Stochastik-Praktikum

Größe: px
Ab Seite anzeigen:

Download "Stochastik-Praktikum"

Transkript

1 Stochastik-Praktikum Zeitreihenanalyse Peter Frentrup Humboldt-Universität zu Berlin 19. Dezember 2017 (Humboldt-Universität zu Berlin) Zeitreihenanalyse 19. Dezember / 13

2 Übersicht 1 Zeitreihen Weißes Rauschen (WN) Moving Average (MA) Autoregressive (AR, ARMA) Autoregressiv mit bedingter Heteroskedastizität (ARCH) 2 Vorhersagen Yule-Walker-Schätzer (Humboldt-Universität zu Berlin) Zeitreihenanalyse 19. Dezember / 13

3 Zeitreihen Definition Ein stochastischer Prozess (X t ) t T mit diskretem T = N 0 oder T = Z heißt Zeitreihe. Eine Zeitreihe (X t ) heißt (strikt) stationär, falls n N, t 1,..., t n, t T : (X 1t,..., X tn ) d = (X t1 +t,..., X tn+t). Eine Zeitreihe (X t ) mit X t L 2 (P) heißt schwach stationär falls r, s, t T : E[X s ] = E[X s+t ], Cov(X r, X s ) = Cov(X r+t, X s+t ). In diesem Fall heißt t c(t) := Cov(X s, X s+t ) Autokovarianzfunktion (s T beliebig) und t ρ(t) := c(t)/c(0) Autokorrelationsfunktion. (Humboldt-Universität zu Berlin) Zeitreihenanalyse 19. Dezember / 13

4 Zeitreihen Stationäre Zeitreihen 1 Jährliche Regenmengen 2 Umtauschkurs Euro Dollar 3 Anzahl Autounfälle 4 Herzfrequenz einer gesunden Person Nicht-Stationäre Zeitreihen 1 Jährliche Marienkäferpopulation 2 Tägliche Regenmengen 3 Stündliches Verkehrsaufkommen an der Rudower Chaussee Nach herausrechnen von Trends und saisonalen Komponenten können letztere teilweise auch als strationär angenommen werden. (Humboldt-Universität zu Berlin) Zeitreihenanalyse 19. Dezember / 13

5 Zeitreihen Stationäre Zeitreihen 1 Jährliche Regenmengen 2 Umtauschkurs Euro Dollar 3 Anzahl Autounfälle 4 Herzfrequenz einer gesunden Person Nicht-Stationäre Zeitreihen 1 Jährliche Marienkäferpopulation 2 Tägliche Regenmengen 3 Stündliches Verkehrsaufkommen an der Rudower Chaussee Nach herausrechnen von Trends und saisonalen Komponenten können letztere teilweise auch als strationär angenommen werden. (Humboldt-Universität zu Berlin) Zeitreihenanalyse 19. Dezember / 13

6 Definition Ein schwach stationärer Prozess (ε t ) t Z mit E[ε t ] = 0 und Autokovarianzfunktion { σ 2 t = 0, c(t) = 0 t 0 heißt weißes Rauschen (engl. white noise), (ε t ) WN(0, σ 2 ). Falls zudem die ε t i.i.d. sind, so schreiben wir (ε t ) IID(0, σ 2 ). 4 Weißes Rauschen t U [ 3, 3] 4 Weißes Rauschen t (0, 1) (Humboldt-Universität zu Berlin) Zeitreihenanalyse 19. Dezember / 13

7 Definition (MA) Für (ε t ) WN(0, σ 2 ) und b 1,..., b q R, q N, definiert X t := ε t + b 1 ε t b q ε t q, t Z, eine stationäre Zeitreihe, genannt Moving Average Zeitreihe (X t ) MA(q). MA(7)-Zeitreihe (Humboldt-Universität zu Berlin) Zeitreihenanalyse 19. Dezember / 13

8 Definition (AR und ARMA) Eine Zeitreihe (X t ) t Z heißt Autoregressiv mit Ordnung p N, (X t ) AR(p), falls X t := a 1 X t 1 + a 2 X t a p X t p + ε t, t Z, für (ε t ) WN(0, σ 2 ) und Parameter a 1,..., a p R, p N. Mit b 1,..., b q R, q N, heißt eine Lösung von X t := a 1 X t a p X t p + ε t + b 1 ε t b q ε t q, t Z, Autoregressive Moving Average Zeitreihe, (X t ) ARMA(p, q) (Humboldt-Universität zu Berlin) Zeitreihenanalyse 19. Dezember / 13

9 X ARMA(p, q): X t := a 1 X t a p X t p + ε t + b 1 ε t b q ε t q, t Z. Lemma Sei (ε t ) WN(0, σ 2 ). Falls a < 1, so gibt genau eine schwach stationäre AR(1)-Zeitreihe X t = ax t 1 + ε t, t Z. (nämlich X t = j=0 aj ε t j ) Für viele konkrete (ε t ) t Z WN(0, σ 2 ) und Parameter a j, b j lassen sich die Anfangswerte X p+1,..., X 0 einer (schwach) stationären ARMA(p, q)-zeitreihe (X t ) t N explizit berechnen/simulieren, ohne alle (ε t ) t 0 simulieren zu müssen. (Humboldt-Universität zu Berlin) Zeitreihenanalyse 19. Dezember / 13

10 Autoregressiv mit bedingter Heteroskedastizität (ARCH) Definition (ARCH(1)-Zeitreihe) Für zufälliges X 0 mit E[X0 2] <, unabhängiges (ε t) IID(0, 1), und Parameter a 0 > 0 und a 1 (0, 1) heißt X t = a 0 + a 1 Xt 1 2 ε t, t N, (1) autoregressiv mit bedingter Heteroskedastizität (engl. ARCH(1)). ARCH-Prozesse wurden 1982 von Robert Engle zur Modellierung finanzieller Zeitreihen (z.b. Renditen eines Finanzgutes) eingeführt. Lemma X t aus (1) ist ein weißes Rauschen (bei geeignet gewähltem X 0 ). Beweis: Übung. (Humboldt-Universität zu Berlin) Zeitreihenanalyse 19. Dezember / 13

11 Autoregressiv mit bedingter Heteroskedastizität (ARCH) Definition (ARCH(1)-Zeitreihe) Für zufälliges X 0 mit E[X0 2] <, unabhängiges (ε t) IID(0, 1), und Parameter a 0 > 0 und a 1 (0, 1) heißt X t = a 0 + a 1 Xt 1 2 ε t, t N, (1) autoregressiv mit bedingter Heteroskedastizität (engl. ARCH(1)). ARCH-Prozesse wurden 1982 von Robert Engle zur Modellierung finanzieller Zeitreihen (z.b. Renditen eines Finanzgutes) eingeführt. Lemma X t aus (1) ist ein weißes Rauschen (bei geeignet gewähltem X 0 ). Beweis: Übung. (Humboldt-Universität zu Berlin) Zeitreihenanalyse 19. Dezember / 13

12 Übersicht 1 Zeitreihen Weißes Rauschen (WN) Moving Average (MA) Autoregressive (AR, ARMA) Autoregressiv mit bedingter Heteroskedastizität (ARCH) 2 Vorhersagen Yule-Walker-Schätzer (Humboldt-Universität zu Berlin) Zeitreihenanalyse 19. Dezember / 13

13 Vorhersagen AR(p)-Zeitreihe X t+1 = a 1 X t a p X t p+1 + ε t+1, (ε t ) WN(0, σ 2 ). Die beste lineare Vorhersage für X t+1 gegeben der Beobachtungen X 0,..., X t (t p) ist ˆX t+1 := a 1 X t a p X t p+1 + E[ε t+1 ], }{{} =0 d.h. E[( ˆX t+1 X t+1 ) 2 X 0,..., X t ] ist minimal für diesen Schätzer. Problem: Parameter a 1,..., a p unbekannt. (Humboldt-Universität zu Berlin) Zeitreihenanalyse 19. Dezember / 13

14 Vorhersagen AR(p)-Zeitreihe X t+1 = a 1 X t a p X t p+1 + ε t+1, (ε t ) WN(0, σ 2 ). Die beste lineare Vorhersage für X t+1 gegeben der Beobachtungen X 0,..., X t (t p) ist ˆX t+1 := a 1 X t a p X t p+1 + E[ε t+1 ], }{{} =0 d.h. E[( ˆX t+1 X t+1 ) 2 X 0,..., X t ] ist minimal für diesen Schätzer. Problem: Parameter a 1,..., a p unbekannt. (Humboldt-Universität zu Berlin) Zeitreihenanalyse 19. Dezember / 13

15 Empirisches Mittel gegeben X 1,..., X n : ˆµ n := 1 n n X i. i=1 Empirische Autokovarianz gegeben X 1,..., X n : ĉ(h) := 1 n h (X i ˆµ n )(X i+h ˆµ n ), c( h) := c(h), h N 0. n i=1 Empirische Autokorrelation gegeben X 1,..., X n : ˆρ(h) := ĉ(h) ĉ(0). (Humboldt-Universität zu Berlin) Zeitreihenanalyse 19. Dezember / 13

16 Yule-Walker-Schätzer X : schwach stationärer, kausaler (d.h. X t hängt nur von Vergangenheit ab) AR(1)-Prozess mit (ε t ) WN(0, σ 2 ). Problem: Parameter a 1,..., a p Schätzen. E[X t ] = 0, Autokovarianz: c(h) = Cov(X t, X t h ) = Cov(a 1 X t a p X t p + ε t, X t h ) = a 1 c(h 1) a p c(h p) für h 1, c(0) = Cov(X t, X t ) = Cov(a 1 X t a p X t p + ε t, X t ) = a 1 c( 1) a p c( p) + σ 2. c(1) = a 1 c(0) + + a p c(p 1). c p = C p a c(p) = a 1 c(p 1) + + a p c(0) mit c p = (c(1),..., c(p)), C p = ( c(i j) ) 1 i,j p, a = (a 1,..., a p ). (Humboldt-Universität zu Berlin) Zeitreihenanalyse 19. Dezember / 13

17 Yule-Walker-Schätzer X : schwach stationärer, kausaler (d.h. X t hängt nur von Vergangenheit ab) AR(1)-Prozess mit (ε t ) WN(0, σ 2 ). Problem: Parameter a 1,..., a p Schätzen. E[X t ] = 0, Autokovarianz: c(h) = Cov(X t, X t h ) = Cov(a 1 X t a p X t p + ε t, X t h ) = a 1 c(h 1) a p c(h p) für h 1, c(0) = Cov(X t, X t ) = Cov(a 1 X t a p X t p + ε t, X t ) = a 1 c( 1) a p c( p) + σ 2. c(1) = a 1 c(0) + + a p c(p 1). c p = C p a c(p) = a 1 c(p 1) + + a p c(0) mit c p = (c(1),..., c(p)), C p = ( c(i j) ) 1 i,j p, a = (a 1,..., a p ). (Humboldt-Universität zu Berlin) Zeitreihenanalyse 19. Dezember / 13

18 Yule-Walker-Schätzer X : schwach stationärer, kausaler (d.h. X t hängt nur von Vergangenheit ab) AR(1)-Prozess mit (ε t ) WN(0, σ 2 ). Problem: Parameter a 1,..., a p Schätzen. E[X t ] = 0, Autokovarianz: c(h) = Cov(X t, X t h ) = Cov(a 1 X t a p X t p + ε t, X t h ) = a 1 c(h 1) a p c(h p) für h 1, c(0) = Cov(X t, X t ) = Cov(a 1 X t a p X t p + ε t, X t ) = a 1 c( 1) a p c( p) + σ 2. c(1) = a 1 c(0) + + a p c(p 1). c p = C p a c(p) = a 1 c(p 1) + + a p c(0) mit c p = (c(1),..., c(p)), C p = ( c(i j) ) 1 i,j p, a = (a 1,..., a p ). (Humboldt-Universität zu Berlin) Zeitreihenanalyse 19. Dezember / 13

19 Yule-Walker-Schätzer X : schwach stationärer, kausaler (d.h. X t hängt nur von Vergangenheit ab) AR(1)-Prozess mit (ε t ) WN(0, σ 2 ). Problem: Parameter a 1,..., a p Schätzen. c(1) = a 1 c(0) + + a p c(p 1). c p = C p a c(p) = a 1 c(p 1) + + a p c(0) mit c p = (c(1),..., c(p)), C p = ( c(i j) ) 1 i,j p, a = (a 1,..., a p ). Definition (Yule-Walker-Schätzer) Mit empirischer Autokovarianz ĉ(h) = 1 n h n i=1 X ix i+h (da E[X i ] = 0) heißt die Lösung â von Ĉp â = ĉ p Yule-Walker-Schätzer. (Humboldt-Universität zu Berlin) Zeitreihenanalyse 19. Dezember / 13

Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse

Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse Yannik Behr Gliederung 1 Stochastische Prozesse Stochastische Prozesse Ein stochastischer Prozess ist ein Phänomen, dessen

Mehr

Hauptseminar zum Thema:

Hauptseminar zum Thema: Fakultät Informatik Institut für angewandte Informatik Professur Technische Informationssysteme Hauptseminar zum Thema: Vergleich ARCH- und GARCH- Modelle bei der Analyse von Zeitreihen mit veränderlichen

Mehr

Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg. PROGNOSE II - Vertiefung Aufgaben und Lösungen Sommersemester 2004

Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg. PROGNOSE II - Vertiefung Aufgaben und Lösungen Sommersemester 2004 Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg PROGNOSE II - Vertiefung Aufgaben und Lösungen Sommersemester 2004 Aufgabe 1 U t bedeute weißes Rauschen und B den Backshift

Mehr

Hauptseminar Technische Informationssysteme

Hauptseminar Technische Informationssysteme Hauptseminar Technische Informationssysteme Thema: Vergleich verschiedener Prognosestrategien von Tobias Fochtmann Betreuer: Dr. Ribbecke 24.01.2008 Gliederung I. Einleitung II. Prognose allgemein und

Mehr

6. Statistische Schätzung von ARIMA Modellen

6. Statistische Schätzung von ARIMA Modellen 6. Statistische Schätzung von ARIMA Modellen Vorschau: ARIMA Modelle Modellidentifikation verschiedene Schätzverfahren Modelldiagnostik Fallstudien Zeitreihenanalyse 1 6.1 ARIMA Modelle Bisher: ARMA(p,q)-Modelle:

Mehr

Eine zeitreihenanalytische Untersuchung der Industrieproduktion in Deutschland

Eine zeitreihenanalytische Untersuchung der Industrieproduktion in Deutschland Eine zeitreihenanalytische Untersuchung der Industrieproduktion in Deutschland Klaus Neusser 2. Dezember 2010 Zusammenfassung Ziel dieses Beitrags ist es, den fortgeschrittenen Studierenden eine Einführung

Mehr

Kointegration. Kapitel 19. Angewandte Ökonometrie / Ökonometrie III Michael Hauser

Kointegration. Kapitel 19. Angewandte Ökonometrie / Ökonometrie III Michael Hauser 1 / 28 Kointegration Kapitel 19 Angewandte Ökonometrie / Ökonometrie III Michael Hauser 2 / 28 Inhalt I(d), Trends, Beispiele Spurious Regression Kointegration, common trends Fehlerkorrektur-Modell Test

Mehr

ARCH- und GARCH-Modelle

ARCH- und GARCH-Modelle ARCH- und GARCH-Modelle Thomas Simon Analyse und Modellierung komplexer Systeme 04.11.2009 homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle 04.11.2009 1 / 27 Ausgangssituation

Mehr

Einführung in die Wahrscheinlichkeitstheorie und Statistik

Einführung in die Wahrscheinlichkeitstheorie und Statistik Einführung in die Wahrscheinlichkeitstheorie und Statistik Dr. C.J. Luchsinger 9 Crash-Course in Statistics IV: Zeitreihenanalyse (MA, AR und ARMA) Literatur Kapitel 9 auf www.math-jobs.com/timeseriesanalysis.html

Mehr

Einleitung. Kapitel 1

Einleitung. Kapitel 1 Kapitel 1 Einleitung Die mathematische Analyse von Zeitreihen gewinnt wegen ihrer vielseitigen Anwendungsmöglichkeiten zunehmend an Bedeutung. Zu den wichtigsten Zeitreihen in der Ökonometrie zählen Preisverläufe,

Mehr

5. Zeitreihenanalyse und Prognoseverfahren

5. Zeitreihenanalyse und Prognoseverfahren 5. Zeitreihenanalyse und Prognoseverfahren Stichwörter: Trend, Saisonalität, Noise, additives Modell, multiplikatives Modell, Trendfunktion, Autokorrelationsfunktion, Korrelogramm, Prognosehorizont, Prognoseintervall,

Mehr

Varianz und Kovarianz

Varianz und Kovarianz KAPITEL 9 Varianz und Kovarianz 9.1. Varianz Definition 9.1.1. Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X : Ω eine Zufallsvariable. Wir benutzen die Notation (1) X L 1, falls E[ X ]

Mehr

Einführung in die Maximum Likelihood Methodik

Einführung in die Maximum Likelihood Methodik in die Maximum Likelihood Methodik Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Gliederung 1 2 3 4 2 / 31 Maximum Likelihood

Mehr

7.2 Moment und Varianz

7.2 Moment und Varianz 7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p

Mehr

Kapitel 2.1: Die stochastische Sicht auf Signale Georg Dorffner 67

Kapitel 2.1: Die stochastische Sicht auf Signale Georg Dorffner 67 Kapitel 2.1: Die stochastische Sicht auf Signale 215 Georg Dorffner 67 Stochastische Prozesse Stochastische Prozesse sind von Zufall geprägte Zeitreihen x n f x, n 1 xn2,... n vorhersagbarer Teil, Signal

Mehr

Analysis und Lineare Algebra mit MuPAD

Analysis und Lineare Algebra mit MuPAD Analysis und Lineare Algebra mit MuPAD Dehling/Kubach Mögliche Themen für Abschlussprojekte 1 Fourier-Reihen Zu einer integrierbaren Funktion f : [0,2π] R definieren wir die Fourier-Reihe wobei a 0 = 1

Mehr

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über

Mehr

Das GARCH Modell zur Modellierung von Finanzmarktzeitreihen. Seminararbeit von Frauke Heuermann Juni 2010

Das GARCH Modell zur Modellierung von Finanzmarktzeitreihen. Seminararbeit von Frauke Heuermann Juni 2010 Das GARCH Modell zur Modellierung von Finanzmarktzeitreihen Seminararbeit von Frauke Heuermann Juni 2010 i Inhaltsverzeichnis 0 Einleitung 1 1 Der ARCH-Prozess 1 1.1 Das ARCH(1)-Modell........................

Mehr

Zeitreihenanalyse. Prof. Dr. Hajo Holzmann Fachbereich Mathematik und Informatik, Universität Marburg. Wintersemester 2008/09 (Stand: 26.

Zeitreihenanalyse. Prof. Dr. Hajo Holzmann Fachbereich Mathematik und Informatik, Universität Marburg. Wintersemester 2008/09 (Stand: 26. Zeitreihenanalyse Prof. Dr. Hajo Holzmann Fachbereich Mathematik und Informatik, Universität Marburg Wintersemester 2008/09 (Stand: 26. Januar 2009) ii INHALTSVERZEICHNIS Inhaltsverzeichnis 1 Beispiele

Mehr

Wirtschaftsmathematik Wirtschaftsstatistik

Wirtschaftsmathematik Wirtschaftsstatistik Wirtschaftsmathematik Wirtschaftsstatistik Ökonometrie ARMA-Prozesse Prof. Dr. Franz Seitz, Weiden / Dr. Benjamin R. Auer, Leipzig Neben den formalen Grundlagen von ARMA-Prozessen (Autoregressive Moving

Mehr

Satz 2.8.3: Sei Q eine Intensitätsmatrix. Dann hat die

Satz 2.8.3: Sei Q eine Intensitätsmatrix. Dann hat die Satz 2.8.3: Sei Q eine Intensitätsmatrix. Dann hat die Rückwärtsgleichung P (t) = QP (t), P (0) = E eine minimale nicht negative Lösung (P (t) : t 0). Die Lösung bildet eine Matrix Halbgruppe, d.h. P (s)p

Mehr

Stochastische Prozesse und Zeitreihenmodelle

Stochastische Prozesse und Zeitreihenmodelle Kapitel 12 Stochastische Prozesse und Zeitreihenmodelle Department of Statistics and Mathematics WU Wien c 2008 Statistik 12 Stochastische Prozesse und Zeitreihenmodelle 0 / 53 Inhalt Notation Zusammenhang

Mehr

3. Einführung in die Zeitreihenanalyse

3. Einführung in die Zeitreihenanalyse 3. Einführung in die Zeitreihenanalyse Dr. Johann Burgstaller Finance Department, JKU Linz (Dieser Foliensatz wurde zuletzt aktualisiert am 25. Dezember 2007.) Dr. Johann Burgstaller IK Empirische Kapitalmarktforschung

Mehr

acf(y) pacf(y) Series y Series y Index ACF Lag Partial ACF Lag

acf(y) pacf(y) Series y Series y Index ACF Lag Partial ACF Lag Aufgabe 47: Parameterschätzung und Modellwahl im ARMA-Modell (Software) Analysieren Sie die in der Datei aufgabe47.txt gegebene Zeitreihe (y t ), t = 1,..., 100. Nehmen Sie an, dass diese Realisation eines

Mehr

Angewandte Ökonometrie Übung. Endogenität, VAR, Stationarität und Fehlerkorrekturmodell

Angewandte Ökonometrie Übung. Endogenität, VAR, Stationarität und Fehlerkorrekturmodell Angewandte Ökonometrie Übung 3 Endogenität, VAR, Stationarität und Fehlerkorrekturmodell Zeitreihenmodelle Zeitreihenmodelle Endogenität Instrumentvariablenschätzung Schätzung eines VARs Tests auf Anzahl

Mehr

I. Deskriptive Statistik 1

I. Deskriptive Statistik 1 I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................

Mehr

5 Erwartungswerte, Varianzen und Kovarianzen

5 Erwartungswerte, Varianzen und Kovarianzen 47 5 Erwartungswerte, Varianzen und Kovarianzen Zur Charakterisierung von Verteilungen unterscheidet man Lageparameter, wie z. B. Erwartungswert ( mittlerer Wert ) Modus (Maximum der Wahrscheinlichkeitsfunktion,

Mehr

11. Zeitreihen mit Trend und Saisonalität

11. Zeitreihen mit Trend und Saisonalität In diesem Abschnitt geht es um ZR, die in eine Trend-, eine Saisonund eine Restkomponente zerlegt werden können. (Das Niveau sei in der Trendkomponente enthalten.) Beispiele für solche ZR sind in Abb.

Mehr

4. Zeitreihenanalyse, ARCH & GARCH

4. Zeitreihenanalyse, ARCH & GARCH 4. Zeitreihenanalyse, ARCH & GARCH Nach einführenden Bemerkungen wenden wir uns der Beschreibung von Zeitreihen zu. Die gängigen Modelle werden präsentiert. Dann werden wir uns mit der statistischen Analyse

Mehr

Vertiefung NWI: 13. Vorlesung zur Wahrscheinlichkeitstheorie

Vertiefung NWI: 13. Vorlesung zur Wahrscheinlichkeitstheorie Fakultät für Mathematik Prof. Dr. Barbara Gentz SS 2013 Vertiefung NWI: 13. Vorlesung zur Wahrscheinlichkeitstheorie Mittwoch, 10.7.2013 13. Markoffketten 13.1 Beispiele 1. Irrfahrt auf dem zweidimensionalen

Mehr

5.6 Empirische Wirtschaftsforschung

5.6 Empirische Wirtschaftsforschung 5.6.0 Vorbemerkungen Literatur Winker, P. (2010): Empirische Wirtschaftsforschung und Ökonometrie. 3. Auflage. Springer. Insbesondere Kapitel 1, 4 und 10. Volltext-Download im Rahmen des LRZ-Netzes. Rinne,

Mehr

Fachhochschule Aachen, Abteilung Jülich Seminararbeit Thema: Prognose von Zeitreihen

Fachhochschule Aachen, Abteilung Jülich Seminararbeit Thema: Prognose von Zeitreihen Fachhochschule Aachen, Abteilung Jülich Seminararbeit Thema: Prognose von Zeitreihen Vorgelegt von: Hans Nübel Matrikel-Nr.: 827052 Studiengang: Scientific Programming Datum: 14.12.2010 1. Betreuer: Prof.

Mehr

Zeitreihenanalyse mit R

Zeitreihenanalyse mit R Zeitreihenanalyse mit R Matti Schneider, Sebastian Mentemeier SS 2010 Inhaltsverzeichnis 1 Klassische Zeitreihenanalyse 4 1.1 Einführung...................................... 4 1.1.1 Das klassische Komponentenmodell.....................

Mehr

Zeitreihenanalyse. Teil III: Nichtlineare Zeitreihenmodelle. Prof. Dr. W. Zucchini, Dr. O. Nenadić, A. Schlegel. Göttingen, Januar 2008 DAX

Zeitreihenanalyse. Teil III: Nichtlineare Zeitreihenmodelle. Prof. Dr. W. Zucchini, Dr. O. Nenadić, A. Schlegel. Göttingen, Januar 2008 DAX Zeitreihenanalyse Teil III: Nichtlineare Zeitreihenmodelle Prof. Dr. W. Zucchini, Dr. O. Nenadić, A. Schlegel DAX -10-5 0 5 10 0 200 400 600 800 1000 trading day Göttingen, Januar 2008 Inhaltsverzeichnis

Mehr

Zeitreihenanalyse. H.P. Nachtnebel. Institut für Wasserwirtschaft, Hydrologie und konstruktiver Wasserbau

Zeitreihenanalyse. H.P. Nachtnebel. Institut für Wasserwirtschaft, Hydrologie und konstruktiver Wasserbau Zeitreihenanalyse H.P. Nachtnebel Institut für Wasserwirtschaft, Hydrologie und konstruktiver Wasserbau Ziel Aus der statistischen Analyse von Beobachtungen in der Zeit (Zeitreihen) lassen sich kennzeichnende

Mehr

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK)

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) für Studierende des Maschinenbaus vom 7. Juli (Dauer: 8 Minuten) Übersicht über die

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

Vorlesung 8a. Kovarianz und Korrelation

Vorlesung 8a. Kovarianz und Korrelation Vorlesung 8a Kovarianz und Korrelation 1 Wir erinnern an die Definition der Kovarianz Für reellwertige Zufallsvariable X, Y mit E[X 2 ] < und E[Y 2 ] < ist Cov[X, Y ] := E [ (X EX)(Y EY ) ] Insbesondere

Mehr

Klausur zu Statistik II

Klausur zu Statistik II GOETHE-UNIVERSITÄT FRANKFURT FB Wirtschaftswissenschaften Statistik und Methoden der Ökonometrie Prof. Dr. Uwe Hassler Wintersemester 03/04 Klausur zu Statistik II Matrikelnummer: Hinweise Hilfsmittel

Mehr

Kapitel 6 Martingale

Kapitel 6 Martingale Kapitel 6 Martingale Martingale spielen eine große Rolle in der Finanzmathematik, und sind zudem ein wichtiges Hilfsmittel für die statistische Inferenz stochastischer Prozesse, insbesondere auch für Zählprozesse

Mehr

Zeitreihen. Statistische Modellierung, Schätzung und Prognose. von. Prof. Dr. Horst Rinne. und. Dr. Katja Specht. Justus-Liebig-Universität Giessen

Zeitreihen. Statistische Modellierung, Schätzung und Prognose. von. Prof. Dr. Horst Rinne. und. Dr. Katja Specht. Justus-Liebig-Universität Giessen Zeitreihen Statistische Modellierung, Schätzung und Prognose von Prof. Dr. Horst Rinne und Dr. Katja Specht Justus-Liebig-Universität Giessen Verlag Franz Vahlen München Inhaltsverzeichnis Statt eines

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR STOCHASTIK SS 2007 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Dipl.-Math. oec. W. Lao Klausur (Maschineningenieure) Wahrscheinlichkeitstheorie und Statistik vom 2.9.2007 Musterlösungen

Mehr

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell Kapitel 8 Einfache Regression Josef Leydold c 2006 Mathematische Methoden VIII Einfache Regression 1 / 21 Lernziele Lineares Regressionsmodell Anpassen des linearen Regressionsmodells, OLS Eigenschaften

Mehr

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente...

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente... Inhaltsverzeichnis 0 Einführung 1 1 Zufallsvorgänge und Wahrscheinlichkeiten 5 1.1 Zufallsvorgänge.......................... 5 1.1.1 Ergebnismengen..................... 6 1.1.2 Ereignisse und ihre Verknüpfung............

Mehr

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007 Mathematik IV für Maschinenbau und Informatik Stochastik Universität Rostock, Institut für Mathematik Sommersemester 007 Prof. Dr. F. Liese Dipl.-Math. M. Helwich Serie Termin: 9. Juni 007 Aufgabe 3 Punkte

Mehr

Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK. für Studierende der INFORMATIK

Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK. für Studierende der INFORMATIK Institut für Stochastik Prof. Dr. Daniel Hug Name: Vorname: Matr.-Nr.: Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK Datum: 08. Februar 0 Dauer:

Mehr

Aufgaben zu Kapitel 38

Aufgaben zu Kapitel 38 Aufgaben zu Kapitel 38 Aufgaben zu Kapitel 38 Verständnisfragen Aufgabe 38. Welche der folgenden vier Aussagen sind richtig:. Kennt man die Verteilung von X und die Verteilung von Y, dann kann man daraus

Mehr

Allgemeine Regressionsanalyse. Kovariablen / Prädiktoren / unabhängige Variablen X j R d, evtl. deterministisch

Allgemeine Regressionsanalyse. Kovariablen / Prädiktoren / unabhängige Variablen X j R d, evtl. deterministisch Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 9.1 Allgemeine Regressionsanalyse Daten (X j, Y j ), j = 1,..., N unabhängig Kovariablen / Prädiktoren / unabhängige Variablen X j R d, evtl.

Mehr

Übungen zu bedingten Erwartungswerten. Tutorium Stochastische Prozesse 13. Dezember 2016

Übungen zu bedingten Erwartungswerten. Tutorium Stochastische Prozesse 13. Dezember 2016 Übungen zu bedingten Erwartungswerten Tutorium Stochastische Prozesse 13. Dezember 2016 Bedingter Erwartungswert Definition Sei X eine reellwertige Zufallsvariable auf (Ω, A, P), so dass E[ X ]

Mehr

Lösungsvorschläge Blatt 4

Lösungsvorschläge Blatt 4 Theoretische Informatik Departement Informatik Prof. Dr. Juraj Hromkovič http://www.ita.inf.ethz.ch/theoinf16 Lösungsvorschläge Blatt 4 Zürich, 21. Oktober 2016 Lösung zu Aufgabe 10 (a) Wir zeigen mit

Mehr

Kap. 12: Regression mit Zeitreihendaten und Prognosemodelle

Kap. 12: Regression mit Zeitreihendaten und Prognosemodelle Kap. 12: Regression mit Zeitreihendaten und Prognosemodelle Motivation Grundbegriffe Autoregressionen (AR-Modelle) Dynamische Regressionsmodelle (ADL-Modelle) Nichstationarität Ausblick 12.1 Motivation

Mehr

Vorlesung 8b. Bedingte Erwartung, bedingte Varianz, bedingte Verteilung, bedingte Wahrscheinlichkeiten

Vorlesung 8b. Bedingte Erwartung, bedingte Varianz, bedingte Verteilung, bedingte Wahrscheinlichkeiten Vorlesung 8b Bedingte Erwartung, bedingte Varianz, bedingte Verteilung, bedingte Wahrscheinlichkeiten 1 Wie gehabt, denken wir uns ein zufälliges Paar X = (X 1,X 2 ) auf zweistufige Weise zustande gekommen:

Mehr

K8 Stetige Zufallsvariablen Theorie und Praxis

K8 Stetige Zufallsvariablen Theorie und Praxis K8 Stetige Zufallsvariablen Theorie und Praxis 8.1 Theoretischer Hintergrund Wir haben (nicht abzählbare) Wahrscheinlichkeitsräume Meßbare Funktionen Zufallsvariablen Verteilungsfunktionen Dichten in R

Mehr

FORMELSAMMLUNG. Analyse longitudinaler Daten und Zeitreihen WS 2003/04

FORMELSAMMLUNG. Analyse longitudinaler Daten und Zeitreihen WS 2003/04 FORMELSAMMLUNG Analyse longitudinaler Daten und Zeitreihen WS 2003/04 Inhaltsverzeichnis 1 Zeitreihenanalyse 3 1.1 Grundlagen................................ 3 1.1.1 Notation..............................

Mehr

Grundgesamtheit und Stichprobe

Grundgesamtheit und Stichprobe Grundgesamtheit und Stichprobe Definition 1 Die Menge der Untersuchungseinheiten {U 1,U 2,...,U N } heißt Grundgesamtheit. Die Anzahl N der Einheiten ist der Umfang der Grundgesamtheit. Jeder Einheit U

Mehr

Zeit Umsatz. t U=U(t) BS - 13 BS Modul : Analyse zeitabhängiger Daten z.b. Prof. Dr. W. Laufner Beschreibende Statistik

Zeit Umsatz. t U=U(t) BS - 13 BS Modul : Analyse zeitabhängiger Daten z.b. Prof. Dr. W. Laufner Beschreibende Statistik BS - 1 1 Modul 1 : Analyse zeitabhängiger Daten z.b. Zeit Umsatz t UU(t) BS - 1 2 Modul 1: Zeitreihenanalyse 0 70 60 Zeitreihenanalyse Umsatz (Mio ) 0 40 0 0 Q1 Q2 Q Q4 Q1 Q2 Q Q4 Q1 Q2 Q Q4 Q1 Q2 Q Q4

Mehr

SBWL Tourismusanalyse und Freizeitmarketing, Vertiefungskurs 2

SBWL Tourismusanalyse und Freizeitmarketing, Vertiefungskurs 2 Inhalt SBWL Tourismusanalyse und Freizeitmarketing, Vertiefungskurs 2 1. Teil: Zerlegungsmodelle und naive Prognosemethoden für Zeitreihen Regina Tüchler Einleitung 1. Einführung in das Modellieren von

Mehr

Die Volatilität von Finanzmarktdaten

Die Volatilität von Finanzmarktdaten Die Volatilität von Finanzmarktdaten Theoretische Grundlagen und empirische Analysen von stündlichen Renditezeitreihen und Risikomaßen Inauguraldissertation zur Erlangung des Doktorgrades der Wirtschafts-

Mehr

3.4 Asymptotische Evaluierung von Sch atzer Konsistenz Konsistenz Definition 3.4.1: konsistente Folge von Sch atzer

3.4 Asymptotische Evaluierung von Sch atzer Konsistenz Konsistenz Definition 3.4.1: konsistente Folge von Sch atzer 3.4 Asymptotische Evaluierung von Schätzer 3.4.1 Konsistenz Bis jetzt haben wir Kriterien basierend auf endlichen Stichproben betrachtet. Konsistenz ist ein asymptotisches Kriterium (n ) und bezieht sich

Mehr

2 Die Dimension eines Vektorraums

2 Die Dimension eines Vektorraums 2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1

Mehr

Automaten, Spiele, und Logik

Automaten, Spiele, und Logik Automaten, Spiele, und Logik Woche 2 25. April 2014 Inhalt der heutigen Vorlesung 1. Reguläre Ausdrücke 2. der Satz von Kleene 3. Brzozowski Methode 4. grep und perl Reguläre Ausdrücke Rekursive Definition,

Mehr

Univariates Datenmaterial

Univariates Datenmaterial Univariates Datenmaterial 1.6.1 Deskriptive Statistik Zufallstichprobe: Umfang n, d.h. Stichprobe von n Zufallsvariablen o Merkmal/Zufallsvariablen: Y = {Y 1, Y 2,..., Y n } o Realisationen/Daten: x =

Mehr

Scheinklausur Stochastik 1 für Studierende des Lehramts und der Diplom-Pädagogik

Scheinklausur Stochastik 1 für Studierende des Lehramts und der Diplom-Pädagogik Universität Karlsruhe (TH) Institut für Stochastik Dr. Bernhard Klar Dipl.-Math. oec. Volker Baumstark Name Vorname Matr.-Nr.: Scheinklausur Stochastik für Studierende des Lehramts und der Diplom-Pädagogik

Mehr

Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14

Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14 Prof. Dr. Rainer Schwabe 08.07.2014 Otto-von-Guericke-Universität Magdeburg Institut für Mathematische Stochastik Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14 Name:, Vorname: Matr.-Nr.

Mehr

Schätzer und Konfidenzintervalle

Schätzer und Konfidenzintervalle Kapitel 2 Schätzer und Konfidenzintervalle Bisher haben wir eine mathematische Theorie entwickelt, die es uns erlaubt, gewisse zufällige Phänomene zu modellieren. Zum Beispiel modellieren wir die Anzahl

Mehr

5.8 Anpassungstests. W. Kössler (IfI HU Berlin) Werkzeuge der empirischen Forschung 389 / 419

5.8 Anpassungstests. W. Kössler (IfI HU Berlin) Werkzeuge der empirischen Forschung 389 / 419 5.8 8.1 Einführung empirische Verteilungsfunktion 8.2 EDF- Kolmogorov-Smirnov-Test Anderson-Darling-Test Cramer-von Mises-Test 8.3 Anpassungstest auf Normalverteilung - Shapiro-Wilk-Test 8.4. auf weitere

Mehr

QUANTITATIVE STATISTICAL METHODS: REGRESSION AND FORECASTING JOHANNES LEDOLTER VIENNA UNIVERSITY OF ECONOMICS AND BUSINESS ADMINISTRATION SPRING 2013

QUANTITATIVE STATISTICAL METHODS: REGRESSION AND FORECASTING JOHANNES LEDOLTER VIENNA UNIVERSITY OF ECONOMICS AND BUSINESS ADMINISTRATION SPRING 2013 QUANTITATIVE STATISTICAL METHODS: REGRESSION AND FORECASTING JOHANNES LEDOLTER VIENNA UNIVERSITY OF ECONOMICS AND BUSINESS ADMINISTRATION SPRING 2013 ZEITREIHEN 1 Viele Beobachtungen in den Wirtschaftswissenschaften

Mehr

Seminar im Wintersemester 2010/2011: Quantitative und implementierte Methoden der Marktrisikobewertung

Seminar im Wintersemester 2010/2011: Quantitative und implementierte Methoden der Marktrisikobewertung M.Sc. Brice Hakwa hakwa@uni-wuppertal.de Seminar im Wintersemester 2010/2011: Quantitative und implementierte Methoden der Marktrisikobewertung - Zusammenfassung zum Thema: Berechnung von Value-at-Risk

Mehr

Vorbereitung auf 3. Übungsblatt (Präsenzübungen) - Lösungen

Vorbereitung auf 3. Übungsblatt (Präsenzübungen) - Lösungen Prof Dr Rainer Dahlhaus Statistik 1 Wintersemester 2016/2017 Vorbereitung auf Übungsblatt (Präsenzübungen) - Lösungen Aufgabe P9 (Prognosen und Konfidenzellipsoide in der linearen Regression) Wir rekapitulieren

Mehr

Zusammenfassung Stochastik I + II

Zusammenfassung Stochastik I + II Zusammenfassung Stochastik I + II Stephan Kuschel Vorlesung von Dr. Nagel Stochastik I: WS 007/08 Stochastik II: SS 008 zuletzt aktualisiert: 7. Juli 009 Da diese Zusammenfassung den Menschen, die sie

Mehr

Überschrift. Titel Prognosemethoden

Überschrift. Titel Prognosemethoden Überschrift Prognosemethoden Überschrift Inhalt 1. Einleitung 2. Subjektive Planzahlenbestimmung 3. Extrapolierende Verfahren 3.1 Trendanalyse 3.2 Berücksichtigung von Zyklus und Saison 4. Kausale Prognosen

Mehr

Bedingte Wahrscheinlichkeiten und Unabhängigkeit

Bedingte Wahrscheinlichkeiten und Unabhängigkeit Kapitel 5 Bedingte Wahrscheinlichkeiten und Unabhängigkeit Mitunter erhält man über das Ergebnis eines zufälligen Versuches Vorinformationen. Dann entsteht die Frage, wie sich für den Betrachter, den man

Mehr

Simulation von Zufallsvariablen und Punktprozessen

Simulation von Zufallsvariablen und Punktprozessen Simulation von Zufallsvariablen und Punktprozessen 09.11.2009 Inhaltsverzeichnis 1 Einleitung 2 Pseudozufallszahlen 3 Punktprozesse Zufallszahlen Definition (Duden): Eine Zufallszahl ist eine Zahl, die

Mehr

2. Spezielle anwendungsrelevante Funktionen

2. Spezielle anwendungsrelevante Funktionen 2. Spezielle anwendungsrelevante Funktionen (1) Affin-lineare Funktionen Eine Funktion f : R R heißt konstant, wenn ein c R mit f (x) = c für alle x R existiert linear, wenn es ein a R mit f (x) = ax für

Mehr

Adaptive Systeme. Sommersemester Prof. Dr. -Ing. Heinz-Georg Fehn. Prof. Dr. rer. nat. Nikolaus Wulff

Adaptive Systeme. Sommersemester Prof. Dr. -Ing. Heinz-Georg Fehn. Prof. Dr. rer. nat. Nikolaus Wulff Adaptive Systeme Sommersemester 2015 Prof. Dr. -Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Prof. Dr. H.-G. Fehn und Prof. Dr. N. Wulff 1 Adaptive Systeme Adaptives System: ein System, das

Mehr

3.3 Bedingte Wahrscheinlichkeit

3.3 Bedingte Wahrscheinlichkeit 28 3.3 Bedingte Wahrscheinlichkeit Oft ist die Wahrscheinlichkeit eines Ereignisses B gesucht unter der Bedingung (bzw. dem Wissen), dass ein Ereignis A bereits eingetreten ist. Man bezeichnet diese Wahrscheinlichkeit

Mehr

+ 2 F2 (u) X 1 F1 (u)) Der Koeffizient der unteren Tail-Abhängigkeit von (X 1,X 2 ) T wird folgendermaßen definiert:

+ 2 F2 (u) X 1 F1 (u)) Der Koeffizient der unteren Tail-Abhängigkeit von (X 1,X 2 ) T wird folgendermaßen definiert: Tail Abhängigkeit Definition 12 Sei (X 1,X 2 ) T ein Zufallsvektor mit Randverteilungen F 1 und F 2. Der Koeffizient der oberen Tail-Abhängigkeit von (X 1,X 2 ) T wird folgendermaßen definiert: λ U (X

Mehr

Klausur zur Mathematik für Biologen

Klausur zur Mathematik für Biologen Mathematisches Institut der Heinrich-Heine-Universität DÜSSELDORF WS 2002/2003 12.02.2003 (1) Prof. Dr. A. Janssen / Dr. H. Weisshaupt Klausur zur Mathematik für Biologen Bitte füllen Sie das Deckblatt

Mehr

Stochastik. 1. Wahrscheinlichkeitsräume

Stochastik. 1. Wahrscheinlichkeitsräume Stochastik 1. Wahrscheinlichkeitsräume Ein Zufallsexperiment ist ein beliebig oft und gleichartig wiederholbarer Vorgang mit mindestens zwei verschiedenen Ergebnissen, bei dem der Ausgang ungewiß ist.

Mehr

Minimale Anzahl von Hinweisen bei Sudoku

Minimale Anzahl von Hinweisen bei Sudoku Minimale Anzahl von Hinweisen bei Sudoku Sascha Kurz sascha.kurz@uni-bayreuth.de (basierend auf Arbeiten von Ariane Papke und Gary McGuire et al.) Oberseminar Effizienz dezentraler Strukturen, Bayreuth,

Mehr

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Christian Peukert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2010

Mehr

Übungen zur Stochastik, Blatt Nr. 1

Übungen zur Stochastik, Blatt Nr. 1 Prof. Dr. A. Stoffel SS 202 Übungen zur Stochastik, Blatt Nr. ) Zwei Würfel werden gleichzeitig oder nacheinander geworfen. a) Schreiben Sie alle Elemente des Grundraums in Form einer Matrix auf. b) Wie

Mehr

2. Optimierungsprobleme 6

2. Optimierungsprobleme 6 6 2. Beispiele... 7... 8 2.3 Konvexe Mengen und Funktionen... 9 2.4 Konvexe Optimierungsprobleme... 0 2. Beispiele 7- Ein (NP-)Optimierungsproblem P 0 ist wie folgt definiert Jede Instanz I P 0 hat einen

Mehr

Einführung in die Statistik Kapitel 6: Crash-Course in Statistik: Testtheorie

Einführung in die Statistik Kapitel 6: Crash-Course in Statistik: Testtheorie Einführung in die Statistik Kapitel 6: Crash-Course in Statistik: Testtheorie Jung Kyu Canci Universität Basel HS2015 1 / 15 Literatur Kapitel 6 Statistik in Cartoons : Kapitel 8 Krengel : 6 und 14 Storrer

Mehr

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente Mehrstufige Zufallsexperimente Inhalt 6.1 6.1 Mehrstufige Experimente 6.2 6.2 Bedingte Wahrscheinlichkeiten Seite 2 6.1 Mehrstufige Experimente Grundvorstellung: Viele Viele Experimente werden der der

Mehr

Unabhängigkeit KAPITEL 4

Unabhängigkeit KAPITEL 4 KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht

Mehr

Korrektur: Lineare Regression in Excel

Korrektur: Lineare Regression in Excel Korrektur: Lineare Regression in Excel Doppelsummenkurve 1 8 kum. Abfluss 6 4 2 Juni 1987 5 1 15 2 kum. Niederschlag 1 PDFA Abfluss Lange Bramke 4 kum. Stabw. 3 2 1 Feb. 1981 1.8 1.82 1.84 1.86 1.88 1.9

Mehr

Vektor und Matrixnormen Vorlesung vom

Vektor und Matrixnormen Vorlesung vom Vektor und Matrixnormen Vorlesung vom 18.12.15 Grundlagen: Matrix Vektor und Matrixprodukt. Lineare Räume. Beispiele. Problem: Berechne die Lösung x von Ax = b zu gegebenem A R n,n und b R n. Ziele: Konditionsanalyse

Mehr

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

Übungen zu Meteorologische Modellierung Teil 'Grundlagen der Numerik'

Übungen zu Meteorologische Modellierung Teil 'Grundlagen der Numerik' Übungen zu Meteorologische Modellierung Teil 'Grundlagen der Numerik' 1. Diskretisierung in der Zeit: Die Evolutionsgleichung Kurzzusammenfassung Zur Erprobung der Verfahren zur zeitlichen Diskretisierung

Mehr

Einführung in die (induktive) Statistik

Einführung in die (induktive) Statistik Einführung in die (induktive) Statistik Typische Fragestellung der Statistik: Auf Grund einer Problemmodellierung sind wir interessiert an: Zufallsexperiment beschrieben durch ZV X. Problem: Verteilung

Mehr

Copula Funktionen. Eine Einführung. Nils Friewald

Copula Funktionen. Eine Einführung. Nils Friewald Copula Funktionen Eine Einführung Nils Friewald Institut für Managementwissenschaften Abteilung Finanzwirtschaft und Controlling Favoritenstraße 9-11, 1040 Wien friewald@imw.tuwien.ac.at 13. Juni 2005

Mehr

3.3 Methoden zur Evaluierung von Schätzern

3.3 Methoden zur Evaluierung von Schätzern 3.3 Methoden zur Evaluierung von Schätzern Bis jetzt haben wir nur glaubwürdige Techniken zur Konstruktion von Punktschätzern besprochen. Falls unterschiedliche Schätzer für einen Parameter resultieren,

Mehr

2. Übung zur Vorlesung Statistik 2

2. Übung zur Vorlesung Statistik 2 2. Übung zur Vorlesung Statistik 2 Aufgabe 1 Welche der folgenden grafischen Darstellungen und Tabellen zeigen keine (Einzel-)Wahrscheinlichkeitsverteilung? Kreuzen Sie die richtigen Antworten an und begründen

Mehr

1 Gemischte Lineare Modelle

1 Gemischte Lineare Modelle 1 Gemischte Lineare Modelle Wir betrachten zunächst einige allgemeine Aussagen für Gemischte Lineare Modelle, ohne zu tief in die mathematisch-statistische Theorie vorzustoßen. Danach betrachten wir zunächst

Mehr

Lineare Gleichungssysteme (Teschl/Teschl 11.1)

Lineare Gleichungssysteme (Teschl/Teschl 11.1) Lineare Gleichungssysteme (Teschl/Teschl.) Ein Lineares Gleichungssystem (LGS) besteht aus m Gleichungen mit n Unbekannten x,...,x n und hat die Form a x + a 2 x 2 +... + a n x n b a 2 x + a 22 x 2 +...

Mehr

8 Extremwerte reellwertiger Funktionen

8 Extremwerte reellwertiger Funktionen 8 Extremwerte reellwertiger Funktionen 34 8 Extremwerte reellwertiger Funktionen Wir wollen nun auch Extremwerte reellwertiger Funktionen untersuchen. Definition Es sei U R n eine offene Menge, f : U R

Mehr

Ü b u n g s b l a t t 13

Ü b u n g s b l a t t 13 Einführung in die Stochastik Sommersemester 06 Dr. Walter Oevel 5. 6. 006 Ü b u n g s b l a t t 3 Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten verwendet werden. Lösungen von -Aufgaben

Mehr

Definition Sei V ein Vektorraum, und seien v 1,..., v n V. Dann heißt eine Linearkombination. n λ i = 1. mit. v = v i λ i.

Definition Sei V ein Vektorraum, und seien v 1,..., v n V. Dann heißt eine Linearkombination. n λ i = 1. mit. v = v i λ i. Kapitel Geometrie Sei V ein Vektorraum, z.b. V = R 3. Wenn wir uns für geometrische Eigenschaften von R 3 interessieren, so stört manchmal die Ausnahmerolle des Nullvektors, die es ja in V gibt. Beispielsweise

Mehr

Signale und Systeme Reaktion linearer Systeme auf stationäre stochastische Signale

Signale und Systeme Reaktion linearer Systeme auf stationäre stochastische Signale Signale und Systeme Reaktion linearer Systeme auf stationäre stochastische Signale Gerhard Schmidt Christian-Albrechts-Universität zu Kiel Technische Faculty of Engineering Fakultät Elektrotechnik Institute

Mehr