaben: Gechwindigkeit von Achille 10 m, Gechwindigkeit der Schildkröte m Vorprung

Mehr

r Radius k Kreislinie Welche Bestimmungsstücke benötigst du, um einen Kreis zeichnen zu können? A Radius B Kreissegment C Kreisring D Durchmesser

r Radius k Kreislinie Welche Bestimmungsstücke benötigst du, um einen Kreis zeichnen zu können? A Radius B Kreissegment C Kreisring D Durchmesser ganz kla: Mathematik 4 - Das Feienheft mit Efolgsanzeige Rettungsing Keis De Keis Meke d.. Duchmesse k d Radius k Keislinie Wie heißt die Linie, die den Keis begenzt? Welche Bestimmungsstücke benötigst

Mehr

Tag der Mathematik 2017

Tag der Mathematik 2017 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Aufgaben mit en Aufgabe G1 mit Aufgabe G1 Eine Urne enthält blaue und rote Kugeln. Vor der Ziehung ist die Wahrscheinlichkeit eine blaue Kugel zu

Mehr

n n n

n n n mthbu.ch9+ Repetition mthbu.ch9+ LU 901 1. Die Route de Steetpde in Züich ist 3.8 km lng. Wie lnge ist sie uf eine Kte mit dem Mssstb 1 : 5 000? 15. cm. Auf eine Kte des Mssstbs 1 : 5 000 misst du einen

Mehr

( ) = ( ) ( ) ( ) ( )

( ) = ( ) ( ) ( ) ( ) R. Brinkmann http://brinkmann-du.de Seite 0.0.0 Löungen Grundaufgaben für lineare und quadratiche Funktionen I e: E e f( x) = x+ Py 0 f( x) = x+ Px 0 E E E E E6 E7 E8 E9 E0 f x = mx + b mit m = und P(

Mehr

Formelsammlung Mathematik Fachoberschule Jahrgangsstufe 12 Hochtaunusschule Oberursel. Philipp Maurer in Zusammenarbeit mit StR A.

Formelsammlung Mathematik Fachoberschule Jahrgangsstufe 12 Hochtaunusschule Oberursel. Philipp Maurer in Zusammenarbeit mit StR A. Fomelsmmlung Mtemtik Fcoescule Jgngsstufe 12 Hoctunusscule Oeusel Pilipp Mue in Zusmmeneit mit StR A. Käme Stnd: 20. Feu 2014 Fomelsmmlung Mtemtik Fcoescule Jgngsstufe 12 Inltsvezeicnis 1 Mtemtisce Gundlgen

Mehr

ghjklzxcvbnmqwertyuiopasdfghjklzxcvb lzxcvbnmqwertyuiopasdfghjklzxcvbnmq wertyuiofghj

ghjklzxcvbnmqwertyuiopasdfghjklzxcvb lzxcvbnmqwertyuiopasdfghjklzxcvbnmq wertyuiofghj qwetyuiopasdfghjklzxcvbnmqwetyuiop asdfghjklzxcvbnmqwetyuiopasdfghjklzx cvbnmqwetyuiopasdfghjklzxcvbnmqwe tyuiopasdfghjklzxcvbnmqwetyuiopasdf Aufgaben M-Beispielen ghjklzxcvbnmqwetyuiopasdfghjklzxcvb Vobeeitung

Mehr

Wert eines Terms berechnen

Wert eines Terms berechnen gnz kl: Mthemtik 3 - Ds Feienheft mit Efolgsnzeige 3 Wet eines Tems eechnen Teme sind sinnvolle Rechenusdücke, die us Zhlen, Vilen, Rechenzeichen und Klmmen estehen können. Sinnlose Rechenusdücke (z. B.:

Mehr

Lösen einer Gleichung 3. Grades

Lösen einer Gleichung 3. Grades Lösen eine Gleichung Gdes We sich uf dieses Abenteue einlssen will, bucht einige Kenntnisse übe komlee Zhlen Es eicht be, wenn mn folgende Schvehlte kennt und kochezettig (mn nehme) nwenden knn: Es gibt

Mehr

Vektorrechnung. In der Physik unterscheiden wir grundsätzlich zwei verschiedene Typen physikalischer Einheiten: Skalare und Vektoren.

Vektorrechnung. In der Physik unterscheiden wir grundsätzlich zwei verschiedene Typen physikalischer Einheiten: Skalare und Vektoren. Kntonsschule Solothun Vektoechung RYS Vektoechnung. Gundlgen. Skl / Vekto In de Phsik untescheiden wi gundsätlich wei veschiedene Tpen phsiklische Einheiten: Skle und Vektoen. Ein Skl ist eine elle Zhl.

Mehr

Schriftliche Prüfung aus Regelungstechnik am

Schriftliche Prüfung aus Regelungstechnik am U Gaz, Institut fü Regelungs- und Automatisieungstechnik 1 Schiftliche Püfung aus Regelungstechnik am 21.10.2004 Name / Voname(n): Kenn-Mat.N.: BONUSPUNKE aus Computeechenübung SS2003: BONUSPUNKE aus Computeechenübung

Mehr

Du nimmst zufällig eine Münze aus der Schachtel und wirfst sie dreimal.

Du nimmst zufällig eine Münze aus der Schachtel und wirfst sie dreimal. Wahrscheinlichkeitsrechnung 1. Eine Urne enthält 6 rote, blaue und 1 schwarze Kugeln. Man zieht nacheinander ohne Zurücklegen drei Kugeln. a) Mit welcher W'keit zieht man drei gleichfarbige Kugeln? b)

Mehr

I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE

I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE I. Reelle Zahlen 1. Die Menge der rationalen Zahlen und die Menge der irrationalen Zahlen bilden zusammen die Menge der reellen Zahlen. Nenne Beispiele für rationale und irrationale Zahlen.. Aus negativen

Mehr

Tag der Mathematik 2017

Tag der Mathematik 2017 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Aufgaben mit en und Punkteverteilung Hinweise für Korrektoren Generell gilt: Zielführende Zwischenschritte geben Punkte, auch wenn das Ergebnis falsch

Mehr

Teil 4. Aufgaben Nr. 14 bis 18 Hier nur Lösung von Nr. 14. Auf der Mathematik-CD befinden sich alle Lösungen

Teil 4. Aufgaben Nr. 14 bis 18 Hier nur Lösung von Nr. 14. Auf der Mathematik-CD befinden sich alle Lösungen Teil 4 Aufgaben Nr. 4 bis 8 Hier nur Lösung von Nr. 4. Auf der Mathematik-CD befinden sich alle Lösungen Parabelfunktionen mit vielen Zusatzaufgaben (Keine Integration) Datei Nr. 405 S Januar 00 Friedrich

Mehr

4. a b c p q h (a) 3 cm 4 cm. (c) 8 cm 10 cm (d) 5 cm 6 cm (e) 3 cm 4 cm (f) 9 cm 4 cm (g) 8 cm 4 cm (h) 6 cm 4 cm

4. a b c p q h (a) 3 cm 4 cm. (c) 8 cm 10 cm (d) 5 cm 6 cm (e) 3 cm 4 cm (f) 9 cm 4 cm (g) 8 cm 4 cm (h) 6 cm 4 cm Flähensätze im ehtwinkligen Deiek Die Resultate sind, falls nötig, auf Nahkommastellen zu unden. Wiedeholungsaufgaben 1. Wiedehole den Inhalt de dei Sätze zum ehtwinkligen Deiek, ohne eine algebaishe Fomel

Mehr

Stochastik: Nutzung sozialer Netzwerke

Stochastik: Nutzung sozialer Netzwerke Stochastik: Nutzung soziale Netzweke Die Nutzung von sozialen Netzweken wid imme beliebte. Dabei nutzen imme meh Jugendliche veschiedene soziale Netzweke. Es wid davon ausgegangen, dass 30 % alle Jugendlichen

Mehr

Der Graph der Logarithmusfunktion entsteht aus dem Graphen der Exponentialfunktion durch Spiegelung an der 1. Winkelhalbierenden.

Der Graph der Logarithmusfunktion entsteht aus dem Graphen der Exponentialfunktion durch Spiegelung an der 1. Winkelhalbierenden. 0. Logaithmusfunktion n de Abbildung sind de Gaph de Exponentialfunktion zu Basis und de Gaph ihe Umkehfunktion, de Logaithmusfunktion zu Basis dagestellt. Allgemein: Die Exponentialfunktion odnet jede

Mehr

Grundwissen 9. Klasse. Mathematik

Grundwissen 9. Klasse. Mathematik Grundwissen 9. Klasse Mathematik Philipp Kövener I. Reelle Zahlen 1.1 Quadratwurzel Definition Für a 0 ist die Quadratwurzel diejenige nicht-negative Zahl, deren Quadrat a ergibt. a heißt Radikand und

Mehr

PHYSIK Gekoppelte Bewegungen 2

PHYSIK Gekoppelte Bewegungen 2 PHYSIK Gekoppelte Bewegungen Gekoppelte Bewegungen auf chiefer Ebene Datei Nr. 93 Friedrich W. Buckel ktober 00 Internatgynaiu Schloß Torgelow Inhalt Grundwien Bewegung ohne äußeren Antrieb (Beipiel )

Mehr

Pfadwahrscheinlichkeiten

Pfadwahrscheinlichkeiten Pfadahscheinlichkeiten Zei Kugeln eden nacheinande ohne Zuücklegen gezogen. Mit elche Wahscheinlichkeit ist die zeite Kugel schaz? Die Menge alle Elementaeeignisse ist Ω = {(s,s); (s,); (,s); (,)} Jedem

Mehr

Fourieranalyse Digitalisierung von Signalen lineare zeitinvariante Systeme (LTI-Systeme) digitale Filter adaptive Filter

Fourieranalyse Digitalisierung von Signalen lineare zeitinvariante Systeme (LTI-Systeme) digitale Filter adaptive Filter Bioignalveabeitung Studiengang Medizin-Infomatik Inhalt Gundlagen de Elektizitätlehe Signale Fouieanalye Digitaliieung von Signalen lineae zeitinvaiante Syteme (LTI-Syteme) digitale Filte adaptive Filte

Mehr

Hauptprüfung 2009 Aufgabe 4

Hauptprüfung 2009 Aufgabe 4 Haptpüfng 9 Afgabe 4 Gegeben ind die Geaden g: x nd h: x mit, 4. Beechnen Sie die Koodinaten de Schnittpnkte de Geaden g nd h. Beechnen Sie den Schnittwinkel δ de Geaden g nd h. Becheiben Sie die beondee

Mehr

Aufgaben zu den Themen: Rechtwinkliges Dreieck und Sinus, Cosinus und Tangens im Einheitskreis

Aufgaben zu den Themen: Rechtwinkliges Dreieck und Sinus, Cosinus und Tangens im Einheitskreis Aufgaben zu den Themen: Rechtwinkliges Dreieck und Sinus, Cosinus und Tangens im Einheitskreis 1. Eine Rampe hat eine Steigung von 5%. Wie groß ist der Steigungswinkel? 2. Gegeben ist ein rechtwinkliges

Mehr

Vorlesung Technische Mechanik 1 Statik, Wintersemester 2007/2008. Technische Mechanik

Vorlesung Technische Mechanik 1 Statik, Wintersemester 2007/2008. Technische Mechanik Volesung Technische Mechanik 1 Statik, Wintesemeste 2007/2008 Technische Mechanik 1. Einleitung 2. Statik des staen Köpes 2.1 Äquivalenz von Käfteguppen am staen Köpe 2.2 Käfte mit gemeinsamem Angiffspunkt

Mehr

Selbsttest in Schulwissen Mathematik

Selbsttest in Schulwissen Mathematik Selsttest in Schulwissen Mathematik Falls Sie den Test von uns korrigieren und ewerten lassen wollen, machen Sie itte folgende Angaen: Name: Schulaschluss im Jahre: Vorname: im Bundesland oder Staat: Schulische

Mehr

Vorbereitung für 4. Klassenarbeit - Exponentialfunktionen

Vorbereitung für 4. Klassenarbeit - Exponentialfunktionen Vobeeitung fü 4. Klassenabeit - Exponentialfunktionen 1. Veeinfache den Tem nach den Regeln zum Rechnen mit Potenzen. a) 3-*-3'-3 b) \V -M'.\T c) -x^ -x e) k'-k'-m'-m'_ f)x'-y'-x'-y b. a) x'-x" d) x'"-x"'

Mehr

Trigonometrie. bekannte Zusammenhänge. 4-Streckensatz: groß/klein = groß/klein. Zusammenhänge im allgemeinen Dreieck:

Trigonometrie. bekannte Zusammenhänge. 4-Streckensatz: groß/klein = groß/klein. Zusammenhänge im allgemeinen Dreieck: Trigonometrie bekannte Zusammenhänge 4-Streckensatz: groß/klein = groß/klein Zusammenhänge im allgemeinen Dreieck: Summe zweier Seiten größer als dritte Seitenlänge: a + b > c Innenwinkelsumme: Summe der

Mehr

Aufgaben zu Kreisen und Kreisteilen

Aufgaben zu Kreisen und Kreisteilen www.mthe-ufgben.com ufgben zu Keisen und Keisteilen Keisfläche: ( Rdius des Keises) Keisumfng: U Keisingfläche: ( ußen innen ) Keisusschnitt / Keissekto: Öffnungswinkel, b Keisbogen α bzw. b 60 α α b 60

Mehr

Integralrechnung III.Teil

Integralrechnung III.Teil Inegalechnung III.eil 1 Inegalechnung III.eil ngewande Mahemaik GM Wolgang Kugle Inegalechnung III.eil Inhalsvezeichnis 1. Mielwee peiodische Signale 1.1 Deiniion des aihmeischen Mielwees 1. Deiniion des

Mehr

Grundwissen Mathematik Klasse 8. Beispiel: m= 2,50 1 = 5,00. Gleichung: y=2,50 x. Beispiel: c=1,5 160=2,5 96=3 80=6 40=240.

Grundwissen Mathematik Klasse 8. Beispiel: m= 2,50 1 = 5,00. Gleichung: y=2,50 x. Beispiel: c=1,5 160=2,5 96=3 80=6 40=240. I. Funktionen 1. Direkt proportionale Zuordnungen Grundwissen Mathematik Klasse x und y sind direkt proportional, wenn zum n fachen Wert für x der n fache Wert für y gehört, die Wertepaare quotientengleich

Mehr

Propädeutikum Mathematik

Propädeutikum Mathematik Propädeutikum Mathematik Wintersemester 2016 / 2017 Carsten Krupp BBA und IBS Vorkurs Mathematik - Wintersemester 2016 / 2017 Seite 1 Literaturhinweise Cramer, E., Neslehova, J.: Vorkurs Mathematik, Springer,

Mehr

MATHEMATIK-WETTBEWERB 2016/2017 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2016/2017 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 206/207 DES LANDES HESSEN 3. RUNDE LÖSUNGEN AUFGABENGRUPPE A. a) L { 2; ; 0; ;...}, denn b) L Z G, denn. Fall: 3 (x 7) (x 3)(x 7) x 7 oder 3 x 3 x 7 oder x 6 2. Fall: 3 (x 7) < (x

Mehr

Propädeutikum Mathematik

Propädeutikum Mathematik Propädeutikum Mathematik Wintersemester 2017/2018 Carsten Krupp Betriebswirtschaftslehre (BBA) und International Business Studies (IBS)) Vorkurs Mathematik - Wintersemester 2017/2018 Seite 1 Literaturhinweise

Mehr

Mathematik Vektorrechnung

Mathematik Vektorrechnung Mthemti Vetoechnng Definitionen Rechnen mit Vetoen Linee Ahängigeit nd Unhängigeit on Vetoen Geden Gegeneitige Lge on Geden 9 Betg eine Veto Winel zwichen zwei Vetoen Eenendtellng mit Vetoen 9 Gegeneitige

Mehr

1. Überlege, ob die gegebenen Körper mit einem geometrischen Grundkörper

1. Überlege, ob die gegebenen Körper mit einem geometrischen Grundkörper 1 Anwendungsaufgaen Geh ei Anwendungsaufgaen zu Körpererehnungen folgendermaßen vor: 1. Üerlege, o die gegeenen Körper mit einem geometrishen Grundkörper üereinstimmen.. Findest du keine Üereinstimmung,

Mehr