Schätzung des Lifetime Values von Spendern mit Hilfe der Überlebensanalyse

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Schätzung des Lifetime Values von Spendern mit Hilfe der Überlebensanalyse"

Transkript

1 Schätzung Lifetime Values von Spenn mit Hilfe Überlebensanalyse Einführung in das Verfahren am Beispiel Einzugsgenehmigung Überlebensanalysen o Ereignisdatenanalysen behandeln das Problem, mit welcher Wahrscheinlichkeit bestimmte Ereignisse im zeitlichen Ablauf auftreten o nicht. Dabei werden als Spezialität auch die Fälle berücksichtigt, bei denen das Ereignis bis zum Ende Beobachtungszeitraums nicht eingetreten ist. Diese statistischen Verfahren wurden zuerst in Medizin zur Analyse Überlebenszeit von Patienten mit einer bestimmten Krankheit angewandt. Daher stammen noch die Bezeichnungen Überlebensanalysen o Sterbetafelanalysen. Mit dem Statistikprogramm SPSS stehen die folgenden drei Verfahren zur Verfügung: Sterbetafeln, Kaplan-Meier und Cox-Regression. Bei hier verwendeten Sterbetafelanalyse wird Beobachtungszeitraum in gleich grosse Intervalle zerlegt und dann die verschiedene Wahrscheinlichkeiten für das Eintreten Ereignisses Kündigung Einzugsgenehmigung (EZG) berechnet. Überlebensanalyse EZG: Eigenschaften Daten Abschluss von EZGs über längere Zeit Start Kündigung Start Start Start Kündigung Start Start Kündigung Kalenzeit Verschieben Start EZGs auf einen künstlich definierten Ursprung Kündigung läuft weiter Kündigung läuft weiter Kündigung Besonheiten Alle Fälle werden berücksichtigt! Auch die, bei denen das Ereignis (Kündigung) noch nicht eingetreten Transformation Überlebensperiode auf künstlicher Ursprung Herkunft: medizinische Statistik läuft weiter Chronologische Zeit Analysedaten Faktoren EZG Dauer Status Betrag Anrede... weitere Analysetabelle 1 Zeile pro EZG-Spen Dauer Vereinbarung Status: EZG gekündigt (1) o nicht gekündigt (0) Faktoren: Merkmale mit möglichem Einfluss auf die Dauer Die Einzugsgenehmigungen werden während dem Beobachtungszeitraum in Regel nicht gleichzeitig abgeschlossen. Wie auch Patienten während Dauer einer medizinischen Studie nicht gleichzeitig erkranken. Darum werden bei Aufbereitung Daten für die Analyse die Laufzeiten Einzugsgenehmigungen pro Spen (die Überlebensperioden) auf einen gemeinsamen, virtuellen Startzeitpunkt transformiert (siehe obiges Bild). Seite 1 von 14

2 Bei Analyse wird dann Intervall für Intervall die noch vorhandenen Verträge und die Kündigungen ermittelt. Daraus wird unter anem kumulierte Anteil am Ende Intervalls berechnet. Im folgenden Bild (Überlebensfunktion) ist Verlauf dieser Kennzahl grafisch dargestellt. Die detaillierte Darstellung Berechnungen pro Intervall ist Tabelle Sterbetafel im folgenden Kapitel Resultate ersichtlich. Überlebensanalyse EZG: Überlebensfunktion Alle Fälle werden berücksichtigt! Auch die, bei denen die Kündigung noch nicht eingetreten ist Analyse von verschiedenen Laufzeiten: Verträge, Mitgliedschaft, Zeitdauer bis Zweitspende,... Resultate: Median Laufzeit (50% gekündigt), die Laufzeit beeinflussende Faktoren, Überlebensfunktion Herkunft: medizinische Statistik Seite 2 von 14

3 Überlebensanalyse Mitglie (Dauerspenn) Analysedaten Die Überlebensanalyse (hier das Verfahren Sterbetafel) benötigt pro Mitglied (Dauerspen) die Intervalle (hier Jahre) vom Begin Mitgliedschaft (Einzugsgenehmigung) bis zur Kündigung o bis zum Ende Beobachtungszeitraums (Merkmal IntervallM) und den Status, ob die Mitgliedschaft gekündigt wurde. Eingabemaske Prozedur Sterbetafeln Statistikprogramms SPSS Seite 3 von 14

4 Resultate Anfangszeit Intervalls zur Anfangszeit Ausgeschiedenen dem Risiko ausgesetzten terminaler Ereignisse Anteil Terminierenden Sterbetafel Anteil Kumulierter Anteil am Intervallende kum.anteils am Intervallende Wahrscheinlichkeitsdichte Wahrscheinlichkeitsdichte Seite 4 von 14

5 Anfangszeit Intervalls zur Anfangszeit Ausgeschiedenen dem Risiko ausgesetzten terminaler Ereignisse Anteil Terminierenden Anteil Kumulierter Anteil am Intervallende kum.anteils am Intervallende Wahrscheinlichkeitsdichte Wahrscheinlichkeitsdichte Seite 5 von 14

6 Die beiden wichtigsten Spalten obigen Tabelle Sterbetafel sind Kumulierter Anteil am Intervallende die geschätzte (kumulierte) Überlebenswahrscheinlichkeit bis zum Ende Intervalls;, die geschätzte Wahrscheinlichkeit, dass die Mitgliedschaft in diesem Intervall gekündigt wird. Der kumulierte Anteil am Intervallende ist im folgenden Excel-Diagramm als Überlebensfunktion dargestellt. Überlebensfunktion Mitglie mit Extrapolation kumulierte Überlebenswahrscheinlichkeit 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% y = x + 1 R 2 = Monate (IntervallM) Linear extrapolierte Überlebensfunktion Mitglie ab Geschätzter Median Überlebenszeit: 103 Monate (8,5 Jahre) Seite 6 von 14

7 Erkenntnisse und Empfehlungen Schätzung mittleren Ertrags eines Mitglieds (Lifetime Value LTV): Geschätzter Median Überlebenszeit * Median jährlichen Mitgliedsbeiträge = 8,5 * 30 = 255 ( = LTV ohne Berücksichtigung von grossen Beiträgen) Geschätzter Median Überlebenszeit * arithmetisches Mittel jährlichen Mitgliebeiträge = 8,5 * 48 = 408 ( = LTV mit Berücksichtigung von grossen Beiträgen) Auf Grund dieser Ertragswerte können verschiedene Massnahmen zur Gewinnung neuer und Pflege bestehen Mitglie evaluiert werden. Für eine gezielte Mitgliegewinnung sollten die Einflüsse verschiedener (Mitglie-) Merkmale (Region, Alter, Beitragsklasse,...) auf die Überlebensfunktion noch näher untersucht werden (über die Faktoren Prozedur Sterbetafeln o mit Cox-Regression). Seite 7 von 14

8 Überlebensanalyse Spen Analysedaten Da normale Spen im Gegensatz zu Mitglien und Dauerspenn ihre Zuwendung zur Organisation nicht explizit kündigen, sonn einfach nicht mehr spenden, gibt es kein eindeutiges Enddatum. Das Ereignis Spenverlust und die Dauer, während ein Spen die Organisation finanziell unterstützt lassen sich nur indirekt bestimmen. Dazu wurden die im Rahmen Zahlungsanalyse ermittelten Verteilungen Spendenintervalle verwendet (siehe Anhang: Zahlungsanalysen). Wenn seit letzten Spende mehr Zeit vergangen ist als Wert Quantil95 (Merkmal Tage_95_Prozent), wird Spen als Verlust bezeichnet (Merkmal Verlust = 1). Als Zeitdauer wurde das Intervall (in Monaten) zwischen ersten und letzten Spende verwendet (Merkmal DauerM). Eingabemaske Prozedur Sterbetafeln Statistikprogramms SPSS Seite 8 von 14

9 Resultate Anfangs -zeit Intervalls zur Anfangszeit Ausgeschiedenen dem Risiko ausgesetzten terminaler Ereignisse Anteil Terminierenden Sterbetafel Anteil Kumulierter Anteil am Intervallende kum.anteils am Intervallende Wahrscheinlichkeits -dichte Wahrscheinlichkeitsdichte Seite 9 von 14

10 Anfangs -zeit Intervalls zur Anfangszeit Ausgeschiedenen dem Risiko ausgesetzten terminaler Ereignisse Anteil Terminierenden Anteil Kumulierter Anteil am Intervallende kum.anteils am Intervallende Wahrscheinlichkeits -dichte Wahrscheinlichkeitsdichte Überlebensfunktion Spen m it Extrapolation 100% 90% kumulierte Überlebenswahrscheinlichkeit 80% 70% 60% 50% y = 6E-05x x + 1 R 2 = % Monate Extrapolierte Überlebensfunktion Spen ab Geschätzter Median Überlebenszeit: 85 Monate (7 Jahre) Seite 10 von 14

11 Erkenntnisse und Empfehlungen Überlebensfunktion und Sterbetafel zeigen: Median Zugehörigkeit als Spen ist 85 Monate (Extrapolation), d.h. nach 7 Jahren sind 50% Spen nicht mehr dabei. zeigt (und auch in Überlebensfunktion sichtbar): Höchste Gefährdung (abnehmend) nach 12, 24, 36 und 48 Monaten; Gefährdung nimmt mit Dauer Zugehörigkeit ab. Schätzung mittleren Ertrags (Lifetime Value) eines Spens (mit mintens 2 Spenden): Geschätzter Median Überlebenszeit * Median jährlichen Beträge = 7 * 33 = 231 (= LTV ohne Berücksichtigung von Grossspenden) Geschätzter Median Überlebenszeit * arithmetische Mittel jährliche Beträge = 7 * 63 = 441 (= LTV mit Berücksichtigung von Grossspenden) Auf Grund dieses Ertragswertes können verschiedene Massnahmen zur Gewinnung neuer und Pflege bestehen Spen beurteilt werden. Für die gezielte Neuspengewinnung und -entwicklung sollten auch die Einflüsse verschiedener Spenmerkmale (Region, Betrag ersten Spende, die Art Fremdmailings, die Adressherkunft, die Art Neuspenbegrüssung und Spenpflegemassnahmen...) auf die Überlebensfunktion noch näher untersucht werden (über die Faktoren Prozedur Sterbetafeln o mit Cox-Regression). Literaturhinweise Bühl Achim., Zöfel Peter., SPSS Methoden für die Markt- und Meinungsforschung, 2000, Addison Wesley Longman, Kap.6 Ereignisdatenanalyse Bühl Achim, PASW 18, Einführung in die mone Datenanalyse, 2010, Pearson Studium, Kap.22 Überlebens- und Ereignisdatenanalyse Seite 11 von 14

12 Anhang: Zahlungsanalysen (Verteilungen Intervalle zwischen Spenden) Analysedaten Die Spendenzahlungen wurden pro Spen nach Belegdatum sortiert und nummeriert (Spalte SpendenNr). In die Analyse einbezogene Spendenzahlungen: Spen mit Datum erster Spende (Belegdatum) >= Spen mit Spenden > 1 Seite 12 von 14

13 Resultate Häufigkeiten Monate zwischen 1. und 2. Spende Monate Kennzahlen: Spen Mittelwert 11,89 Mte Standardabweichung 10,29 Mte Minimum <1 Monat Maximum 77 Monate Quantil95 * 33 Monate Quantil99 * 58 Monate * ) d.h. 95 / 99% Intervalle < 33 / 58 Monate Häufigkeiten Monate zwischen 2. und 3. Spende Monate Kennzahlen: Spen Mittelwert 9,72 Mte Standardabweichung 8,09 Mte Minimum <1 Monat Maximum 67 Monate Quantil95 24 Monate Quantil99 43 Monate Häufigkeiten Monate zwischen 3. und 4. Spende Monate Kennzahlen: Spen Mittelwert 8,51 Mte Standardabweichung 6,82 Mte Minimum <1 Monat Maximum 70 Monate Quantil95 21 Monate Quantil99 35 Monate Seite 13 von 14

14 Übersicht Kennzahlen Spendenintervalle: Intervall 1. û 2. Spende 2. û 3. Spende 3. û 4. Spende 4. û 5. Spende 5. û 6. Spende Mittelwert Standardabw. Minimum Maximum Quantil95 Quantil99 Spen (Monate) (Mte) (Monate) (Monate) (Monate) (Monate) ,89 10,29 < ,72 8,09 < ,51 6,82 < ,59 6,05 < ,58 5,35 < Erkenntnisse Die Zeitintervalle zwischen den Zahlungen eines Spens folgen (mit Ausnahme ersten zwei Monate) einer Exponentialverteilung mit starken Ausreissern bei 12 Monaten, gut erkennbaren bei 24 Monaten und schwach erkennbaren bei 36 Monaten (nur Intervall zwischen 1. und 2. Spende). Das Intervall zwischen den Zahlungen nimmt mit zunehmen Zahlungen pro Spen ab (siehe Diagramme vorherige Seite und Mittelwerte Verteilungen). Einfache Erklärung: Der Anteil treuen und häufigen Spen nimmt von Intervall zu Intervall stetig zu. Bei den Ausreissern handelt es sich sehr wahrscheinlich um Jahres- und 2-Jahresspen (2-Jahresspen = vermutlich Spen die jährlich zwischen zwei Organisationen abwechseln). Seite 14 von 14

Was ist Data Mining... in der Fundraising Praxis?

Was ist Data Mining... in der Fundraising Praxis? Was ist Data Mining...... in der Fundraising Praxis? Erkennen von unbekannten Mustern in sehr grossen Datenbanken (> 1000 GB) wenige und leistungsfähige Verfahren Automatisierung Erkennen von unbekannten

Mehr

Statistische Analyse von Ereigniszeiten

Statistische Analyse von Ereigniszeiten Statistische Analyse von Survival Analysis VO Biostatistik im WS 2006/2007 1 2 3 : Leukemiedaten (unzensiert) 33 Patienten mit Leukemie; Zielvariable Überlebenszeit. Alle Patienten verstorben und Überlebenszeit

Mehr

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Wahrscheinlichkeitstheorie Was will die Sozialwissenschaft damit? Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Auch im Alltagsleben arbeiten wir mit Wahrscheinlichkeiten, besteigen

Mehr

Analyse von Ereignisdaten Univ.-Prof. DI Dr. Andrea Berghold Institut für Med. Informatik, Statistik und Dokumentation

Analyse von Ereignisdaten Univ.-Prof. DI Dr. Andrea Berghold Institut für Med. Informatik, Statistik und Dokumentation Analyse von Ereignisdaten Univ.-Prof. DI Dr. Andrea Berghold Institut für Med. Informatik, Statistik und Dokumentation Analyse von Ereigniszeiten Lebensdauer = Zeit zwischen einem Startpunkt (Anfangsdatum)

Mehr

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen 4. Datenanalyse und Modellbildung Deskriptive Statistik 2-1 2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen Für die Auswertung einer Messreihe, die in Form

Mehr

Verteilungsmodelle. Verteilungsfunktion und Dichte von T

Verteilungsmodelle. Verteilungsfunktion und Dichte von T Verteilungsmodelle Verteilungsfunktion und Dichte von T Survivalfunktion von T Hazardrate von T Beziehungen zwischen F(t), S(t), f(t) und h(t) Vorüberlegung zu Lebensdauerverteilungen Die Exponentialverteilung

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übung 2 28.02.2008 1 Inhalt der heutigen Übung Beschreibende Statistik Gemeinsames Lösen der Übungsaufgaben 2.1: Häufigkeitsverteilung 2.2: Tukey Boxplot 25:Korrelation

Mehr

1 Darstellen von Daten

1 Darstellen von Daten 1 Darstellen von Daten BesucherInnenzahlen der Bühnen Graz in der Spielzeit 2010/11 1 Opernhaus 156283 Hauptbühne 65055 Probebühne 7063 Ebene 3 2422 Next Liberty 26800 Säulen- bzw. Balkendiagramm erstellen

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18 3. Deskriptive Statistik Ziel der deskriptiven (beschreibenden) Statistik (explorativen Datenanalyse) ist die übersichtliche Darstellung der wesentlichen in den erhobenen Daten enthaltene Informationen

Mehr

Webergänzung zu Kapitel 10

Webergänzung zu Kapitel 10 Webergänzung zu Kapitel 10 10.1.4 Varianzanalyse (ANOVA: analysis of variance) Im Kapitel 10 haben wir uns hauptsächlich mit Forschungsbeispielen beschäftigt, die nur zwei Ergebnissätze hatten (entweder

Mehr

Auswertung Bereitschaftsdienste mit Time-Intelligence Solutions

Auswertung Bereitschaftsdienste mit Time-Intelligence Solutions Auswertung Bereitschaftsdienste mit Time-Intelligence Solutions www.ximes.com - Seite 1 Hintergrund und Ergebnisse Thema Ziel Ergebnisse Weitere Möglichkeiten Beschreibung Es sollen Bereitschaftsdienste

Mehr

Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table("c:\\compaufg\\kredit.

Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table(c:\\compaufg\\kredit. Lösung 16.3 Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit

Mehr

4. Erstellen von Klassen

4. Erstellen von Klassen Statistik mit Tabellenkalkulation 4. Erstellen von Klassen Mit einem einfachen Befehl lässt sich eine Liste von Zahlen auf die Häufigkeit der einzelnen Werte untersuchen. Verwenden Sie dazu den Befehl

Mehr

Christian FG Schendera. Regressionsanalyse. mit SPSS. 2. korrigierte und aktualisierte Auflage DE GRUYTER OLDENBOURG

Christian FG Schendera. Regressionsanalyse. mit SPSS. 2. korrigierte und aktualisierte Auflage DE GRUYTER OLDENBOURG Christian FG Schendera Regressionsanalyse mit SPSS 2. korrigierte und aktualisierte Auflage DE GRUYTER OLDENBOURG Inhalt Vorworte V 1 Korrelation 1 1.1 Einführung 1 1.2 Erste Voraussetzung: Das Skalenniveau

Mehr

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten.

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten. Statistik für Kommunikationswissenschaftler Wintersemester 2009/200 Vorlesung Prof. Dr. Helmut Küchenhoff Übung Cornelia Oberhauser, Monia Mahling, Juliane Manitz Thema 4 Homepage zur Veranstaltung: http://www.statistik.lmu.de/~helmut/kw09.html

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Einführung in SPSS. 1. Die Datei Seegräser

Einführung in SPSS. 1. Die Datei Seegräser Einführung in SPSS 1. Die Datei Seegräser An 25 verschiedenen Probestellen wurde jeweils die Anzahl der Seegräser pro m 2 gezählt und das Vorhandensein von Seeigeln vermerkt. 2. Programmaufbau Die wichtigsten

Mehr

Statistik II für Betriebswirte Vorlesung 2

Statistik II für Betriebswirte Vorlesung 2 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 2 21. Oktober 2014 Verbundene Stichproben Liegen zwei Stichproben vor, deren Werte einander

Mehr

Analytisches Fundraising

Analytisches Fundraising Analytisches Fundraising Vorgehen, Verfahren, Werkzeuge DiaSys. Marketing Engineering AG, Wankdorffeldstr.102, 3014 Bern 031 922 31 50, zuercher@diasys.ch Analytisches Fundraising Inhaltsverzeichnis Datenbankgestütztes

Mehr

Auswerten mit Excel. Viele Video-Tutorials auf Youtube z.b. http://www.youtube.com/watch?v=vuuky6xxjro

Auswerten mit Excel. Viele Video-Tutorials auf Youtube z.b. http://www.youtube.com/watch?v=vuuky6xxjro Auswerten mit Excel Viele Video-Tutorials auf Youtube z.b. http://www.youtube.com/watch?v=vuuky6xxjro 1. Pivot-Tabellen erstellen: In der Datenmaske in eine beliebige Zelle klicken Registerkarte Einfügen

Mehr

Vermögensbildung: Sparen und Wertsteigerung bei Immobilien liegen vorn

Vermögensbildung: Sparen und Wertsteigerung bei Immobilien liegen vorn An die Redaktionen von Presse, Funk und Fernsehen 32 02. 09. 2002 Vermögensbildung: Sparen und Wertsteigerung bei Immobilien liegen vorn Das aktive Sparen ist nach wie vor die wichtigste Einflussgröße

Mehr

Einfache statistische Auswertungen mit dem Programm SPSS

Einfache statistische Auswertungen mit dem Programm SPSS Einfache statistische Auswertungen mit dem Programm SPSS Datensatz: fiktive_daten.sav Dipl. Päd. Anne Haßelkus Dr. Dorothea Dette-Hagenmeyer 11/2011 Überblick 1 Deskriptive Statistiken; Mittelwert berechnen...

Mehr

Einfache statistische Auswertungen mit dem TI-Nspire

Einfache statistische Auswertungen mit dem TI-Nspire 1. Neues Dokument und darin eine neue Seite anlegen Als Typ 6: Lists & Spreadsheet wählen. Darin die Messwerte in einer Spalte erfassen. Dies ergibt die Urliste. Wenn mehrere Messwerte vorliegen, die diejenigen,

Mehr

Übung 2 im Fach "Biometrie / Q1"

Übung 2 im Fach Biometrie / Q1 Universität Ulm, Institut für Epidemiologie und Medizinische Biometrie, D-897 Ulm Institut für Epidemiologie und Medizinische Biometrie Leiter: Prof. Dr. D. Rothenbacher Schwabstr. 3, 8975 Ulm Tel. +49

Mehr

Lineare Modelle in R: Einweg-Varianzanalyse

Lineare Modelle in R: Einweg-Varianzanalyse Lineare Modelle in R: Einweg-Varianzanalyse Achim Zeileis 2009-02-20 1 Datenaufbereitung Wie schon in der Vorlesung wollen wir hier zur Illustration der Einweg-Analyse die logarithmierten Ausgaben der

Mehr

Kaplan-Meier-Schätzer

Kaplan-Meier-Schätzer Kaplan-Meier-Schätzer Ausgangssituation Zwei naive Ansätze zur Schätzung der Survivalfunktion Unverzerrte Schätzung der Survivalfunktion Der Kaplan-Meier-Schätzer Standardfehler und Konfidenzintervall

Mehr

Erstellen einer Formel

Erstellen einer Formel Software Erstellen einer Formel In Excel kann man individuelle Formeln erstellen, dabei wird eine Formel mit ein Gleichzeichen = eingeleitet. Man kann direkt in eine Zelle schreiben oder in dem dafür vorgesehen

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Ergebnisse VitA und VitVM

Ergebnisse VitA und VitVM Ergebnisse VitA und VitVM 1 Basisparameter... 2 1.1 n... 2 1.2 Alter... 2 1.3 Geschlecht... 5 1.4 Beobachtungszeitraum (von 1. Datum bis letzte in situ)... 9 2 Extraktion... 11 3 Extraktionsgründe... 15

Mehr

Toleranzberechnung/-Simulation

Toleranzberechnung/-Simulation Summenhäufigkeit zufallsgeneriert Toleranzberechnung/-Simulation Einführung Das Ziel ist es die Auswirkung von vielen Einzeltoleranzen auf ein Funktionsmaß zu ermitteln. Bekanntlich ist das addieren der

Mehr

Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.)

Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.) ue biostatistik: nichtparametrische testverfahren / ergänzung 1/6 h. Lettner / physik Statistische Testverfahren Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.)

Mehr

Korrelation. Übungsbeispiel 1. Übungsbeispiel 4. Übungsbeispiel 2. Übungsbeispiel 3. Korrel.dtp Seite 1

Korrelation. Übungsbeispiel 1. Übungsbeispiel 4. Übungsbeispiel 2. Übungsbeispiel 3. Korrel.dtp Seite 1 Korrelation Die Korrelationsanalyse zeigt Zusammenhänge auf und macht Vorhersagen möglich Was ist Korrelation? Was sagt die Korrelationszahl aus? Wie geht man vor? Korrelation ist eine eindeutige Beziehung

Mehr

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8 1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übung 3 1 Inhalt der heutigen Übung Vorrechnen der Hausübung B.7 Beschreibende Statistik Gemeinsames Lösen der Übungsaufgaben C.1: Häufigkeitsverteilung C.2: Tukey

Mehr

Das große ElterngeldPlus 1x1. Alles über das ElterngeldPlus. Wer kann ElterngeldPlus beantragen? ElterngeldPlus verstehen ein paar einleitende Fakten

Das große ElterngeldPlus 1x1. Alles über das ElterngeldPlus. Wer kann ElterngeldPlus beantragen? ElterngeldPlus verstehen ein paar einleitende Fakten Das große x -4 Alles über das Wer kann beantragen? Generell kann jeder beantragen! Eltern (Mütter UND Väter), die schon während ihrer Elternzeit wieder in Teilzeit arbeiten möchten. Eltern, die während

Mehr

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008 Aufgabe 1 Ihnen liegt

Mehr

Der Fristentransformationserfolg aus der passiven Steuerung

Der Fristentransformationserfolg aus der passiven Steuerung Der Fristentransformationserfolg aus der passiven Steuerung Die Einführung einer barwertigen Zinsbuchsteuerung ist zwangsläufig mit der Frage nach dem zukünftigen Managementstil verbunden. Die Kreditinstitute

Mehr

Inhaltsverzeichnis. Fragestellungen und Methoden 11. Vorwort 15. Kapitel 1 Einführung 17. Kapitel 2 Statistische Grundbegriffe 23

Inhaltsverzeichnis. Fragestellungen und Methoden 11. Vorwort 15. Kapitel 1 Einführung 17. Kapitel 2 Statistische Grundbegriffe 23 Fragestellungen und Methoden 11 Vorwort 15 Kapitel 1 Einführung 17 1.1 KonzeptiondesBuchs... 18 1.2 AufbaudesBuchs... 19 1.3 Programmversionen von PASW bzw. SPSS..... 20 1.4 WiekanndiesesBuchverwendetwerden?...

Mehr

Musterlösung zur Übungsklausur Statistik

Musterlösung zur Übungsklausur Statistik Musterlösung zur Übungsklausur Statistik WMS15B Oettinger 9/216 Aufgabe 1 (a) Falsch: der Modus ist die am häufigsten auftretende Merkmalsausprägung in einer Stichprobe. (b) Falsch: die beiden Größen sind

Mehr

3.2 Spiegelungen an zwei Spiegeln

3.2 Spiegelungen an zwei Spiegeln 3 Die Theorie des Spiegelbuches 45 sehen, wenn die Person uns direkt gegenüber steht. Denn dann hat sie eine Drehung um die senkrechte Achse gemacht und dabei links und rechts vertauscht. 3.2 Spiegelungen

Mehr

Gantt-Diagramm - Diagramm zur Projektverfolgung

Gantt-Diagramm - Diagramm zur Projektverfolgung Gantt-Diagramm - Diagramm zur Projektverfolgung 5.06.206 3:29:35 FAQ-Artikel-Ausdruck Kategorie: Windows::MS Office::Excel Bewertungen: 0 Status: öffentlich (Alle) Ergebnis: 0.00 % Sprache: de Letzte Aktualisierung:

Mehr

Internet Support Center Hinweise zur Bedienung

Internet Support Center Hinweise zur Bedienung Internet Support Center Hinweise zur Bedienung 1) Allgemeine Hinweise Internet-Adresse : http://fit.nemian.lu/servlet/lfweb Leistungsumfang des Internet Support Center Auskunft über die von Ihnen vermittelten

Mehr

Ereignisanalyse. Sterbetafel-Methode Kaplan-Meier-Verfahren Cox-Regression. Kurt Holm. Almo Statistik-System

Ereignisanalyse. Sterbetafel-Methode Kaplan-Meier-Verfahren Cox-Regression. Kurt Holm. Almo Statistik-System Ereignisanalyse Sterbetafel-Methode Kaplan-Meier-Verfahren Cox-Regression Kurt Holm Almo Statistik-System www.almo-statistik.de holm@almo-statistik.de kurt.holm@jku.at 2013 1 Im Text wird häufig auf das

Mehr

Standardisierung von Daten Darstellung von Daten in Texten, Tabellen und Abbildungen. Standardisierung von Daten

Standardisierung von Daten Darstellung von Daten in Texten, Tabellen und Abbildungen. Standardisierung von Daten DAS THEMA: TABELLEN UND ABBILDUNGEN Standardisierung von Daten Darstellung von Daten in Texten, Tabellen und Abbildungen Standardisierung von Daten z-standardisierung Standardnormalverteilung 1 DIE Z-STANDARDISIERUNG

Mehr

Tutorial: Homogenitätstest

Tutorial: Homogenitätstest Tutorial: Homogenitätstest Eine Bank möchte die Kreditwürdigkeit potenzieller Kreditnehmer abschätzen. Einerseits lebt die Bank ja von der Vergabe von Krediten, andererseits verursachen Problemkredite

Mehr

Handhabung im Programm

Handhabung im Programm Handhabung im Programm Das Formular zur Einnahmen-Überschuss-Rechnung 2013 steht Ihnen ab Version 4.4.1 zur Verfügung. Die Zuordnungscodes (Feld in Anlage EÜR bzw. Zeilen in der Anlage AVEÜR) werden jahresweise

Mehr

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel Ausarbeitung zum Proseminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn zum Thema Simulation des Anlagenpreismodels von Simon Uphus im WS 09/10 Zusammenfassung

Mehr

Data Mining: Einige Grundlagen aus der Stochastik

Data Mining: Einige Grundlagen aus der Stochastik Data Mining: Einige Grundlagen aus der Stochastik Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 21. Oktober 2015 Vorwort Das vorliegende Skript enthält eine Zusammenfassung verschiedener

Mehr

Beispiel 2 (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter)

Beispiel 2 (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter) Beispiel (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter) 1 Ein Statistiker ist zu früh zu einer Verabredung gekommen und vertreibt sich nun die Zeit damit, daß er die Anzahl X der Stockwerke

Mehr

Tilgungsplan im NTCS Controlling

Tilgungsplan im NTCS Controlling im Der bietet die Möglichkeit, neue oder bestehende Darlehen und Kredite in übersichtlicher Form zu erfassen. Ebenso können gewährte Darlehen dargestellt werden. Neue Darlehen und Kredite Der Einstieg

Mehr

Schätzer (vgl. Kapitel 1): Stichprobenmittel X N. Stichprobenmedian X N

Schätzer (vgl. Kapitel 1): Stichprobenmittel X N. Stichprobenmedian X N Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 8.1 Schätzer für Lage- und Skalenparameter und Verteilungsmodellwahl Lageparameter (l(x + a) = l(x) + a): Erwartungswert EX Median von X

Mehr

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 LÖSUNG 3A Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Mit den Berechnungsfunktionen LG10(?) und SQRT(?) in "Transformieren", "Berechnen" können logarithmierte Werte sowie die Quadratwurzel

Mehr

Excel 2010 Zwischenergebnisse automatisch berechnen

Excel 2010 Zwischenergebnisse automatisch berechnen EX.031, Version 1.0 14.10.2013 Kurzanleitung Excel 2010 Zwischenergebnisse automatisch berechnen Wenn man in Excel mit umfangreichen Listen oder Tabellen arbeitet, interessiert vielfach nicht nur das Gesamtergebnis,

Mehr

, dt. $+ f(x) = , - + < x < +, " > 0. " 2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) =

, dt. $+ f(x) = , - + < x < +,  > 0.  2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) = 38 6..7.4 Normalverteilung Die Gauß-Verteilung oder Normal-Verteilung ist eine stetige Verteilung, d.h. ihre Zufallsvariablen können beliebige reelle Zahlenwerte annehmen. Wir definieren sie durch die

Mehr

Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip. KLAUSUR Statistik B

Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip. KLAUSUR Statistik B Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip Sommersemester 2010 KLAUSUR Statistik B Hinweise zur Bearbeitung: Bei allen Teilaufgaben

Mehr

Einführung in statistische Analysen

Einführung in statistische Analysen Einführung in statistische Analysen Andreas Thams Econ Boot Camp 2008 Wozu braucht man Statistik? Statistik begegnet uns jeden Tag... Weihnachten macht Deutschen Einkaufslaune. Im Advent überkommt die

Mehr

Korrelation (II) Korrelation und Kausalität

Korrelation (II) Korrelation und Kausalität Korrelation (II) Korrelation und Kausalität Situation: Seien X, Y zwei metrisch skalierte Merkmale mit Ausprägungen (x 1, x 2,..., x n ) bzw. (y 1, y 2,..., y n ). D.h. für jede i = 1, 2,..., n bezeichnen

Mehr

Dokumentation. estat Version 2.0

Dokumentation. estat Version 2.0 Dokumentation estat Version 2.0 Installation Die Datei estat.xla in beliebiges Verzeichnis speichern. Im Menü Extras AddIns... Durchsuchen die Datei estat.xla auswählen. Danach das Auswahlhäkchen beim

Mehr

1 Allgemeine Grundlagen

1 Allgemeine Grundlagen 1 Allgemeine Grundlagen 1.1 Gleichstromkreis 1.1.1 Stromdichte Die Stromdichte in einem stromdurchflossenen Leiter mit der Querschnittsfläche A ist definiert als: j = di da di da Stromelement 1.1.2 Die

Mehr

Laufende Auswertung von Feedback-Fragebögen... 2. Eine Vorlage zur Auswertung eines Fragebogens und die Präsentation erstellen...

Laufende Auswertung von Feedback-Fragebögen... 2. Eine Vorlage zur Auswertung eines Fragebogens und die Präsentation erstellen... Inhaltsverzeichnis Laufende Auswertung von Feedback-Fragebögen... 2 Eine Vorlage zur Auswertung eines Fragebogens und die Präsentation erstellen... 2 Namen verwalten... 4 Dr. Viola Vockrodt-Scholz edvdidaktik.de

Mehr

Auswertung mit dem Statistikprogramm SPSS: 30.11.05

Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Seite 1 Einführung SPSS Was ist eine Fragestellung? Beispiel Welche statistische Prozedur gehört zu welcher Hypothese? Statistische Berechnungen mit

Mehr

Kurzbeschreibung. Eingaben zur Berechnung. Das Optionspreismodell. Mit dem Eurex-OptionMaster können Sie

Kurzbeschreibung. Eingaben zur Berechnung. Das Optionspreismodell. Mit dem Eurex-OptionMaster können Sie Kurzbeschreibung Mit dem Eurex-OptionMaster können Sie - theoretische Optionspreise - Optionskennzahlen ( Griechen ) und - implizite Volatilitäten von Optionen berechnen und die errechneten Preise bei

Mehr

Vorlesung Analysis I / Lehramt

Vorlesung Analysis I / Lehramt Vorlesung Analysis I / Lehramt TU Dortmund, Wintersemester 2012/ 13 Winfried Kaballo Die Vorlesung Analysis I für Lehramtsstudiengänge im Wintersemester 2012/13 an der TU Dortmund basiert auf meinem Buch

Mehr

Lernender.ch Das Infoportal für Lernende

Lernender.ch Das Infoportal für Lernende Lernender.ch Das Infoportal für Lernende Abschreibungen 41.1 Theorie Fachausdrücke im Rechnungswesen Allgemeine Umschreibung Wert zu dem die Verbuchung des Aktivzugangs erfolgt (inkl. Bezugskosten, und

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE Statistik mit Excel für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE INHALTS- VERZEICHNIS Vorwort 13 Schreiben Sie uns! 15 1 Statistische Untersuchungen 17 Wozu Statistik? 18

Mehr

6.2 Regressionsanalyse

6.2 Regressionsanalyse c-kennzahlensystem (ROCI) 6. Regressionsanalyse Die Regressionsanalyse zählt zu den wichtigsten Analysemethoden des Kommunikationscontrollings und hat ihre tiefen Wurzeln in der Statistik. Im Rahmen des

Mehr

Institut für Biometrie und klinische Forschung. WiSe 2012/2013

Institut für Biometrie und klinische Forschung. WiSe 2012/2013 Klinische Forschung WWU Münster Pflichtvorlesung zum Querschnittsfach Epidemiologie, Biometrie und Med. Informatik Praktikum der Medizinischen Biometrie () WiSe /3 Univariate und bivariate Verfahren Univariate

Mehr

Kapitel 7: Varianzanalyse mit Messwiederholung

Kapitel 7: Varianzanalyse mit Messwiederholung Kapitel 7: Varianzanalyse mit Messwiederholung Durchführung einer einfaktoriellen Varianzanalyse mit Messwiederholung 1 Durchführung einer zweifaktoriellen Varianzanalyse mit Messwiederholung auf einem

Mehr

Unsere Hilfe bei statistischen Analysen für wissenschaftliche Arbeiten

Unsere Hilfe bei statistischen Analysen für wissenschaftliche Arbeiten Unsere Hilfe bei statistischen Analysen für wissenschaftliche Arbeiten Sie schreiben eine wissenschaftliche Arbeit und müssen hierfür Daten statistisch analysieren? Sie haben bisher wenig Erfahrung im

Mehr

Datenaufbereitung in SPSS. Daten zusammenfügen

Datenaufbereitung in SPSS. Daten zusammenfügen Daten zusammenfügen I. Fälle hinzufügen Diese Schritte müssen Sie unternehmen, wenn die Daten in unterschiedlichen Dateien sind; wenn also die Daten von unterschiedlichen Personen in unterschiedlichen

Mehr

Dienstleistungsangebote Analytisches Fundraising*

Dienstleistungsangebote Analytisches Fundraising* Dienstleistungsangebote Analytisches Fundraising* Dynamische Segmentierung*...2 Datenanalyse und Data Mining Dienstleistungen...3 Analysedatenbank DiaBase (Data Warehouse)...4 Schulung (Datenanalyse für

Mehr

q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678

q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678 Lösungsvorschläge zu Blatt 8 X binomialverteilt mit p = 0. und n = 10: a PX = = 10 q = 1 p = 0.8 0. 0.8 10 = 0, 1,..., 10 PX = PX = 0 + PX = 1 + PX = 10 10 = 0. 0 0.8 10 + 0. 1 0.8 9 + 0 1 10 = 0.8 8 [

Mehr

5. Schließende Statistik. 5.1. Einführung

5. Schließende Statistik. 5.1. Einführung 5. Schließende Statistik 5.1. Einführung Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

einfache Rendite 0 145 85 1 160 90 2 135 100 3 165 105 4 190 95 5 210 110

einfache Rendite 0 145 85 1 160 90 2 135 100 3 165 105 4 190 95 5 210 110 Übungsbeispiele 1/6 1) Vervollständigen Sie folgende Tabelle: Nr. Aktie A Aktie B Schlusskurs in Schlusskurs in 0 145 85 1 160 90 2 135 100 3 165 105 4 190 95 5 210 110 Arithmetisches Mittel Standardabweichung

Mehr

Ergänzungsbericht zum Tätigkeitsbericht 2013 über die Ergebnisse der externen vergleichenden Qualitätssicherung

Ergänzungsbericht zum Tätigkeitsbericht 2013 über die Ergebnisse der externen vergleichenden Qualitätssicherung Ergänzungsbericht zum Tätigkeitsbericht 2013 über die Ergebnisse der externen vergleichenden Qualitätssicherung Transplantationszentrum Deutsches Herzzentrum Berlin nach 11 Abs. 5 TPG - veröffentlicht

Mehr

Arbeiten mit Excel. 1. Allgemeine Hinweise

Arbeiten mit Excel. 1. Allgemeine Hinweise 1. Allgemeine Hinweise Man sollte eine Excel Tabelle immer so übersichtlich wie möglich halten. Dazu empfiehlt es sich, alle benötigten Daten, Konstanten und Messwerte inklusive aller dazugehörigen Einheiten

Mehr

Grundlagen der Datenanalyse am Beispiel von SPSS

Grundlagen der Datenanalyse am Beispiel von SPSS Grundlagen der Datenanalyse am Beispiel von SPSS Einführung Dipl. - Psych. Fabian Hölzenbein hoelzenbein@psychologie.uni-freiburg.de Einführung Organisatorisches Was ist Empirie? Was ist Statistik? Dateneingabe

Mehr

Kontingenzkoeffizient (nach Pearson)

Kontingenzkoeffizient (nach Pearson) Assoziationsmaß für zwei nominale Merkmale misst die Unabhängigkeit zweier Merkmale gibt keine Richtung eines Zusammenhanges an 46 o jl beobachtete Häufigkeiten der Kombination von Merkmalsausprägungen

Mehr

Abb. 30: Antwortprofil zum Statement Diese Kennzahl ist sinnvoll

Abb. 30: Antwortprofil zum Statement Diese Kennzahl ist sinnvoll Reklamationsquote Stornierungsquote Inkassoquote Customer-Lifetime-Value Hinsichtlich der obengenannten Kennzahlen bzw. Kontrollgrößen für die Neukundengewinnung wurden den befragten Unternehmen drei Statements

Mehr

Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006

Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006 1 3.34 1.1 Angabe Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006 U sei auf dem Intervall (0, 1) uniform verteilt. Zeigen

Mehr

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr.

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Gert Zöller Übungsklausur Hilfsmittel: Taschenrechner, Formblatt mit Formeln. Lösungswege sind stets anzugeben. Die alleinige Angabe eines

Mehr

Fujitsu Siemens Computers GmbH

Fujitsu Siemens Computers GmbH Management Summary Fujitsu Siemens Computers GmbH Report Wirtschaftlichkeitsanalyse Einführung Linux - FSC Der Analysereport beinhaltet die Ergebnisse der Wirtschaftlichkeitsanalyse der Einführung des

Mehr

Statistik im Bachelor-Studium der BWL und VWL

Statistik im Bachelor-Studium der BWL und VWL Max C. Wewel Statistik im Bachelor-Studium der BWL und VWL Methoden, Anwendung, Interpretation Mit herausnehmbarer Formelsammlung ein Imprint von Pearson Education München Boston San Francisco Harlow,

Mehr

Fertigstellungsgrad (FGR) EVA (Earned Value Analysis) Projektcontrolling Fertigstellungsgrads EVA Instrument Methoden FGR und EVA IHR VORTEIL

Fertigstellungsgrad (FGR) EVA (Earned Value Analysis) Projektcontrolling Fertigstellungsgrads EVA Instrument Methoden FGR und EVA IHR VORTEIL Der Fertigstellungsgrad (FGR) und die EVA (Earned Value Analysis) sind heutzutage wichtige Instrumente des Projektcontrolling! Sie gewährleisten, dass Ihre Projekte nicht aus dem Ruder laufen, Ressourcen

Mehr

Statistik I für Betriebswirte Vorlesung 2

Statistik I für Betriebswirte Vorlesung 2 Statistik I für Betriebswirte Vorlesung 2 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 16. April 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 2 1 ii) empirische

Mehr

Einfache Statistiken in Excel

Einfache Statistiken in Excel Einfache Statistiken in Excel Dipl.-Volkswirtin Anna Miller Bergische Universität Wuppertal Schumpeter School of Business and Economics Lehrstuhl für Internationale Wirtschaft und Regionalökonomik Raum

Mehr

LEITFADEN BERATUNGS-TOOL

LEITFADEN BERATUNGS-TOOL LEITFADEN BERATUNGS-TOOL Vorteile für Sie als Makler Schätzung der Versorgungslücken schnell und einfach Verkaufshilfe Finanzanalyse mit anschaulichen Diagrammen Dokumentation der Beratung geführter Ablauf

Mehr

3. Lektion: Deskriptive Statistik

3. Lektion: Deskriptive Statistik Seite 1 von 5 3. Lektion: Deskriptive Statistik Ziel dieser Lektion: Du kennst die verschiedenen Methoden der deskriptiven Statistik und weißt, welche davon für Deine Daten passen. Inhalt: 3.1 Deskriptive

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

1. Allgemeine Hinweise Alexander.Martin.Koenig@TU-Clausthal.de

1. Allgemeine Hinweise Alexander.Martin.Koenig@TU-Clausthal.de 1. Allgemeine Hinweise Alexander.Martin.Koenig@TU-Clausthal.de Man sollte eine Excel-Tabelle immer so übersichtlich wie möglich halten. Dazu empfiehlt es sich, alle benötigten Daten, Konstanten und Messwerte

Mehr

Kontextdiagramm Erstellen von Kontextdiagrammen mit TopEase

Kontextdiagramm Erstellen von Kontextdiagrammen mit TopEase Kontextdiagramm Erstellen von Kontextdiagrammen mit TopEase Version Control: Version Status Datum / Kurzzeichen 1.0 Begründung Copyright: This document is the property of Business-DNA Solutions GmbH, Switzerland.

Mehr

Aufgaben zur Flächenberechnung mit der Integralrechung

Aufgaben zur Flächenberechnung mit der Integralrechung ufgaben zur Flächenberechnung mit der Integralrechung ) Geben ist die Funktion f(x) = -x + x. a) Wie groß ist die Fläche, die die Kurve von f mit der x-chse einschließt? b) Welche Fläche schließt der Graph

Mehr

12. Vergleich mehrerer Stichproben

12. Vergleich mehrerer Stichproben 12. Vergleich mehrerer Stichproben Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Häufig wollen wir verschiedene Populationen, Verfahren, usw. miteinander vergleichen. Beipiel: Vergleich

Mehr

Kommutationszahlen und Versicherungsbarwerte für Leibrenten 2001/2003

Kommutationszahlen und Versicherungsbarwerte für Leibrenten 2001/2003 Kommutationszahlen und Versicherungsbarwerte für Leibrenten 2001/2003 Tabellen zur jährlich und monatlich vorschüssigen Zahlungsweise Statistisches Bundesamt Impressum Herausgeber: Statistisches Bundesamt

Mehr

Leitfaden zur Anlage einer Nachforderung. Nachforderung. 04.04.2013 Seite 1 von 11 RWE IT GmbH

Leitfaden zur Anlage einer Nachforderung. Nachforderung. 04.04.2013 Seite 1 von 11 RWE IT GmbH Leitfaden zur Anlage einer 04.04.2013 Seite 1 von 11 Inhaltsverzeichnis 1 Aufruf des RWE smanagements...3 2 Eingabe der Benutzerdaten...4 3 Erfassen der...5 4 Neue...6 4.1 Allgemeine Daten...7 4.2 Beschreibung...7

Mehr

Die Software für Visualisierung und Analyse von Strukturinformationen aus EDM- und PDM-Systemen.

Die Software für Visualisierung und Analyse von Strukturinformationen aus EDM- und PDM-Systemen. Die Software für Visualisierung und Analyse von Strukturinformationen aus EDM- und PDM-Systemen. : Der Markt verändert sich bei der Produktentwicklung. Kürzere Entwicklungszeiten, umfangreichere Produktspektren

Mehr

Gene, Umwelt und Aktivität

Gene, Umwelt und Aktivität Neuigkeiten aus der Huntington-Forschung. In einfacher Sprache. Von Wissenschaftlern geschrieben Für die Huntington-Gemeinschaft weltweit. Ein aktiver Lebensstil beeinflusst vielleicht die Krankheitssymptome

Mehr

BOXPLOT 1. Begründung. Boxplot A B C

BOXPLOT 1. Begründung. Boxplot A B C BOXPLOT 1 In nachstehender Tabelle sind drei sortierte Datenreihen gegeben. Zu welchem Boxplot gehört die jeweilige Datenreihe? Kreuze an und begründe Deine Entscheidung! Boxplot A B C Begründung 1 1 1

Mehr