Lösung zur Übung 3. Aufgabe 9)

Größe: px
Ab Seite anzeigen:

Download "Lösung zur Übung 3. Aufgabe 9)"

Transkript

1 Lösung zur Übung 3 Aufgabe 9) Lissajous-Figuren sind Graphen in einem kartesischen Koordinatensystem, bei denen auf der Abszisse und auf der Ordinate jeweils Funktionswerte von z.b. Sinusfunktionen aufgetragen werden. Die Abszissen- und Ordinatenfunktionen sin(k + ϕ) unterscheiden sich dabei z.b. durch den k-wert, der die Periode angibt und die Phase ϕ. Zeichnen Sie die Lissajous-Figur für ein k-verhältnis von 4:1. Zeichnung der Lissaous-Figur Wir könnten an dieser Stelle uns auf das Zeichnen der Lissajous-Figur beschränken, aber wir wollen Euch doch zumindest in kurzen Zügen das Vorgehen zum Erstellen dieser Figuren erläutern. Doch zuvor etwas Allgemeinbildung: Lissajous-Figuren werden in der Schwingungsanalyse eingesetzt, z.b. bei der Analyse von elektrischen Schaltkreisen. Die Form der Figuren erlaubt genaue Rückschlüsse auf Frequenz und Phasenlage der beiden Spannungen. Bei gleichen Frequenzen (bspw: v = 1:1) kann man an der elliptischen Figur die Phasendifferenz ablesen. Bei zwei fast gleichen Frequenzen (oder einem Frequenzverhältnis, das sehr nahe an einem der einfachen rationalen Verhältnisse liegt) zeigt der Schirm des Oszilloskops eine zwar geschlossene, aber sich zeitlich verändernde Figur. So kann man mit hoher Empfindlichkeit kleine Frequenzunterschiede messen. Deshalb waren Lissajous-Figuren beispielsweise in der Werkstatt von Fernseh- und Röhrentechnikern ein alltägliches Bild. Andererseits wirken sie in ihrer Vielfalt besonders (aber nicht nur) auf den technischen Laien äußerst faszinierend, gerade in der leicht animierten Form. Deshalb wurden in Filmkunst und Fernsehen auch häufig Monitore im Bühnenbild mit Lissajous-Figuren dekoriert, wenn eine Umgebung sehr modern oder futuristisch wirken sollte, etwa in Science-Fiction-Filmen und -Serien 1. Wie aus dem vorhergehenden Tet zu entnehmen war, werden sie gewöhnlich mithilfe eines Oszilloskops erstellt. Hierbei werden statt einer zeitabhängigen Darstellung Eingangskanäle gegeneinander aufgetragen. Wenn wir solche Figuren also zeichnen möchten, müssen wir zuerst eine paar Werte unserer Funktionen bestimmen. Wir erstellen also eine Wertetabelle. 1 Wer noch mehr für seine Allgemeinbildung tun will: Wiki: Lissajous-Figur 1

2 Tabelle 1: Wertetabelle zu den Funktionen sin() und sin(4) [ ] sin() sin(4) 7,5 0,13 0, ,6 0,87,5 0, ,50 0,87 37,5 0,61 0, ,71 0 5,5 0,79-0, ,87-0,87 67,5 0, ,97-0,87 8,5 0,99-0, ,5 0,99 0, ,97 0,87 11,5 0, ,87 0,87 17,5 0,79 0, , ,5 0,61-0, ,50-0,87 157,5 0, ,6-0,87 17,5 0,13-0, [ ] sin() sin(4) 187,5-0,13 0, ,6 0,87 0,5-0, ,50 0,87 17,5-0,61 0,50 5-0,71 0 3,5-0,79-0, ,87-0,87 47,5-0, ,97-0,87 6,5-0,99-0, ,5-0,99 0, ,97 0,87 9,5-0, ,87 0,87 307,5-0,79 0, ,71 0 3,5-0,61-0, ,50-0,87 337,5-0, ,6-0,87 35,5-0,13-0, Nachdem wir nun einige Werte der Fuktionen kennen, können wir sie gegeneinander auftragen. Laut Aufgabe soll sin(4) auf der Abszisse (-Achse) und sin() auf der Ordinate (y-achse) aufgetragen werden. Hierdurch entsteht ein Bild wie in Abb. 1.

3 Aufgabe 10) Abbildung 1: Lissajous-Figur für ein k-verhältnis von 4 : 1. Zeichnen Sie den Graphen der Kotangens-Funktion. Der Graph des Kotangens In der Vorlesung wurde der Tangens hergeleitet und gezeichnet, drum wird als Übung der complementi tangens gezeichnet. Der Kotangens ist der reziproke Tangens. Stellen wir daher den Tangens mithilfe von Sinus und Kosinus dar, lautet der Ausdruck für den Kotangens: cot() = cos() sin() Aus dieser Beziehung können wir ableiten, dass der Kotangens an den Nullstellen des Sinus nicht definiert ist. Hieraus folgt für den Definitionsbereich: D = R \ {nπ, n Z} Die Definitionslücken des Tangens sind dagegen durch die Nullstellen des Kosinus definiert, sodass der Kotangens um π/ verschoben ist. Weiterhin sind beide Funktionen punktsymmetrisch zum Ursprung. Zu guter Letzt weist der Kotangens im Gegensatz zum streng monoton steigenden Tangens einen streng monoton fallenden Verlauf auf. Diese Definition gilt nur zwischen Definitionslücken. Dann zeichnen wir doch mal den Kotangens. Im vorhergehenden und folgenden nennen wir ihn einfach Kotangens. 3

4 Abbildung : Großes Bild: Kotangens-Funktion im Intervall [0,π]. Kleines Bild: Kotangens- Funktion im Intervall [ π,π]. Gestrichelte Linien markieren den Nulldurchgang. Aufgabe 11) Aus der Konstruktion von trigonometrischen Funktionen am Einheitskreis ergibt sich für Argumente mit 0 < π die Ungleichung sin() < tan(). a) Zeigen Sie dies graphisch. Lösung durch Zeichnung Doch bevor wir zeichnen ein paar Worte. Diese Aufgabe kann auf zwei Arten graphisch dargestellt werden. Innerhalb der Musterlösung werden beide Arten vorgestellt. Einheitskreis: Eine Möglichkeit ist die Darstellung innerhalb des Einheitskreises 3. Hierbei beschränkt man sich auf das erste Viertel des Einheitskreises. Diese Einschränkung entstammt dem vorgegeben Wertebereich. Die Darstellung erfolgt in Abb. 3 Der Sinus entspricht der Gegenkathete welche innerhalb des Kreises eingezeichnet wird. Der Tangens, bleibt seinem Namensgeber 4, der Tangente, treu und befindet sich außerhalb der Kreises. Der -Wert entspricht der markierten Bogenlänge. Aus der Anordnung wird ersichtlich, dass die genannte Ungleichung korrekt ist. 3 Ein jeder andere Kreis ist natürlich auch möglich. 4 Wir danken T.Fink für diese anschauliche und einfallsreiche Namensgebung [Wikipedia:Tangens und Kotangens] 4

5 Abbildung 3: Gezeigt ist der Einheitskreis;, Sinus und Tangens. Kartesiches Koordinatensystem: Zur Darstellung von Funktionen hat sich das kartesische Koordinaten System bewährt 5.Im Gegensatz zum Einheitskreis können wir hier direkt die Funktionswerte miteinander vergleichen. Dafür haben wir in Abb. 4 denselben Farbcode wie zuvor verwendet. Man erkennt bei der Vergrößerung des Bereiches noch sehr gut, dass der Tangens oberhalb der Geradengleichung y() = verläuft und der sin() unterhalb. b) Zeigen Sie unter Verwendung obiger Ungleichung, dass, wenn 0, sin() 1. Lösung aufbauend auf den vorherigen Zeichnungen Anhand Abb. 4 wird einem deutlich, dass bei sehr kleinen -Werten der Unterschied zwischen den einzelnen Funktionen immer kleiner wird. Wenden wir dieses Wissen auf Abb. 3 an, so erfahren wir, dass der Bogen bei infinitesimaler Verkleinerung annähernd durch eine Gerade beschrieben werden kann. Aber um dem Aufgabentet treu zu bleiben machen wir das ganze mathematisch. Mathematischer Lösungsansatz Wir beginnen mit der Ungleichung sin() < tan() (1) 5 Und natürlich auch hier ein wenig Geschichte (Klausurrelevant(!!!): Namensgeber ist der Franzose René Descartes, dessen lateinischer Name Cartesius hierfür Pate stand.[wikipedia:kartesiches Koordinatensystem] 5

6 Abbildung 4: Darstellung im kartesischen System;, Sinus und Tangens. Wir teilen durch den Sinus, da sin() > 0 ist. 1 sin() < tan() sin() () Der Tangens wird durch das Verhältnis von Sinus und Kosinus dargestellt. 1 sin() < 1 cos() (3) Jetzt bilden wir den Kehrwert. Achtung beim Kehrwert drehen sich die Ungleichheitszeichen um. 1 sin() > cos() (4) Jetzt strebt 0 1 sin() > cos(0) = 1 (5) 1 sin() > 1 (6) Daraus kann man folgern, dass sin() für 0 gegen eins strebt. 6

7 Aufgabe 1) Bestimmen Sie das in der folgenden Eponentialgleichung 9 4 = Lösung und ein paar allgemeine Regeln ( ) 1 1 Damit wir die Aufgabe auch lösen können, gibt es nun einen kurzen Überblick über das, was man alles mit Potenzen machen kann 6. a m a n =a m+n (7) Produkt mit gleicher Basis und die Eponenten können addiert werden Bei Kehrwertbildung wechselt der Eponent sein Vorzeichen. a m = 1 a m (8) (a m ) n =a m n (9) Das Ausführen von Potenzen nacheinander entspricht dem Produkt der Eponenten ( a b ) m = a m Und mit diesem Wissen starten wir in die Aufgabe b m (10) ( ) 1 1+( ) 9 4 = (11) Mit der linken Seite können wir nichts anfangen, bzw. haben wir keine Regel, sodass wir uns mit dem Umformen der rechten Seite begnügen müssen. Wir teilen zuerst den Eponenten, sodass wir ein Produkt von zwei Potenzen gleicher Basis erhalten. ( ) 1 1 = ( ) 1 (1) Statt des Produktes von führen wir die Potenzen nacheinander aus. ( ) ( 1 1 (1 ) ) = (13) 9 4 = 1 4 (14) 9 = (15) 9 = 3 4 (16) 6 Der Eponent ist übrigens auch auf René Descartes zurückzuführen [ebenfalls Wiki] 7

8 Wir bringen den Ausdruck 4 auf die andere Seite, sodass auf einer Seite alle Ausrdücke von vereinigt sind. 9 4 =3 ( ) 9 = 3 4 Nun ist es Zeit für einen kleinen Trick.3 3 = 3 = 9 und = = 4 ( (3 ) ) = 3 (17) (18) (19) Unsere Basis ist identisch, sodass sich unser Problem auf die Eponenten beschränkt. =1 (0) = 1 (1) Dass dieses Ergebnis zutreffend ist, können wir über eine Probe zeigen. Einsetzen unseres Ergebnisses 9 4 = ( ) 1 1 () ( ) = (3) 3 = 1 (4) CC-BY-SA 3.0 Mario Krieg / Martin Labus 8

Vorkurs Mathematik 2014

Vorkurs Mathematik 2014 Dr. Mario Helm et al. Institut für Numerische Mathematik und Optimierung Fakultät für Mathematik und Informatik Vorkurs Mathematik 4 Winkelmessung und trigonometrische Funktionen 6.-..4 Winkel und Winkelmessung

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

Luisenburg-Gymnasium Wunsiedel

Luisenburg-Gymnasium Wunsiedel Luisenurg-Gymnasium Wunsiedel Grundwissen für das Fach Mathematik Jahrgangsstufe 0 KREIS und KUGEL Bogenlänge rπα = 80 Das Verhältnis r πα = 80 heißt Bogenmaß, ist nur vom Mittelpunktswinkel α ahängig

Mehr

6 Trigonometrische Funktionen

6 Trigonometrische Funktionen 6 Trigonometrische Funktionen 6. Definition Die Trigonometrischen Funktionen (oder Winkelfunktionen) Sinus-, Kosinusund Tangensfunktion stellen den Zusammenhang zwischen Winkel und Seitenverhältnis dar.

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Repetitionsaufgaben: Lineare Funktionen

Repetitionsaufgaben: Lineare Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Funktionen Zusammengestellt von Irina Bayer-Krakvina, KSR Lernziele: - Wissen, was ein Steigungsdreieck einer Geraden ist und wie die Steigungszahl

Mehr

Messen mit dem Soundkartenoszilloskop (Scope V1.40 C. Zeitnitz)

Messen mit dem Soundkartenoszilloskop (Scope V1.40 C. Zeitnitz) Messen mit dem Soundkartenoszilloskop (Scope V1.40 C. Zeitnitz) Fortbildungsveranstaltung am 3.12.2011 / KGS Pattensen, 10 bis 13 Uhr Spannungswerte Aufgrund der verschiedenen Einstellungsmöglichkeiten

Mehr

1 Ableiten der Sinus- und Kosinusfunktion

1 Ableiten der Sinus- und Kosinusfunktion Schülerbuchseite 6 8 Lösungen vorläufig Ableiten der Sinus- und Kosinusfunktion S. 6 Vermutung: Da das Zeit-Weg-Diagramm eine Sinuskurve und das zugehörige Zeit-Geschwindigkeits-Diagramm 8 eine Kosinuskurve

Mehr

Umgekehrte Kurvendiskussion

Umgekehrte Kurvendiskussion Umgekehrte Kurvendiskussion Bei einer Kurvendiskussion haben wir eine Funktionsgleichung vorgegeben und versuchen ihre 'Besonderheiten' herauszufinden: Nullstellen, Extremwerte, Wendepunkte, Polstellen

Mehr

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Gegeben ist die trigonometrische Funktion f mit f(x) = 2 sin(2x) 1 (vgl. Material 1). 1.) Geben Sie für die Funktion f den Schnittpunkt mit der y

Mehr

Messen mit dem Soundkartenoszilloskop (Scope V1.40 C. Zeitnitz)

Messen mit dem Soundkartenoszilloskop (Scope V1.40 C. Zeitnitz) Messen mit dem Soundkartenoszilloskop (Scope V1.40 C. Zeitnitz) Fortbildungsveranstaltung am 3.12.2011 / KGS Pattensen, 10 bis 13 Uhr Spannungswerte Aufgrund der verschiedenen Einstellungsmöglichkeiten

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1 .1 Dr. Jürgen Roth Fachbereich 6: Abteilung Didaktik der Mathematik Elemente der Algebra . Inhaltsverzeichnis Elemente der Algebra & Argumentationsgrundlagen, Gleichungen und Gleichungssysteme Quadratische

Mehr

Verschiebung/Streckung von Funktionsgraphen. Verwenden von Schablonen zum Zeichnen von Funktionsgraphen. Idee der Koordinatentransformation

Verschiebung/Streckung von Funktionsgraphen. Verwenden von Schablonen zum Zeichnen von Funktionsgraphen. Idee der Koordinatentransformation Verschiebung/Streckung von Funktionsgraphen Verwenden von Schablonen zum Zeichnen von Funktionsgraphen Idee der Koordinatentransformation Rahmenlehrplan Berlin P4 9/10: Situationen mit n und Potenzfunktionen

Mehr

Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben

Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben Aufgabe C Gegeben ist eine Funktion f durch f ( ) = + 3. Gesucht sind lineare Funktionen, deren Graphen zum

Mehr

Einführung in die Trigonometrie

Einführung in die Trigonometrie Einführung in die Trigonometrie Sinus, Kosinus, Tangens am rechtwinkligen Dreieck und am Einheitskreis Monika Sellemond, Anton Proßliner, Martin Niederkofler Thema Stoffzusammenhang Klassenstufe Trigonometrie

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation Am Anfang der Entwicklung der komplexen Zahlen stand ein algebraisches Problem: die Bestimmung der Lösung der Gleichung x 2 + 1 = 0. 1 Mit der Lösung dieses Problems

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Grundwissen 10. Klasse Mathematik. Berechne Umfang und Flächeninhalt des Spitzbogens mit Lösung: ( )

Grundwissen 10. Klasse Mathematik. Berechne Umfang und Flächeninhalt des Spitzbogens mit Lösung: ( ) 1.1 Der Kreis Der Kreis Umfang Flächeninhalt Der Kreissektor (Kreisausschnitt) mit Mittelpunktswinkel Bogenlänge Flächeninhalt Grundwissen 10. Klasse Mathematik Wie ändert sich der Flächeninhalt eines

Mehr

Kern- und Schulcurriculum Mathematik Klasse 9/10. Stand Schuljahr 2009/10

Kern- und Schulcurriculum Mathematik Klasse 9/10. Stand Schuljahr 2009/10 Kern- und Schulcurriculum Mathematik /10 Stand Schuljahr 2009/10 Fett und kursiv dargestellte Einheiten gehören zum Schulcurriculum In allen Übungseinheiten kommt die Leitidee Vernetzung zum Tragen - Hilfsmittel

Mehr

9 Die trigonometrischen Funktionen und ihre Umkehrfunktionen

9 Die trigonometrischen Funktionen und ihre Umkehrfunktionen Übungsmaterial 9 Die trigonometrischen Funktionen und ihre Umkehrfunktionen Die trigonometrischen Funktionen sind die Sinus-, die Kosinus- und die Tangensfunktion. 9. Eigenschaften der trigonometrischen

Mehr

DAS ABI-PFLICHTTEIL Büchlein

DAS ABI-PFLICHTTEIL Büchlein DAS ABI-PFLICHTTEIL Büchlein für Baden-Württemberg Alle Originalaufgaben Haupttermine 004 0 Ausführlich gerechnete und kommentierte Lösungswege Mit vielen Zusatzhilfen X π Von: Jochen Koppenhöfer und Pascal

Mehr

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen .3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt

Mehr

Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I

Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I Bayern FOS BOS Fachabiturprüfung 05 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I.0 Nebenstehende Abbildung zeigt den Graphen G f ' der ersten Ableitungsfunktion einer in ganz 0 definierten

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Wahlfach Mathematik: Funktionen

Wahlfach Mathematik: Funktionen Wahlfach Mathematik: Funktionen In der Mathematik ist eine Funktion oder Abbildung eine Beziehung zwischen zwei Mengen, die jedem Element der einen Menge (Funktionsargument, unabhängige Variable, x-wert)

Mehr

Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft

Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft Berufsbildende Schule 11 der Region Hannover Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft Das folgende Material soll Ihnen helfen sich einen Überblick

Mehr

Versuch 6 Oszilloskop und Funktionsgenerator Seite 1. û heißt Scheitelwert oder Amplitude, w = 2pf heißt Kreisfrequenz und hat die Einheit 1/s.

Versuch 6 Oszilloskop und Funktionsgenerator Seite 1. û heißt Scheitelwert oder Amplitude, w = 2pf heißt Kreisfrequenz und hat die Einheit 1/s. Versuch 6 Oszilloskop und Funktionsgenerator Seite 1 Versuch 6: Oszilloskop und Funktionsgenerator Zweck des Versuchs: Umgang mit Oszilloskop und Funktionsgenerator; Einführung in Zusammenhänge Ausstattung

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Die Kugel Grundwissen Mathematik Geometrie Klasse 10. Definitionen und Regeln. Kugeloberfläche: O Kugel = 4 r² π. Kugelvolumen: - 1 -

Die Kugel Grundwissen Mathematik Geometrie Klasse 10. Definitionen und Regeln. Kugeloberfläche: O Kugel = 4 r² π. Kugelvolumen: - 1 - 10.1 Grundwissen Mathematik Geometrie Klasse 10 Die Kugel Beispiele Kugeloberfläche: O Kugel = 4 r² π r Kugelvolumen: V Kugel = 4 3 r³ π - 1 - 10. Grundwissen Mathematik Geometrie Klasse 10 Kreissektor

Mehr

Winkelfunktionen. Dr. H. Macholdt. 21. September 2007

Winkelfunktionen. Dr. H. Macholdt. 21. September 2007 Winkelfunktionen Dr. H. Macholdt 21. September 2007 1 1 Altgrad, Bogenmaß und Neugrad Die Einteilung eines Kreises in 360 Grad ist schon sehr alt und geht auf die Sumerer zurück, die offensichtlich von

Mehr

10 - Elementare Funktionen

10 - Elementare Funktionen Kapitel 1 Mathematische Grundlagen Seite 1 10 Elementare Funktionen Definition 10.1 (konstante Funktion) Konstante Funktionen sind nichts weiter als Parallelen zur xachse, wenn man ihren Graphen in das

Mehr

1. Mathematik-Schularbeit 6. Klasse AHS

1. Mathematik-Schularbeit 6. Klasse AHS . Mathematik-Schularbeit 6. Klasse AHS Arbeitszeit: 50 Minuten Lernstoff: Mathematische Grundkompetenzen: (Un-)Gleichungen und Gleichungssysteme: AG. Einfache Terme und Formeln aufstellen, umformen und

Mehr

MINT-Circle-Schülerakademie

MINT-Circle-Schülerakademie 1 Einführung MINT-Circle-Schülerakademie Kurze Einführung, was Maple ist, wozu es dienen kann, wo es verwendet wird. Zur Einführung die folgenden Aufgaben bearbeiten lassen. Aufgabe 1. Gib unter Maple

Mehr

Kurvendiskussion Ganzrationale Funktion Aufgaben und Lösungen

Kurvendiskussion Ganzrationale Funktion Aufgaben und Lösungen Kurvendiskussion Ganzrationale Funktion Aufgaben und http://www.fersch.de Klemens Fersch 9. August 0 Inhaltsverzeichnis Ganzrationale Funktion Quadratische Funktionen f x) = ax + bx + c 8. Aufgaben...................................................

Mehr

Die grau geschriebenen Inhalte sind verschiedenen Leitideen zugeordnet, und somit doppelt vertreten.

Die grau geschriebenen Inhalte sind verschiedenen Leitideen zugeordnet, und somit doppelt vertreten. Kepler-Gymnasium Freudenstadt Mathematikcurriculum Klasse 9/10 Legende: Kerncurriculum: normale Darstellung Schulcurriculum: gelb hinterlegt Wahlberreich: blaugrau unterlegt und (geklammert) Die grau geschriebenen

Mehr

Trigonometrische Funktionen

Trigonometrische Funktionen Trigonometrische Funktionen Rainer Hauser September 013 1 Einleitung 1.1 Der Begriff Funktion Eine Funktion ordnet jedem Element m 1 einer Menge M 1 ein Element m einer Menge M zu. Man schreibt dafür f:

Mehr

M 10.1. Kreissektoren und Bogenmaß

M 10.1. Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß Wie berechnet man in einem Kreis mit Radius die Länge des Kreisbogens für einen Kreissektor mit Mittelpunktswinkel? Wie berechnet man in einem Kreis mit Radius den Flächeninhalt

Mehr

M 10.1. Kreissektoren und Bogenmaß

M 10.1. Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß Wie berechnet man in einem Kreis mit Radius die Länge des Kreisbogens für einen Kreissektor mit Mittelpunktswinkel? Wie berechnet man in einem Kreis mit Radius den Flächeninhalt

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() =. Aufgabe : ( VP) Berechnen Sie das Integral ( )

Mehr

Pflichtteil... 2. Wahlteil Analysis 1... 6. Wahlteil Analysis 2... 9. Wahlteil Analysis 3... 13. Wahlteil Analytische Geometrie 1...

Pflichtteil... 2. Wahlteil Analysis 1... 6. Wahlteil Analysis 2... 9. Wahlteil Analysis 3... 13. Wahlteil Analytische Geometrie 1... Pflichtteil... Wahlteil Analsis 1... 6 Wahlteil Analsis... 9 Wahlteil Analsis 3... 13 Wahlteil Analtische Geometrie 1... 16 Wahlteil Analtische Geometrie... 3 Lösungen: 006 Pflichtteil Lösungen zur Prüfung

Mehr

Zusammenfassung und Wiederholung zu Geraden im IR ²

Zusammenfassung und Wiederholung zu Geraden im IR ² Seite 1 von 5 Definition einer Geraden Wir zeichnen mithilfe einer Wertetabelle den Graphen der linearen Funktion f mit f 0,5 1. Fülle hierzu die Wertetabelle fertig aus: 4 3 1 0 1 3 4 f f4 0,54 1 3...,5...

Mehr

Von den vielen Möglichkeiten der Diagrammdarstellungen in MATHCAD sollen einige gezeigt werden.

Von den vielen Möglichkeiten der Diagrammdarstellungen in MATHCAD sollen einige gezeigt werden. 5. Diagramme mit MATHCAD Von den vielen Möglichkeiten der Diagrammdarstellungen in MATHCAD sollen einige gezeigt werden. 5.. Erstellen eines Diagramms Das Erstellen eines Diagramms verläuft in mehreren

Mehr

Kurvendiskussion Gebrochenrationale Funktion Aufgaben und Lösungen

Kurvendiskussion Gebrochenrationale Funktion Aufgaben und Lösungen Kurvendiskussion Gebrochenrationale Funktion Aufgaben und http://www.fersch.de Klemens Fersch 7. September 0 Inhaltsverzeichnis Gebrochenrationale Funktion Gebrochen rationale Funktion Zählergrad < Nennergrad

Mehr

Prüfung der allgemeinen Fachhochschulreife an den Fachoberschulen im Schuljahr 2006 / 2007

Prüfung der allgemeinen Fachhochschulreife an den Fachoberschulen im Schuljahr 2006 / 2007 Senatsverwaltung für Bildung, Wissenschaft und Forschung Prüfung der allgemeinen Fachhochschulreife an den Fachoberschulen im Schuljahr / 7 Name, Vorname: Klasse: Prüfungsfach: Mathematik Prüfungstag:

Mehr

Gegeben ist die Funktion f durch. Ihr Schaubild sei K.

Gegeben ist die Funktion f durch. Ihr Schaubild sei K. Aufgabe I 1 Gegeben ist die Funktion f durch. Ihr Schaubild sei K. a) Geben Sie die maximale Definitionsmenge D f an. Untersuchen Sie K auf gemeinsame Punkte mit der x-achse. Bestimmen Sie die Intervalle,

Mehr

Mathematik Abitur Zusammenfassung Marius Buila

Mathematik Abitur Zusammenfassung Marius Buila Mathematik Abitur Zusammenfassung Marius Buila 1.Analysis 1.1 Grundlagen: Ableitung f (u) ist Steigung in Punkt P (u/f(u)) auf K f(x) = a * x r f (x) = a * r * x r-1 Tangentengleichung: y= f (u) * (x-u)

Mehr

Zusammenfassung Mathematik 2012 Claudia Fabricius

Zusammenfassung Mathematik 2012 Claudia Fabricius Zusammenfassung Mathematik Claudia Fabricius Funktion: Eine Funktion f ordnet jedem Element x einer Definitionsmenge D genau ein Element y eines Wertebereiches W zu. Polynom: f(x = a n x n + a n- x n-

Mehr

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,

Mehr

Versuch 14: Wechselstromwiderstände

Versuch 14: Wechselstromwiderstände Versuch 14: Wechselstromwiderstände Inhaltsverzeichnis 1 Einleitung 3 2 Theorie 3 2.1 Grundlagen................................... 3 2.2 Bauteile..................................... 3 2.3 Stromkreise...................................

Mehr

Übergang Klasse 10/E1 (G9) und Klasse 9/E1 (G8) Mathematik. Übungsaufgaben zum Mittelstufenstoff im Fach Mathematik

Übergang Klasse 10/E1 (G9) und Klasse 9/E1 (G8) Mathematik. Übungsaufgaben zum Mittelstufenstoff im Fach Mathematik Fachberatung Mathematik Hilde Zirkler Goethe-Gymnasium Bensheim Bensheim, im Juni 0 Übergang Klasse 0/E (G9) und Klasse 9/E (G8) Mathematik Übungsaufgaben zum Mittelstufenstoff im Fach Mathematik. Lineare

Mehr

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis Abitur - Grundkurs Mathematik Sachsen-Anhalt Gebiet G - Analsis Aufgabe.. Der Graph einer ganzrationalen Funktion f dritten Grades mit einer Funktionsgleichung der Form f a b c d a,b,c,d, R schneidet die

Mehr

Übungsbuch Algebra für Dummies

Übungsbuch Algebra für Dummies ...für Dummies Übungsbuch Algebra für Dummies von Mary Jane Sterling, Alfons Winkelmann 1. Auflage Wiley-VCH Weinheim 2012 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 527 70800 0 Zu Leseprobe

Mehr

Unterlagen für die Lehrkraft

Unterlagen für die Lehrkraft Ministerium für Bildung, Jugend und Sport Zentrale Prüfung zum Erwerb der Fachhochschulreife im Schuljahr 01/01 Mathematik. Juni 01 09:00 Uhr Unterlagen für die Lehrkraft 1. Aufgabe: Differentialrechnung

Mehr

Hinweise zur Nutzung der EXCEL-Mappe FktPlot.xls

Hinweise zur Nutzung der EXCEL-Mappe FktPlot.xls Hinweise zur Nutzung der EXCEL-Mappe FktPlot.xls Die Mappe enthält Makros, ohne die sie nicht funktionsfähig ist. Die Sicherheitseinstellungen müssen entsprechend gewählt und die Ausführung von Makros

Mehr

Schule. Station Löffelliste Teil 2. Klasse. Arbeitsheft. Tischnummer. Teilnehmercode

Schule. Station Löffelliste Teil 2. Klasse. Arbeitsheft. Tischnummer. Teilnehmercode Station Löffelliste Teil 2 Schule Klasse Arbeitsheft Tischnummer Teilnehmercode Mathematik-Labor Löffelliste Teil 2 Liebe Schülerinnen und Schüler! Nachdem Opa Helmut seine Reise zum Mond beendet hat,

Mehr

Expertenpuzzle Quadratische Funktionen

Expertenpuzzle Quadratische Funktionen Phase 1 Lösung für die Expertengruppe I Im Folgenden sollen die in IR definierten Funktionen a : x x, b : x x 0,5, c : x x und d: x x 3 untersucht werden. Die Abbildung zeigt den Graphen G a von a, also

Mehr

Expertenpuzzle Quadratische Funktionen

Expertenpuzzle Quadratische Funktionen Phase 1 Aufgaben für die Expertengruppe I Im Folgenden sollen die in IR definierten Funktionen a : x x, b : x x 0,5, c : x x und d: x x 3 untersucht werden. Die Abbildung zeigt den Graphen G a von a, also

Mehr

Wertetabelle : x 0 0,5 1 2 3 4 0,5 1. y = f(x) = x 2 0 0,25 1 4 9 16 0,25 1. Graph der Funktion :

Wertetabelle : x 0 0,5 1 2 3 4 0,5 1. y = f(x) = x 2 0 0,25 1 4 9 16 0,25 1. Graph der Funktion : Quadratische Funktionen ================================================================= 1. Die Normalparabel Die Funktion f : x y = x, D = R, heißt Quadratfunktion. Wertetabelle : x 0 0,5 1 3 4 0,5 1

Mehr

Schwingungen und Wellen

Schwingungen und Wellen Schwingungen Wellen Jochen Trommer jtrommer@uni-leipzig.de Universität Leipzig Institut für Linguistik Phonologie/Morphologie SS 2007 Schwingungen beim Federpendel Schwingungen beim Federpendel Wichtige

Mehr

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt:

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt: Aufgabe 1 1.1. Bestimmung von D max : 1. Bedingung: x >0 ; da ln(x) nur für x > 0 definiert ist. 2. Bedingung: Somit ist die Funktion f a nur für x > 0 definiert und sie besitzt eine Definitionslücke an

Mehr

Mathematik-Dossier. Die lineare Funktion

Mathematik-Dossier. Die lineare Funktion Name: Mathematik-Dossier Die lineare Funktion Inhalt: Lineare Funktion Lösen von Gleichungssystemen und schneiden von Geraden Verwendung: Dieses Dossier dient der Repetition und Festigung innerhalb der

Mehr

Standardisierte kompetenzorientierte schriftliche Reifeprüfung. Mathematik. Probeklausur März 2014. Teil-1-Aufgaben

Standardisierte kompetenzorientierte schriftliche Reifeprüfung. Mathematik. Probeklausur März 2014. Teil-1-Aufgaben Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik Probeklausur März 2014 Teil-1-Aufgaben Beurteilung Jede Aufgabe in Teil 1 wird mit 0 oder 1 Punkt bewertet, jede Teilaufgabe in

Mehr

MATHEMATIK. Fachabiturprüfung 2009 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik

MATHEMATIK. Fachabiturprüfung 2009 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik Fachabiturprüfung 2009 zum Erwerb der Fachhochschulreife an Fachoberschulen und Berufsoberschulen MATHEMATIK Ausbildungsrichtung Technik Freitag, 29. Mai 2009, 9.00-12.00 Uhr Die Schülerinnen und Schüler

Mehr

Lissajous-Figuren Versuche mit dem Oszilloskop und dem X Y Schreiber

Lissajous-Figuren Versuche mit dem Oszilloskop und dem X Y Schreiber Protokoll VIII Lissajous-Figuren Versuche mit dem Oszilloskop und dem X Y Schreiber Datum: 10.12.2001 Projektgruppe 279 Tutorin: Grit Petschick Studenten: Mina Günther Berna Gezik Carola Nisse Michael

Mehr

Mathematik. Prüfungen am Ende der Jahrgangsstufe 10. Allgemeine Arbeitshinweise. Ministerium für Bildung, Jugend und Sport

Mathematik. Prüfungen am Ende der Jahrgangsstufe 10. Allgemeine Arbeitshinweise. Ministerium für Bildung, Jugend und Sport Ministerium für Bildung, Jugend und Sport Prüfungen am Ende der Jahrgangsstufe 10 Mathematik Schriftliche Prüfung Schuljahr: 003/004 Schulform: Allgemeine Arbeitshinweise Die Prüfungszeit beträgt 160 Minuten.

Mehr

Funktionen (linear, quadratisch)

Funktionen (linear, quadratisch) Funktionen (linear, quadratisch) 1. Definitionsbereich Bestimme den Definitionsbereich der Funktion f(x) = 16 x 2 2x + 4 2. Umkehrfunktionen Wie lauten die Umkehrfunktionen der folgenden Funktionen? (a)

Mehr

Eingangstest Mathematik Musterlösungen

Eingangstest Mathematik Musterlösungen Fakultät für Technik Eingangstest Mathematik Musterlösungen 00 Fakultät für Technik DHBW Mannheim . Arithmetik.. (4 Punkte) Vereinfachen Sie folgende Ausdrücke durch Ausklammern, Ausmultiplizieren und

Mehr

1.Kreiszahl π 1.1.Kreis α Länge des Kreisbogens b = 2π 360 α

1.Kreiszahl π 1.1.Kreis α Länge des Kreisbogens b = 2π 360 α Grundwissen athematik 0.Klasse Gymnasium SOB.Kreiszahl..Kreis α Länge des Kreisbogens b r 360 α Fläche des Kreissektors A r 360 Das Bogenmaß b eines Winkels α ist die Länge der zugehörigen Bogenlänge b

Mehr

Demo: Mathe-CD. Prüfungsaufgaben Mündliches Abitur. Analysis. Teilbereich 1: Ganzrationale Funktionen 1. März 2002

Demo: Mathe-CD. Prüfungsaufgaben Mündliches Abitur. Analysis. Teilbereich 1: Ganzrationale Funktionen 1. März 2002 Prüfungsaufgaben Mündliches Abitur Analysis Teilbereich : Ganzrationale Funktionen Hier nur Aufgaben als Demo Datei Nr. 9 März 00 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Vorwort Die in dieser Reihe von

Mehr

Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum. Praktikum Nr. 2. Thema: Widerstände und Dioden

Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum. Praktikum Nr. 2. Thema: Widerstände und Dioden Fachhochschule Bielefeld Fachbereich Elektrotechnik Versuchsbericht für das elektronische Praktikum Praktikum Nr. 2 Name: Pascal Hahulla Matrikelnr.: 207XXX Thema: Widerstände und Dioden Versuch durchgeführt

Mehr

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel:

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel: 1. Zahlenmengen Wissensgrundlage Aufgabenbeispiele Gib die jeweils kleinstmögliche Zahlenmenge an, welche die Zahl enthält? R Q Q oder All diejenigen Zahlen, die sich nicht mehr durch Brüche darstellen

Mehr

INFOMAPPE ZUM EINSTUFUNGSTEST MATHEMATIK AN DER FOS/BOS MEMMINGEN

INFOMAPPE ZUM EINSTUFUNGSTEST MATHEMATIK AN DER FOS/BOS MEMMINGEN INFOMAPPE ZUM EINSTUFUNGSTEST MATHEMATIK AN DER FOS/BOS MEMMINGEN Liebe Schülerinnen und Schüler, wie schnell man einen bereits einmal gekonnten Stoff wieder vergisst, haben Sie sicherlich bereits schon

Mehr

Versuchsprotokoll zum Versuch Nr.9 Messungen mit dem Elektronenstrahl-Oszilloskop vom 05.05.1997

Versuchsprotokoll zum Versuch Nr.9 Messungen mit dem Elektronenstrahl-Oszilloskop vom 05.05.1997 In diesem Versuch geht es darum, mit einem modernen Elektronenstrahloszilloskop verschiedene Messungen durch zuführen. Dazu kommen folgende Geräte zum Einsatz: Gerät Bezeichnung/Hersteller Inventarnummer

Mehr

22 Die trigonometrischen Funktionen und die Hyperbelfunktionen

22 Die trigonometrischen Funktionen und die Hyperbelfunktionen 22 Die trigonometrischen Funktionen und die Hyperbelfunktionen 22.1 Sinus und Cosinus 22.3 Definition von 22.6 Sinus und Cosinus als eindeutige Lösungen eines Differentialgleichungssystems 22.7 Tangens

Mehr

Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen)

Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen) Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen) Beispiel 1 Diskutiere die durch f(x) = x2 3x 4 x + 2 gegebene Funktion f. a) Definitionsbereich: Der Nenner eines Bruches darf nicht gleich

Mehr

F u n k t i o n e n Potenzfunktionen

F u n k t i o n e n Potenzfunktionen F u n k t i o n e n Potenzfunktionen Die Kathedrale von Brasilia steht in der brasilianischen Hauptstadt Brasilia wurde von Oscar Niemeyer (*907 in Rio de Janeiro). Die Kathedrale von Brasilia besteht

Mehr

Das Oszilloskop als Messinstrument Versuch P1-32,33,34

Das Oszilloskop als Messinstrument Versuch P1-32,33,34 Vorbereitung Das Oszilloskop als Messinstrument Versuch P1-32,33,34 Iris Conradi Gruppe Mo-02 23. November 2010 Inhaltsverzeichnis Inhaltsverzeichnis 1 Kennenlernen der Bedienelemente 3 2 Messung im Zweikanalbetrieb

Mehr

EO - Oszilloskop Blockpraktikum Frühjahr 2005

EO - Oszilloskop Blockpraktikum Frühjahr 2005 EO - Oszilloskop, Blockpraktikum Frühjahr 25 28. März 25 EO - Oszilloskop Blockpraktikum Frühjahr 25 Alexander Seizinger, Tobias Müller Assistent René Rexer Tübingen, den 28. März 25 Einführung In diesem

Mehr

Vermessungskunde für Bauingenieure und Geodäten

Vermessungskunde für Bauingenieure und Geodäten Vermessungskunde für Bauingenieure und Geodäten Übung 1: Geodätische Koordinatensysteme und Erste Geodätische Hauptaufgabe Milo Hirsch Hendrik Hellmers Florian Schill Institut für Geodäsie Fachbereich

Mehr

3.3 Linkskurve, Rechtskurve Wendepunkte

3.3 Linkskurve, Rechtskurve Wendepunkte 166 FUNKTIONSUNTERSUCHUNGEN 3.3 Linkskurve, Rechtskurve Wendepunkte Einführung (1) Anschauliche Erklärung des Begriffs Wendepunkt Bei Motorradrennen lässt sich beobachten, wie sich die Motorradfahrer beim

Mehr

x 0 0,5 1 2 3 4 0,5 1 2. Die Quadratfunktion ist für x 0 streng monoton fallend und für x 0 streng monoton steigend.

x 0 0,5 1 2 3 4 0,5 1 2. Die Quadratfunktion ist für x 0 streng monoton fallend und für x 0 streng monoton steigend. Quadratische Funktionen ================================================================= 1. Die Normalparabel Die Funktion f : x y = x 2, D = R, heißt Quadratfunktion. Ihr Graph heißt Normalparabel. Wertetabelle

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

2.6 Stetigkeit und Grenzwerte

2.6 Stetigkeit und Grenzwerte 2.6 Stetigkeit und Grenzwerte Anschaulich gesprochen ist eine Funktion stetig, wenn ihr Graph sich zeichnen lässt, ohne den Stift abzusetzen. Das ist natürlich keine präzise mathematische Definition und

Mehr

Der Bipolar-Transistor und die Emitterschaltung Gruppe B412

Der Bipolar-Transistor und die Emitterschaltung Gruppe B412 TECHNISCHE UNIVERSITÄT MÜNCHEN Der Bipolar-Transistor und die Emitterschaltung Gruppe B412 Patrick Christ und Daniel Biedermann 16.10.2009 1. INHALTSVERZEICHNIS 1. INHALTSVERZEICHNIS... 2 2. AUFGABE 1...

Mehr

Darstellungsformen einer Funktion

Darstellungsformen einer Funktion http://www.flickr.com/photos/sigfrid/348144517/ Darstellungsformen einer Funktion 9 Analytische Darstellung: Eplizite Darstellung Funktionen werden nach Möglichkeit eplizit dargestellt, das heißt, die

Mehr

GRUNDKURS MATHEMATIK. Zahlenmengen. Natürliche Zahlen. Ganze Zahlen. Gebrochene Zahlen { } Rationale Zahlen { } Irrationale Zahlen { } Reelle Zahlen

GRUNDKURS MATHEMATIK. Zahlenmengen. Natürliche Zahlen. Ganze Zahlen. Gebrochene Zahlen { } Rationale Zahlen { } Irrationale Zahlen { } Reelle Zahlen GRUNDKURS MATHEMATIK Zahlenmengen Natürliche Zahlen Ganze Zahlen : 0, 1, 2, 3, Gebrochene Zahlen { } : 0, -1, 1, - Rationale Zahlen { } : 0,,, - Irrationale Zahlen { } : 0, -, Reelle Zahlen Addition und

Mehr

Vorkurs Mathematik. Vorbereitung auf das Studium der Mathematik. Skript

Vorkurs Mathematik. Vorbereitung auf das Studium der Mathematik. Skript Vorkurs Mathematik Vorbereitung auf das Studium der Mathematik Skript Dr. Johanna Dettweiler Institut für Analysis 20. Oktober 2009 Inhaltsverzeichnis Einleitung 7 1 Aussagen und Mengen 9 1.1 Aussagen:

Mehr

Kreuze nur die zutreffenden Eigenschaften für die folgenden Funktionen im richtigen Feld an!

Kreuze nur die zutreffenden Eigenschaften für die folgenden Funktionen im richtigen Feld an! Teil : Grundkompetenzen ( Punkte) Beispiel : ( Punkt) Die nebenstehende Graphik stellt ein eponentielles Wachstum der Form f() = a b (a, b R + ) dar. Bestimme aus dem Graphen die Werte der Konstanten a

Mehr

Das Frequenzverhalten von RC-Gliedern (E17)

Das Frequenzverhalten von RC-Gliedern (E17) Das Frequenzverhalten von RC-Gliedern (E17) Ziel des Versuches Die Hintereinanderschaltung von ohmschem Widerstand und Kondensator wirkt als Filter für Signale unterschiedlicher Frequenz. In diesem Versuch

Mehr

Praktikumsbericht Nr.6

Praktikumsbericht Nr.6 Praktikumsbericht Nr.6 bei Pro. Dr. Flabb am 29.01.2001 1/13 Geräteliste: Analoge Vielachmessgeräte: R i = Relativer Eingangswiderstand ür Gleichspannung Gk = Genauigkeitsklasse Philips PM 2503 Gk.1 R

Mehr

Kapitel 3 Mathematik. Kapitel 3.3. Algebra Gleichungen

Kapitel 3 Mathematik. Kapitel 3.3. Algebra Gleichungen TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.3 Algebra Gleichungen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 877 Nidfurn 055-654 1 87 Ausgabe: Februar 009

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathemati PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathemati für Informatier II (Sommersemester 00) Lösungen zu Aufgabenblatt

Mehr

= 26 60 (Hauptnenner) 15x 12x + 10x = 26 60 zusammenfassen 13x = 26 60 :13 (Variable isolieren) x =

= 26 60 (Hauptnenner) 15x 12x + 10x = 26 60 zusammenfassen 13x = 26 60 :13 (Variable isolieren) x = WERRATALSCHULE HERINGEN KOMPENSATION MATHEMATIK JG. 11 1 Lineare Gleichungen Das Lösen linearer Gleichungen ist eine wichtige Rechenfertigkeit, die immer wieder gefordert wird und für den Mathematikunterricht

Mehr

Technische Mathematik

Technische Mathematik Lehrplan Technische Mathematik Fachschule für Technik Fachrichtungsbezogener Lernbereich Ministerium für Bildung, Kultur und Wissenschaft Hohenzollernstraße 60, 66117 Saarbrücken Postfach 10 24 52, 66024

Mehr

Schaubilderanalyse. Arbeiten mit Schaubildern von Funktionen. Funktionsgleichungen aufstellen - identifizieren uva.

Schaubilderanalyse. Arbeiten mit Schaubildern von Funktionen. Funktionsgleichungen aufstellen - identifizieren uva. Dieser Text ist noch in Arbeit. Jetzt also nur zur Vorinformation! Schaubilderanalyse Arbeiten mit Schaubildern von Funktionen Abitur-Vorbereitung Funktionsgleichungen aufstellen - identifizieren uva.

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

32. Algorithmus der Woche Kreise zeichnen mit Turbo Programmoptimierung: Wie kann man die Zahl der Rechenoperationen minimieren?

32. Algorithmus der Woche Kreise zeichnen mit Turbo Programmoptimierung: Wie kann man die Zahl der Rechenoperationen minimieren? 32. Algorithmus der Woche Kreise zeichnen mit Turbo Programmoptimierung: Wie kann man die Zahl der Rechenoperationen minimieren? Autor Leif Kobbelt, RWTH Aachen Dominik Sibbing, RWTH Aachen Hast Du schon

Mehr

Schriftliche Abiturprüfung Leistungskursfach Mathematik

Schriftliche Abiturprüfung Leistungskursfach Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 2000/01 Geltungsbereich: - Allgemein bildendes Gymnasium - Abendgymnasium und Kolleg - Schulfremde Prüfungsteilnehmer Schriftliche Abiturprüfung Leistungskursfach

Mehr