Konvexes Viereck Trapez Drachenviereck Parallelogramm Sehnenviereck Tangentenviereck Überraschung? Haus der Vierecke. Dr.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Konvexes Viereck Trapez Drachenviereck Parallelogramm Sehnenviereck Tangentenviereck Überraschung? Haus der Vierecke. Dr."

Transkript

1 Haus der Vierecke Dr. Elke Warmuth Sommersemester / 40

2 Konvexes Viereck Trapez Drachenviereck Parallelogramm Rhombus Rechteck Sehnenviereck Tangentenviereck Überraschung? 2 / 40

3 Wir betrachten nur konvexe Vierecke: Innenwinkelsumme α + β + γ + δ = 360. Zwei Diagonalen e und f. 3 / 40

4 Achsensymmetrisches Viereck mit der Mittelsenkrechten einer Seite als Symmetrieachse: Eigenschaften: AB CD b = d e = f. α = β, γ = δ α + δ = 180, β + γ = 180 Die Diagonalen schneiden sich auf der Symmetrieachse. Warum? 4 / 40

5 Definition Ein Viereck mit zwei zueinander parallelen Seiten heißt Trapez. Bezeichnungen und Eigenschaften Grundseiten a, c mit a c, a ist die längere Seite. Schenkel b, d Die Höhe h steht senkrecht auf a und auf c. 5 / 40

6 Satz In Trapez gilt: α + δ = 180, β + γ = 180. Die Mittellinie ist die Mittelparallele zu den beiden Grundseiten. Beweis. 1. Übungsaufgabe 2. Zeichne Senkrechte zu den Grundseiten durch E und F. Zeige mit Kongruenzsätzen, dass EG = EJ und FH = FI. 6 / 40

7 Satz In Trapez gilt: m = a+c a c 2, GH = 2 Die Mittellinie verläuft durch die Mittelpunkte der Diagonalen. Die Diagonalen schneiden einander im gleichen Verhältnis, nämlich wie c : a. Beweis. 1. EG = HF = c 2, GF = a 2 2. Übungsaufgabe 3. Beweis mit Strahlensatz. Kommt später. 7 / 40

8 Spezielle Trapeze: gleichschenkliges Trapez: achsensymmetrisch Eigenschaften siehe achsensymmetrisches Viereck mit einer Mittelsenkrechten als Symmetrieachse rechtwinkliges Trapez: ein rechter Winkel Parallelogramm: zwei Paar paralleler Seiten Rhombus: zwei Paar paralleler und gleich langer Seiten Rechteck: zwei rechte Winkel Quadrat: zwei rechte Winkel und gleich lange Seiten Keine Trapeze: allgemeines Drachenviereck 8 / 40

9 Definition Ein Drachenviereck ist ein Viereck, bei dem eine Diagonale Symmetrieachse ist, oder (äquivalent) das zwei disjunkte Paare gleich langer benachbarter Seiten besitzt. Aufgabe Warum sind diese beiden Definitionen äquivalent? Eigenschaften: c = b, d = a β = δ AC DB. AC halbiert α und γ. E halbiert DB. 9 / 40

10 Spezielle Drachenvierecke: Rhombus: vier gleich lange Seiten Quadrat: vier gleich lange Seiten und vier gleich große Winkel Keine Drachenvierecke: allgemeines Trapez Parallelogramm allgemeines Rechteck 10 / 40

11 Punktspiegelung am Zentrum Z Abbildung der Ebene auf sich Für jeden Punkt P zeichne Strecke von P nach Z, verdopple die Strecke PZ und erhalte als Endpunkt den Bildpunkt P. Es gilt Z = Z. In der Ebene ist die Punktspiegelung am Zentrum Z gleichbedeutend mit einer Drehung um 180 um das Drehzentrum Z. Eine Figur, die bei Punktspiegelung in sich übergeht, heißt punktsymmetrisch. Aufgabe F: Zeichnen Sie ein beliebiges Dreieck, wählen Sie eine Ecke als Zentrum Z und spiegeln Sie das Dreieck an Z. M: Zeichnen Sie ein beliebiges Dreieck, wählen Sie eine Ecke als Zentrum Z und drehen Sie das Dreieck um 180 um Z. 11 / 40

12 Punktsymmetrisches Viereck mit dem Diagonalenschnittpunkt als Symmetriezentrum: Eigenschaften: a = a, b = b α = α, β = β α + β = 180 AZ = A Z, BZ = B Z AB A B, AB BA 12 / 40

13 Definition Ein Viereck, bei dem je zwei Gegenseiten zueinander parallel sind, heißt Parallelogramm. Satz Jedes Parallelogramm ist punktsymmetrisch mit M als Symmetriezentrum. Beweis. ABC = CDA a = c, b = d ABM = CDM AM = MC, BM = MD. 13 / 40

14 1. Parallelogramm-Kriterium Satz Ein Viereck ist genau dann ein Parallelogramm, wenn sich die Diagonalen halbieren. Beweis. 1. Im Parallelogramm halbieren sich die Diagonalen. Das folgt aus der Punktsymmetrie. 2. Kommentieren und ergänzen Sie die Skizze: 14 / 40

15 2. Parallelogramm-Kriterium Satz Ein Viereck ist genau dann ein Parallelogramm, wenn je zwei Gegenwinkel kongruent sind. Beweis. 1. Im Parallelogramm gilt α = γ und β = δ. Das folgt aus der Punktsymmetrie. 2. Je zwei Gegenwinkel seien kongruent (Bild). Dann gilt 2α + 2β = 360. Also sind α und β Nebenwinkel. Nach der Umkehrung des Stufenwinkelsatzes ist b d. Analog für a c. 15 / 40

16 3. Parallelogramm-Kriterium Satz Ein Viereck ist genau dann ein Parallelogramm, wenn je zwei Gegenseiten kongruent sind. Beweis. 1. In einem Parallelogramm sind je zwei Gegenseiten kongruent. Gegeben sei ein Viereck mit je zwei kongruenten Gegenseiten. Hilfslinie? ABC = ACD 16 / 40

17 4. Parallelogramm-Kriterium Satz Ein Viereck ist genau dann ein Parallelogramm, wenn zwei Gegenseiten kongruent und parallel sind. Beweis. Übungsaufgabe 17 / 40

18 5. Parallelogramm-Kriterium Satz Ein Viereck ist genau dann ein Parallelogramm, wenn je zwei benachbarte Winkel Nebenwinkel sind, d.h. wenn gilt α + β = β + γ = γ + δ = δ + α = 180. Beweis. 1. Im Parallelogramm sind nach dem Stufenwinkelsatz je zwei benachbarte Winkel Nebenwinkel. 2. Kommentieren Sie die nebenstehende Zeichnung und folgern Sie, dass je zwei Gegenwinkel kongruent sind. 18 / 40

19 Rhombus Definition Ein Parallelogramm mit gleich langen Seiten heißt Rhombus oder Raute. der Rhombus Eigenschaften: AB CD, BC AD a = b = c = d α = γ, β = δ α + δ = 180 Die Diagonalen halbieren einander. 19 / 40

20 Rhombus Satz Im Rhombus stehen die Diagonalen senkrecht aufeinander und sind folglich Symmetrieachsen. Beweis. Die Dreiecke BAD und BCD sind gleichschenklig und folglich ist die Seitenhalbierende AC gleich der Mittelsenkrechten. Dasselbe gilt für das andere Dreieckspaar. Also stehen die Diagonalen senkrecht aufeinander und sind Symmetrieachsen. 20 / 40

21 Rhombus 1. Rhombus-Kriterium Satz Ein Viereck ist genau dann ein Rhombus, wenn alle vier Seiten gleich lang sind. Beweis. 1. Im Rhombus sind per Definition alle vier Seiten gleich lang. 2. Gegeben sei ein Viereck mit vier gleich langen Seiten. Man zeichne die Diagonalen ein. Mit Kongruenzsätzen folgt, dass je zwei Gegenwinkel gleich groß sind. Also ist das Viereck ein Parallelogramm und weil die Seiten gleich lang sind, ist es ein Rhombus. 21 / 40

22 Rhombus 2. Rhombus-Kriterium Satz Ein Viereck ist genau dann ein Rhombus, wenn sich die Diagonalen senkrecht halbieren. Beweis. 1. Im Rhombus halbieren sich die Diagonalen senkrecht. 2. Gegeben sei ein Viereck, in dem sich die Diagonalen senkrecht halbieren. Kommentieren Sie die nebenstehende Zeichnung und folgern Sie, dass alle Seiten gleich lang sind. 22 / 40

23 Rhombus 3. Rhombus-Kriterium Satz Ein Viereck ist genau dann ein Rhombus, wenn jede Diagonalen Winkelhalbierende ist. Beweis. 1. z.z.: Im Rhombus ist jede Diagonale Winkelhalbierende. ÜA 2. Gegeben sei ein Viereck, in dem jede Diagonalen Winkelhalbierende ist. Bei E gilt α + β = γ + δ und γ + β = α + δ. Addition der Gleichungen liefert β = δ. Daraus folgt α = γ. Aus der Winkelsumme im Viereck folgt α + β = 90. Also stehen die Diagonalen senkrecht aufeinander. Nach wsw halbieren sie sich. 23 / 40

24 Rechteck Quadrat als Spezialfall des Rhombus: ein rechter Winkel Rechteck als Spezialfall des Parallelogramms: ein rechter Winkel Satz In einem Rechteck gilt: 1. Alle Innenwinkel sind rechte Winkel. 2. Die Mittelsenkrechten sind Symmetrieachsen. 3. Die Diagonalen sind gleich lang. Beweis. Alle Eigenschaften eines Parallelogramms gelten auch im Rechteck. 1. Wenn ein Winkel ein rechter Winkel ist, dann auch sein Gegenwinkel und sein benachbarter Winkel. 2. und 3. Übungsaufgabe 24 / 40

25 Rechteck Satz Ein Parallelogramm ist genau dann ein Rechteck, wenn die Diagonalen gleich lang sind. Beweis. 1. In einem Rechteck sind die Diagonalen gleich lang. 2. Gegeben sei ein Parallelogramm mit gleich langen Diagonalen. Da sich die Diagonalen halbieren, sind auch die Hälften alle gleich lang. Im Parallelogramm entstehen durch die Diagonalen lauter gleichschenklige Dreiecke. Folglich haben diese Dreiecke paarweise gleiche Basiswinkel. Aus dem Satz über die Innenwinkelsumme folgt, dass alle Innenwinkel des Parallelogramms rechte Winkel sind. 25 / 40

26 Rechteck Haus der konvexen Vierecke 1 26 / 40

27 Definition Ein Viereck, dessen Seiten Sehnen eines Kreises sind, heißt Sehnenviereck. Eigenschaften: AM = BM = CM = DM per Definition α + γ = β + δ = 180 Beweis? Ein Sehnenviereck ist also ein Viereck mit Umkreis. 27 / 40

28 Satz Ein Viereck ist genau dann ein Sehnenviereck, wenn sich zwei Gegenwinkel zu 180 ergänzen. Beweis. 1. Im Sehnenviereck ergänzen sich gegenüberliegende Winkel zu Zeichne den Umkreis zu ABC. Angenommen, D liegt nicht auf dem Umkreis k. Verlängere AD bis zum Schnittpunkt F mit k. Dann beträgt der Winkel bei F 180 β und im Dreieck DCF wäre die Innenwinkelsumme größer als 180. Widerspruch! Analog im Fall, dass D außerhalb des Umkreises liegt. 28 / 40

29 Aufgaben 1. Warum ist ein Rechteck ein Sehnenviereck? Wie finden Sie den Mittelpunkt des Umkreises? 2. Ist ein Rhombus ein Sehnenviereck? 29 / 40

30 Aufgaben 1. Wie viele Symmetrieachsen hat ein Kreis? 2. Was ist die Tangente an einen Kreis im Punkt B? 3. Wie konstruiert man die Tangente an einen Kreis im Punkt B? 30 / 40

31 Definition Ein Viereck, dessen Seiten Tangenten an einen Kreis sind, heißt Tangentenviereck. Eigenschaften: EM = FM = GM = HM = r per Definition AE = AH, BE = BF, CF = CG, DG = DH Beweis? Das Viereck AEMH ist symmetrisch bezgl. der Achse AM. a + c = b + d Beweis? Ein Tangentenviereck ist also ein Viereck mit Inkreis. 31 / 40

32 Aufgabe Von einem Viereck ABCD sei bekannt, dass es ein Tangentenviereck ist. Wie finden Sie den Mittelpunkt des Inkreises? 32 / 40

33 Satz Ein Viereck ist genau dann ein Tangentenviereck, wenn die Summen der Längen je zweier Gegenseiten gleich sind. Beweis. 1. Im Tangentenviereck gilt a + c = b + d. 2. In einem Viereck gelte a + c = b + d. ObdA sei a > d und b > c. Wir tragen d von A aus auf AB ab und erhalten D. Wir tragen c von C aus auf BC ab und erhalten B. Wegen d + r + c = d + c + s gilt r = s. 33 / 40

34 3. Somit sind die Dreiecke DAD, D BB, DB C gleichschenklig. Ihre Winkelhalbierenden bei A, B, C bzw. D sind die Mittelsenkrechten des Dreiecks DD B. Sie schneiden sich in einem Punkt M. Dieser Punkt M hat dieselbe Entfernung zu den Seiten a, b, c, d. Er ist also der Mittelpunkt des Inkreises. 34 / 40

35 35 / 40

36 Aufgaben Welche Vierecke sind Tangentenvierecke? Welche Vierecke sind keine Tangentenvierecke? Welches Viereck ist sowohl Sehnen- als auch Tangentenviereck? 36 / 40

37 Haus der konvexen Vierecke 2 37 / 40

38 Konvexes Viereck Trapez Drachenviereck Parallelogramm Sehnenviereck Tangentenviereck U berraschung? 38 / 40

39 Lösung: 61, 5 39 / 40

40 Satz von Varignon (1731) Satz Das Seitenmittenviereck eines beliebigen Vierecks ist ein Parallelogramm. 40 / 40

Achsen- und punktsymmetrische Figuren

Achsen- und punktsymmetrische Figuren Achsensymmetrie Der Punkt P und sein Bildpunkt P sind symmetrisch bzgl. der Achse s, wenn ihre Verbindungsstrecke [PP ] senkrecht auf der Achse a steht und von dieser halbiert wird. Zueinander symmetrische......strecken

Mehr

Geometrie. Homepage zur Veranstaltung: Lehre Geometrie

Geometrie. Homepage zur Veranstaltung:  Lehre Geometrie Geometrie 4.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 4.2 Inhaltsverzeichnis Geometrie 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen 3 Längen-,

Mehr

Vierecke Kurzfragen. 2. Juli 2012

Vierecke Kurzfragen. 2. Juli 2012 Vierecke Kurzfragen 2. Juli 2012 Vierecke Kurzfrage 1 Wie werden Vierecke angeschrieben? Vierecke Kurzfrage 1 Wie werden Vierecke angeschrieben? Ecken: Vierecke Kurzfrage 1 Wie werden Vierecke angeschrieben?

Mehr

Grundlagen Mathematik 7. Jahrgangsstufe

Grundlagen Mathematik 7. Jahrgangsstufe ALGEBRA 1. Grundlagen Grundlagen Mathematik 7. Jahrgangsstufe Menge der ganzen Zahlen Z = {..., -3, -2, -1, 0, 1, 2, 3,... } Menge der rationalen Zahlen Q = { z z Z und n N } (Menge aller n positiven und

Mehr

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m) Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus

Mehr

Beweise. 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck.

Beweise. 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck. Beweise 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck. (a) Gib Satz und Kehrsatz in der Wenn-dann-Form an! (b) Ist die Voraussetzung des Satzes notwendig,

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

1 Begriffe und Bezeichnungen

1 Begriffe und Bezeichnungen 1 Begriffe und Bezeichnungen Verbindet man vier Punkte A, B, C, D einer Ebene, von denen keine drei auf einer Geraden liegen, der Reihe nach miteinander, können unterschiedliche Figuren entstehen: ein

Mehr

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt.

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematik - Sommer 06 Prof. Dr. Matthias Lesch, Regula Krapf Übungsblatt 8 Aufgabe 7 (8 Punkte). Ein Parallelogramm ist ein Rechteck ABCD mit Seiten a, b, c, d wie unten dargestellt, mit

Mehr

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Wissen und Können 1. Terme Terme sind sinnvolle Rechenausdrücke mit Zahlen, Variablen und Rechenzeichen. Berechnung von Termwerten

Mehr

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze. 6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese

Mehr

MATHEMATIK-WETTBEWERB 2009/2010 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2009/2010 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2009/2010 DES LANDES HESSEN 3. RUNDE LÖSUNGEN 1. a) L { 1; 0; 1} b) L {... ; 1; 0; 1; 2} c) L {2; 3; 4}, denn: x 4 0 oder falls x 4 > 0 dann x + 3 5 oder falls x 4 < 0 dann x + 3

Mehr

Vierecke. 7.1 Grundwissen Mathematik Geometrie Klasse 7. Drachenviereck: Viereck, bei dem eine Diagonale Symmetrieachse ist

Vierecke. 7.1 Grundwissen Mathematik Geometrie Klasse 7. Drachenviereck: Viereck, bei dem eine Diagonale Symmetrieachse ist 7.1 Grundwissen Mathematik Geometrie Klasse 7 Vierecke Trapez: Viereck, bei dem zwei Gegenseiten parallel sind gleichschenkliges Trapez: Trapez, bei dem die beiden Schenkel c gleich lang sind (b = d) d

Mehr

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Wissen und Können 1. Terme Terme sind sinnvolle Rechenausdrücke mit Zahlen, Variablen und Rechenzeichen. Berechnung von Termwerten

Mehr

Variable und Terme A 7_01. Variable sind Platzhalter für Zahlen aus einer vorgegebenen Grundmenge G, z. B. x IN; y ; a Q

Variable und Terme A 7_01. Variable sind Platzhalter für Zahlen aus einer vorgegebenen Grundmenge G, z. B. x IN; y ; a Q Variable und Terme A 7_01 Variable sind Platzhalter für Zahlen aus einer vorgegebenen Grundmenge G, z B x IN; y ; a Q Jede sinnvolle Zusammenstellung aus Zahlen und Variablen mit Hilfe von Rechenzeichen

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe .0 Berechne folgende Terme:.. x + 4 = x =. (y x) (x + y) =.0 Schreibe ohne Klammern und vereinfache soweit wie möglich:. (x + ) (x 4) =. (0,4x + y) (0,4x y) + (y) =. Ermittle den Extremwert durch Termumformung.

Mehr

OvTG Gauting, Grundwissen Mathematik 7. Klasse

OvTG Gauting, Grundwissen Mathematik 7. Klasse 1. Symmetrie (vgl. auch Grundwissen 5. Klasse) Achsensymmetrie Zwei Figuren, die bezüglich einer Achse symmetrisch zueinander sind, nennt man achsensymmetrisch. a Punktsymmetrie Zwei Figuren, die bei einer

Mehr

Konstruktion Dreiecke und Vierecke PRÜFUNG 09. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote :

Konstruktion Dreiecke und Vierecke PRÜFUNG 09. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : GEOMETRIE PRÜFUNGSVORBEREITUNG Konstruktion Dreiecke und Vierecke PRÜFUNG 09 Name: Klasse: Datum: : Note: Ausgabe:. September 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle

Mehr

Lösungen zum Thema Geometrie. Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt.

Lösungen zum Thema Geometrie. Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt. Lösungen zum Thema Geometrie Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt. Höhe h c Winkelhalbierende w α Mittelsenkrechte ms c Seitenhalbierende s c b)

Mehr

Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind.

Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind. 1 Sätze über Winkel Geradenkreuzung: Zwei Geraden, die sich in einem Punkt schneiden, nennt man eine Geradenkreuzung. α α Nebeneinander liegende Winkel heißen Nebenwinkel, sie β ergeben zusammen stets

Mehr

Dietrich-Bonhoeffer-Gymnasium Oberasbach - Mathematik 7. Klasse Seite 1 von 6

Dietrich-Bonhoeffer-Gymnasium Oberasbach - Mathematik 7. Klasse Seite 1 von 6 Dietrich-Bonhoeffer-Gymnasium Oberasbach - Mathematik 7. Klasse Seite 1 von 6 M7 - Algebra: Standardaufgaben Grundwissen M7 Beispielaufgaben mit Lösung 1. Vereinfache so weit wie möglich! Verwende Rechenregeln/-gesetze,

Mehr

Viereck und Kreis Gibt es da etwas Besonderes zu entdecken?

Viereck und Kreis Gibt es da etwas Besonderes zu entdecken? Bekanntlich besitzt ein Dreieck einen Umkreis, dessen Mittelpunkt man konstruieren kann. 1) Zeichne in dein Heft ein beliebiges Dreieck und konstruiere den Außenkreis des Dreieckes nur mit Zirkel und Lineal.

Mehr

Aufgabe 1. Wie muss? richtig angeschrieben werden?

Aufgabe 1. Wie muss? richtig angeschrieben werden? Aufgabe 1 Wie muss? richtig angeschrieben werden? Aufgabe 1 Wie muss? richtig angeschrieben werden? Aufgabe 2 Wie gross ist die Summe der Innenwinkel im konvexen und konkaven Viereck? Aufgabe 2 Wie gross

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Achsensymmetrie. Grundkonstruktionen

Achsensymmetrie. Grundkonstruktionen M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze. 6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese

Mehr

I. Symmetrie. II. Grundkonstruktionen

I. Symmetrie. II. Grundkonstruktionen I. Symmetrie Achsensymmetrie Zwei Figuren, die bezüglich einer Achse symmetrisch zueinander sind, nennt man achsensymmetrisch. Punktsymmetrie Zwei Figuren, die bei einer Halbdrehung um einen Punkt ineinander

Mehr

Grundwissen JS 7: Geometrie 17. Juli (a) Wann heißt eine Figur achsensymmetrisch? Welche Bedeutung hat die Symmetrieachse anschaulich

Grundwissen JS 7: Geometrie 17. Juli (a) Wann heißt eine Figur achsensymmetrisch? Welche Bedeutung hat die Symmetrieachse anschaulich GYMNASIUM MIT SCHÜLERHEIM EGNITZ math-technolog u sprachl Gymnasium WILHELM-VON-HUMBOLDT-STRASSE 7 91257 EGNITZ FERNRUF 09241/48333 FAX 09241/2564 Grundwissen JS 7: Geometrie 17 Juli 2007 1(a) Wann heißt

Mehr

2.6. Aufgaben zu Kongruenzabbildungen

2.6. Aufgaben zu Kongruenzabbildungen Aufgabe.6. Aufgaben zu Kongruenzabbildungen Gegeben sind die Dreiecke ABC mit A(0 ), B( 0) und C(3 0) sowie A B C mit A ( ), B (3 ) und C ( ). Beschreibe die Abbildung, die das Dreieck ABC auf das Dreieck

Mehr

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt.

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Analytische Geometrie. Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG. Stand November F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Analytische Geometrie. Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG. Stand November F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Analytische Geometrie Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG Wird erweitert Lösungen nur auf der Mathe CD Datei Nr. 0050 Stand November 005 F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 0050 Dreiecke

Mehr

Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006. Alexander Bobenko und Ivan Izmestiev. Geometrie

Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006. Alexander Bobenko und Ivan Izmestiev. Geometrie Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin Geometrie Aufgabe G.1 Berechne die Innenwinkelsumme eines n-ecks. Aufgabe G.2 Zeige, dass

Mehr

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind?

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.

Mehr

M 7.1. Achsensymmetrie. Nenne drei Eigenschaften achsensymmetrischer Figuren.

M 7.1. Achsensymmetrie. Nenne drei Eigenschaften achsensymmetrischer Figuren. M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.

Mehr

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind?

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.

Mehr

M 7.1. Achsensymmetrie. Nenne drei Eigenschaften achsensymmetrischer Figuren.

M 7.1. Achsensymmetrie. Nenne drei Eigenschaften achsensymmetrischer Figuren. M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.

Mehr

Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am haben wir mit Kapitel 2.2 begonnen.

Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am haben wir mit Kapitel 2.2 begonnen. Das vorliegende Skript beschäftigt sich mit dem Thema Elementargeometrie. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft(MSG) im Schuljahr 2012/2013. Die vorliegende

Mehr

Konstruktionen am Dreieck

Konstruktionen am Dreieck Winkelhalbierende Die Winkelhalbierende halbiert den jeweiligen Innenwinkel des Dreiecks. Sie agieren als Symmetrieachse. Dadurch ist jeder Punkt der Winkelhalbierenden gleich weit von den beiden Schenkeln

Mehr

Repetition Begriffe Geometrie. 14. Juni 2012

Repetition Begriffe Geometrie. 14. Juni 2012 Repetition Begriffe Geometrie 14. Juni 2012 Planimetrie 1. Strahlensatz Planimetrie 1. Strahlensatz Werden zwei sich schneidende Geraden von zwei Parallelen geschnitten, so verhalten sich die Abschnitte

Mehr

Grundwissen 7. Klasse

Grundwissen 7. Klasse Grundwissen 7. Klasse I. Symmetrie 1. Achsensymmetrie Die Punkte P und P sind achsensymmetrisch bzgl. der Symmetrieachse a. Sind Figuren zueinander achsensymmetrisch, so kannst du folgende Eigenschaften

Mehr

MATHEMATIK ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE

MATHEMATIK ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE MATHEMATIK Lehreinheit 11 Geometrie: Dreiecke und Vierecke II GEOMETRIE:

Mehr

Themenbereich: Besondere Dreiecke Seite 1 von 6

Themenbereich: Besondere Dreiecke Seite 1 von 6 Themenbereich: Besondere Dreiecke Seite 1 von 6 Lernziele: - Kenntnis der Bezeichnungen für besondere Dreiecke - Kenntnis der Seiten- und Winkelbezeichnungen bei besonderen Dreiecken - Kenntnis der Eigenschaften

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Gymnasium Hilpoltstein Grundwissen 7. Jahrgangsstufe

Gymnasium Hilpoltstein Grundwissen 7. Jahrgangsstufe Wissen / Können 1. Symmetrie Gymnasium Hilpoltstein Grundwissen 7. Jahrgangsstufe Definitionen und Beispiele Achsensymmetrie Eine Figur heißt achsensymmetrisch, wenn sie durch Umklappen um eine Gerade

Mehr

Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am haben wir mit Kapitel 2.2 begonnen.

Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am haben wir mit Kapitel 2.2 begonnen. Das vorliegende Skript beschäftigt sich mit dem Thema Elementargeometrie. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft(MSG) im Schuljahr 2012/2013. Die vorliegende

Mehr

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard GRUNDWISSEN MATHEMATIK 7 Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E S - N E P

Mehr

Klausur zur Einführung in die Geometrie im SS 2002

Klausur zur Einführung in die Geometrie im SS 2002 Klausur zur Einführung in die Geometrie im SS 2002 Name, Vorname... Matr.Nr.... Semester-Anzahl im SS 2002:... Studiengang GH/R/S Tutor/in:... Aufg.1 Aufg,2 Aufg.3 Aufg.4 Aufg.5 Aufg.6 Aufg.7 Aufg.8 Gesamt

Mehr

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke Geometrische Mappe Die metallenen Dreiecke 1 Material 4 metallene Rahmen (14 cm X 14 cm) mit gleichseitigen Dreiecken (Seitenlänge 10 cm). Die Dreiecke sind wie folgt unterteilt Ganze Halbe Drittel Viertel

Mehr

1. Daten und Diagramme Beispiele / Veranschaulichung

1. Daten und Diagramme Beispiele / Veranschaulichung 1. Daten und Diagramme / Veranschaulichung Zum Vergleich von Daten sind Säulen- und Balkendiagramme geeignet: Bei dieser Arbeit gab es zweimal die Note 1, siebenmal die Note 2, usw. Die Verteilung innerhalb

Mehr

Symmetrien und Winkel

Symmetrien und Winkel 1 10 Symmetrien 301 Zeichne Grossbuchstaben des Alphabets, sortiert nach vier Typen: achsensymmetrisch punktsymmetrisch achsen- und punktsymmetrisch weder achsen- noch punktsymmetrisch Trage bei den symmetrischen

Mehr

Bestimme ferner die Koordinaten des Bildpunktes von B bei der Spiegelung

Bestimme ferner die Koordinaten des Bildpunktes von B bei der Spiegelung Vektoren - Skalar- und Vektorprodukt ================================================================== 1. Gegeben sind die Punkte A 1 2 3 und B 3 4 1 bzgl. eines kartesischen Koordina- tensystems mit

Mehr

8.5.1 Real Geometrie Viereck, Dreieck

8.5.1 Real Geometrie Viereck, Dreieck 8.5.1 Real Geometrie Viereck, Dreieck P8: Mathematik 8 G2: komb.üchlein Zeitraum : 3 Wochen Inhalte Kernstoff Zusatzstoff Erledigt am Vierecke Typen: Quadrat, Rechteck, P8: 146 P8: 147 Rhombus, Parallelogramm,

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

Grundwissen. Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium. Jahrgangsstufe: 7(G8)

Grundwissen. Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium. Jahrgangsstufe: 7(G8) Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium Gymnasium Eckental Neunkirchener Straße 9042 Eckental Grundwissen Jahrgangsstufe: 7(G8) Vereinfachen von Summen

Mehr

2.5. Aufgaben zu Dreieckskonstruktionen

2.5. Aufgaben zu Dreieckskonstruktionen 2.5. Aufgaben zu Dreieckskonstruktionen Aufgabe 1 Zeichne das Dreieck AC mit A( 1 2), (5 0) und C(3 6) und konstruiere seinen Umkreis. Gib den Radius und den Mittelpunkt des Umkreises an. Aufgabe 2 Konstruiere

Mehr

Grundwissen 7 Bereich 1: Terme

Grundwissen 7 Bereich 1: Terme Bereich 1: Terme Termwerte 1.1 S1 T (1) = 6 T (2) = 7 T ( 2) 3 = 12 1 4 = 12, 25 1.2 S1 m 2 0, 5 0 1 2 1 3 6 6 2 A(m) 7 11 5 0 1 Setzt man die Zahl 5 ein, so entsteht im Nenner die Zahl 0. Durch 0 zu teilen

Mehr

13. Landeswettbewerb Mathematik Bayern Lösungsbeispiele 1. Runde 2010/2011

13. Landeswettbewerb Mathematik Bayern Lösungsbeispiele 1. Runde 2010/2011 13. Landeswettbewerb Mathematik Bayern Lösungsbeispiele 1. Runde 20/2011 Aufgabe 1 Sonja hat neun Karten, auf denen die neun kleinsten zweistelligen Primzahlen stehen. Sie will diese Karten so in eine

Mehr

Dualität in der Elementaren Geometrie

Dualität in der Elementaren Geometrie 1 Dualität in der Elementaren Geometrie Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastic (WIAS) e-mail: stephan@wias-berlin.de url: www.wias-berlin.de/people/stephan FU Berlin,

Mehr

Übungen. Löse folgende Aufgaben mit GeoGebra

Übungen. Löse folgende Aufgaben mit GeoGebra Übungen Löse folgende Aufgaben mit GeoGebra A1 Die Fachbegriffe in den Kästchen sollen den untenstehenden Aussagen bezüglich eines Dreiecks ABC zugeordnet werden. Du darfst die Kärtchen mehrfach verwenden

Mehr

GRUNDWISSEN Seitenhalbierende Konstruktion von Vierecken [nach Lambacher Schweizer 7] [eigene Grafiken]

GRUNDWISSEN Seitenhalbierende Konstruktion von Vierecken [nach Lambacher Schweizer 7] [eigene Grafiken] GRUNDWISSEN Inhalt 5.Gleichungen... 2 5.1. Gleichungen und Lösungen... 2 5.2. Äquivalente Gleichungsumformungen... 2 5.3. Systematisches Lösen einer Gleichungen... 2 5.4. Lineare Gleichungen in Anwendungsaufgaben...

Mehr

1. Winkel (Kapitel 3)

1. Winkel (Kapitel 3) 1. Winkel (Kapitel 3) 1.1 Winkel Einführung 1.2 Winkel an Geraden bjak 1 1.3 Winkel am Dreieck bjak 2 1.4 Winkel am Kreis bjak 3 bjak 4 2. Dreiecke (Kapitel 3) 2.1 Linien am Dreieck bjak 5 2.2 Flächeninhalt

Mehr

Geometrie-Dossier Vierecke

Geometrie-Dossier Vierecke Geometrie-Dossier Vierecke Name: Inhalt: Vierecke: Bezeichnungen Parallelenvierecke: Ihre Form und Eigenschaften Konstruktion von Parallelenvierecken Winkelsumme in Vielecken, Flächenberechnung in Vielecken

Mehr

ÖMO. Geometrie. Grundlagen der. Birgit Vera Schmidt. Österreichische MathematikOlympiade

ÖMO. Geometrie. Grundlagen der. Birgit Vera Schmidt. Österreichische MathematikOlympiade ÖMO Österreichische MathematikOlympiade Grundlagen der Geometrie 14. 11. 2008 Birgit Vera Schmidt 1 Wiederholung 1.1 Grundlagen 1.1.1 Strecken und Verbindungen Eine Strecke ist eine Verbindung zwischen

Mehr

Figuren Lösungen. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60.

Figuren Lösungen. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60. Es gibt drei Symmetrieachsen. Gleichseitiges Dreieck Zwei Seiten stehen normal.

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Mathematik Klasse 5 Bereich (Kartennummer): Innermathematisch. Schwierigkeitsgrad: Strategie. Mathematisches Thema: Symmetrie.

Mathematik Klasse 5 Bereich (Kartennummer): Innermathematisch. Schwierigkeitsgrad: Strategie. Mathematisches Thema: Symmetrie. Bereich (Kartennummer): Strategie Fortsetzung Strategie Vertiefung Welche der folgenden Verkehrsschilder sind achsen- bzw. punktsymmetrisch? Mögliche Lösung A B C D E F G punkt- und achsensymmetrisch achsensymmetrisch

Mehr

Zum Einstieg. Mittelsenkrechte

Zum Einstieg. Mittelsenkrechte Zum Einstieg Mittelsenkrechte 1. Zeichne einen Kreis um A mit einem Radius r, der größer ist, als die Länge der halben Strecke AB. 2. Zeichne einen Kreis um B mit dem gleichen Radius. 3. Die Gerade durch

Mehr

Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5

Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5 (Stark 7 S. 6ff) Lösungen IV. a) gleichschenklig 0) a) () α = β = 6,7 () β = 7,8 ; γ = 4,4 () α = 4 ; γ = (4) α = β = (80 γ)/ b) 79,6 und 0,8 oder 0, und 0, c) α = β = 64 ; γ = d) gleichschenklig; zwei

Mehr

3 Mit geometrischen. Figuren arbeiten. der Drachen. der Baseball. das Hüpfkästchen. das Gummiseil

3 Mit geometrischen. Figuren arbeiten. der Drachen. der Baseball. das Hüpfkästchen. das Gummiseil Mit geometrischen Figuren arbeiten der aseball der Drachen das Hüpfkästchen das Gummiseil Was machen die Kinder auf dem ild? Schreibe drei bis fünf Sätze in dein Heft. Welche geometrischen Figuren siehst

Mehr

VORSCHAU. zur Vollversion. Inhaltsverzeichnis. Grundwissen Geometrische Abbildungen

VORSCHAU. zur Vollversion. Inhaltsverzeichnis. Grundwissen Geometrische Abbildungen Inhaltsverzeichnis Grundwissen Geometrische Abbildungen Achsensymmetrie 1 Achsensymmetrie erkennen 2 Symmetrieachsen finden (1) 3 Symmetrieachsen finden (2) 4 Symmetrieachsen finden (3) 5 Achsensymmetrische

Mehr

7 Ebene Figuren (angepasst an das Lehrmittel Mathematik 1)

7 Ebene Figuren (angepasst an das Lehrmittel Mathematik 1) Name: Geometrie-Dossier 7 Ebene Figuren (angepasst an das Lehrmittel Mathematik 1) Inhalt: Fläche und Umfang von Rechteck und Quadrat Dreiecke (Benennung, Konstruktion) Winkelberechnung im Dreieck und

Mehr

Lösungen V.1. Pfeile bedeuten ist auch ein. (Lambacher-Schweizer Geometrie 2, S. 150)

Lösungen V.1. Pfeile bedeuten ist auch ein. (Lambacher-Schweizer Geometrie 2, S. 150) Lösungen V.1 I: Trapez (zwei parallele Seiten; keine Symmetrie) II: gleichschenkliges Trapez (zwei parallele Seiten, die anderen beiden gleich lang; achsensymmetrisch) III: Drachen(viereck) (jeweils zwei

Mehr

Achsensymmetrie. Konstruktionen. Mathematik-Grundwissen Klassenstufe 7

Achsensymmetrie. Konstruktionen. Mathematik-Grundwissen Klassenstufe 7 Wissen Achsensymmetrie Beispiel Figuren die an einer Achse a gespiegelt werden nennt man achsensymmetrisch bezüglich a. Die Verbindungsstrecke zwischen zwei achsensymmetrischen Punkten wird durch die Achse

Mehr

Figuren. Figuren. Kompetenztest. Name: Klasse: Datum:

Figuren. Figuren. Kompetenztest. Name: Klasse: Datum: Testen und Fördern Name: Klasse: Datum: 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60. Es gibt drei Symmetrieachsen. Gleichseitiges

Mehr

3 Geometrisches Beweisen

3 Geometrisches Beweisen 22 3 Geometrisches Beweisen 3.1 Axiome Durch empirische Untersuchungen werden immer wieder Gesetzmäßigkeiten gefunden, die man versucht durch logische Schlüsse zu begründen. Irgendwann am Ende einer Schlusskette

Mehr

Arbeitsblätter zur Arbeit mit GEOGEBRA in Klasse 6

Arbeitsblätter zur Arbeit mit GEOGEBRA in Klasse 6 Arbeitsblätter zur Arbeit mit GEOGEBRA in Klasse 6 Die folgenden Arbeitsblätter sind für die Arbeit im Mathematikunterricht Klasse 6 bestimmt. Sie kommen im Verlauf von Lernbereich 3 Dreiecke und Vierecke

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

II. BUCH VIERECKE. 6. Das VARINGNON INKREISMITTEN VECTEN

II. BUCH VIERECKE. 6. Das VARINGNON INKREISMITTEN VECTEN II. BUCH VIERECKE 6. Das VARINGNON INKREISMITTEN VECTEN Die Seitenmitten eines beliebigen Vierecks bilden ja immer ein sog. Varignon-Parallelogramm 1 der halben Fläche, denn die Mittelparallelen der beiden

Mehr

Aufgabe 1: Multiple Choice Test

Aufgabe 1: Multiple Choice Test PH Heidelberg, Fach Mathematik, Klausur zur Teilprüfung Modul, Einführung in die Geometrie, SS010, 30.07.010 Aufgabe 1: Multiple Choice Test Kennzeichnen Sie die Ihrer Meinung nach richtigen Antworten.

Mehr

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9.

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9. Koordinatengeometrie Aufgabe 1 Gegeben sind der Punkt P (-1; 9) sowie die Geraden g: 3x y + 6 = 0 und h: x + 4y 8 = 0. a) Die Geraden g und h schneiden einander im Punkt S. Berechnen Sie die exakten Koordinaten

Mehr

MATHEMATIK-WETTBEWERB 2010/2011 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2010/2011 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2010/2011 DES LANDES HESSEN 3. RUNDE LÖSUNGEN 1. a) L = { 1; 0; 1}, denn: x 2 < 36 25 5 6 < x < 6 5 b) L = {... ; 3; 2; 1}, denn: 1 4 x(9 25x2 ) > 0 Fall 1: x > 0 und (9 25x 2 ) >

Mehr

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/27 13:26:30 hk Exp $

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/27 13:26:30 hk Exp $ $Id: dreieck.tex,v 1.17 2015/04/27 13:26:30 hk Exp $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck m Ende der letzten Sitzung hatten wir eingesehen das die drei Mittelsenkrechten eines Dreiecks = sich

Mehr

Gundlagen Klasse 5/6 Geometrie. nach oben. Inhaltsverzeichnis

Gundlagen Klasse 5/6 Geometrie. nach oben. Inhaltsverzeichnis Inhaltsverzeichnis Grundbegriffe der Geometrie Geometrische Abbildungen Das Koordinatensystem Schnittpunkt von Geraden Symmetrien Orthogonale Geraden Abstände Parallele Geraden Vierecke Diagonalen in Vielecken

Mehr

Geometrie (4b) Wintersemester 2015/16. Kapitel 2. Abbildungsgeometrie. Teil 2

Geometrie (4b) Wintersemester 2015/16. Kapitel 2. Abbildungsgeometrie. Teil 2 Kapitel 2 Abbildungsgeometrie Teil 2 1 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau Kapitel 2 Abbildungsgeometrie 2.1 2,3,4 Geradenspiegelungen 2.2 Sinn & Orientierung

Mehr

Ein Rechteck hat zwei Symmetrieachsen: je eine durch die Hlften der gegenber liegenden

Ein Rechteck hat zwei Symmetrieachsen: je eine durch die Hlften der gegenber liegenden 1 Vierecke Vierecke haben - wie der Name schon sagt - vier Ecken und vier Seiten. Die vier Ecken des Vierecks werden in der Regel mit A, B, C und D bezeichnet. Die Seite zwischen den Punkten A und B ist

Mehr

Sehnenvierecke mit Inkreismittenquadrat. 1. Vorbemerkung. 2. Inkreismitten

Sehnenvierecke mit Inkreismittenquadrat. 1. Vorbemerkung. 2. Inkreismitten Sehnenvierecke mit Inkreismittenquadrat Eckart Schmidt 1. Vorbemerkung Betrachtet werden konvexe Sehnenvierecke ABCD mit den Inkreismitten I 1, I, I 3, I 4 der Teildreiecke ABC, BCD, CDA, DAB. Es ist bekannt,

Mehr

Aufgaben zum Basiswissen 7. Klasse

Aufgaben zum Basiswissen 7. Klasse Aufgaben zum Basiswissen 7. Klasse 1. Achsen- und Punktsymmetrie 1. Aufgabe: Zeichne die Gerade g und alle weiteren Punkte ab und spiegle diese Punkte an der Geraden g und am Zentrum Z. 2. Aufgabe: Zeichne

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Geometrie WiSe 2014/2015 am

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Geometrie WiSe 2014/2015 am Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Geometrie WiSe 2014/2015 am 23.1.2015 Bearbeiten Sie bitte zwei der drei folgenden Aufgaben! Falls Sie alle drei Aufgaben bearbeitet haben sollten, kennzeichnen

Mehr

7. Klasse. Algebra. 2.1 Kommutativgesetz (KG) der Addition und Multiplikation Für alle rationalen Zahlen a und b gilt: a+b = b+a a b = b a

7. Klasse. Algebra. 2.1 Kommutativgesetz (KG) der Addition und Multiplikation Für alle rationalen Zahlen a und b gilt: a+b = b+a a b = b a Algebra 1. Termen mit Variablen Ein Term ist ein Rechenausdruck, der aus Zahlen, Variablen und Rechenzeichen bestehen kann. Variablen sind Platzhalter für Zahlen oder für Größen. Eine Variable steht immer

Mehr

Aufgaben Geometrie Lager

Aufgaben Geometrie Lager Schweizer Mathematik-Olympiade Aufgaben Geometrie Lager Aktualisiert: 26. Juni 2014 Starter 1. Zwei Städte A und B liegen auf verschiedenen Seiten eines Flusses. An welcher Stelle muss eine Brücke rechtwinklig

Mehr

Parallelogramm. Simone Alvarenga, Klaus Baderschneider, Mathias Volz Mathematikunterricht in der Sekundarstufe I: Geometrie

Parallelogramm. Simone Alvarenga, Klaus Baderschneider, Mathias Volz Mathematikunterricht in der Sekundarstufe I: Geometrie Einführung in das Thema Parallelogramm Simone Alvarenga, Klaus Baderschneider, Mathias Volz Mathematikunterricht in der Sekundarstufe I: Geometrie Lehrplanaussagen MS, RS Lehrplanaussage MS: Jahrgangsstufe

Mehr

Geometrie Winkel und Vierecke PRÜFUNG 02. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : Ausgabe: 2.

Geometrie Winkel und Vierecke PRÜFUNG 02. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : Ausgabe: 2. GEOMETRIE PRÜFUNGSVORBEREITUNG Seite 1 Geometrie Winkel und Vierecke PRÜFUNG 02 Name: Klasse: Datum: : Note: Ausgabe: 2. Mai 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle

Mehr

MATHEMATIK-WETTBEWERB 2012/2013 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2012/2013 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2012/2013 DES LANDES HESSEN 2. RUNDE LÖSUNGEN 1. a) L = { 5; 3}, denn: (x + 5) 2 = 0 oder x 3 = 0 x + 5 = 0 oder x 3 = 0 x = 5 oder x = 3 b) L = {... ; 7; 6; 4; 5;...}, denn: x +

Mehr

Mathematik Geometrie

Mathematik Geometrie Inhalt: Mathematik Geometrie 6.2003 2003 by Reto Da Forno bbildung / bbildungsvorschriften - Ähnlichkeitsabbildungen Seite 1 - Zentrische Streckung Seite 1 - Die Strahlensätze Seite 1 - Kongruenzabbildungen

Mehr

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel Lösungen Übung 6 Aufgabe 1. a.) Idee: Gesucht sind p, q mit pq = 6 2 und p + q = 13. Dies entspricht genau der Situation im Höhensatz. Konstruktion: 1. Punkte A, B mit AB = 13 2. Gerade g AB mit dist(g,

Mehr

MATHEMATIK-WETTBEWERB 2006/2007 DES LANDES HESSEN AUFGABENGRUPPE A. 1. a) L = { a; a} für a 0: L = {0; a} d) für a = 0: L = { 1; 1}

MATHEMATIK-WETTBEWERB 2006/2007 DES LANDES HESSEN AUFGABENGRUPPE A. 1. a) L = { a; a} für a 0: L = {0; a} d) für a = 0: L = { 1; 1} MATHEMATIK-WETTBEWERB 2006/2007 DES LANDES HESSEN AUFGABENGRUPPE A 3. RUNDE LÖSUNGEN 1. a) L = { a; a} b) für a = 0: L = {0} für a 0: L = {} c) für a = 0: L = { 3; 3} für a = 4: L = { 5; 5} a 0 und a 4:

Mehr

21. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1981/1982 Aufgaben und Lösungen

21. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1981/1982 Aufgaben und Lösungen 21. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1981/1982 Aufgaben und Lösungen 1 OJM 21. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg

Mehr

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 2. Runde 2014/2015

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 2. Runde 2014/2015 Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen. Runde 04/05 Aufgabe Pauline findet einen Tetraeder. Auf jeder seiner vier Flächen steht eine natürliche Zahl. Pauline führt nun folgende Zahlenspielereien

Mehr

11. Landeswettbewerb Mathematik Bayern

11. Landeswettbewerb Mathematik Bayern 11 Landeswettbewerb Mathematik Bayern Aufgaben und Lösungsbeispiele 1 Runde 008 Aufgabe 1 Das abgebildete Viereck soll durch einen einzigen geraden Schnitt so zerlegt werden, dass zwei Teile gleicher Form

Mehr