Wirtschaftsingenieurwesen Wirtschaftsmathematik Prüfungsleistung WI-WMT-P Studiengang Fach Art der Leistung Klausur-Knz. Datum

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Wirtschaftsingenieurwesen Wirtschaftsmathematik Prüfungsleistung WI-WMT-P12 040703. Studiengang Fach Art der Leistung Klausur-Knz. Datum 03.07."

Transkript

1 Studiegag Fach Art der Leistug Klausur-Kz. Wirtschaftsigeieurwese Wirtschaftsmathematik Prüfugsleistug WI-WMT-P Datum Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich: Verwede Sie ausschließlich das vom Aufsichtsführede zur Verfügug gestellte Papier, ud gebe Sie sämtliches Papier (Lösuge, Schmierzettel ud icht gebrauchte Böge) zum Schluss der Klausur wieder bei Ihrem Aufsichtsführede ab. Eie icht vollstädig abgegebee Klausur gilt als icht bestade. Beschrifte Sie jede Boge mit Ihrem Name ud Ihrer Immatrikulatiosummer. Lasse Sie bitte auf jeder Seite /3 ihrer Breite als Rad für Korrekture frei, ud ummeriere Sie die Seite fortlaufed. Notiere Sie bei jeder Ihrer Atworte, auf welche Aufgabe bzw. Teilaufgabe sich diese bezieht. Die Lösuge ud Lösugswege sid i eier für de Korrektate zweifelsfrei lesbare Schrift abzufasse. Korrekture ud Streichuge sid eideutig vorzuehme. Uleserliches wird icht bewertet. Bei ummerisch zu lösede Aufgabe ist außer der Lösug stets der Lösugsweg azugebe, aus dem eideutig hervorzugehe hat, wie die Lösug zustade gekomme ist. Zur Prüfug sid bis auf Schreib- ud Zeicheutesilie ausschließlich die achstehed geate Hilfsmittel zugelasse. Werde adere als die hier agegebee Hilfsmittel verwedet oder Täuschugsversuche festgestellt, gilt die Prüfug als icht bestade ud wird mit der Note 5 bewertet. Hilfsmittel : Bearbeitugszeit: 0 Miute Formelsammlug Wirtschaftsmathematik Azahl Aufgabe: 7 HFH-Tascherecher Höchstpuktzahl: 00 Vorläufiges Bewertugsschema: Viel Erfolg! Puktzahl vo bis eischl. Note 95 00,0 sehr gut 90 94,5,3 sehr gut 85 89,5,7 gut 80 84,5,0 gut 75 79,5,3 gut 70 74,5,7 befriediged 65 69,5 3,0 befriediged 60 64,5 3,3 befriediged 55 59,5 3,7 ausreiched 50 54,5 4,0 ausreiched 0 49,5 5,0 icht ausreiched Klausuraufgabe, Prüfugsleistug 07/04, Wirtschaftsmathematik, Wirtschaftsigeieurwese WI-WMT-P

2 Klausuraufgabe, Prüfugsleistug 07/04, Wirtschaftsmathematik, Wirtschaftsigeieurwese Aufgabe isg. 9 Pukte Herr P. besitzt auf seiem Bakkoto, das mit 3, % p.a. verzist wird, am ei Guthabe vo Er möchte jedes Jahr am 0. Jauar, begied im Jahre 005, 3000 abhebe.. Bereche Sie die Azahl der abzuhebede Rate, bis das Koto erschöpft ist. 3 Pkte. Bereche Sie de Kotostad vo Herr P. ach der dritte Abhebug. 6 Pkte Aufgabe isg. 7 Pukte Frau B. möchte eie Kredit aufehme ud köte durch kosequete Eisparuge moatlich 00 für Zise ud Tilgug aufbrige. Ihre Freudi bietet ihr eie Kredit mit eier Verzisug vo, % pro Moat a. Bereche Sie de Kreditbetrag, de sich Frau B. vo ihrer Freudi leihe köte, we der Kredit ach 3,5 Jahre zurückgezahlt sei soll. Aufgabe 3 isg. 8 Pukte Für quadratische Matrize gilt folgeder Satz: Zu eier quadratische Matrix A existiert die iverse Matrix d. h. A 0. Utersuche Sie, ob für die Matrix A eie iverse Matrix A existiert (keie Bestimmug vo A, we die Determiate vo A ugleich Null ist, A!!). WI-WMT-P Seite /3

3 Klausuraufgabe, Prüfugsleistug 07/04, Wirtschaftsmathematik, Wirtschaftsigeieurwese Aufgabe 4 isg. 0 Pukte I eiem Gehäuse sid drei Bohruge für Zahräder Z, Z ud Z3 ach Skizze zu bohre. Z Z y 0 x 45 Z 3 Bereche Sie die Werte für x ud y, we die Zähezahle z 80, z 65, z 3 45 ud der Modul m 3 mm betrage. Amerkug: Die Abstäde der Mittelpukte der Bohruge bereche sich aus: az, Z z + z m ud az Z, 3 z + z3 m. Aufgabe 5 isg. 8 Pukte Ei Fersehgerätehersteller produziert zwei Produktvariate. Die Preis-Absatz-Fuktioe laute jeweils p 00 5x ud p 680 5y. Die Kostefuktio ist gegebe durch ( x, y) 5xy + 450x + 355y K. Bestimme Sie aus der Gewifuktio G ( x y) p x + p y K( x, y), die Produktmege x ud y so, dass der Gewi des Herstellers maximiert wird. Aufgabe 6 isg. 9 Pukte Gesucht ist die Expoetialform der komplexe Zahl z 0,5 + i. WI-WMT-P Seite /3

4 Klausuraufgabe, Prüfugsleistug 07/04, Wirtschaftsmathematik, Wirtschaftsigeieurwese Aufgabe 7 isg. 9 Pukte Gegebe ist die lieare Differetialgleichug. Ordug mit kostate Koeffiziete y 3y + y h( x) mit der Störfuktio h ( x). 7. Ermittel Sie die Lösug der homogee Dgl y 3 y + y Ermittel Sie eie partikuläre Lösug ud die allgemeie Lösug der Differetialgleichug für die Störfuktio h( x) e. 9 Pkte 0 Pkte WI-WMT-P Seite 3/3

5 Korrekturrichtliie zur Prüfugsleistug Wirtschaftsmathematik am Wirtschaftsigeieurwese WI-WMT-P Für die Bewertug ud Abgabe der Prüfugsleistug sid folgede Hiweise verbidlich: Die Vergabe der Pukte ehme Sie bitte so vor, wie i der Korrekturrichtliie ausgewiese. Eie summarische Agabe vo Pukte für Aufgabe, die i der Korrekturrichtliie detailliert bewertet worde sid, ist icht gestattet. Nur da, we die Pukte für eie Aufgabe icht differeziert vorgegebe sid, ist ihre Aufschlüsselug auf die eizele Lösugsschritte Ihe überlasse. Stoße Sie bei Ihrer Korrektur auf eie adere richtige als de i der Korrekturrichtliie agegebee Lösugsweg, da ehme Sie bitte die Verteilug der Pukte sigemäß zur Korrekturrichtliie vor. Rechefehler sollte grudsätzlich ur zur Abwertug des betreffede Teilschrittes führe. Wurde mit eiem falsche Zwischeergebis richtig weitergerechet, so erteile Sie die hierfür vorgesehee Pukte ohe weitere Abzug. Ihre Korrekturhiweise ud Puktbewertug ehme Sie bitte i eier zweifelsfrei lesbare Schrift vor. Die vo Ihe vergebee Pukte ud die daraus sich gemäß dem achstehede Noteschema ergebede Bewertug trage Sie i de Klausur-Matelboge sowie i das Formular Klausurergebis (Ergebisliste) ei. Gemäß der Diplomprüfugsordug ist Ihrer Bewertug folgedes Bewertugsschema zugrude zu lege: Puktzahl Note vo bis eischl ,0 sehr gut 90 94,5,3 sehr gut 85 89,5,7 gut 80 84,5,0 gut 75 79,5,3 gut 70 74,5,7 befriediged 65 69,5 3,0 befriediged 60 64,5 3,3 befriediged 55 59,5 3,7 ausreiched 50 54,5 4,0 ausreiched 0 49,5 5,0 icht ausreiched Die korrigierte Arbeite reiche Sie bitte spätestes bis zum. Juli 004 i Ihrem Studiezetrum ei. Dies muss persölich oder per Eischreibe erfolge. Der agegebee Termi ist ubedigt eizuhalte. Sollte sich aus vorher icht absehbare Grüde ei Termiüberschreitug abzeiche, so bitte wir Sie, dies uverzüglich Ihrem Studiezetreleiter azuzeige. Korrekturrichtliie, Prüfugsleistug 07/04, Wirtschaftsmathematik, Wirtschaftsigeieurwese WI-WMT-P

6 Korrekturrichtliie, Prüfugsleistug 07/04, Wirtschaftsmathematik, Wirtschaftsigeieurwese Lösug vgl. SB, Kap..4 isg. 9 Pukte. Azahl der Rate, bis das Koto erschöpft ist 3 Pkte Sparkasseformel für de Kapitalabbau bei achschüssig etommee Rate mit E 0 (vgl. Formelsammlug 9.3): 0 K0 q q r. ( Pkte) q Umstelle ach der Periode ergibt: r log r K0 ( q ). log q (6 Pkte) Eisetze vo K ; q, 03 ud r liefert: 0 log (,03 ) log (,03) ( Pkte) 8,86. ( Pkte) Es köe 8 volle Rate ud eie vermiderte 9-te Schlussrate abgehobe werde.. Kotostad ach der dritte Abhebug 6 Pkte Sparkasseformel für de Kapitalabbau bei achschüssig etommee Rate (vgl. Formelsammlug 9.3): q E K0 q r. ( Pkte) q Eisetze vo K ; q, 03 ; r ud 3 liefert: E 4.000, ( Pkte) E 36.87,33. ( Pkte) Der Kotostad ach der dritte Abhebug beträgt 36.87, 33. WI-WMT-P Seite /6

7 Korrekturrichtliie, Prüfugsleistug 07/04, Wirtschaftsmathematik, Wirtschaftsigeieurwese Lösug vgl. SB 3, Kap..3 isg. 7 Pukte Die Frage ach der Kredithöhe bei vorgegebeer Auität (Tilgug plus Zise) ka durch Umstelle der Formel für die Auität beatwortet werde. q Durch Umforme vo A S q (vgl. Formelsammlug 0.) erhält ma: q q S A. q ( q ) (3 Pkte) (Formel ka durch Umstelle etwickelt werde oder auch direkt der Formelsammlug, 0. etomme sei.) Eisetze vo A 00 ; q, 0 ud 4 (3,5 Jahre a Moate) liefert: 4,0 S 00 ( Pkte) 4,0 (,0 ) S 6.697,93. ( Pkte) Frau B. ka sich vo ihrer Freudi 6.697, 93 leihe. Lösug 3 vgl. SB 8, Kap. 6 isg. 8 Pukte Lösugsweg : Aweduge der Regel zur Umformug ud Vereifachug vo Determiate (vgl. Formelsammlug.3): I der Determiate A werde aus der. Zeile der Faktor 4 ud aus der. Zeile der Faktor 0 vor die Determiate gesetzt. A (4 Pkte) Die erste ud zweite Zeile sid u gleich, damit ist der Wert der Determiate Null. ( Pkte) Die iverse Matrix A existiert somit icht. WI-WMT-P Seite /6

8 Korrekturrichtliie, Prüfugsleistug 07/04, Wirtschaftsmathematik, Wirtschaftsigeieurwese Lösugsweg : Bestimmug der Determiate vo A über die Regel vo SARRUS (vgl. Formelsammlug.): A aaa33 + aa3a3 + a3aa3 a3aa3 aa3a3 aaa33 Eisetze der Werte ergibt: A Die Determiate hat de Wert Null, die iverse Matrix ( Pkte) (5 Pkte) A existiert somit icht. Lösug 4 vgl. SB 8, Kap.. ud.8. isg. 0 Pukte D b A a y d α α α x B C Im rechtwiklige Dreieck BCD gilt ach dem Satz des PYTHAGORAS: ( 0 mm) + ( 45 ) a mm a 4,77 mm Für die Abstäde der Mittelpukte der Bohruge gilt (vgl. Aufgabestellug): z b z d + z + z Wikel α : 3 m m mm 7,50 mm mm 65,00 mm 0 mm ta α 4,667 α 77, 9 45 mm ( Pkte) ( Pkte) ( Pkte) ( Pkte) WI-WMT-P Seite 3/6

9 Korrekturrichtliie, Prüfugsleistug 07/04, Wirtschaftsmathematik, Wirtschaftsigeieurwese Der Kosiussatz im Dreieck ABD liefert de Wikel α : b a + d ad cos α ( Pkte) cos a + d b ad 4, ,5 mm α 68, 44 4,77 mm 65 mm ( ) α 0, 37 (4 Pkte) Wikel α : ( 77,9 + 68,44 ) 33, α Damit lasse sich die Werte für x ud y bereche: y si α d y d si α 65 mm si 33,65 9,43 mm x cos α d x d cos α 65 mm cos 33,65 37,35 mm ( Pkte) ( Pkte) ( Pkte) Lösug 5 vgl. SB 9, Kap..4 isg. 8 Pukte Maximaler Gewi Ermittlug der Gewifuktio: ( x y) p x + p y K( x y) G,, ( 00 5x) x + ( 680 5y) y ( 5xy + 450x ) y 00x 5x + 680y 5y 5xy 450x 355y 450 5x + 750x 5xy 5y + 35y 450 ( Pkte) Bildug der partielle Ableituge: G x 30x y ; G y 50y x ( Pkte) G xx 30 ; G yy 50 ; G xy G yx 5 (3 Pkte) Prüfug der otwedige Bediguge für ei Extremum (vgl. Formelsammlug, 9.): G x 30 x y 0 (I) G y 50 y x 0 (II) Aus (II) folgt durch Umforme x y + 53 (III) Eisetze i (I) liefert 30 ( y + 53) y 0 35 y y 4 Eisetze i (III) liefert schließlich x 5. WI-WMT-P Seite 4/6

10 Korrekturrichtliie, Prüfugsleistug 07/04, Wirtschaftsmathematik, Wirtschaftsigeieurwese Zu Prüfe bleibt die hireichede Bedigug für lokale Extrema (vgl. Formelsammlug,9.): ( 5,4) G ( 5,4) G ( 5,4) > 0 G xx yy xy. ( Pkte) Diese liefert ( 30) ( 50) ( 5) 875 > 0. Da G ( 5,4) 30 < 0, liegt bei (,4) xx 5 das Gewimaximum. Lösug 6 SB 8, Kap. 5 isg. 9 Pukte Die Expoetialfom eier komplexe Zahl z a + ib lautet (vgl. Formelsammlug 5.): iϕ z re mit b r z a + b ud ϕ arcta (ud Beachtug der Quadratelage!!) ( Pkte) a Für z 0,5 + i ergibt sich: ( 0,5) +, 5 r. Da z im II. Quadrate liegt, folgt für ϕ (i Bogemaß!!): ( Pkte) ϕ arcta + π arcta( ) + π,07 + π, (3 Pkte) 0,5 Damit ergibt sich die Expoetialform zu i,0344 z,5e. Lösug 7 SB 8, Kap. 7.3 isg. 9 Pukte 7. Lösug der homogee Dgl (Formelsammlug,.3) 9 Pkte y 3 y + y 0 (I) Asatz: y e kx Bilde der. ud. Ableitug: kx y k e ; kx y k ( Pkte) e Eisetze i (I) ud Divisio durch k 3k + 0 kx e führt zur charakteristische Gleichug ( Pkte) Awedug der p,q-formel liefert die Lösuge: k ; k. ( Pkte) WI-WMT-P Seite 5/6

11 Korrekturrichtliie, Prüfugsleistug 07/04, Wirtschaftsmathematik, Wirtschaftsigeieurwese Damit ergibt sich die Lösug der homogee Dgl zu. k x k x y C e C e h + x x yh C e + C e ( R) C, C. ( Pkte) 7. Partikuläre ud allgemeie Lösug 0 Pkte Asatz für eie partikuläre Lösug: Für die Störfuktio h( x) e ist als Asatz yp λx Be mit λ 3 zu wähle ( λ 3 icht Lösug der Charakteristische Gleichug). ( Pkte) Bilde der. ud. Ableitug des Asatzes: yp 3Be ; yp 9Be. Eisetze i die ihomogee Dgl ergibt: 9Be 3 3Be + Be e Be e Koeffizietevergleich: B B Damit habe wir eie partikuläre Lösug: yp e. ( Pkte) ( Pkte) Die allgemeie Lösug der (ihomogee) Dgl x y 3 3 y + y e ergibt sich zu: x x y C e + C e + e. ( Pkte) WI-WMT-P Seite 6/6

Wirtschaftsmathematik

Wirtschaftsmathematik Studiegag Betriebswirtschaft Fach Wirtschaftsmathematik Art der Leistug Studieleistug Klausur-Kz. BW-WMT-S1 040508 Datum 08.05.004 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich: Verwede

Mehr

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222 Korrekturrichtliie zur Studieleistug Wirtschaftsmathematik am..007 Betriebswirtschaft BB-WMT-S-07 Für die Bewertug ud Abgabe der Studieleistug sid folgede Hiweise verbidlich: Die Vergabe der Pukte ehme

Mehr

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110 Name, Vorame Matrikel-Nr. Studiezetrum Studiegag Fach Art der Leistug Klausur-Kz. Betriebswirtschaft Wirtschaftsmathematik Studieleistug Datum 10.11.2001 BW-WMT-S12 011110 Verwede Sie ausschließlich das

Mehr

Studiengang Betriebswirtschaft Modul. Wirtschaftsmathematik Art der Leistung Studienleistung Klausur-Knz. BB-WMT-S Datum

Studiengang Betriebswirtschaft Modul. Wirtschaftsmathematik Art der Leistung Studienleistung Klausur-Knz. BB-WMT-S Datum Studiegag Betriebswirtschaft Modul Wirtschaftsmathematik Art der Leistug Studieleistug Klausur-Kz. BB-WMT-S-07060 Datum 0.06.007 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich: Verwede

Mehr

Studiengang Betriebswirtschaft Fach

Studiengang Betriebswirtschaft Fach Studiegag Betriebswirtschaft Fach Wirtschaftsmathematik Art der Leistug Studieleistug Klausur-Kz. BB-WMT-S-0 / BW-WMT-S-0 Datum..00 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich:

Mehr

Wirtschaftsmathematik. Klausur-Kennzeichen BB-WMT-S Datum

Wirtschaftsmathematik. Klausur-Kennzeichen BB-WMT-S Datum Studiegag Betriebswirtschaft Modul Wirtschaftsmathematik Art der Leistug Studieleistug Klausur-Kezeiche BB-WMT-S 08068 Datum 8.06.008 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich:

Mehr

Hilfsmittel : Bearbeitungszeit: 120 Minuten HFH-Taschenrechner Anzahl Aufgaben: 5 Studienbriefe 1 bis 7 Höchstpunktzahl: 100 Formelsammlung

Hilfsmittel : Bearbeitungszeit: 120 Minuten HFH-Taschenrechner Anzahl Aufgaben: 5 Studienbriefe 1 bis 7 Höchstpunktzahl: 100 Formelsammlung Studiegag ach Art der Leistug Klausur-Kz. Wirtschaftsigeieurwese Techische Mechaik Prüfugsleistug WI-TEM-P 0604 Datum 04..006 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich: Verwede

Mehr

Betriebswirtschaft Wirtschaftsmathematik Prüfungsleistung BW-WMT-P

Betriebswirtschaft Wirtschaftsmathematik Prüfungsleistung BW-WMT-P Name, Vorame Matrikel-Nr. Studiezetrum Studiegag Fach Art der Leistug Klausur-Kz. Betriebswirtschaft Wirtschaftsmathematik Prüfugsleistug Datum 8.09.999 BW-WMT-P 99098 Verwede Sie ausschließlich das vom

Mehr

Klausuraufgaben, Prüfungsleistung 06/08, Mathematik, Wirtschaftsingenieurwesen

Klausuraufgaben, Prüfungsleistung 06/08, Mathematik, Wirtschaftsingenieurwesen Studiegag Modul Art der Leistug Klausur-Kezeiche Wirtschaftsigeieurwese Mathematik Prüfugsleistug Datum 4.0.008 WB-WMT-P 0804 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich: Verwede

Mehr

Wirtschaftsingenieurwesen Wirtschaftsmathematik Prüfungsleistung WI-WMT-P Studiengang Fach Art der Leistung Klausur-Knz. Datum

Wirtschaftsingenieurwesen Wirtschaftsmathematik Prüfungsleistung WI-WMT-P Studiengang Fach Art der Leistung Klausur-Knz. Datum Studiegag ach Art der Leistug Klausur-Kz. Wirtschaftsigeieurwese Wirtschaftsmathematik Prüfugsleistug WI-WMT-P 5 Datum..5 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich: Verwede Sie

Mehr

Beachten Sie bitte, dass für den zweiten Teil der Klausur etwa 80 Minuten Bearbeitungszeit erforderlich

Beachten Sie bitte, dass für den zweiten Teil der Klausur etwa 80 Minuten Bearbeitungszeit erforderlich Studiegag Wirtschaftsigeieurwese Schwerpukt Idustrial Maagemet ad Egieerig Art der Leistug Prüfugsleistug Klausur-Kez. WI-IME- P-048 Datum 8..004 Bei jeder Aufgabe ist ebe der Lösug auch der Lösugsweg

Mehr

BERUFSKOLLEG KAUFMÄNNISCHE SCHULEN DES KREISES DÜREN Zweijährige Höhere Handelsschule

BERUFSKOLLEG KAUFMÄNNISCHE SCHULEN DES KREISES DÜREN Zweijährige Höhere Handelsschule BERUFSKOLLEG KAUFMÄNNISCHE SCHULEN DES KREISES DÜREN Zweijährige Höhere Hadelsschule Abschlussprüfug Sommer Fach: MATHEMATIK Bearbeitugszeit: Erlaubte Hilfsmittel: Zeitstude Nicht-programmierbarer Tascherecher

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Studiegag Betriebswirtschaft Fach Wirtschaftsmathematik Art der Leistug Studieleistug Klausur-Kz. BW-WMT-S1 050430 Datum 30.04.005 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich: Verwede

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

Klasse: Platzziffer: Punkte: / Graph zu f

Klasse: Platzziffer: Punkte: / Graph zu f Pflichtteil Mathematik I Aufgabe P Name: Vorame: Klasse: Platzziffer: Pukte: / P.0 Gegebe ist die Fuktio f mit der Gleichug (siehe Zeichug). y x8 y,25 4 mit GI IRIR Graph zu f O x P. x 8 Die Pukte C (x,25

Mehr

Klausur Internes Rechnungswesen Wintersemester 2014/15, Prof. Dr. Jan Schäfer-Kunz, 90 Minuten, Seite 1/10 1 2 3 4 5 6 7 8 9

Klausur Internes Rechnungswesen Wintersemester 2014/15, Prof. Dr. Jan Schäfer-Kunz, 90 Minuten, Seite 1/10 1 2 3 4 5 6 7 8 9 Klausur Iteres Rechugswese Witersemester 2014/15, Prof. Dr. Ja Schäfer-Kuz, 90 Miute, Seite 1/10 1 2 3 4 5 6 7 8 9 Name: Matr.Nr.: Pukte Hilfsmittel Tascherecher Casio FX-87 DE Plus Hiweise zur Bearbeitug

Mehr

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable Allgemeie Lösuge der -dimesioale Laplace-Gleichug ud ihre komplexe Variable Dr. rer. at. Kuag-lai Chao Göttige, de 4. Jauar 01 Abstract Geeral solutios of the -dimesioal Laplace equatio ad its complex

Mehr

Finanzmathematik für HAK

Finanzmathematik für HAK Fiazmathematik für HAK Dr.Mafred Gurter 2008. Kapitalverzisug bei der Bak mit lieare (eifache) Zise währed des Jahres Beispiel : Ei Kapital vo 3000 wird mit 5% für 250 Tage verzist. Wie viel bekommt ma

Mehr

3. Tilgungsrechnung. 3.1. Tilgungsarten

3. Tilgungsrechnung. 3.1. Tilgungsarten schreier@math.tu-freiberg.de 03731) 39 2261 3. Tilgugsrechug Die Tilgugsrechug beschäftigt sich mit der Rückzahlug vo Kredite, Darlehe ud Hypotheke. Dabei erwartet der Gläubiger, daß der Schulder seie

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

Wirtschaftsingenieurwesen. Klausur-Kennzeichen WB-WMT-S Datum

Wirtschaftsingenieurwesen. Klausur-Kennzeichen WB-WMT-S Datum Studiengang Wirtschaftsingenieurwesen Modul Mathematik Art der Leistung Studienleistung Klausur-Kennzeichen WB-WMT-S 868 Datum 8.6.8 Bezüglich der Anfertigung Ihrer Arbeit sind folgende Hinweise verbindlich:

Mehr

2. Diophantische Gleichungen

2. Diophantische Gleichungen 2. Diophatische Gleichuge [Teschl05, S. 91f] 2.1. Was ist eie diophatische Gleichug ud wozu braucht ma sie? Def D2-1: Eie diophatische Gleichug ist eie Polyomfuktio i x,y,z,, bei der als Lösuge ur gaze

Mehr

Klausur Grundlagen der Investition und Finanzierung

Klausur Grundlagen der Investition und Finanzierung Fachhochschule Bochum /Fachhochschule Müster /Fachhochschule Südwestfale (Weiterbildeder) Verbudstudiegag Techische Betriebswirtschaft Prof. Dr. Wolfgag Hufagel / Prof. Dr. Wifried Rimmele/ Fachhochschule

Mehr

Diesen Grenzwert nennt man partielle Ableitung von f nach x i und

Diesen Grenzwert nennt man partielle Ableitung von f nach x i und Bevor wir zum ächste Kapitel übergehe, werde wir de Begri eier Fuktio i mehrere Variable eiführe. Eie Fuktio vo Variable ist eie Vorschrift, die jedem Pukt (x 1,x,...,x ) eier Teilmege D des IR eie bestimmte

Mehr

Abschlussprüfung 2012 an den Realschulen in Bayern

Abschlussprüfung 2012 an den Realschulen in Bayern Prüfugsdauer: 150 Miute Abschlussprüfug 01 a de Realschule i Bayer Mathematik II Aufgabe B 1 Haupttermi B 1.0 Die Parabel p verläuft durch die Pukte P( 5 19) ud Q(7 5). Sie hat eie Gleichug der Form y

Mehr

n=0 f(x) = log(1 + x) = n=1

n=0 f(x) = log(1 + x) = n=1 Potez - Reihe Machmal ist es praktisch eie Fuktio f() mir Hilfe ihrer Potezreihe auszudrücke. Eie Potezreihe um de Etwicklugspukt 0 sieht im Allgemeie so aus a ( 0 ) Fuktioe, für die eie Potezreihe eistiert,

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate Methode der kleiste Quadrate KAPITEL 5: REGRESSIONSRECHNUNG Die Methode der kleiste Quadrate (MklQ) ist ei Verfahre zur Apassug eier Fuktio a eie Puktwolke. Agewadt wird sie beispielsweise, um eie Gesetzmäßigkeit

Mehr

Mathematik. Vorlesung im Bachelor-Studiengang Business Administration (Modul BWL 1A) an der FH Düsseldorf im Wintersemester 2008/09

Mathematik. Vorlesung im Bachelor-Studiengang Business Administration (Modul BWL 1A) an der FH Düsseldorf im Wintersemester 2008/09 Mathematik Vorlesug im Bachelor-Studiegag Busiess Admiistratio (Modul BWL A) a der FH Düsseldorf im Witersemester 2008/09 Dozet: Dr. Christia Kölle Teil I Fiazmathematik, Lieare Algebra, Lieare Optimierug

Mehr

Musterlösung zu Übungsblatt 2

Musterlösung zu Übungsblatt 2 Prof. R. Padharipade J. Schmitt C. Schießl Fuktioetheorie 25. September 15 HS 2015 Musterlösug zu Übugsblatt 2 Aufgabe 1. Reelle Fuktioe g : R R stelle wir us üblicherweise als Graphe {(x, g(x)} R R vor.

Mehr

Aufgaben und Lösungen der Probeklausur zur Analysis I

Aufgaben und Lösungen der Probeklausur zur Analysis I Fachbereich Mathematik AG 5: Fuktioalaalysis Prof. Dr. K.-H. Neeb Dipl.-Math. Rafael Dahme Dipl.-Math. Stefa Wager ATECHNISCHE UNIVERSITÄT DARMSTADT SS 007 19. Jui 007 Aufgabe ud Lösuge der Probeklausur

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 1

Technische Universität München Zentrum Mathematik. Übungsblatt 1 Techische Uiversität Müche Zetrum Mathematik Mathematik (Elektrotechik) Prof. Dr. Ausch Taraz Dr. Michael Ritter Übugsblatt Hausaufgabe Aufgabe. Bestimme Sie de Kovergezbereich M der folgede Reihe für

Mehr

Kunde. Kontobewegung

Kunde. Kontobewegung Techische Uiversität Müche WS 2003/04, Fakultät für Iformatik Datebaksysteme I Prof. R. Bayer, Ph.D. Lösugsblatt 4 Dipl.-Iform. Michael Bauer Dr. Gabi Höflig 17.11. 2003 Abbildug E/R ach relatioal - Beispiel:

Mehr

Nachklausur - Analysis 1 - Lösungen

Nachklausur - Analysis 1 - Lösungen Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:

Mehr

Abschlussprüfung 2013 an den Realschulen in Bayern

Abschlussprüfung 2013 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 03 a de Realschule i Bayer Mathematik II Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A Haupttermi A 0 Die ebestehede kizze zeigt de Axialschitt eier massive

Mehr

Übungsaufgaben mit Lösungen zur Analysis und linearen Algebra

Übungsaufgaben mit Lösungen zur Analysis und linearen Algebra Übugsaufgabe mit Lösuge zur ud lieare Algebra Fuktioe mit eier uabhägige Variable, Folge ud Reihe ) Bilde Sie die. Ableitug der folgede Fuktioe: a) f (x) = (x 7 + 5x + 4) 0 = f (x) = 0(x 7 + 5x + 4) 9

Mehr

Lerneinheit 2: Grundlagen der Investition und Finanzierung

Lerneinheit 2: Grundlagen der Investition und Finanzierung Lereiheit 2: Grudlage der Ivestitio ud Fiazierug 1 Abgrezug zu de statische Verfahre Durchschittsbetrachtug wird aufgegebe Zeitpukt der Zahlugsmittelbewegug explizit berücksichtigt exakte Erfassug der

Mehr

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v Tao De / Pa JiaWei Ihrig/Pflaumer Fiazmathematik Oldeburg Verlag 1999 1..Ei Darlehe vo. DM soll moatlich mit 1% verzist ud i Jahre durch kostate Auitäte getilgt werde. Wie hoch sid a) die Moatsrate? b)

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Rolad Speicher M.Sc. Tobias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 01 Musterlösug zu Blatt 0 Aufgabe 1. Käpt Schwarzbart,

Mehr

Bachelor Betriebswirtschaft

Bachelor Betriebswirtschaft Name, Vorname Matrikel-Nr. Studienzentrum Studiengang Bachelor Betriebswirtschaft Modul Operations Research Art der Leistung Prüfungsleistung Klausur-Kennzeichen WI-OPR-P12-090606 Datum 06.06.2009 Ausgegebene

Mehr

Übungsaufgaben zu Analysis 1 Lösungen von Blatt XII vom sin(nx) n sin(x). sin(ax) a sin(x) z = re iϕ = r(cos(ϕ) + i sin(ϕ)) z n = w

Übungsaufgaben zu Analysis 1 Lösungen von Blatt XII vom sin(nx) n sin(x). sin(ax) a sin(x) z = re iϕ = r(cos(ϕ) + i sin(ϕ)) z n = w Prof. Dr. Moritz Kaßma Fakultät für Mathematik Witersemester 04/05 Uiversität Bielefeld Übugsaufgabe zu Aalysis Lösuge vo Blatt XII vom 5.0.5 Aufgabe XII. 3 Pukte) Beweise Sie, dass für alle R ud N die

Mehr

Abschlussprüfung 2010 an den Realschulen in Bayern

Abschlussprüfung 2010 an den Realschulen in Bayern Lösugsmuster ud Bewertug Miute Abschlussprüfug a de Realschule i Bayer Mathematik I Aufgabe A - Haupttermi FUNKTIONEN A. y k = y = y + + ; k \{} 55 + 5= k k \{} K k =,999874 IL = {,999874} Fuktiosgleichug:

Mehr

Aufgaben zur Übung und Vertiefung

Aufgaben zur Übung und Vertiefung Aufgabe zur Übug ud Vertiefug ARITHMETISCHE ZAHLENFOLGEN Berufliches Gymasium / Uterstufe () Stelle Sie fest, welche der gegebee Folge arithmetisch sid: Bestimme Sie zuächst die erste füf Folgeglieder,

Mehr

Abschlussprüfung 2008 an den Realschulen in Bayern

Abschlussprüfung 2008 an den Realschulen in Bayern Abschlussprüfug 8 a de Realschule i Bayer Mathematik I Haupttermi Aufgabe A Lösugsmuster ud Bewertug FUNKTIONEN A. ID f { > } Gleichug der Asymptote h: GI y Graph zu f C C D M B Graph zu f D M B A O A

Mehr

Repetitionsaufgaben Potenzfunktionen

Repetitionsaufgaben Potenzfunktionen Repetitiosaufgabe Potezfuktioe Ihaltsverzeichis A) Vorbemerkuge/Defiitio 1 B) Lerziele 1 C) Etdeckuge (Graphe) 2 D) Zusammefassug 7 E) Bedeutug der Parameter 7 F) Aufgabe mit Musterlösuge 9 A) Vorbemerkuge

Mehr

Klausur zum Grundkurs Höhere Mathematik I

Klausur zum Grundkurs Höhere Mathematik I Korrektur 6.06.06:.,3. ; 7.07.06: 3. Name, Vorame: Studiegag: Matrikelummer: 3 4 5 6 Z Pukte Note Klausur zum Grudkurs Höhere Mathematik I für BNC, GtB, MB, EC, TeM, VT, KGB, WWT, ESM, FWK, BGi, WiW 0.

Mehr

Beurteilung des Businessplans zur Tragfähigkeitsbescheinigung

Beurteilung des Businessplans zur Tragfähigkeitsbescheinigung Fachkudige Stellugahme Beurteilug des Busiessplas zur Tragfähigkeitsbescheiigug Name Datum Has Musterma 7. Oktober 2015 Wilfried Orth Grüdugsberatug Stadort Würzburg: Stadort Stuttgart: Waldleite 9a Möhriger

Mehr

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I Uiversität des Saarlades Fakultät für Mathematik ud Iformatik Witersemester 2003/04 Prof. Dr. Joachim Weickert Dr. Marti Welk Dr. Berhard Burgeth Lösuge der Aufgabe zur Vorbereitug auf die Klausur Mathematik

Mehr

FINANZMATHEMATIK. 1. Zinsen und Zinseszinsen. Finanzmathematik 81

FINANZMATHEMATIK. 1. Zinsen und Zinseszinsen. Finanzmathematik 81 Fiazmathematik 8 FINANZMATHEMATIK. Zise ud Ziseszise Die Zise als Preis für die Zurverfügugstellug vo Geld bilde das zetrale Elemet i der Fiazmathematik. Hierbei sid verschiedee Arte der Verzisug zu uterscheide.

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Studiengang Wirtschaftsingenieurwesen Fach Wirtschaftsmathematik Art der Leistung Studienleistung Klausur-Knz WI-WMT-S1 543 Datum 345 Bezüglich der Anfertigung Ihrer Arbeit sind folgende Hinweise verbindlich:

Mehr

3 Die Außenfinanzierung durch Fremdkapital (Kreditfinanzierung)

3 Die Außenfinanzierung durch Fremdkapital (Kreditfinanzierung) 3 Die Außefiazierug durch Fremdkapital (Kreditfiazierug) 3.1 Die Charakteristika ud Forme der Kreditfiazierug Aufgabe 3.1: Idealtypische Eigeschafte vo Eige- ud Fremdkapital Stelle Sie die idealtypische

Mehr

Skript Mathematik. Inhaltsverzeichnis

Skript Mathematik. Inhaltsverzeichnis Skript Mathematik Ihaltsverzeichis Folge ud Reihe.... Arithmetische Folge ud Reihe.... Geometrische Folge ud Reihe.... Aufgabe... Zis- ud Ziseszisrechug...4. Eifache Verzisug...4. Ziseszisrechug...5. Gemischte

Mehr

1 Analysis T1 Übungsblatt 1

1 Analysis T1 Übungsblatt 1 Aalysis T Übugsblatt A eier Weggabelug i der Wüste lebe zwei Brüder, die vollkomme gleich aussehe, zwische dee es aber eie gewaltige Uterschied gibt: Der eie sagt immer die Wahrheit, der adere lügt immer.

Mehr

Kennzeichen: Die Berechnungsbasis bleibt während der gesamten Verzinsungsdauer unverändert (lineares Wachstum)

Kennzeichen: Die Berechnungsbasis bleibt während der gesamten Verzinsungsdauer unverändert (lineares Wachstum) 5. Fiazmathematik 5.1. Zis- ud Ziseszisrechug 5.1.1. Eifache Verzisug Kezeiche: Die Berechugsbasis bleibt währed der gesamte Verzisugsdauer uverädert (lieares Wachstum) Die Verzisug wird ach dem Zeitpukt

Mehr

Abschlussprüfung 2011 an den Realschulen in Bayern

Abschlussprüfung 2011 an den Realschulen in Bayern Lösugsmuster ud Bewertug Abschlussprüfug 0 a de Realschule i Bayer Mathematik I Aufgabe A - Nachtermi FUNKTIONEN A. x + + y=,05 GI = 0 0 K A. 6 y=,05 y=,0 Am Ede des sechste Tages ware vo Bakterie bedeckt.

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8. Übugsblatt Aufgabe mit Lösuge Aufgabe 36: Bestimme Sie alle z C, für die die folgede Potezreihe kovergiere: z z a, b! +, c z +. = = Lösug 36: Wir bezeiche de Kovergezradius mit r. a Wir wede das Quotietekriterium

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker I (Witersemester 00/004) Aufgabeblatt 7 (5. Dezember

Mehr

n 2(a + bx i y i ) = 0 und i=1 n 2(a + bx i y i )x i = 0 i=1 gilt. Aus diesen beiden Gleichungen erhalten wir nach wenigen einfachen Umformungen

n 2(a + bx i y i ) = 0 und i=1 n 2(a + bx i y i )x i = 0 i=1 gilt. Aus diesen beiden Gleichungen erhalten wir nach wenigen einfachen Umformungen Regressio Dieser Text rekapituliert die i der Aalsis ud Statistik wohlbekate Methode der kleiste Quadrate, auch Regressio geat, zur Bestimmug vo Ausgleichsgerade Regressiosgerade ud allgemei Ausgleichpolome.

Mehr

und wird als n-dimensionaler (reeller) Vektorraum bezeichnet. heißt der von v 1,..., v k aufgespannte Unterraum des R n.

und wird als n-dimensionaler (reeller) Vektorraum bezeichnet. heißt der von v 1,..., v k aufgespannte Unterraum des R n. Reeller Vektorraum Kapitel Vektorräume Die Mege aller Vektore x mit Kompoete bezeiche wir mit x R =. : x i R, i x ud wird als -dimesioaler (reeller) Vektorraum bezeichet. Defiitio Ei Vektorraum V ist eie

Mehr

1 = 1. 6 Induktionsannahme: Die Formal gelte für n = k. Induktionsschritt: Gültigkeit der Formel für k+1: 1 2 + 2 2 +... + k 2 + (k + 1) 2 = 2 = 6 = 6

1 = 1. 6 Induktionsannahme: Die Formal gelte für n = k. Induktionsschritt: Gültigkeit der Formel für k+1: 1 2 + 2 2 +... + k 2 + (k + 1) 2 = 2 = 6 = 6 65 Eric Müller Vollstädige Iduktio Nach GIUSEPPE PEANO (858-93) ka ma die Mege N der atürliche Zahle durch folgede Axiome defiiere []:. ist eie atürliche Zahl.. Zu jeder atürliche Zahl gibt es geau eie

Mehr

Langrange-Multiplikators und Hinreichende Bedingungen

Langrange-Multiplikators und Hinreichende Bedingungen Albert Ludwigs Uiversität Freiburg Abteilug Empirische Forschug ud Ökoometrie Mathematik für Wirtschaftswisseschaftler Dr. Sevtap Kestel Witer 008 10. November 008 14.-4 Lagrage-Multiplikators ud Hireichede

Mehr

Übungsblatt 1 zur Vorlesung Angewandte Stochastik

Übungsblatt 1 zur Vorlesung Angewandte Stochastik Dr Christoph Luchsiger Übugsblatt 1 zur Vorlesug Agewadte Stochastik Repetitio WT Herausgabe des Übugsblattes: Woche 9, Abgabe der Lösuge: Woche 1 (bis Freitag, 1615 Uhr), Rückgabe ud Besprechug: Woche

Mehr

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist. Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,

Mehr

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer vo Prof. Dr. Ig. Dirk Rbe FH Emde/Leer Überblick: Folge ud Reihe Folge: Zhlefolge ( ) ; ; ; ist eie geordete Liste vo Zhle ( IN) : Glieder der Folge f(): Bildugsgesetz (eplizit i oder rekursiv) z.b.: (

Mehr

... a ik) i=1...m, k=1...n A = = ( a mn

... a ik) i=1...m, k=1...n A = = ( a mn Zurück Stad: 4..6 Reche mit Matrize I der Mathematik bezeichet ma mit Matrix im Allgemeie ei rechteckiges Zahleschema. I der allgemeie Darstellug habe die Zahle zwei Idizes, de erste für die Zeileummer,

Mehr

Finanzwirtschaftliche Formeln

Finanzwirtschaftliche Formeln Bueffelcoach Olie Service Bilazbuchhalter Übersichte Fiazwirtschaft Fiazwirtschaftliche Formel AuF Aufzisugsfaktor ( 1+ i) Zist eie heutige Wert mit Zis ud Ziseszis für Jahre auf, hilft also bei der Frage,

Mehr

Transformator. n Windungen

Transformator. n Windungen echische iversität Dresde stitut für Ker- ud eilchephysik R. Schwierz V/5/29 Grudpraktikum Physik Versuch R rasformator rasformatore werde i viele ereiche der Elektrotechik ud Elektroik eigesetzt. Für

Mehr

4. Vektorräume mit Skalarprodukt

4. Vektorräume mit Skalarprodukt 4. Vektorräume mit Skalarprodukt Wiederholug: V=R x, y R: x= x x i x, y= y y, :R R R Skalarprodukt Stadardskalarprodukt lieare Abbildug mit 2 Argumete 4. Eigeschafte vo Skalarprodukte Def.: Es sei V ei

Mehr

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i D. Reterechug 1.1. Jährliche Retezahluge 1.1.1. Vorschüssige Retezahluge Ausgagspukt: Über eie edliche Zeitraum wird aus eiem Kapital (Retebarwert RBW v,i ), das ziseszislich agelegt ist, jeweils zu Begi

Mehr

provadis School of International Managemet & Technology

provadis School of International Managemet & Technology Testvorbereitug Mathematik, V9 Prof. Dr. L. Eicher provadis School of Iteratioal Maagemet & Techology Hiweis: Alle Aufgabe sid ohe Hilfsmittel zu löse.. Bereche Sie: a 7, b, c, d, e 7, f 4. Kürze Sie ud

Mehr

Kapitel XI - Korrelationsrechnung

Kapitel XI - Korrelationsrechnung Istitut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökoometrie ud Statistik Kapitel XI - Korrelatiosrechug Deskriptive Statistik Prof. Dr. W.-D. Heller Hartwig Seska Carlo Siebeschuh Aufgabe der Korrelatiosrechug

Mehr

Klausuraufgaben, Prüfungsleistung 06/08, Wirtschaftsmathematik, Betriebswirtschaft

Klausuraufgaben, Prüfungsleistung 06/08, Wirtschaftsmathematik, Betriebswirtschaft Studiengang Modul Art der Leistung Klausur-Kennzeihen Betriebswirtshat Wirtshatsmathematik Prüungsleistung Datum.6.8 BB-WMT-P 86 Bezüglih der Anertigung Ihrer Arbeit sind olgende Hinweise verbindlih: Verwenden

Mehr

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008 Stochasti ud ihre Didati Refereti: Iris Wiler 10.11.2008 Aufgabe: Führe Sie i der Seudarstufe II die Biomialoeffiziete als ombiatorisches Azahlproblem ei. Erarbeite Sie mit de Schülerie ud Schüler mithilfe

Mehr

Geometrische Folgen. Auch Wachstumsfolgen Viele Aufgaben. Lösungen nur auf der Mathe-CD Hier nur Ausschnitte. Datei Nr

Geometrische Folgen. Auch Wachstumsfolgen Viele Aufgaben. Lösungen nur auf der Mathe-CD Hier nur Ausschnitte. Datei Nr ZAHLENFOLGEN Teil Geometrische Folge Auch Wachstumsfolge Viele Aufgabe Lösuge ur auf der Mathe-CD Hier ur Ausschitte Datei Nr. 00 Friedrich Buckel März 00 Iteretbibliothek für Schulmathematik 00 Geometrische

Mehr

Michael Buhlmann Mathematik > Analysis > Newtonverfahren

Michael Buhlmann Mathematik > Analysis > Newtonverfahren Michael Buhlma Mathematik > Aalysis > Newtoverfahre Eie Abbildug {a }: N -> R, die jeder atürliche Zahl eie reelle Zahl a zuordet, heißt (uedliche (Zahle- Folge: -> a oder {a } εn, a das -te Folgeglied.

Mehr

Höhere Finanzmathematik. Sehr ausführliches Themenheft (d. h. mit Theorie) Aber auch mit vielen Trainingsaufgaben

Höhere Finanzmathematik. Sehr ausführliches Themenheft (d. h. mit Theorie) Aber auch mit vielen Trainingsaufgaben Expoetielles Wachstum Höhere Fiazmathematik Sehr ausführliches Themeheft (d. h. mit Theorie) Aber auch mit viele Traiigsaufgabe Es hadelt sich um eie Awedug vo Expoetialfuktioe (Wachstumsfuktioe) Datei

Mehr

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel:

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel: E Tilgugsrechug.. Jährliche Raeilgug Ausgagspuk: Bei Raeilgug wird die chuldsumme (Newer des Kredis [Aleihe, Hypohek, Darleh]) i gleiche Teilberäge T geilg. Die Tilgugsrae läss sich ermiel als: T =.. Jährliche

Mehr

beck-shop.de 2. Online-Marketing

beck-shop.de 2. Online-Marketing beck-shop.de 2. Olie-Marketig aa) Dateschutzrechtliche Eiwilligug immer erforderlich Ohe Eiwilligug des Nutzers ist eie Erhebug persoebezogeer Date icht zulässig. Eie derartige Eiwilligug ka auch icht

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 8/9 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum. Übugsblatt

Mehr

FormelnfürdieAnzahlmöglicherQuadrateaufn*nSpielfeldern

FormelnfürdieAnzahlmöglicherQuadrateaufn*nSpielfeldern Modrago Formel Herleitug, Azahl Quadrate ud Differeze 01.doc 1 FormelfürdieAzahlmöglicherQuadrateauf*Spielfelder Mit Erläuteruge zur Ableitug der Formel vo Dr. Volker Bagert Berli, 11.03.010 Ihaltsverzeichis

Mehr

Höhere Mathematik I für die Fachrichtung Physik

Höhere Mathematik I für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Sebastia Schwarz SS 5 7.9.5 Höhere Mathematik I für die Fachrichtug Physik Lösugsvorschläge zur Bachelor-Modulprüfug

Mehr

Versicherungstechnik

Versicherungstechnik Operatios Research ud Wirtschaftsiformati Prof. Dr. P. Recht // Dipl.-Math. Rolf Wedt DOOR Versicherugstechi Übugsblatt 3 Abgabe bis zum Diestag, dem 03..205 um 0 Uhr im Kaste 9 Lösugsvorschlag: Vorbereituge

Mehr

Innerbetriebliche Leistungsverrechnung

Innerbetriebliche Leistungsverrechnung Ierbetriebliche Leistugsverrechug I der Kostestellerechug bzw. im Betriebsabrechugsboge (BAB ist ach der Erfassug der primäre Kostestellekoste das Ziel, die sekudäre Kostestellekoste, also die Koste der

Mehr

Abschlussprüfung 2014 an den Realschulen in Bayern

Abschlussprüfung 2014 an den Realschulen in Bayern Prüfugsdauer: 150 Miute Name: Abschlussprüfug 014 a de Realschule i ayer Mathematik II Vorame: Klasse: Platzziffer: Pukte: Aufgabe A 1 Nachtermi A 10 Agler verwede sogeate Schwimmer, die a der Agelschur

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

Übersicht. Datenstrukturen und Algorithmen. Rekursionsgleichungen. Übersicht. Vorlesung 6: Mastertheorem (K4) Joost-Pieter Katoen

Übersicht. Datenstrukturen und Algorithmen. Rekursionsgleichungen. Übersicht. Vorlesung 6: Mastertheorem (K4) Joost-Pieter Katoen Übersicht Datestrukture ud Algorithme Vorlesug 6: (K) Joost-Pieter Katoe Lehrstuhl für Iformatik 2 Software Modelig ad Verificatio Group 1 Substitutiosmethode Rekursiosbäume http://moves.rwth-aache.de/teachig/ss-15/dsal/

Mehr

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares 4 6 Fachgebiet Regelugstechik Leiter: Prof. Dr.-Ig. Joha Reger Kleies Matrix-ABC 1 Eleetares Eie ( )-Matrix ist eie rechteckige Aordug vo reelle oder koplexe Zahle a ij (auch Skalare geat) ud besteht aus

Mehr

A 2. Abb. 1: Analogon zum rechtwinkligen Dreieck

A 2. Abb. 1: Analogon zum rechtwinkligen Dreieck Has Walser, [0076], [0080] Verallgemeierug des Satzes vo Pythagoras Hiweis: H. Sch., W. Im Raum. Aalogo zum rechtwiklige Dreieck Wir ersetze de zweidimesioale rechte Wikel durch eie Raumecke, wie sie bei

Mehr

WS 2000/2001. zeitanteiliger nomineller Jahreszinssatz für eine unterjährige Verzinsungsperiode bei einfachen Zinsen

WS 2000/2001. zeitanteiliger nomineller Jahreszinssatz für eine unterjährige Verzinsungsperiode bei einfachen Zinsen Aufgabe 1: WS 2000/2001 Aufgabe 1: (4 P (4 Pukte) Gebe Sie die Formel zur Bestimmug des relative sowie des koforme Zissatzes a ud erläuter Sie die Uterschiede bzw. Gemeisamkeite der beide Zisfüße. Lösug:

Mehr

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst.

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst. Krytologie: Krytograhie ud Krytoaalyse Krytologie ist die Wisseschaft, die sich mit dem Ver- ud Etschlüssel vo Iformatioe befasst. Beisiel Iteretkommuikatio: Versiegel (Itegrität der Nachricht) Sigiere

Mehr

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S Statistik mit Excel 2013 Peter Wies Theme-Special 1. Ausgabe, Februar 2014 W-EX2013S 3 Statistik mit Excel 2013 - Theme-Special 3 Statistische Maßzahle I diesem Kapitel erfahre Sie wie Sie Date klassifiziere

Mehr

Index. Majorante, 24 Minorante, 23. Partialsumme, 17

Index. Majorante, 24 Minorante, 23. Partialsumme, 17 Folge, Reihe Idex Kovergezkriterie Hauptkriterium, Leibiz-Kriterium, Majoratekriterium, 4 Mioratekriterium, otwediges Kriterium, 0 Quotietekriterium, teleskopierede Summe, Wurzelkriterium, Majorate, 4

Mehr

Musteraufgaben mit Lösungen zur Zinseszins- und Rentenrechnung

Musteraufgaben mit Lösungen zur Zinseszins- und Rentenrechnung Musteaufgabe mit Lösuge zu Ziseszis- ud Reteechug Dieses Dokumet ethält duchgeechete Musteaufgabe zu Ziseszis- ud Reteechug mit Lösuge, die ma mit eiem hadelsübliche Schultascheeche (mit LO- ud y x -Taste

Mehr

Zur Definition. der wirksamen. Wärmespeicherkapazität

Zur Definition. der wirksamen. Wärmespeicherkapazität Ao. Uiv. Prof. Dipl.-Ig. Dr. tech. Klaus Kreč, Büro für Bauphysik, Schöberg a Kap, Österreich Zur Defiitio der wirksae Wärespeicherkapazität vo Ao. Uiv. Prof. Dipl.-Ig. Dr. tech. Klaus Kreč Büro für Bauphysik

Mehr

Calmet Calibration. Calmet C300 Der Kalibrator für nicht sinusförmige Signalverläufe - Oberwellen Erweiterte Spezifikationen.

Calmet Calibration. Calmet C300 Der Kalibrator für nicht sinusförmige Signalverläufe - Oberwellen Erweiterte Spezifikationen. C300 Der Kalibrator für icht siusförmige Sigalverläufe - Oberwelle Erweiterte Spezifikatioe Calibratio Awedugsbericht Was bedeutet Leistugs-/Eergiekalibrierug bei icht siusförmige Ströme/Spauge Elektrische

Mehr

Kapitel 6: Statistische Qualitätskontrolle

Kapitel 6: Statistische Qualitätskontrolle Kapitel 6: Statistische Qualitätskotrolle 6. Allgemeies Für die Qualitätskotrolle i eiem Uterehme (produzieredes Gewerbe, Diestleistugsuterehme, ) gibt es verschiedee Möglichkeite. Statistische Prozesskotrolle

Mehr

Abschlussprüfung 2011 an den Realschulen in Bayern

Abschlussprüfung 2011 an den Realschulen in Bayern Lösugsmuster ud Bewertug Abschlussprüfug a de Realschule i Bayer Mathematik I Aufgabe A - Haupttermi FUNKTIONEN A. + + y,5 GI K A. y,5 y 95,5 Am Ede des dritte Versuchstages ist die Azahl der Wasserflöhe

Mehr

. Mit dem Unit Hydrograph (U) und gegebenen Niederschlägen (P) kann der Direktabfluss für jeden Zeitpunkt n berechnet werden. Dies erfolgt nach:

. Mit dem Unit Hydrograph (U) und gegebenen Niederschlägen (P) kann der Direktabfluss für jeden Zeitpunkt n berechnet werden. Dies erfolgt nach: Kursuterlage zum BSc Studiegag Geographie, FSU Jea, Modul 4 Die Eiheitsgagliie, Uit Hydrograph Eiheitsgagliie (Uit Hydrograph) Defiitio der Eiheitsgagliie Die Eiheitsgagliie (egl. uit hydrograph, Sherma

Mehr

Klausur - Mantelbogen

Klausur - Mantelbogen Klausur - Mantelbogen Name, Vorname Matrikel-Nr. Studienzentrum Fach Art der Leistung Klausur-Knz. Datum 7.04.99 Wirtschaftsmathematik Prüfungsleistung BW-WMT-P-99047 Verwenden Sie ausschließlich das vom

Mehr

Abiturprüfug Mathematik 008 Bade-Württemberg (ohe CAS) Wahlteil - Aufgabe Aalysis I Aufgabe I.: Ei Tal i de Berge wird ach Weste vo eier steile Felswad, ach Oste vo eiem flache Höhezug begrezt. Der Querschitt

Mehr