Vorlesung Mathematik 2 für Informatik

Größe: px
Ab Seite anzeigen:

Download "Vorlesung Mathematik 2 für Informatik"

Transkript

1 Vorlesung Mathematik für Informatik Inhalt: Lineare Algebra Rechnen mit Vektoren und Matrizen Lineare Gleichungssysteme, GauÿAlgorithmus Vektorräume, Lineare Abbildungen Eigenwerte und Eigenvektoren Literatur Gerald und Susanne Teschl: Mathematik für Informatiker, Band, Kapitel 9 bis 4 vektoren.pdf, Seite

2 Vektoren Ein ndimensionaler Vektor mit n N ist ein ntupel x = x = x = (x, x,..., x n. mit reellen Zahlen x, x,..., x n, den Koordinaten oder Komponenten des Vektors. x x Alternative Notation als Spaltenvektor: x =. x n Der Vektorraum R n (R hoch n ist die Menge aller ndimensionalen Vektoren: R n = {(x, x,..., x n : x,..., x n R} = R R... R vektoren.pdf, Seite

3 Anwendungen Physikalische Gröÿen wie Ort, Geschwindigkeit, Kraft etc. werden durch Verktoren x R 3 dargestellt. Geometrische Objekte können mit Hilfe von Vektoren beschrieben werden ( Computergrak rgbfarbwerte können durch einen Vektor x = (r, g, b R 3 dargestellt werden. Umsätze x, x,..., x n einer Handelskette mit n Filialen lassen sich zu einem Vektor x R n zusammenfassen. Allgemein: gleichartige Zahlengröÿen werden zu Vektoren zusammengefasst (vgl. Arrays in Programmiersprachen vektoren.pdf, Seite 3

4 Koordinatensysteme dienen der Darstellung von Objekten im zwei- oder dreidimensionalen Raum durch Vektoren, die als Pfeile veranschaulicht werden. Beispiel: Punkt P in der Ebene mit den Koordinaten ( 3 In diesem Fall spricht man von einem Ortsvektor, der den Koordinatenursprung mit dem Punkt P verbindet. vektoren.pdf, Seite 4

5 Richtungsvektoren verbinden Punkte miteinander. Beispiel: Die Eckpunkte eines Dreiecks werden die die Ortsvektoren A = ( 3 und C = B = ( 3 ( beschrieben. Die Seiten werden dann durch die Richtungsvektoren AB =, AC = und BC = dargestellt. ( 4 ( 5 3 ( 5 Bemerkung: Mathematisch gibt es keinen Unterschied zwischen Orts- und Richtungsvektoren, die Unterscheidung bezieht sich auf die jeweilige Anwendung. vektoren.pdf, Seite 5

6 Rechnen mit Vektoren Die grundlegenden Rechenoperationen mit Vektoren sind die Vektoraddition und die Multiplikation mit Skalaren (reellen Zahlen. Die Summe zweier Vektoren der gleichen Dimension n ist komponentenweise deniert und ergibt wieder einen ndimensionalen Vektor: x y x + y x x + y =.. + y.. = x + y... x n y n x n + y n Analog deniert man die Dierenz x y komponentenweise mit statt +. Bei der Multiplikation eines Vektors mit einer reellen Zahl (Skalar a wird jede Kompomnente mit a multipliziert: x x a x = a. x n = a x a x. a x n vektoren.pdf, Seite 6

7 Beispiele = = ( ( ( ( ( 4 = = 3 3 0, 5 7 =, 7 = 4 3, 5 3 (3; ; 5; 7 (; ; 3; 4 = (; 0; ; 3 0, 6, 6 +, 5 = 0, 5 3,,, ( = ist nicht deniert. vektoren.pdf, Seite 7

8 Geometrisch entspricht die Addition von Vektoren im R oder R 3 dem aneinander hängen der Vektorpfeile. Multiplikation mit einem Skalar entspricht einer Streckung bzw. Stauchung sowie bei einem negativen Skalar der Umkehrung der Pfeilrichtung. vektoren.pdf, Seite 8

9 Bemerkung Zu Ortsvektoren A, B erhält man den zugehörigen Richtungsvektor x von A nach B als Dierenz x = B A. Beispiel Der Vektor x = ( 3 ( 3 = ( 4 verbindet die Punkte mit den Koordinaten A = und B =. ( 3 ( 3 vektoren.pdf, Seite 9

10 Rechenregeln für Vektoren x, y, z R n x + y = y + x (Kommutativgesetz, (x + y + z = x + (y + z (Assoziativgesetz, x + 0 = x mit dem Nullvektor 0 = (0; 0;...; 0, x x = 0. Fazit: (R n, + ist abelsche Gruppe. Rechenregeln für x, y R n und a, b R a (b x = (a b x (Assoziativgesetz, (a + b x = a x + b x und a (x + y = a x + a y (Distributivgesetze, 0 x = a 0 = 0 und x = x, x y = x + ( y. vektoren.pdf, Seite 0

11 Norm (oder Betrag eines Vektors = Länge des Pfeils ( Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x x n. Beispiele ( =, ( 3 4 = 5, = 3, 3 4 = 30. Anwendung Den Abstand zweier Punkte A und B erhält man als Norm des Verbindungsvektors B A. vektoren.pdf, Seite

12 Eigenschaften der Norm Für x, y R n und a R gilt 0 = 0 und x > 0, falls x 0 (Positivität, a x = a x (Homogenität, x + y x + y (Dreiecksungleichung Einheitsvektor = Vektor mit Norm Ist x 0 beliebig, so ist Beispiele für Einheitsvektoren 0, 0 /3 = /3, 3 /3 x = x ein Einheitsvektor. x x ( Spezielle Einheitsvektoren im R 3 sind: und e = (; 0; 0, e = (0; ; 0, e 3 = (0; 0;, analog im R n. vektoren.pdf, Seite

13 Das Skalarprodukt im R n ordnet zwei Vektoren x, y R n einen Skalar x, y R zu: x, y = x y = n i= x iy i = x y + x y x n y n R Beispiele (, ( ( 3 = = = 4 ( 3, 4 4, 3 = ( 4 = = 5 = 4 + ( 3 3 ( 4 = 0. vektoren.pdf, Seite 3

14 Eigenschaften des Skalarprodukts x, x = x x n = x 0 bzw. x = x, x, y, x = x, y (Symmetrie, a x, y = a x, y für Skalare a R und x + z, y = x, y + z, y sowie x, y + z = x, y + x, z für x, y, z R n (Bilinearität, x, y = x y cos (x, y, wobei (x, y für den Winkel zwischen x und y und cos für die Cosinusfunktion steht, insbesondere x y (x senkrecht y x, y = 0 und x, y x y (CauchySchwarzUngleichung vektoren.pdf, Seite 4

15 Beispiel x =, y = 0, z = Es ist x = 6, y = 5, z = 4 3 und x, y = ( = 3, x, z = sowie y, z = 0. Aus der Bilinearität folgt z. B. x, y + z =, 3 3 = x, y + x, z = 3 =. Da y, z = 0, stehen y und z senkrecht aufeinander. Für den Winkel α zwischen x und y gilt cos α = x, y x y = = 0, 3 0, 5477 α = arccos 0, 5477 = 56, 8 o = 0, 99 rad, wobei arccos (Arcuscosinus die Umkehrfunktion des Cosinus bezeichnet. vektoren.pdf, Seite 5

16 Geometrische Anwendungen Beispiel: Gegeben sei das Dreieck im R mit den Eckpunkten A = ( ;, B = (; 3 und C = (; 0. Die Seite AB wird durch den Vektor x = B A = (3; beschrieben und hat die Länge x = 3. AC wird durch y = (3; beschrieben und hat die Länge y = 0. Der Winkel α zwischen diesen beiden Seiten kann berechnet werden durch x, y = x y cos α cos α = x, y x y = , 64 α 5, o = 0, 9 rad Analog erhält man für die Seite BC die Länge 3 und die Winkel β 56, 3 o und γ 7, 6 o. vektoren.pdf, Seite 6

17 Parameterdarstellung von Geraden im R und R 3 Zu Vektoren x und v ist die Menge aller Punkte x + t v mit t R eine Gerade. Jede Gerade g lässt sich so darstellen, wobei x der Ortsvektor eines beliebigen Punktes auf g ist und der Richtungsvektor v zwei Punkte auf g verbindet. Diese Parameterdarstellung ist nicht eindeutig. vektoren.pdf, Seite 7

18 Beispiel Gesucht ist eine Parameterdarstellung der Geraden g durch die Punkte A = und B = im R. ( ( Als Ortsvektor kann (zum Beispiel x = B = werden, als Richtungvektor ( ( ( v = A B = =. Somit ist g = { ( + t ( } : t R = ( gewählt ( + R (. eine (von vielen möglichen Parameterdarstellung der Geraden. vektoren.pdf, Seite 8

19 Gerade g = x + R v vektoren.pdf, Seite 9

20 Anwendung der Parameterdarstellung Berechnung von Schnittpunkten, Schnittwinkeln, Projektionen etc. Im Beispiel muss für den Schnittpunkt von g mit der x Achse gelten: ( ( ( ( x 0 = + t Aus der Gleichung für die x Koordinate folgt = 0 = + t t =. + t + t Eingesetzt in die Gleichung für die x Koordinate ergibt sich nun x = + ( = 3, ( 3 d. h. g schneidet die. Koordinatenachse im Punkt. 0 vektoren.pdf, Seite 0

21 Beispiel: Schnittwinkel zweier Geraden Seien A = (; ;, B = (; ; 3 und C = (0; ; R 3. Die Gerade g durch A und B hat die Parameterdarstellung g = {(; ; +t (; ; : t R} = (; ; +R (; ;, h = (; ; + R ( ; 3; 0 stellt die Gerade durch A und C dar. Der Schnittwinkel α der beiden Geraden ist der Winkel zwischen den Richtungsvektoren und wird bestimmt durch: cos α = (; ;, ( ; 3; 0 (; ; ( ; 3; 0 = 5 60 α = 49, 8 o vektoren.pdf, Seite

22 Bemerkung Beim Schnitt zweier Geraden tritt neben dem Winkel α auch immer der Supplementwinkel β = 80 o α auf, wobei gilt cos β = cos α. Der Winkel zwischen zwei Richtungsvektoren ist je nach Wahl der Richtungsvektoren entweder α oder β. Standardmäÿig wird der kleinere der beiden Winkel als Schnittwinkel der Geraden deniert. Diesen erhält man für beliebige Richtunsvektoren v und w durch cos α = v,w v w. vektoren.pdf, Seite

23 Orthogonale Projektion Zu Vektoren x, v R n mit v 0 deniert man die orthogonale Projektion von x in Richtung von v durch Beispiel Mit x = ( 4 und v = π v (x = x = ( ist x, v = 4 = 3 und v, v = + = und somit π v (x = 3 v = 3 = ( (, 5, 5 x, v v, v v Spezialfall Ist e ein Einheitsvektor (d. h. e =, so ist π e (x = x, e e vektoren.pdf, Seite 3

24 Eigenschaften der orthogonalen Projektion Ist x, v > 0, so zeigt der Vektor x = π v (x in Richtung von v, seine Länge ist π v (x = x,v v = x cos α, wobei α der Winkel zwischen x und v ist. Ist x, v < 0, so zeigt π v (x in die entgegengesetzte Richtung von v, die Länge ist ebenfalls x cos α. Ist x, v = 0, d. h. x und v stehen senkrecht aufeinander, so ist π v (x = 0 der Nullvektor. Insbesondere hängt π v (x nur von der Richtung, nicht jedoch von der Länge von v ab. vektoren.pdf, Seite 4

25 Orthogonale Zerlegung Ist x = π v (x, so steht der Vektor x = x x senkrecht auf v und damit auch auf x, d. h. man hat eine Zerlegung x = x + x, wobei x ein skalares Vielfaches von v ist und x senkrecht auf v steht. Beispiel x = ( 4 Mit x = (, 5, 5 und v = ( folgt x = x x = (, 5., 5 vektoren.pdf, Seite 5

26 Anwendung: Abstand PunktGerade Die kürzeste Verbindung zwischen einem Punkt A R n und einer Gerade g = x + R v ist ist durch einen Vektor y gegeben, der A mit g verbindet und der senkrecht auf g steht. Man erhält y, indem man zu einem beliebigen Verbindungsvektor y, z. B. y = x A, den auf dem Richtungsvektor v der Geraden senkrechten Anteil y = y π v (y bestimmt. vektoren.pdf, Seite 6

27 Beispiel Abstand des Punktes A = ( ( Punkte und g = ( π (; (y = y = + R ( ( 3 ( ( 3 ( zur Geraden g durch die 3. Man erhält, y =,, ( ( ( 3, =, 6 ( A = ( = 8 5 ( 0,. 0, 4 Der Abstand zwischen Punkt und Gerade ist y = 0, 0, 45. ( 3, ( = ( 3,, 6 vektoren.pdf, Seite 7

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015 Vektorrechnung Fakultät Grundlagen Juli 205 Fakultät Grundlagen Vektorrechnung Übersicht Grundsätzliches Grundsätzliches Vektorbegriff Algebraisierung der Vektorrechnung Betrag 2 Skalarprodukt Vektorprodukt

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 6 4. Mai 2010 Definition 69. Der Vektor f 3 x 2 (x 1, x 2, x 3 ) f 2 x 3 (x 1, x 2, x 3 ) f 1 x 3 (x 1, x 2, x 3 ) f 3 x 1 (x 1, x 2, x 3 ) f 2 x

Mehr

03. Vektoren im R 2, R 3 und R n

03. Vektoren im R 2, R 3 und R n 03 Vektoren im R 2, R 3 und R n Unter Verwendung eines Koordinatensystems kann jedem Punkt der Ebene umkehrbar eindeutig ein Zahlenpaar (x, y) zugeordnet werden P (x, y) Man nennt x und y die kartesischen

Mehr

Vektoren. Kapitel 13 Vektoren. Mathematischer Vorkurs TU Dortmund Seite 114 / 1

Vektoren. Kapitel 13 Vektoren. Mathematischer Vorkurs TU Dortmund Seite 114 / 1 Vektoren Kapitel 13 Vektoren Mathematischer Vorkurs TU Dortmund Seite 114 / 1 Vektoren 131 Denition: Vektoren im Zahlenraum Ein Vektor (im Zahlenraum) mit n Komponenten ist ein n-tupel reeller Zahlen,

Mehr

Brückenkurs Mathematik. Mittwoch Freitag

Brückenkurs Mathematik. Mittwoch Freitag Brückenkurs Mathematik Mittwoch 5.10. - Freitag 14.10.2016 Vorlesung 4 Dreiecke, Vektoren, Matrizen, lineare Gleichungssysteme Kai Rothe Technische Universität Hamburg-Harburg Montag 10.10.2016 0 Brückenkurs

Mehr

Definition von R n. Parallelverschiebungen in R n. Definition 8.1 Unter dem Raum R n (n N) versteht man das kartesische Produkt R R... R (n-mal), d.h.

Definition von R n. Parallelverschiebungen in R n. Definition 8.1 Unter dem Raum R n (n N) versteht man das kartesische Produkt R R... R (n-mal), d.h. 8 Elemente der linearen Algebra 81 Der euklidische Raum R n Definition von R n Definition 81 Unter dem Raum R n (n N) versteht man das kartesische Produkt R R R (n-mal), dh R n = {(x 1, x 2,, x n ) : x

Mehr

Kapitel I: Vektorrechnung 2: Vektoren im Raum

Kapitel I: Vektorrechnung 2: Vektoren im Raum WS 1/14 - Prof Dr Manfred Leitz 2 Vektoren im Raum A Grundbegriffe B Rechnen mit Vektoren C Der euklidische Betrag D Das euklidische Skalarprodukt E Vektorprodukt und Spatprodukt F Geraden und Ebenen im

Mehr

Lernunterlagen Vektoren in R 2

Lernunterlagen Vektoren in R 2 Die Menge aller reellen Zahlen wird mit R bezeichnet, die Menge aller Paare a 1 a 2 reeller Zahlen wird mit R 2 bezeichnet. Definition der Menge R 2 : R 2 { a 1 a 2 a 1, a 2 R} Ein Zahlenpaar a 1 a 2 bezeichnet

Mehr

Lineare Algebra: Theorie und Anwendungen

Lineare Algebra: Theorie und Anwendungen Lineare Algebra: Theorie und Anwendungen Sommersemester 2012 Bernhard Burgeth Universität des Saarlandes c 2010 2012, Bernhard Burgeth 1 VEKTOREN IN DER EBENE UND IM RAUM 2 1 Vektoren in der Ebene und

Mehr

3 Vektoren. 3.1 Kartesische Koordinaten in Ebene und Raum. Höhere Mathematik 60

3 Vektoren. 3.1 Kartesische Koordinaten in Ebene und Raum. Höhere Mathematik 60 Kartesische Koordinaten in Ebene und Raum 3 Vektoren 3.1 Kartesische Koordinaten in Ebene und Raum In der Ebene (mathematisch ist dies die Menge R 2 ) ist ein kartesisches Koordinatensystem festgelegt

Mehr

Mathematik für Naturwissenschaftler II

Mathematik für Naturwissenschaftler II Mathematik für Naturwissenschaftler II Dr Peter J Bauer Institut für Mathematik Universität Frankfurt am Main Sommersemester 27 Lineare Algebra Der mehrdimensionale Raum Vektoren Im Teil I dieser Vorlesung

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

Zusammenfassung Mathe III. Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren

Zusammenfassung Mathe III. Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren Zusammenfassung Mathe III Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren Definition: (1) anschaulich: Ein Vektor ist eine direkt gerichtete Verbindung zweier

Mehr

00. Einiges zum Vektorraum R n

00. Einiges zum Vektorraum R n 00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen

Mehr

Analytische Geometrie, Vektorund Matrixrechnung

Analytische Geometrie, Vektorund Matrixrechnung Kapitel 1 Analytische Geometrie, Vektorund Matrixrechnung 11 Koordinatensysteme Eine Gerade, eine Ebene oder den Anschauungsraum beschreibt man durch Koordinatensysteme 111 Was sind Koordinatensysteme?

Mehr

Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof. Dr. Ulrich Reif

Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof. Dr. Ulrich Reif 14 Oktober 2008 1 Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof Dr Ulrich Reif Inhalt: 1 Vektorrechnung 2 Lineare Gleichungssysteme 3 Matrizenrechnung 4 Lineare Abbildungen 5 Eigenwerte

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 1. Vektorrechnung und Geometrie Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies

Mehr

(0, 3, 4) (3, 3, 4) (3, 3, 0)

(0, 3, 4) (3, 3, 4) (3, 3, 0) Übungsmaterial 1 2 Vektoren im Raum 2.1 Das räumliche Koordinatensystem Abbildung 1 zeigt das Koordinatensystem im R 3, dem dreidimensionalen Raum, mit eingefügtem Quader. Die Koordinaten einiger Eckpunkte

Mehr

Skalarprodukte (Teschl/Teschl Kap. 13)

Skalarprodukte (Teschl/Teschl Kap. 13) Skalarprodukte (Teschl/Teschl Kap. ) Sei V Vektorraum über R. Ein Skalarprodukt auf V ist eine Abbildung V V R, (x, y) x, y mit den Eigenschaften () x, y = y, x (symmetrisch), () ax, y = a x, y und x +

Mehr

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 1 /27 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 8. Das Skalarprodukt, metrische

Mehr

Matrizen. Spezialfälle. Eine m nmatrix ist ein rechteckiges Zahlenschema mit. m Zeilen und n Spalten der Form. A = (a ij ) =

Matrizen. Spezialfälle. Eine m nmatrix ist ein rechteckiges Zahlenschema mit. m Zeilen und n Spalten der Form. A = (a ij ) = Matrizen Eine m nmatrix ist ein rechteckiges Zahlenschema mit m Zeilen und n Spalten der Form a 11 a 12 a 1n A = a ij = a 21 a 22 a 2n a m1 a m2 a mn Dabei sind m und n natürliche und die Koezienten a

Mehr

Vektoren, Vektorräume

Vektoren, Vektorräume Vektoren, Vektorräume Roman Wienands Sommersemester 2010 Mathematisches Institut der Universität zu Köln Roman Wienands (Universität zu Köln) Mathematik II für Studierende der Chemie Sommersemester 2010

Mehr

1 Vorlesungen: und Vektor Rechnung: 1.Teil

1 Vorlesungen: und Vektor Rechnung: 1.Teil 1 Vorlesungen: 4.10.005 und 31.10.005 Vektor Rechnung: 1.Teil Einige in der Physik auftretende Messgrößen sind durch eine einzige Zahl bestimmt: Temperatur T K Dichte kg/m 3 Leistung P Watt = J/s = kg

Mehr

Vektoren. Mathematik I für Biologen, Geowissenschaftler und Geoökologen. Vektoren. Stefan Keppeler. 21. November 2007.

Vektoren. Mathematik I für Biologen, Geowissenschaftler und Geoökologen. Vektoren. Stefan Keppeler. 21. November 2007. Mathematik I für Biologen, Geowissenschaftler und Geoökologen Vektoren 21. November 2007 Vektoren Vektoren werden zur Darstellung gerichteter Größen verwendet. Man stelle sich also einen Pfeil in eine

Mehr

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition)

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition) Vektorräume In vielen physikalischen Betrachtungen treten Größen auf, die nicht nur durch ihren Zahlenwert charakterisiert werden, sondern auch durch ihre Richtung Man nennt sie vektorielle Größen im Gegensatz

Mehr

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat.

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. 1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. übliche Beispiele: Ort r = r( x; y; z; t ) Kraft F Geschwindigkeit

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 4 Wintersemester 2017/18 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler Wintersemester 2017/18 Inhaltsverzeichnis Teil 1 Teil

Mehr

Denition 6.1 Eine Gerade ist die Menge aller Losungen (x; y) einer linearen Gleichung. y = A B x + C B : Ax + By = C mit 6= 0

Denition 6.1 Eine Gerade ist die Menge aller Losungen (x; y) einer linearen Gleichung. y = A B x + C B : Ax + By = C mit 6= 0 6 Der Vektorraum R n In den folgenden Wochen wenden wir uns der Linearen Algebra zu, die man als eine abstrakte Form des Rechnens mit Vektoren auassen kann. Ein zentrales Thema werden lineare Raume (=

Mehr

Lernmaterialblatt Mathematik. Vektorrechnung eine Einführung. Anwendung Mathematik I. Einleitung:

Lernmaterialblatt Mathematik. Vektorrechnung eine Einführung. Anwendung Mathematik I. Einleitung: Vektorrechnung eine Einführung Einleitung: Um beispielsweise das Dreieck ABC in der Abbildung an die Position A'B'C' zu verschieben, muss jeder Punkt um sieben Einheiten nach rechts und drei nach oben

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt

Mehr

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2 Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra 1 Vektoralgebra 1 Der dreidimensionale Vektorraum R 3 ist die Gesamtheit aller geordneten Tripel (x 1, x 2, x 3 ) reeller Zahlen Jedes geordnete

Mehr

Arbeitsblatt 1 Einführung in die Vektorrechnung

Arbeitsblatt 1 Einführung in die Vektorrechnung Arbeitsblatt Einführung in die Vektorrechnung Allgemein Vektoren sind physikalische Größen und durch ihre Richtung und ihren Betrag festgelegt. Geometrisch wird ein Vektor durch einen Pfeil dargestellt,

Mehr

Vektorrechnung. 10. August Inhaltsverzeichnis. 1 Vektoren 2. 2 Grundlegende Rechenoperationen mit Vektoren 3. 3 Geometrie der Vektoren 5

Vektorrechnung. 10. August Inhaltsverzeichnis. 1 Vektoren 2. 2 Grundlegende Rechenoperationen mit Vektoren 3. 3 Geometrie der Vektoren 5 Vektorrechnung 0. August 07 Inhaltsverzeichnis Vektoren Grundlegende Rechenoperationen mit Vektoren 3 3 Geometrie der Vektoren 5 4 Das Kreuzprodukt 9 Vektoren Die reellen Zahlen R können wir uns als eine

Mehr

Lineare Abhängigkeit und Unabhängigkeit. 1-E Ma 1 Lubov Vassilevskaya

Lineare Abhängigkeit und Unabhängigkeit. 1-E Ma 1 Lubov Vassilevskaya Lineare Abhängigkeit und Unabhängigkeit -E Ma Lubov Vassilevskaya Eindimensionaler Raum Abb. -: Zwei nicht gleiche Vektoren auf der gleichen Gerade Jeden Vektor, der auf einer Geraden liegt, kann man durch

Mehr

Mathematik Analytische Geometrie

Mathematik Analytische Geometrie Mathematik Analytische Geometrie Grundlagen:. Das -Dimensionale kartesische Koordinatensystem: x x x. Vektoren und Ortsvektoren: a x = x x ist ein Vektor, der eine Verschiebung um x -Einheiten in x-richtung,

Mehr

Grundlagen der Vektorrechnung

Grundlagen der Vektorrechnung Grundlagen der Vektorrechnung Ein Vektor a ist eine geordnete Liste von n Zahlen Die Anzahl n dieser Zahlen wird als Dimension des Vektors bezeichnet Schreibweise: a a a R n Normale Reelle Zahlen nennt

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für den Pflichtteil Baden-Württemberg mit Tipps und Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für den Pflichtteil Baden-Württemberg mit Tipps und Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Übungsbuch für den Pflichtteil Baden-Württemberg mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Themen des Pflichtteils... Analysis Von der Gleichung

Mehr

2.2 Kollineare und koplanare Vektoren

2.2 Kollineare und koplanare Vektoren . Kollineare und koplanare Vektoren Wie wir schon gelernt haben, können wir einen Vektor durch Multiplikation mit einem Skalar verlängern oder verkürzen. In Abbildung 9 haben u und v die gleiche Richtung,

Mehr

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren Kapitel 3 Vektoren 31 Skalare, Vektoren, Tensoren Viele physikalische Größen lassen sich bei bekannter Maßeinheit durch Angabe ihres Betrages als reelle Zahl vollständig angeben Solche Größen nennt man

Mehr

2.2. Skalarprodukt. Geschwindigkeitsvektoren ergeben sich bei allen Bewegungen. Sie zeigen jeweils in Richtung der Bahnkurve.

2.2. Skalarprodukt. Geschwindigkeitsvektoren ergeben sich bei allen Bewegungen. Sie zeigen jeweils in Richtung der Bahnkurve. .. Skalarprodukt Kraftvektoren treten bei vielen physikalisch-technischen Problemen auf; sie greifen an einem Punkt in verschiedenen Richtungen an. Die bekannte Formel Arbeit = Kraft mal Weg muß man dann

Mehr

Vorkurs Mathematik B

Vorkurs Mathematik B Vorkurs Mathematik B Dr. Thorsten Camps Fakultät für Mathematik TU Dortmund 20. September 2011 Definition (R n ) Wir definieren: 1 Der R 2 sei die Menge aller Punkte in der Ebene. Jeder Punkt wird in ein

Mehr

Physikalischer Raum. Euklidischer Raum

Physikalischer Raum. Euklidischer Raum Physikalischer Raum Aus unserer Erfahrung schreiben wir dem Raum intuitiv bestimmte Eigenschaften zu. Intuition ist aber nicht ausreichend zum Aufbau einer Theorie. Es bedarf vielmehr einer präzisen mathematischen

Mehr

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2 Vektoren Mit der Vektorrechnung werden oft geometrische Probleme gelöst. Wenn irgendwelche Aufgabenstellungen geometrisch darstellbar sind, z.b. Flugbahnen oder Abstandsberechnungen, dann können sie mit

Mehr

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64 1/64 VEKTORRECHNUNG Prof. Dr. Dan Eugen Ulmet Hochschule Esslingen März 2011 2/64 Overview Vektoralgebra 1 Vektoralgebra 2 Was sind Vektoren? 3/64 Vektoren werden geometrisch definiert als Pfeilklassen:

Mehr

Länge, Skalarprodukt, Geradengleichungen

Länge, Skalarprodukt, Geradengleichungen Länge, Skalarprodukt, Geradengleichungen Jörn Loviscach Versionsstand: 9. April 2010, 18:48 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu: http://www.youtube.com/joernloviscach

Mehr

Mathematik für Chemische Technologie 2

Mathematik für Chemische Technologie 2 Mathematik für Chemische Technologie 2 Themenüberblick: Funktionen mehrerer unabhängigen Veränderlichen Vektoralgebra Lineare Gleichungssysteme und Determinanten Fehlerrechnung Schwerpunkt des Sommersemesters

Mehr

Grundwissen Abitur Geometrie 15. Juli 2012

Grundwissen Abitur Geometrie 15. Juli 2012 Grundwissen Abitur Geometrie 5. Juli 202. Erkläre die Begriffe (a) parallelgleiche Pfeile (b) Vektor (c) Repräsentant eines Vektors (d) Gegenvektor eines Vektors (e) Welcher geometrische Zusammenhang besteht

Mehr

Formelsammlung Mathematik Grundkurs Inhalt

Formelsammlung Mathematik Grundkurs Inhalt Formelsammlung Mathematik Grundkurs Inhalt Inhalt...1 Trigonometrie Grundlagen... Vektoren...3 Skalarprodukt...4 Geraden...5 Abstandsberechnungen...6 Ebenen...7 Lineare Gleichungssysteme (LGS)...8 Gauß'sches

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

12. R n als EUKLIDISCHER VEKTORRAUM

12. R n als EUKLIDISCHER VEKTORRAUM 12. R n als EUKLIDISCHER VEKTORRAUM 1 Orthogonalität in der Ebene. Die Vektoren in der Ebene, die (im üblichen Sinne) senkrecht zu einem Vektor x = (x 1, x 2 ) T stehen, lassen sich leicht angeben. Sie

Mehr

Analytische Geometrie I

Analytische Geometrie I Analytische Geometrie I Rainer Hauser Januar 202 Einleitung. Geometrie und Algebra Geometrie und Algebra sind historisch zwei unabhängige Teilgebiete der Mathematik und werden bis heute von Laien weitgehend

Mehr

Lineare Algebra in der Oberstufe

Lineare Algebra in der Oberstufe Lineare Algebra in der Oberstufe Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 16. April 2016 Stefan Ruzika 1: Schulstoff 16. April 2016 1 / 32 Übersicht Ziel dieses Kapitels

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:

Mehr

Aufgabenskript. Lineare Algebra

Aufgabenskript. Lineare Algebra Dr Udo Hagenbach FH Gießen-Friedberg Sommersemester 9 Aufgabenskript zur Vorlesung Lineare Algebra 6 Vektoren Aufgabe 6 Gegeben sind die Vektoren a =, b =, c = Berechnen Sie die folgenden Vektoren und

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

Lineare Abbildungen (Teschl/Teschl 10.3, 11.2)

Lineare Abbildungen (Teschl/Teschl 10.3, 11.2) Lineare Abbildungen (Teschl/Teschl.3,.2 Eine lineare Abbildung ist eine Abbildung zwischen zwei Vektorräumen, die mit den Vektoroperationen Addition und Multiplikation mit Skalaren verträglich ist. Formal:

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 8. Mai 2009 1 / 29 Bemerkung In der Vorlesung Elemente der Analysis I wurden Funktionen

Mehr

Das Wort Vektor kommt aus dem lateinischen und heißt so viel wie "Träger" oder "Fahrer".

Das Wort Vektor kommt aus dem lateinischen und heißt so viel wie Träger oder Fahrer. Was ist ein Vektor? Das Wort Vektor kommt aus dem lateinischen und heißt so viel wie "Träger" oder "Fahrer". Vektoren sind Listen von Zahlen. Man kann einen Vektor darstellen, indem man seine Komponenten

Mehr

Das Buch der Natur ist mit mathematischen Symbolen geschrieben. Mathe ist wie Liebe: Eine einfache Idee, aber sie kann kompliziert werden.

Das Buch der Natur ist mit mathematischen Symbolen geschrieben. Mathe ist wie Liebe: Eine einfache Idee, aber sie kann kompliziert werden. TO Rechenmethoden Wise 2011-2012 Jan von Delft 18.10.2011 Das Buch der Natur ist mit mathematischen Symbolen geschrieben. Galileo Galilei Das Wunder der Anwendbarkeit der Sprache der Mathematik für die

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 Definition I Im allgemeinen Sinn versteht man in der linearen Algebra unter einem Vektor ein Element eines Vektorraums,

Mehr

Aufgabenskript. Lineare Algebra

Aufgabenskript. Lineare Algebra Dr Udo Hagenbach FH Gießen-Friedberg Sommersemester Aufgabenskript zur Vorlesung Lineare Algebra 6 Vektoren Aufgabe 6 Gegeben sind die Vektoren a =, b =, c = Berechnen Sie die folgenden Vektoren und ihre

Mehr

Übungsblatt 1: Lösungswege und Lösungen

Übungsblatt 1: Lösungswege und Lösungen Übungsblatt : Lösungswege und Lösungen 5..6 ) Hier geht es weniger um mathematisch-strenge Beweise als darum, mit abstrakten Vektoren ohne Komponenten) zu hantieren und damit die Behauptungen plausibel

Mehr

1 Euklidische und unitäre Vektorräume

1 Euklidische und unitäre Vektorräume 1 Euklidische und unitäre Vektorräume In diesem Abschnitt betrachten wir reelle und komplexe Vektorräume mit Skalarprodukt. Dieses erlaubt uns die Länge eines Vektors zu definieren und (im Fall eines reellen

Mehr

Vektorgeometrie. Roger Burkhardt FHNW / Hochschule für Technik Steinackerstrasse Windisch. 28. Dezember 2012

Vektorgeometrie. Roger Burkhardt FHNW / Hochschule für Technik Steinackerstrasse Windisch. 28. Dezember 2012 Vektorgeometrie Roger Burkhardt FHNW / Hochschule für Technik Steinackerstrasse Windisch 8. Dezember Inhaltsverzeichnis Einführung. Vektoren und Translationen....................... Addition von Pfeilen.......................

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Niedersachsen. Übungsbuch für den Grundkurs mit Tipps und Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Niedersachsen. Übungsbuch für den Grundkurs mit Tipps und Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Basiswissen Niedersachsen Übungsbuch für den Grundkurs mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis Von der Gleichung zur Kurve... 9 Aufstellen

Mehr

Einführung in das mathematische Arbeiten im SS 2007. Vektoren. Evelina Erlacher 1 9. März 2007. 8 Winkel 5. 11 Ausblick 6

Einführung in das mathematische Arbeiten im SS 2007. Vektoren. Evelina Erlacher 1 9. März 2007. 8 Winkel 5. 11 Ausblick 6 Workshops zur VO Einführung in das mathematische Arbeiten im SS 007 Inhaltsverzeichnis Vektoren Evelina Erlacher 9. März 007 1 Pfeile und Vektoren im R und R 3 1 Der Betrag eines Vektors 3 Die Vektoraddition

Mehr

Geometrie. 1 Vektoren, Vektorielle analytische Geometrie der Ebene

Geometrie. 1 Vektoren, Vektorielle analytische Geometrie der Ebene Geometrie Geometrie W. Kuhlisch Brückenkurs 207. Vektoren, Vektorrechnung und analytische Geometrie der Ebene 2. Vektorrechnung und analytische Geometrie des Raumes 3. Anwendungen in der Geometrie, Lagebeziehungen

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine Vektorräume (Teschl/Teschl 9 Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen: Eine

Mehr

Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49

Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49 Kapitel 2 Matrixalgebra Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49 Ein sehr einfaches Leontief-Modell Eine Stadt betreibt die Unternehmen ÖFFENTLICHER VERKEHR, ELEKTRIZITÄT und GAS.

Mehr

Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49

Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49 Kapitel 2 Matrixalgebra Josef Leydold Mathematik für VW WS 207/8 2 Matrixalgebra / 49 Ein sehr einfaches Leontief-Modell Eine Stadt betreibt die Unternehmen ÖFFENTLICHER VERKEHR, ELEKTRIZITÄT und GAS.

Mehr

Matrixalgebra. Kapitel 2. Ein sehr einfaches Leontief-Modell. Matrix. Ein sehr einfaches Leontief-Modell. Vektor. Spezielle Matrizen I

Matrixalgebra. Kapitel 2. Ein sehr einfaches Leontief-Modell. Matrix. Ein sehr einfaches Leontief-Modell. Vektor. Spezielle Matrizen I Ein sehr einfaches Leontief-Modell Eine Stadt betreibt die Unternehmen ÖFFENTLICHER VERKEHR, ELEKTRIZITÄT und GAS Kapitel 2 Matrixalgebra Technologiematrix und wöchentliche Nachfrage (in Werteinheiten):

Mehr

3. Übungsblatt Aufgaben mit Lösungen

3. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sind zwei Teilmengen von R : E := {x R : x x = }, und F ist eine Ebene durch die Punkte A = ( ), B = ( ) und C = ( ). (a) Stellen Sie diese Mengen

Mehr

Lineare Gleichungssysteme (Teschl/Teschl 11.1)

Lineare Gleichungssysteme (Teschl/Teschl 11.1) Lineare Gleichungssysteme (Teschl/Teschl.) Ein Lineares Gleichungssystem (LGS) besteht aus m Gleichungen mit n Unbekannten x,...,x n und hat die Form a x + a 2 x 2 +... + a n x n b a 2 x + a 22 x 2 +...

Mehr

Kapitel 2: Mathematische Grundlagen

Kapitel 2: Mathematische Grundlagen [ Computeranimation ] Kapitel 2: Mathematische Grundlagen Prof. Dr. Stefan M. Grünvogel stefan.gruenvogel@fh-koeln.de Institut für Medien- und Phototechnik Fachhochschule Köln 2. Mathematische Grundlagen

Mehr

Analytische Geometrie

Analytische Geometrie Kapitel 2 Analytische Geometrie 21 Vektoren Die Elemente des kartesischen Produktes R n, d h die n Tupel oder Zeilenvektoren (a 1,, a n ) mit a k R für k n, interpretiert man als Punkte eines n dimensionalen

Mehr

Jürgen Roth Didaktik der Linearen Algebra und Analytischen Geometrie

Jürgen Roth Didaktik der Linearen Algebra und Analytischen Geometrie Jürgen Roth Didaktik der Linearen Algebra und Analytischen Geometrie Modul 12a: Fachdidaktische Bereiche juergen-roth.de/lehre/did_linalg_anageo/ Kapitel 5: Skalarprodukt 5.1 Inhalte Didaktik der Linearen

Mehr

KLAUSUR. Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.:

KLAUSUR. Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.: KLAUSUR Lineare Algebra (E-Techniker/Mechatroniker/W-Ingenieure/Informatiker).3. (W. Koepf) Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.: Für jede Aufgabe gibt es Punkte. Zum Bestehen der Klausur

Mehr

Tutorium: Diskrete Mathematik. Vektoren

Tutorium: Diskrete Mathematik. Vektoren Tutorium: Diskrete Mathematik Vektoren Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 Definition I Im allgemeinen Sinn versteht man in der linearen Algebra unter einem Vektor ein Element

Mehr

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt:

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt: Geometrie 1. Vektoren Die Menge aller zueinander parallelen, gleich langen und gleich gerichteten Pfeile werden als Vektor bezeichnet. Jeder einzelne Pfeil heißt Repräsentant des Vektors. Bei Ortsvektoren:

Mehr

& sind die Vektorkomponenten von und sind die Vektorkoordinaten von. A x. a) Der Betrag eines Vektors

& sind die Vektorkomponenten von und sind die Vektorkoordinaten von. A x. a) Der Betrag eines Vektors Einführu hnung Was ist ein Vektor? In Bereichen der Naturwissenschaften treten Größen auf, die nicht nur durch eine Zahlenangabe dargestellt werden können, wie Kraft oder Geschwindigkeit. Zur vollständigen

Mehr

Länge, Skalarprodukt, Vektorprodukt

Länge, Skalarprodukt, Vektorprodukt Länge, Skalarprodukt, Vektorprodukt Jörn Loviscach Versionsstand: 20. April 2009, 19:39 1 Überblick Ein Vektorraum muss nur eine Minimalausstattung an Rechenoperationen besitzen: die Addition zweier Vektoren

Mehr

Kapitel VIII: Der Raum R n ; allgemeine Vektorräume

Kapitel VIII: Der Raum R n ; allgemeine Vektorräume Kapitel VIII: Der Raum R n ; allgemeine Vektorräume a) Vektoren: Definition und Grundlagen Größen, die sich durch Angabe eines Zahlenwertes und einer Einheit vollständig beschreiben lassen, nennt man Skalare

Mehr

Was sind Vektoren? Wozu braucht man sie?

Was sind Vektoren? Wozu braucht man sie? Was sind Vektoren? Wozu braucht man sie? Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Österreich. Franz.Pauer@uibk.ac.at 30. März 2005 1 Einleitung Dieser

Mehr

2.9 Die komplexen Zahlen

2.9 Die komplexen Zahlen LinAlg II Version 1 3. April 2006 c Rudolf Scharlau 121 2.9 Die komplexen Zahlen Die komplexen Zahlen sind unverzichtbar für nahezu jede Art von höherer Mathematik. Systematisch gehören sie zum einen in

Mehr

Einführung Vektoralgebra VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen. October 6, 2007

Einführung Vektoralgebra VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen. October 6, 2007 Hochschule Esslingen October 6, 2007 Overview Einführung 1 Einführung 2 Was sind Vektoren? Vektoren werden geometrisch definiert als Pfeilklassen: Strecken mit gleichem Betrag, gleicher Richtung und Orientierung.

Mehr

Analytische Geometrie II

Analytische Geometrie II Analytische Geometrie II Rainer Hauser März 212 1 Einleitung 1.1 Geradengleichungen in Parameterform Jede Gerade g in der Ebene oder im Raum lässt sich durch einen festen Punkt auf g, dessen Ortsvektor

Mehr

Mathematische Formeln für das Studium an Fachhochschulen

Mathematische Formeln für das Studium an Fachhochschulen Mathematische Formeln für das Studium an Fachhochschulen von Richard Mohr. Auflage Hanser München 0 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 446 455 4 Zu Inhaltsverzeichnis schnell und portofrei

Mehr

Vektorrechnung. 1. Vektoren im R 2, R 3 Größen in Physik und Technik:

Vektorrechnung. 1. Vektoren im R 2, R 3 Größen in Physik und Technik: Vektorrechnung 1. Vektoren im R 2, R 3 Größen in Physik und Technik: - skalare Größen: Länge [m], Zeit [sec], Masse [kg], Energie [N m], elektr. Spannung [V ],... gekennzeichnet durch: Maßzahl ( R) [Maßeinheit]

Mehr

Lineare Algebra. 1 Lineare Abbildungen

Lineare Algebra. 1 Lineare Abbildungen Lineare Algebra Die lineare Algebra ist ein Teilgebiet der Mathematik, welches u. A. zur Beschreibung geometrischer Abbildungen und diverser Prozesse und zum Lösen linearer Gleichungssysteme mit Hilfe

Mehr

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen Orthonormalisierung Wie schon im Falle V = R n erwähnt, erhalten wir durch ein Skalarprodukt eine zugehörige Norm (Länge) eines Vektors und in weiterer Folge eine Metrik (Abstand zwischen zwei Vektoren).

Mehr

The trick in teaching mathematics is that I do the easy part and you do the hard part. Hahn Hiang Shin, Complex Numbers and Geometry

The trick in teaching mathematics is that I do the easy part and you do the hard part. Hahn Hiang Shin, Complex Numbers and Geometry The trick in teaching mathematics is that I do the easy part and you do the hard part. Hahn Hiang Shin, Complex Numbers and Geometry MBT Mathematische Basistechniken Der Vektorraum Lineare Gleichungssysteme

Mehr

Lineare Algebra in der Oberstufe

Lineare Algebra in der Oberstufe Lineare Algebra in der Oberstufe Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 11. April 2016 Stefan Ruzika 1: Schulstoff 11. April 2016 1 / 21 Übersicht Ziel dieses Kapitels

Mehr

d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1

d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1 2008/2009 Das Wichtigste in Kürze Klasse 3 Lineare Gleichungssysteme und Determinanten Definiton (Lineare Gleichungssysteme: Lineare Gleichungssysteme löst man entweder mit dem Gauß-Algorithmus oder nach

Mehr

2 Geradengleichungen in Parameterform. Länge und Skalarprodukt

2 Geradengleichungen in Parameterform. Länge und Skalarprodukt 2 Geradengleichungen in Parameterform. Länge und Skalarprodukt Jörn Loviscach Versionsstand: 19. März 2011, 15:33 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu:

Mehr

Technische Universität München

Technische Universität München Technische Universität München Michael Schreier Ferienkurs Lineare Algebra für Physiker Vorlesung Montag WS 2008/09 1 komplexe Zahlen Viele Probleme in der Mathematik oder Physik lassen sich nicht oder

Mehr

Bild-Einbinden. Technische Universität München. Dr. Hermann Vogel

Bild-Einbinden. Technische Universität München. Dr. Hermann Vogel Bild-Einbinden Bild-Einbinden Wähle in einem neuen GeoGebra-Fenster in der Menüleiste das Werkzeug Bild, klicke im Zeichenfenster eine Stelle (oder einen Punkt) für die linke untere Ecke des Bildes an

Mehr

Aufgabenskript. Lineare Algebra

Aufgabenskript. Lineare Algebra Dr Udo Hagenbach FH Gießen-Friedberg Sommersemester Aufgabenskript zur Vorlesung Lineare Algebra 7 Vektoren Aufgabe 7 Gegeben sind die Vektoren a =, b =, c = Berechnen Sie die folgenden Vektoren und ihre

Mehr

10 Komplexe Zahlen. 2. Februar Komplexe Multiplikation: Für zwei Vektoren. z 1 =

10 Komplexe Zahlen. 2. Februar Komplexe Multiplikation: Für zwei Vektoren. z 1 = 2. Februar 2009 66 0 Komplexe Zahlen 0. Komplexe Multiplikation: Für zwei Vektoren [ [ a a2 z =, z 2 = in R 2 wird neben der üblichen Addition die komplexe Multiplikation [ a a z z 2 := 2 b b 2 a b 2 +

Mehr

Einführung. 1 Vektoren

Einführung. 1 Vektoren Einführung Die Vektorgeometrie beschreibt geometrische Sachverhalte in einer algebraischen Sprache. Sie gibt uns ein mathematisches Hilfsmittel in die Hand, mit welchem wir Geometrie nicht nur konstruktiv

Mehr