3. Landeswettbewerb Mathematik Bayern 2. Runde 2000/ Aufgaben und Lösungsbeispiele

Größe: px
Ab Seite anzeigen:

Download "3. Landeswettbewerb Mathematik Bayern 2. Runde 2000/ Aufgaben und Lösungsbeispiele"

Transkript

1 . Landeswettbewerb Mathematik ayern. Runde 000/001 - ufgaben und Lösungsbeispiele ufgabe 1 uf einer Tafel stehen 40 positive, ganze Zahlen in acht Zeilen und fünf Spalten angeordnet. Die Zahlen dürfen nur auf folgende zwei rten abgeändert werden: (Z) (S) lle Zahlen einer Zeile werden verdoppelt. lle Zahlen einer Spalte werden um 1 vermindert. Kann man so erreichen, dass 40-mal die Zahl Null auf der Tafel steht? Lösung Man kann erreichen, dass 40-mal die Zahl Null auf der Tafel steht. Das folgende Verfahren hat zunächst das Ziel, schrittweise alle Zahlen einer beliebigen Spalte auf Null zu bringen. eschrieben wird nun das Verfahren für die i te Spalte ( i = ) : n sei die kleinste positive ganze Zahl, die in der i ten Spalte vorkommt. Diese Zahl kann möglicherweise in mehreren Feldern der Spalte vorkommen. Schritt 1: Man wendet (n 1)-mal die Umformungsregel (S) auf die i te Spalte an. Dadurch werden alle Zahlen der Spalte um n 1 vermindert. Die Felder, in denen die Zahl n stand, enthalten nun jeweils eine Eins. lle anderen Felder enthalten Zahlen größer als 1. Schritt : Man wendet die Umformungsregel (Z) einmal auf diejenigen Zeilen an, deren Felder in der i ten Spalte eine Eins enthalten. Die Felder der i ten Spalte, die eine Eins enthielten, enthalten nach Schritt jeweils eine Zwei, der Inhalt aller anderen Felder der Spalte bleibt unverändert. Schritt : Man wendet die Umformungsregel (S) einmal auf die i te Spalte an. Nun stehen in den gleichen Feldern wie nach Schritt 1 wiederum Einsen. In allen anderen Feldern haben sich die Zahlen um 1 vermindert. Möglicherweise sind dadurch in der i ten Spalte weitere Felder mit Einsen hinzugekommen. Schritt 4: Man wiederholt Schritt und Schritt so lange, bis in allen Feldern der i ten Spalte nur Einsen stehen. Dies ist möglich, da sich mit jeder Durchführung der Schritte und in der i ten Spalte alle Zahlen, die größer als 1 sind, um 1 vermindern und alle Felder mit Einsen nach diesen beiden Schritten wieder eine Eins enthalten. Schritt 5: Man wendet die Umformungsregel (S) einmal auf die i te Spalte an. Nun steht in allen Feldern der Spalte die Zahl Null. Mit diesem Verfahren bearbeitet man nacheinander alle fünf Spalten. Da eine Umformung nach der Regel (Z) sich nicht auf ein Feld auswirkt, in dem die Zahl Null steht, bleiben bereits bearbeitete Spalten unverändert. Nach endlich vielen Schritten steht 40-mal die Zahl Null auf der Tafel.. LWM 000/ Runde Lösungsbeispiele Seite 1

2 ufgabe In einem Dreieck wird durch den Mittelpunkt M der Seite [] die Senkrechte zur Winkelhalbierenden w gezeichnet. Sie schneidet die Gerade im Punkt X und die Gerade im Punkt Y. eweise: X = Y. Vorbemerkung: Wenn das Dreieck gleichschenklig ist mit der asis [], dann ist die Mittelsenkrechte von [] gleichzeitig auch die Winkelhalbierende. Die Orthogonale zur Winkelhalbierenden durch den Mittelpunkt der Strecke [] ist dann die Gerade. Die Punkte X und Y stimmen in diesem Fall mit dem Punkt bzw. überein. Die Strecken [X] und [Y] haben dann die Länge 0. ei den folgenden Lösungen wird vorausgesetzt, dass im Dreieck die Seiten [] und [] nicht gleich lang sind. ußerdem wird angenommen, dass [] die längere Seite sei. 1. Lösung Im Dreieck wird die Halbierende des Winkels gezeichnet. Die Orthogonale zu dieser Winkelhalbierenden durch den Mittelpunkt M der Strecke [] schneidet die Geraden und in den Punkten X und Y. Das Dreieck MY wird am Punkt M gespiegelt. Dabei fällt auf, M bleibt fest, der ildpunkt von Y sei Y'. Y' liegt auf der Geraden XY. uf Grund der bbildungseigenschaften der Punktspiegelung gilt: Y ' X 90 M 90 Y (1) Y = Y' () YM = Y' M = 90 - Die Winkel MX und Y'X sind Scheitelwinkel und deshalb gleich groß. Es gilt also auch MX = Y' X = Wegen der übereinstimmenden Größe der Winkel Y'X und Y'X ist das Dreieck XY' gleichschenklig mit der asis [XY']. Die Schenkel [X] und [Y'] sind gleich lang. Wegen Eigenschaft (1) gilt also X = Y' = Y.. Lösung S sei der Schnittpunkt der Winkelhalbierenden w mit der Geraden XY. Das Dreieck XS ist nach dem Kongruenzsatz WSW kongruent zum Dreieck YS, da S = S XS = SY = / und SX = YS = 90 o gilt. Daher ist auch YX = YX (*). Die Parallele ( Hilfslinie ) zu durch schneidet XY in N. Nach dem Kongruenzsatz WSW ist das Dreieck MX kongruent zum Dreieck MN, da M = M ( nach Voraussetzung ) XM = NM ( Scheitelwinkel ) MX = MN ( Wechselwinkel ). Daher gilt: X = N (**). Wegen der Parallelität der Geraden N und ist YN = YX ( Stufenwinkel ). X M S N Y. LWM 000/ Runde Lösungsbeispiele Seite

3 Wegen (*) gilt YX = YX und damit auch YN = YN, also ist das Dreieck NY gleichschenklig mit asis [NY]. Daher gilt N = Y und wegen (**) auch X = Y. ufgabe Eine zteken-pyramide hat die Form eines Pyramidenstumpfes mit quadratischer Grund- und Deckfläche. Die Grundfläche besitzt eine Kantenlänge von 81 m, die Deckfläche eine Kantenlänge von 1 m. Die Seitenkanten sind 5 m lang. Eine ußentreppe für Touristen führt zur Deckfläche des Pyramidenstumpfs. Sie beginnt an einer Ecke der Grundfläche und überquert jede Seitenfläche genau einmal, bevor sie an einer Ecke der Deckfläche endet. Dabei ist ihre Steigung überall gleich. Welche Entfernungen haben die Punkte, an denen die Treppe die Kanten trifft, von den zugehörigen Eckpunkten der Grundfläche? 1. Lösung Die Seitenflächen des Pyramidenstumpfs sind gleichschenklige Trapeze. Die parallelen Seiten haben die Längen 81 m bzw. 1 m, die Schenkel haben die Länge 5 m. Die Trapezhöhe sei h. Dann ergibt sich für die Länge k: k = ½ (81 m - 1 m) =,5 m. Folglich hat das rechtwinklige Dreieck LF eine Kathete, die halb so lang ist wie die Hypotenuse. Der von dieser Kathete und der Hypotenuse eingeschlossene Winkel hat demnach die Weite 0 0. Die Seitenflächen des Pyramidenstumpfs sind also gleichschenklige Trapeze mit asiswinkeln der Weite 0 0. Vier dieser Trapeze bilden den Mantel des Pyramidenstumpfs. Wegen der asiswinkel mit der Weite 0 0 schneiden sich die Verlängerungen der Trapezschenkel alle in einem Punkt S ebenfalls unter Winkeln der Weite 0 0. Die Dreiecke EFS, FGS, GHS und HES sind demnach gleichseitig mit den Seitenlängen EF = 1 m. Die Treppe beginne in Punkt und sei mit einem Winkel der Weite gegen die Grundkante [] ansteigend. Sie trifft die Kante [F] im Punkt T. Von T aus wird die Treppe unter dem Winkel derselben Weite gegenüber der Grundkante [] fortgesetzt und erreicht die Kante [G] im Punkt U. Entsprechend setzt man die Treppe über die dritte und vierte Seitenfläche des Pyramidenstumpfs fort. Sie trifft die Kante [DH] im Punkt V und die Kante [E] nach Voraussetzung im Punkt E der Deckfläche. Die Dreiecke TS, TUS, UVS und VES sind alle ähnlich, denn sie haben je einen Winkel der Weite 0 0 bei S und je einen Winkel der Weite bei bzw. T bzw. U bzw. V. Folglich gilt: E E S F V H 1 m 81 m G T h F L D 5m k 0 U S : ST = ST : SU und ST : SU = SU : SV und SU : SV = SV : SE. Mit ST = x m, SU = y m und SV = z m erhält man daraus: (1) 81 : x = x : y () x : y = y : z () y : z = z : 1 Gleichung () läßt sich umformen zu ( ) y = z. 1. LWM 000/ Runde Lösungsbeispiele Seite

4 Setzt man ( ) in () ein, so ergibt sich ( ) x = y z z =. 5 Gleichung (1) läßt sich umformen zu (1 ) 81y = x. Setzt man ( ) und ( ) in (1 ) ein, erhält man 81 z z =. 1 5 Dies läßt sich wie folgt umformen: z 4 = z = 4 = 4 Daraus ergibt sich schließlich, dass y = und x = 54. Demzufolge ist T = S x m = 7 m, U = S y m = 45m und DV = SD z m = 57 m.. Lösung Die Treppe beginnt in einer Ecke der Grundfläche D und endet nach ufgabenstellung im Punkt E der Deckfläche EFGH. Die Seitenkanten [E], [F], [G] und [DH] des Pyramiden-stumpfes schneiden sich in der Spitze S der Gesamtpyramide. [F] wird von der Treppe in T, [G] in U und [DH] in V geschnitten. In der Figur ist der Sachverhalt im Grundriss dargestellt. Von den über der Grundebene liegenden Punkten wie E, F usw. hat man die ilder E, F usw. Je kleiner der Winkel = T S ist, desto größer ist der Winkel β = T, desto höher liegt T über der Grundebene und desto kürzer ist der horizontale bstand von zu T, desto steiler verläuft also die Treppe. Entsprechendes gilt für die Wegabschnitte auf den drei anderen Seitenflächen der Pyramide. Wegen der Symmetrie der Pyramide ist muss also U T S = V U S = E V S = sein. Da die Diagonalen im Quadrat zueinander orthogonal sind, sind auch die aufeinanderfolgenden bschnitte der Treppe zueinander orthogonal. D V' H' E' β F' G' U ' T' Nach dem Höhensatz gilt mit t = S'T', u = S' U' und v = S' V' das Gleichungssystem (1) t = S' u () u = t v () v = u S' E' Quadriert man Gleichung (1) und setzt () ein, so ergibt sich t = S' v. Löst man Gleichung (1) nach u auf und setzt in () ein, so erhält man t v = S' E'. S' us diesen beiden Gleichungen eliminiert man v und erhält 4 t = S' S' E' und daraus mit S' = 81m und S' E' = 1m den Wert t = 7 m. Mit den Gleichungen (1) und () ergibt sich ferner u = 18 m und v = 1 m.. LWM 000/ Runde Lösungsbeispiele Seite 4

5 Daraus erhält man T' = S' t = S' t = 7 m und entsprechend U' = 45m sowie DV' = 57 m. Um nun die gesuchten bstände auf den Seitenkanten des Pyramidenstumpfes zu finden, berechnen wir seine Höhe: 81m 1m E ' + E' E = E mit E' = = 5m, also EE' = E' = 5m Das Dreieck E E ist also gleichschenklig-rechtwinklig. Seine Hypotenuse ist mal so lang wie seine Katheten. Dasselbe gilt für die Dreiecke T T, U U und DV V. Daraus folgt das Ergebnis: T = T' = 7 m, U = 45 m und DV = 57 m. ufgabe 4 Zeige: Eine Primzahl p ist genau dann die Differenz von zwei dritten Potenzen ganzer Zahlen, wenn p = ist oder wenn (p-1)/ als Summe n (n N) geschrieben werden kann. Vorbemerkung: Es sind zwei ussagen zu zeigen: " " Wenn eine Primzahl p Differenz von zwei dritten Potenzen ganzer Zahlen ist, dann gilt p = p 1 oder kann als Summe n ( n N) geschrieben werden. p 1 " " Wenn für eine Primzahl p gilt p= oder wenn als Summe n ( n N) geschrieben werden kann, ist p die Differenz von zwei dritten Potenzen ganzer Zahlen. 1. Lösung : Die Primzahl p sei Differenz zweier Kubikzahlen, also p = a b für ganze Zahlen a und b. Da p eine Primzahl ist, kann weder a noch b gleich 0 sein. Wäre a < 0, so müsste auch b < 0 sein, da sonst a b < 0 wäre. Dann ist aber p = a b = ( b) ( a), und somit ist p eine Differenz von positiven Kubikzahlen. Wir können also annehmen, dass a > 0 ist. Es bleiben noch zwei Möglichkeiten: b > 0 bzw. b < 0. Wenn b < 0, so kann man c = b setzen, damit ergibt sich p = a + c. lso ist p die Summe von zwei positiven Kubikzahlen. Wenn b > 0 ist, so p die Differenz von zwei positiven Kubikzahlen. Somit haben wir die beiden folgenden Fälle: Fall 1: p = a + c ist Summe von zwei positiven Kubikzahlen. Für p ergibt sich hier die Zerlegung p = ( a + c)( a ac + c ). Weil p eine Primzahl ist, muss a + c = 1 oder a + c = p sein. Falls a + c = 1, dann müsste a oder c gleich 0 sein, ein Widerspruch. Falls a + c = p, dann muss in der Zerlegung p = ( a + c)( a ac + c ) der Faktor ( a ac + c ) gleich 1 sein. us 1 = a ac + c > a ac + c = ( a c) folgt jetzt ( a c) = 0, also a = c. Somit ist p = a + c = a eine gerade Primzahl, folglich p =. Fall : p = a b ist Differenz von zwei positiven Kubikzahlen. Dann ist p = ( a b)( a + ab + b ) und somit a b = 1 oder a b = p. Falls a - b = 1, dann ist p = ( b + 1) b = b( b + 1) + 1, also p 1 b ( b + 1) = = b. Falls a - b = p, dann ist ( a + ab + b ) = 1. Es müsste nun a oder b gleich 0 sein, ein Widerspruch.. LWM 000/ Runde Lösungsbeispiele Seite 5

6 : eweis der Rückrichtung p 1 Für die Primzahl p gebe es eine Zahl n mit = n. Dann ist p 1 n ( = n + 1), also ist p = n( n + 1) + 1 = ( n + 1) n eine Differenz von zwei Kubikzahlen. Wenn schließlich p =, so ist p = 1 ( 1), also ebenfalls eine Differenz von zwei dritten Potenzen. Variante für Fall : Erkennt man die Zerlegung a b = ( a b)( a + ab + b ) nicht, so kann man in diesem Fall dennoch wie folgt zu einer Lösung der ufgabe kommen: Da a b gibt es k 0, so dass a = b + k. Damit gilt a b = ( b + k) b = bk + b k + k = k( bk + b + k ). Da p = a b = k( bk + b + k ) eine Primzahl ist, gibt es wieder zwei Möglichkeiten: k = 1 oder k = p. Falls k = 1, dann ist a = b + 1 und p = a b = b( b + 1) + 1, somit p 1 b( b + 1) = = b. Falls k = p, dann muss der zweite Faktor bk + b + k gleich 1 sein. Da b 0 und k 0, folgt k = 1 und b = 0. Somit muss p = 1 sein und ist keine Primzahl.. Lösung : Es sei p = a b mit ganzen Zahlen a und b. us a b > 0 folgt a > b, dies ist äquivalent zu a > b. Es ist p = ( a b)( a + ab + b ). Da a > b ist der erste Faktor und damit auch der zweite positiv. Da p eine Primzahl ist, muss einer der Faktoren also 1 sein. 1. Fall: ( a b) = 1 Damit ist a = b + 1 und p = ( b + 1) + ( b + 1) b + b = b + b + 1, somit ist p 1 b + b b( b + 1) = =. Nach der Gaußschen Summenformel stimmt für b > 0 der letzte Term mit der Summe der ersten b natürlichen Zahlen b überein. Für b < 1 ist b( b + 1) ( b)( b 1) = = ( b 1) die geforderte Summe aus natürlichen Zahlen. Die Fälle b = 0 und b = 1 führen beide auf p = 1, welches im Widerspruch zur Primzahleigenschaft steht.. Fall: ( a + ab + b ) = 1 Fasst man dies als quadratische Gleichung für die ganze Zahl b auf, so ergibt die Gleichung b + ab + a 1 = 0 die Diskriminante D Damit 0 a 1, 0, 1 gelten. D erfüllt ist, muss { } 4( a 1) 4 a = =. Für a = 1 ist b b = 0 und damit b = 1 oder b = 0 welche beide nicht mit a > b vereinbar sind. Für a = 0 ist b 1 = 0 und damit b = 1oder b = 1, woraus sich mit p = 0 1 = 1 bzw. p = 0 ( 1) = 1 keine Primzahlen ergeben. Nur für a = 1 ergibt sich bei einer der beiden Lösungen von b + b = 0,also b = 0 oder b = 1, eine Primzahl: p = 1 0 = 1 ist keine Primzahl, aber p = 1 ( 1) = ist die angegebene Primzahl. p 1 : (siehe auch 1. Lösung) Für die Primzahl p gebe es eine Zahl n mit = n. Dann ist p 1 n( n + 1) =, also ist p = n n = n + 1 n ( ) ( ) eine Differenz von zwei Kubikzahlen. Wenn schließlich p =, so ist p = 1 ( 1), also ebenfalls eine Differenz von zwei dritten Potenzen.. LWM 000/ Runde Lösungsbeispiele Seite a

Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind.

Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind. 1 Sätze über Winkel Geradenkreuzung: Zwei Geraden, die sich in einem Punkt schneiden, nennt man eine Geradenkreuzung. α α Nebeneinander liegende Winkel heißen Nebenwinkel, sie β ergeben zusammen stets

Mehr

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m) Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus

Mehr

4. Landeswettbewerb Mathematik Bayern 2. Runde 2001/2002 Aufgaben und Lösungsbeispiele

4. Landeswettbewerb Mathematik Bayern 2. Runde 2001/2002 Aufgaben und Lösungsbeispiele 4. Landeswettbewerb athematik ayern. Runde 00/00 ufgaben und Lösungsbeispiele ufgabe In einem Viereck sind die Seiten [], [] und [] gleich lang. ie Seite [] hat die gleiche Länge wie die iagonale []. iese

Mehr

Achsensymmetrie. Konstruktionen. Mathematik-Grundwissen Klassenstufe 7

Achsensymmetrie. Konstruktionen. Mathematik-Grundwissen Klassenstufe 7 Wissen Achsensymmetrie Beispiel Figuren die an einer Achse a gespiegelt werden nennt man achsensymmetrisch bezüglich a. Die Verbindungsstrecke zwischen zwei achsensymmetrischen Punkten wird durch die Achse

Mehr

I. Symmetrie. II. Grundkonstruktionen

I. Symmetrie. II. Grundkonstruktionen I. Symmetrie Achsensymmetrie Zwei Figuren, die bezüglich einer Achse symmetrisch zueinander sind, nennt man achsensymmetrisch. Punktsymmetrie Zwei Figuren, die bei einer Halbdrehung um einen Punkt ineinander

Mehr

OvTG Gauting, Grundwissen Mathematik 7. Klasse

OvTG Gauting, Grundwissen Mathematik 7. Klasse 1. Symmetrie (vgl. auch Grundwissen 5. Klasse) Achsensymmetrie Zwei Figuren, die bezüglich einer Achse symmetrisch zueinander sind, nennt man achsensymmetrisch. a Punktsymmetrie Zwei Figuren, die bei einer

Mehr

Sekundarschulabschluss für Erwachsene

Sekundarschulabschluss für Erwachsene SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2015 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60 Für

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Achsensymmetrie. Grundkonstruktionen

Achsensymmetrie. Grundkonstruktionen M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Das Prisma ==================================================================

Das Prisma ================================================================== Das Prisma ================================================================== Wird ein Körper von n Rechtecken und zwei kongruenten und senkrecht übereinander liegenden n-ecken begrenzt, dann heißt der

Mehr

1. Daten und Diagramme Beispiele / Veranschaulichung

1. Daten und Diagramme Beispiele / Veranschaulichung 1. Daten und Diagramme / Veranschaulichung Zum Vergleich von Daten sind Säulen- und Balkendiagramme geeignet: Bei dieser Arbeit gab es zweimal die Note 1, siebenmal die Note 2, usw. Die Verteilung innerhalb

Mehr

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt.

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1 00 Runde ufgabe Yannick besitzt gleichseitige reiecke, Quadrate sowie regelmäßige Sechs- und chtecke, die alle dieselbe Seitenlänge haben. Er legt damit ohne Lücken und Überlappungen regelmäßige Muster.

Mehr

2. Landeswettbewerb Mathematik Bayern 1. Runde 1999/2000

2. Landeswettbewerb Mathematik Bayern 1. Runde 1999/2000 . Landeswettbewerb Mathematik ayern. Runde 999/000 ufgabe In einem regelmäßigen Sechseck werden wie abgebildet Diagonalen eingezeichnet. Dadurch entsteht ein kleines Sechseck. Welchen nteil an der Gesamtfläche

Mehr

Tag der Mathematik 2013

Tag der Mathematik 2013 Tag der Mathematik 2013 Gruppenwettbewerb Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind nicht zugelassen. Teamnummer Die folgende

Mehr

Sekundarschulabschluss für Erwachsene. Geometrie A 2014

Sekundarschulabschluss für Erwachsene. Geometrie A 2014 SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2014 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60 Für

Mehr

Grundwissen 7 Bereich 1: Terme

Grundwissen 7 Bereich 1: Terme Bereich 1: Terme Termwerte 1.1 S1 T (1) = 6 T (2) = 7 T ( 2) 3 = 12 1 4 = 12, 25 1.2 S1 m 2 0, 5 0 1 2 1 3 6 6 2 A(m) 7 11 5 0 1 Setzt man die Zahl 5 ein, so entsteht im Nenner die Zahl 0. Durch 0 zu teilen

Mehr

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie Abitur Mathematik: Prüfungsteil, Aufgabe 4 Analytische Geometrie Nordrhein-Westfalen 0 LK Aufgabe a (). SCHRITT: MITTELPUNKT DER GRUNDFLÄCHE BERECHNEN Die Spitze befindet sich einen Meter senkrecht über

Mehr

Mathematik Geometrie

Mathematik Geometrie Inhalt: Mathematik Geometrie 6.2003 2003 by Reto Da Forno bbildung / bbildungsvorschriften - Ähnlichkeitsabbildungen Seite 1 - Zentrische Streckung Seite 1 - Die Strahlensätze Seite 1 - Kongruenzabbildungen

Mehr

Achsensymmetrie. Punktsymmetrie M 7.1. Eigenschaften: Grundkonstruktionen M 7.2 B` A` Eigenschaften: C Z C` A B. Grundkonstruktionen

Achsensymmetrie. Punktsymmetrie M 7.1. Eigenschaften: Grundkonstruktionen M 7.2 B` A` Eigenschaften: C Z C` A B. Grundkonstruktionen M 7. chsensymmetrie Eigenschaften: - [`] steht senkrecht auf der Symmetrieachse - [`] wird von der Symmetrieachse halbiert - Liegt ein unkt auf der Symmetrieachse, dann stimmt ` mit überein - Zueinander

Mehr

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt.

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Raumgeometrie - gerade Pyramide

Raumgeometrie - gerade Pyramide 1.0 Das Quadrat ABCD mit der Seitenlänge 7 cm ist Grundfläche einer geraden Pyramide ABCDS mit der Höhe h = 8 cm. S ist die Pyramidenspitze. 1.1 Fertige ein Schrägbild der Pyramide ABCDS an. 1.2 Berechne

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1 Landeswettbewerb athematik aden-württemberg 999 Runde ufgabe In einem regelmäßigen Sechseck werden wie abgebildet Diagonalen eingezeichnet. Dadurch entsteht ein kleines Sechseck. Welchen nteil an der Gesamtfläche

Mehr

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind?

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.

Mehr

7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 10 Saison 1967/1968 Aufgaben und Lösungen

7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 10 Saison 1967/1968 Aufgaben und Lösungen 7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 10 Saison 1967/1968 Aufgaben und Lösungen 1 OJM 7. Mathematik-Olympiade 2. Stufe (Kreisolympiade) Klasse 10 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

Übungsaufgaben Repetitionen

Übungsaufgaben Repetitionen TG TECHNOLOGISCHE GRUNDLAGEN LÖSUNGSSATZ Kapitel 3 Mathematik Kapitel 3.6 Geometrie Satz des Pythagoras Übungsaufgaben Repetitionen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut

Mehr

Gymnasium Hilpoltstein Grundwissen 7. Jahrgangsstufe

Gymnasium Hilpoltstein Grundwissen 7. Jahrgangsstufe Wissen / Können 1. Symmetrie Gymnasium Hilpoltstein Grundwissen 7. Jahrgangsstufe Definitionen und Beispiele Achsensymmetrie Eine Figur heißt achsensymmetrisch, wenn sie durch Umklappen um eine Gerade

Mehr

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze. 6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese

Mehr

SAE. Geometrie B Name: Sekundarschulabschluss für Erwachsene

SAE. Geometrie B Name: Sekundarschulabschluss für Erwachsene SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2015 Totalzeit: 60 Minuten Hilfsmittel: nichtprogrammierbarer Taschenrechner, Geometrie-Werkzeug Maximal erreichbare Punktzahl: 60 Für die

Mehr

Grundwissen 7. Klasse

Grundwissen 7. Klasse Grundwissen Mathematik 7. Klasse /6 Grundwissen 7. Klasse lgebra.terme mit Variablen a) llgemeines Treten in einem Term (Rechenausdruck) verschiedene Variablen auf, dann dürfen diese mit verschiedenen

Mehr

Abschlussprüfung 2010 an den Realschulen in Bayern

Abschlussprüfung 2010 an den Realschulen in Bayern Prüfungsdauer: 50 Minuten bschlussprüfung 00 an den Realschulen in ayern Mathematik II Name: Vorname: Klasse: Platzziffer: Punkte: ufgabe Nachtermin.0 ie nebenstehende Skizze zeigt ein Schrägbild des Würfels

Mehr

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie Abitur Mathematik: Prüfungsteil, Aufgabe 4 Analytische Geometrie Nordrhein-Westfalen 0 GK Aufgabe a (). SCHRITT: MITTELPUNKT DER GRUNDFLÄCHE BERECHNEN Die Spitze befindet sich einen Meter senkrecht über

Mehr

MATHEMATIK ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE

MATHEMATIK ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE MATHEMATIK Lehreinheit 11 Geometrie: Dreiecke und Vierecke II GEOMETRIE:

Mehr

Grundwissen-Mathematik-7.Jahrgangsstufe (Algebra) G8

Grundwissen-Mathematik-7.Jahrgangsstufe (Algebra) G8 Grundwissen-Mathematik-7.Jahrgangsstufe (Algebra) G8 Terme Eine Variable ist ein Platzhalter für eine Zahl. Ein Term ist eine sinnvolle Abfolge von Rechenzeichen, Zahlen und Variablen. Beispiel zur Berechnung

Mehr

Konstruktionen mit Zirkel und Lineal

Konstruktionen mit Zirkel und Lineal Konstruktionen mit Zirkel und Lineal Vor den eigentlichen Konstruktionen möchte ich einige emerkungen zu Faltungen machen, da sie leider in der Schule ein Stiefkind darstellen. Mit anderen Worten, sie

Mehr

Grundwissen. Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium. Jahrgangsstufe: 7(G8)

Grundwissen. Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium. Jahrgangsstufe: 7(G8) Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium Gymnasium Eckental Neunkirchener Straße 9042 Eckental Grundwissen Jahrgangsstufe: 7(G8) Vereinfachen von Summen

Mehr

SAE. Geometrie B Name: Sekundarschulabschluss für Erwachsene

SAE. Geometrie B Name: Sekundarschulabschluss für Erwachsene SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2014 Totalzeit: 60 Minuten Hilfsmittel: nichtprogrammierbarer Taschenrechner, Geometrie-Werkzeug Maximal erreichbare Punktzahl: 60 Für die

Mehr

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $ $Id: dreieck.tex,v 1.7 013/04/ 0:37:01 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck In der letzten Sitzung hatten wir den sogenannten Inkreis eines Dreiecks eingeführt, dies ist der Kreis

Mehr

Grundlagen. y P(4;3;2) Schrägbild 1. Punkte im Raum. Ein Punkt ist im Raum durch drei Koordinaten (x,y,z) festgelegt.

Grundlagen. y P(4;3;2) Schrägbild 1. Punkte im Raum. Ein Punkt ist im Raum durch drei Koordinaten (x,y,z) festgelegt. Grundlagen Schrägbild 1 Punkte im Raum z y P(4;3;2) 2 3 4 x Ein Punkt ist im Raum durch drei Koordinaten (x,y,z) festgelegt. ufgabe Versuche die Punkte (0;0;0), (1;1;1) und (3;2;-2) in einem Schrägbild

Mehr

Übungsaufgaben Geometrie und lineare Algebra - Serie 1

Übungsaufgaben Geometrie und lineare Algebra - Serie 1 Übungsaufgaben Geometrie und lineare Algebra - Serie. Bei einer geraden Pyramide mit einer quadratischen Grundfläche von 00 cm beträgt die Seitenkante 3 cm. a) Welche Höhe hat die Pyramide? b) Wie groß

Mehr

Luisenburg-Gymnasium Wunsiedel

Luisenburg-Gymnasium Wunsiedel Luisenburg-Gymnasium Wunsiedel Grundwissen für das Fach Mathematik Jahrgangsstufe 7 1. chsen- und unktspiegelung a) chsensymmetrie Die chse halbiert die Strecke [ ] senkrecht. lle chsenpunkte sind von

Mehr

Grundwissen 7. Jahrgangsstufe 1. Symmetrie Wissen Können Beispiele a) Achsenspiegelung : Symmetrieachse Mittelsenkrechte Winkelhalbierende

Grundwissen 7. Jahrgangsstufe 1. Symmetrie Wissen Können Beispiele a) Achsenspiegelung : Symmetrieachse Mittelsenkrechte Winkelhalbierende Grundwissen 7. Jhrgngsstufe 1. Symmetrie ) chsenspiegelung : Symmetriechse Mittelsenkrechte Winkelhlbierende Konstruktion Spiegelpunkt, Spiegelchse Mittelsenkrechte: Winkelhlbierende: Lot: Eigenschften

Mehr

Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich. Mathematik. Sekundarschule, Teil 2. Übungsheft

Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich. Mathematik. Sekundarschule, Teil 2. Übungsheft Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich Mathematik Sekundarschule, Teil 2 Übungsheft Lektion 7 Konstruktionen 1 Lektion 7 Konstruktionen 1 1. Konstruiere ein Dreieck mit folgenden ngaben:

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

Aufgaben für die Klassenstufen 11/12

Aufgaben für die Klassenstufen 11/12 Aufgaben für die Klassenstufen 11/12 mit Lösungen Einzelwettbewerb Gruppenwettbewerb Speedwettbewerb Aufgaben OE1, OE2, OE3 Aufgaben OG1, OG2, OG3, OG4 Aufgaben OS1, OS2, OS3, OS4, OS5, OS6, OS7, OS8 Aufgabe

Mehr

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard GRUNDWISSEN MATHEMATIK 7 Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E S - N E P

Mehr

Geometrie. Homepage zur Veranstaltung: Lehre Geometrie

Geometrie. Homepage zur Veranstaltung:  Lehre Geometrie Geometrie 4.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 4.2 Inhaltsverzeichnis Geometrie 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen 3 Längen-,

Mehr

Sekundarschulabschluss für Erwachsene

Sekundarschulabschluss für Erwachsene SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2011 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

Raumgeometrie - schiefe Pyramide

Raumgeometrie - schiefe Pyramide 1.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 14 cm; f = 10 cm;

Mehr

Lösungen Crashkurs 7. Jahrgangsstufe

Lösungen Crashkurs 7. Jahrgangsstufe Lösungen Crashkurs 7. Jahrgangsstufe I. Symmetrie und Grundkonstruktionen 1. 2. Jede Raute hat die Eigenschaften: a, b, d, e, g. 3. Der gesuchte Treffpunkt befindet sich dort, wo die Mittelsenkrechte der

Mehr

(3r) r 2 =? xy 3y a + 6b 14. ( xy

(3r) r 2 =? xy 3y a + 6b 14. ( xy Mathematik Aufnahmeprüfung 2014 Profile m,n,s Lösungen Aufgabe 1 (a) Vereinfache (schreibe als einen Bruch): 2 + a 2 + 3b 7 =? (b) (c) Vereinfache so weit wie möglich: Vereinfache so weit wie möglich:

Mehr

Oktaeder. Bernhard Möller. 22. Dezember 2010

Oktaeder. Bernhard Möller. 22. Dezember 2010 Oktaeder Bernhard Möller. Dezember 00 Ein Oktaeder ist ein regelmäßiges Polyeder, dessen Oberfläche aus acht kongruenten, gleichseitigen Dreiecken besteht. Jedes Oktaeder kann einem Würfel so einbeschrieben

Mehr

Berechnungen am rechtwinkligen Dreieck, Satz des Pythagoras

Berechnungen am rechtwinkligen Dreieck, Satz des Pythagoras Berechnungen am rechtwinkligen Dreieck, Satz des Pythagoras Aufgabe 1 Berechne die fehlenden Grössen (a, b, c, h, p, q, A) der rechtwinkligen Dreiecke: a) p = 36, q = 64 b) b = 13, q = 5 c) b = 70, A =

Mehr

3 Geometrisches Beweisen

3 Geometrisches Beweisen 22 3 Geometrisches Beweisen 3.1 Axiome Durch empirische Untersuchungen werden immer wieder Gesetzmäßigkeiten gefunden, die man versucht durch logische Schlüsse zu begründen. Irgendwann am Ende einer Schlusskette

Mehr

Figuren Lösungen. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60.

Figuren Lösungen. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60. Es gibt drei Symmetrieachsen. Gleichseitiges Dreieck Zwei Seiten stehen normal.

Mehr

Raumgeometrie - schiefe Pyramide

Raumgeometrie - schiefe Pyramide 1.0 Das gleichseitige Dreieck ABC mit AB = 8 cm ist Grundfläche einer Pyramide ABCS. Die Spitze S liegt senkrecht über dem Mittelpunkt M der Seite [AC]. Die Höhe [MS] ist 6 cm lang. 1.1 Zeichne ein Schrägbild

Mehr

a, b und c aus. Linearkombination der Vektoren b) Für einen Punkt P gilt: AP = a

a, b und c aus. Linearkombination der Vektoren b) Für einen Punkt P gilt: AP = a Aufgabe Die drei linear unabhängigen Vektoren a = OA, b = OB,c = OC spannen ein dreiseitiges Prisma auf. Dabei ist S der Schwerpunkt des Dreiecks OAB, M der Schnittpunkt der Diagonalen in der Seitenfläche

Mehr

Repetition Begriffe Geometrie. 14. Juni 2012

Repetition Begriffe Geometrie. 14. Juni 2012 Repetition Begriffe Geometrie 14. Juni 2012 Planimetrie 1. Strahlensatz Planimetrie 1. Strahlensatz Werden zwei sich schneidende Geraden von zwei Parallelen geschnitten, so verhalten sich die Abschnitte

Mehr

Bezeichnungen am Dreieck

Bezeichnungen am Dreieck ezeichnungen am Dreieck Verbindet man drei Punkte, die nicht auf einer Geraden liegen, so entsteht ein Dreieck. llgemeine ezeichnungen: Die Eckpunkte des Dreiecks werden mit den uchstaben, und bezeichnet.

Mehr

Zeichnet man nun über die Seiten des Dreiecks die Quadrate der jeweiligen Seiten, dann ergibt sich folgendes Bild:

Zeichnet man nun über die Seiten des Dreiecks die Quadrate der jeweiligen Seiten, dann ergibt sich folgendes Bild: 9. Lehrsatz von Pythagoras Pythagoras von Samos war ein griechischer Philosoph und Mathematiker, der von ca. 570 v.chr. bis 510 n.chr lebte. Obwohl es über seine gesallschaftliche Stellung verschiedene

Mehr

Oberfläche von Körpern

Oberfläche von Körpern Definition Die Summe der Flächeninhalte der Flächen eines Körpers nennt man Oberflächeninhalt. Quader Der Oberflächeninhalt eines Quaders setzt sich folgendermaßen zusammen: O Q =2 h b+2 h l+2 l b=2 (h

Mehr

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke Geometrische Mappe Die metallenen Dreiecke 1 Material 4 metallene Rahmen (14 cm X 14 cm) mit gleichseitigen Dreiecken (Seitenlänge 10 cm). Die Dreiecke sind wie folgt unterteilt Ganze Halbe Drittel Viertel

Mehr

Grundlagen der Geometrie

Grundlagen der Geometrie Grundlagen der Geometrie Vorlesungsausarbeitung zum WS 2010/11 von Prof. Dr. K. Fritzsche ii Inhalt 0 Grundlagen der Schulgeometrie 1 I Die Elemente : Inzidenz und Anordnung 9 1. Die deduktive Methode

Mehr

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe

Mehr

Herbst b) Bestimmen Sie die Gleichung der Tangente t und Ihren Schnittpunkte A mit der x-achse. t geht durch B(1/2) und hat die Steigung m=-6 :

Herbst b) Bestimmen Sie die Gleichung der Tangente t und Ihren Schnittpunkte A mit der x-achse. t geht durch B(1/2) und hat die Steigung m=-6 : Herbst 24 1. Gegeben ist eine Funktion f : mit den Parametern a und b. a) Bestimmen Sie a und b so, dass der Graph von f durch den Punkt B(1/2) verläuft und die Tangente t in B parallel ist zur Geraden

Mehr

Einleitung. Aufgaben: Vergrössern / Verkleinern. 1. Die Geo-Maus

Einleitung. Aufgaben: Vergrössern / Verkleinern. 1. Die Geo-Maus Kantonsschule Solothurn Geometrie: Zentrische Streckung und Ähnlichkeit RYS Zentrische Streckung und Ähnlichkeit Einleitung Aufgaben: Vergrössern / Verkleinern 1. Die Geo-Maus a) Zeichne die Geo-Maus noch

Mehr

Parallelogramme Rechtecke Quadrate

Parallelogramme Rechtecke Quadrate Parallelogramme Rechtecke Quadrate (Hinweis: Die ezeichnungen der Seiten entsprechen den ezeichnungen aus der Formelsammlung). erechne den Flächeninhalt des Parallelogramms mit der Seitenlänge a = 6,3

Mehr

Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans

Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans josef.coenen@web.de Abitour Analytische Geometrie Leistungskurs Aufgaben 1. Welche Lagebeziehungen zwischen

Mehr

Analytische Geometrie

Analytische Geometrie Analytische Geometrie 1 Punkte und Vektoren im Raum G 1.1 Gegeben sind die Vektoren in nebenstehender Abbildung. Drücke die Vektoren AC durch a und b AB durch z und w BC durch c und d DB durch b und u

Mehr

Vorwort: Farbe statt Formeln 7

Vorwort: Farbe statt Formeln 7 Inhaltsverzeichnis Vorwort: Farbe statt Formeln 7 1 Die Grundlagen 11 1.1 Vom Geodreieck zum Axiomensystem................ 11 1.2 Erste Folgerungen aus den Axiomen................. 24 1.3 Winkel.................................

Mehr

2.5. Aufgaben zu Dreieckskonstruktionen

2.5. Aufgaben zu Dreieckskonstruktionen 2.5. Aufgaben zu Dreieckskonstruktionen Aufgabe 1 Zeichne das Dreieck AC mit A( 1 2), (5 0) und C(3 6) und konstruiere seinen Umkreis. Gib den Radius und den Mittelpunkt des Umkreises an. Aufgabe 2 Konstruiere

Mehr

P 0 f (0) schneidet die Gerade mit der Gleichung x Ermitteln Sie die Koordinaten von S.

P 0 f (0) schneidet die Gerade mit der Gleichung x Ermitteln Sie die Koordinaten von S. Zentralabitur 015 im Fach Mathematik Analysis 1 Im nebenstehenden Bild sind die Graphen dreier Funktionen f, g und h dargestellt Geben Sie an, bei welcher der drei Funktionen es sich um eine Stammfunktion

Mehr

Beispiellösungen zu Blatt 3

Beispiellösungen zu Blatt 3 µathematischer κorrespondenz- zirkel ufgabe 1 eispiellösungen zu latt 3 Mathematisches Institut Georg-ugust-Universität Göttingen Statistiken besagen, dass unter 1000 Menschen 35 zu hohen lutdruck haben.

Mehr

Grundwissen. 7. Jahrgangsstufe. Mathematik

Grundwissen. 7. Jahrgangsstufe. Mathematik Grundwissen 7. Jahrgangsstufe Mathematik Grundwissen Mathematik 7. Jahrgangsstufe Seite 1 1 Geometrie 1.1 Grundkonstruktionen Lotkonstruktion I: Gegeben ist die Gerade g und der Punkt P, der nicht auf

Mehr

Beweise. 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck.

Beweise. 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck. Beweise 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck. (a) Gib Satz und Kehrsatz in der Wenn-dann-Form an! (b) Ist die Voraussetzung des Satzes notwendig,

Mehr

Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am haben wir mit Kapitel 2.2 begonnen.

Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am haben wir mit Kapitel 2.2 begonnen. Das vorliegende Skript beschäftigt sich mit dem Thema Elementargeometrie. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft(MSG) im Schuljahr 2012/2013. Die vorliegende

Mehr

In der Zeichnung unten sind α und β, β und γ, γ und δ, δ und α Nebenwinkel. Scheitelwinkel sind α und γ oder β und δ.

In der Zeichnung unten sind α und β, β und γ, γ und δ, δ und α Nebenwinkel. Scheitelwinkel sind α und γ oder β und δ. Entdeckungen an Geraden- und Doppelkreuzungen Schneiden sich zwei Geraden, so entstehen vier Winkel mit Scheitel im Schnittpunkt. Jeweils zwei gleichgroße Winkel liegen sich dabei gegenüber man nennt diese

Mehr

Beispiel einer Zerlegung in vier Schritten (Zerlegungszahl n = 51)

Beispiel einer Zerlegung in vier Schritten (Zerlegungszahl n = 51) Fachbereich Mathematik Tag der Mathematik 9. November 2013 Klassenstufen 9, 10 Beispiel einer Zerlegung in vier Schritten (Zerlegungszahl n = 51) Aufgabe 1 (6+4+4+3+3 Punkte). In dieser Aufgabe geht es

Mehr

Städtewettbewerb Frühjahr 2009

Städtewettbewerb Frühjahr 2009 Städtewettbewerb Frühjahr 2009 Lösungsvorschläge Hamburg 4. März 2009 [Version 1. April 2009] M Mittelstufe Aufgabe M.1 (3 P.). In ein konvexes 2009-Eck werden sämtliche Diagonalen eingezeichnet. (Diagonalen

Mehr

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1 Landeswettbewerb athematik aden-württemberg 1996 Runde 1 ufgabe 1 Ein Rechteck mit den eitenlängen 5 cm und 9 cm wird in kleinere Rechtecke mit ganzzahligen eitenlängen, in Zentimeter gemessen, zerlegt.

Mehr

Geometrie. Grundwissenskatalog G8-Lehrplanstandard

Geometrie. Grundwissenskatalog G8-Lehrplanstandard GRUNDWISSEN MATHEMATIK Geometrie Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E S

Mehr

Inhalt der Lösungen zur Prüfung 2005:

Inhalt der Lösungen zur Prüfung 2005: Inhalt der Lösungen zur Prüfung 005: Pflichtteil Wahlteil ufgabe W1 10 Wahlteil ufgabe W 14 Wahlteil ufgabe W3 18 Wahlteil ufgabe W4 3 Wichtige Hinweise zum opyright: Das Werk und seine Teile sind urheberrechtlich

Mehr

Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar.

Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar. Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar. Es gelten der Stoff aus www.mathbu.ch 8+ resp. 9+. A00 Arithmetisches Rechnen / allgemeines Rechnen

Mehr

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/18 15:03:29 hk Exp hk $

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/18 15:03:29 hk Exp hk $ $Id: dreieck.tex,v 1.6 2013/04/18 15:03:29 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck Wir hatten gerade begonnen uns mit den speziellen Punkten im Dreieck zu beschäftigen. Dabei beschränken

Mehr

Tag der Mathematik 2008

Tag der Mathematik 2008 Tag der Mathematik 008 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner

Mehr

Die Mittelsenkrechte im deduktiven Aufbau

Die Mittelsenkrechte im deduktiven Aufbau Nr.7 16.06.2016 Die Mittelsenkrechte im deduktiven Aufbau Bisher war die Mittelsenkrechte eine Ortslinie Jetzt wird deduktiv geordnet: - Definition der Mittelsenkrechte - Sätze zur Mittelsenkrechten 1

Mehr

Unterrichtsreihe zur Parabel

Unterrichtsreihe zur Parabel Unterrichtsreihe zur Parabel Übersicht: 1. Einstieg: Satellitenschüssel. Konstruktion einer Parabel mit Leitgerade und Brennpunkt 3. Beschreibung dieser Punktmenge 4. Konstruktion von Tangenten 5. Beweis

Mehr

Tag der Mathematik 2016

Tag der Mathematik 2016 Tag der Mathematik 016 Mathematischer Wettbewerb, Klassenstufe 9 10 30. April 016, 9.00 1.00 Uhr Aufgabe 1 Der Mittelwert von 016 (nicht unbedingt verschiedenen) natürlichen Zahlen zwischen 1 und 0 16

Mehr

Geometrie, Einführung

Geometrie, Einführung Geometrie, Einführung Punkte, Linien 1. Gib die Längen von 3 Strecken r, s. t an, welche nicht die Seiten eines Dreiecks sein können. Begründe deine Wahl. 2. a) Zeichne Punkte und Geraden, welche folgende

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe Arbeitszeit 40min 1.0 Gegeben sind die Punkte A (-I1) und B (6I-1), sowie die Gerade g mit der Gleichung y = 0,5x + 3. Führe die folgenden Berechnungen jeweils auf zwei Stellen gerundet aus. 1.1 Berechne

Mehr

Pyramide und Kegel 14

Pyramide und Kegel 14 1 6 1 Falls genau gearbeitet wurde, sollte der Steigungswinkel der Pyramidenseiten 5 betragen. Falls dem so ist, ist das Modell ähnlich zum Original und der Verkleinerungsmassstab kann eindeutig bestimmt

Mehr

Symmetrien und Winkel

Symmetrien und Winkel 1 10 Symmetrien 301 Zeichne Grossbuchstaben des Alphabets, sortiert nach vier Typen: achsensymmetrisch punktsymmetrisch achsen- und punktsymmetrisch weder achsen- noch punktsymmetrisch Trage bei den symmetrischen

Mehr

Abiturprüfung 2000 LK Mathematik Baden-Württemberg

Abiturprüfung 2000 LK Mathematik Baden-Württemberg Abiturprüfung 000 LK Mathematik Baden-Württemberg Aufgabe I 1 Analysis ( )² Gegeben ist die Funktion f durch f ( ) = ; D f. Ihr Schaubild sei K. ( 4) a) Geben Sie die maimale Definitionsmenge D f an. Untersuchen

Mehr

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1 1997 An jeder Kante eines Drahtwürfels wird ein Zettel mit einer der Zahlen +1 oder 1 angebracht. Danach werden für jede der acht Ecken die Zahlen an den drei Kanten multipliziert, die zu dieser Ecke gehören.

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe .0 Berechne folgende Terme:.. x + 4 = x =. (y x) (x + y) =.0 Schreibe ohne Klammern und vereinfache soweit wie möglich:. (x + ) (x 4) =. (0,4x + y) (0,4x y) + (y) =. Ermittle den Extremwert durch Termumformung.

Mehr

Satz von Pythagoras. Ich mache eine saubere, klare Konstruktionszeichnung und markiere das Resultat (rot)

Satz von Pythagoras. Ich mache eine saubere, klare Konstruktionszeichnung und markiere das Resultat (rot) Mathplan 8.8.1 Geometrie Dreiecke Satz von Pythagoras Name: Hilfsmittel : Geometrie Zeitvorschlag: Wochen von: Lernkontrolle am: bis c M b s b Probe 8.8.1 a Wichtige Punkte: Ich mache eine saubere, klare

Mehr

Stichwortverzeichnis. 3-D siehe Dreidimensionalität D-Grafiker 303

Stichwortverzeichnis. 3-D siehe Dreidimensionalität D-Grafiker 303 3-D siehe Dreidimensionalität 289 3-D-Grafiker 303 A Additionsregel 61, 332 Ähnliche Dreiecke 234 Anwendung 240 Beweis 239, 240 Eigenschaften 238 Voraussetzungen 235, 237, 238 Winkel-Winkel-Satz 236 Ähnlichkeit

Mehr

Aufgabe 1 (4+8+8 Punkte). (a) Zeige, dass sich die folgende Figur (entlang der Linien) in vier kongruente Teilflächen zerlegen lässt.

Aufgabe 1 (4+8+8 Punkte). (a) Zeige, dass sich die folgende Figur (entlang der Linien) in vier kongruente Teilflächen zerlegen lässt. Fachbereich Mathematik Tag der Mathematik 0. Oktober 00 Klassenstufen 7, 8 Aufgabe (4+8+8 Punkte). (a) Zeige, dass sich die folgende Figur (entlang der Linien) in vier kongruente Teilflächen zerlegen lässt.

Mehr