5.3 Darstellungsmatrizen affiner Abbildungen

Größe: px
Ab Seite anzeigen:

Download "5.3 Darstellungsmatrizen affiner Abbildungen"

Transkript

1 5.3 Darstellungsmatrizen affiner Abbildungen Definition Seien A und B endlich-dimensionale ARs mit dim A n, dim B m und KS E : (p 0,..., p n ) von A und KS F : (q 0,..., q m ) von B. Sei α : A B eine affine Abbildung. Seien ferner T (t ij ) M m n (K) und S (s i ) K m mit α( p 0 p j ) m i1 t ijq 0 q i q 0 α(p 0 ) m i1 s iq 0 q i (siehe auch 5.2.7). Die Darstellungsmatrix von α bzgl. der KS E und F ist definiert als ( ) T S MF E (α) : M (m+1) (n+1) (K) (hierbei sei also 0 ein Zeilenvektor bestehend aus n Nullen). Satz Seien A, B, C endlich-dimensionale ARs mit KS E von A, KS F von B und KS G von C. Seien α : A B und β : B C affine Abbildungen. Dann gilt: M E G (β α) M F G (β)m E F (α). Bemerkung und Definition (i) Die Matrix T in obiger Definition ist nichts anderes als die Darstellungsmatrix (im Sinne von Kapitel 3.2) der linearen Abbildung α : V A V B bzgl. der Vektorraumbasen Ê : p 0 p 1,..., p 0 p n und F : q 0 q 1,..., ( ) T q 0 q m : T M Ê F ( α). Sei nun entsprechend MG F (β) S mit T M FĜ ( β). Dann gilt: ( T MG E S (β α) ) ( T S ) ( ) T T T S + S Mittels β α β α erhält man so auch M ÊĜ ( β α) M ÊĜ ( β α) T T M FĜ ( β)m Ê F ( α), dies ist also nichts anderes als die Formel für Produkte von Darstellungsmatrizen linearer Abbildungen, die natürlich schon aus bekannt ist. Man könnte also sagen, dass die Formel in für Produkte von Darstellungsmatrizen linearer Abbildungen aus der obigen Formel für Produkte von Darstellungsmatrizen affiner Abbildungen folgt. (ii) Wir definieren die affinen (m + 1) (n + 1)-Matrizen als {( ) } T S AM m n (K) : T M m n(k), S K m M (m+1) (n+1) (K) 1

2 Seien A, B endlich-dimensionale ARs mit dim A n, dim B m und fest gewählten KS E von A und KS F von B. Nach ist die Zuordnung {affine Abbildungen A B} AM m n (K) α MF E(α) eine Bijektion. Unter dieser Bijektion enspricht nach die Verknüpfung affiner Abbildungen auf der linken Seite der Matrizenmultiplikation auf der rechten Seite. Satz Wir übernehmen die Notationen aus und 5.3.2(i), wobei wir zusätzlich noch annehmen, dass n m, Insbesondere also M Ê F ( α) T ( ) T S M n (K) und MF E(α) AM n (K). Dann gilt det MF E(α) det M Ê F ( α) und folgende Aussagen sind äquivalent: (i) α ist bijektiv; (ii) α ist bijektiv; (iii) M Ê F ( α) GL n (K); (iv) M E F (α) GL n+1(k). In diesem Fall gilt M F E (α 1 ) M E F (α) 1 ( T 1 T 1 S ). Definition und Satz (i) Sei {( ) } T S AGL n (K) : T GL n (K), S K n GL n+1 (K). Dann ist AGL n (K) eine Untergruppe von GL n+1 (K). Wir nennen sie die allgemeine affine Gruppe in Dimension (oder vom Grad) n über K. (ii) Sei A ein affiner Raum mit 0 dim A n < und sei E ein fest gewähltes KS von A. Dann ist die Abbildung ein Gruppenisomorphismus. ϕ A,E : Aff(A) AGL n (K) : α M E E (α) 2

3 Definition Seien A und B ARs und α : A A, β : B B affine Abbildungen. Wir nennen α konjugiert zu β, in Zeichen α β, falls es eine bijektive affine Abbildung ϕ : A B gibt mit α ϕ 1 β ϕ. Bemerkung. (i) Damit α β überhaupt möglich ist, muss natürlich notwendigerweise dim A dim B gelten. (ii) α ϕ 1 β ϕ bedeutet, dass das folgende Diagramm kommutiert: A α A ϕ B β B Satz Seien A und B ARs mit dim A dim B n <, und seien α : A A, β : B B affine Abbildungen. Dann gilt α β genau dann, wenn es C AGL n (K) gibt mit M E E (α) C 1 M F F (β)c. Ein generelles Ziel ist nun, affine Abbildungen bis auf Konjugation zu klassifizieren. Im Wesentlichen entspricht dies dem Problem, ein Koordinatensystem so zu wählen, dass die Darstellungsmatrix einer affinen Abbildung bzgl. dieser Basis eine gewisse Normalform annimmt, wobei diese Normalformen die Eigenschaft haben sollen, dass affine Abbildungen genau dann konjugiert sind, wenn ihre Normalformen in gewisser Weise übereinstimmen. Dies ist also ganz in Analogie zu unserem früheren Versuch, Normalformen für lineare Abbildungen zu finden (Stichwort: Jordansche Normalform). Wir erinnern uns daran, dass wir dazu bei linearen Abbildungen in der Lage waren, vorausgesetzt, ihre charakteristischen Polynome zerfielen in Linearfaktoren. Für affine Abbildungen ist das Problem noch ein bisschen schwieriger. Definition (i) Für einen affinen Raum A definieren wir AEnd(A) : {affine Abbildungen α : A A}. Wir nennen die Elemente in AEnd(A) auch affine Endomorphismen von A. (ii) Wir nennen zwei Matrizen L 1, L 2 AM n (K) affin ähnlich, in Zeichen L 1 a L 2, wenn es C AGL n (K) gibt mit L 1 C 1 L 2 C. Bemerkung (i) Konjugation definiert eine Äquivalenzrelation auf AEnd(A). (ii) Affine Ähnlichkeit definiert eine Äquivalenzrelation auf AM n(k). (iii) Falls dim A n <, α, β AEnd(A), E, F zwei KS auf A, dann gilt ϕ 1 α β M E E (α) a M F F (β) 3

4 Insbesondere gilt: M E E (α) a M F F (α). Sind fernen Ê und F die zu E bzw. F gehörende Basen von V A, so gilt: Sind α und β konjugiert dann sind M ÊÊ ( α) und M F F ( α) ähnlich zueinander im Sinne von 3.2.9, d.h. es gibt C GL n (K) mit M ÊÊ ( α) C 1 M F F ( α)c. Die Umkehrung gilt i.a. nicht. (iv) Falls dim A n <, α AEnd(A), dann sind äquivalent: (a) α ist Translation; ( (b) Es gibt ein KS E von A sodass ME E(α) In S S K n ; ) für ein geeignetes (c) Für jedes KS E von A hat ME E (α) die Gestalt wie in (b) (mit von E abhängigem S). Falls in (b) das KS E durch (p 0,..., p n ) gegeben ist, und S (s i ) K n, so ist der Translationsvektor gegeben durch n i1 s ip 0 p i. (v) Falls dim A n < (, α ) AEnd(A), und E : (p 0,..., p n ) ein KS von T 0 A, dann gilt: ME E(α) für ein geeignetes T M n (K) genau dann wenn p 0 Fixpunkt von α ist. ( (vi) Sei dim ) A n < und seien E, F zwei KS von A und MF E(id A) T S, die Koordinatensystemtransformationsmatrix von E nach F. Es gilt sicher ( ) ( ) ( ) T S In S T 0 Gilt ebenfalls für T M n (K) und S K n, dass ( ) ( ) ( ) T S In S T 0 dann gilt notwendigerweise T T und S S. ( ) T 0 Die Matrix entspricht hierbei nach (v) einer KS-Transformation vom ( ) KS E zu einem KS E In S, die den Ursprung p 0 festlässt, und die Matrix entspricht hierbei einer Translation ( Verschiebung ) vom KS E zum KS F. 4

5 Jede KS-Transformation lässt sich also auf eindeutige Weise zerlegen in zwei Schritte, wobei im ersten Schritt eine KS-Transformation durchgeführt werden soll, die den Ursprung festlässt, und im zweiten Schritt eine Translation durchgeführt werden soll. Man vergleiche diese Aussage mit Satz ! Definition und Lemma Sei A ein nicht-leerer AR, α AEnd(A). Man definiert Fix(α) {p A α(p) p}, die Menge aller Fixpunkte von α. Es gilt: Fix(α) ist ein AUR von A. Satz Seien A und B ARs, α AEnd(A), β AEnd(B). Angenommen α und β sind konjugiert zueinander, d.h. es gibt eine bijektive affine Abbildung ϕ : A B mit α ϕ 1 β ϕ. Dann gilt ϕ(fix(α)) Fix(β). Insbesondere ist ϕ Fix(α) : Fix(α) Fix(β) eine bijektive affine Abbildung und dim Fix(α) dim Fix(β). Bemerkung Sei A ein AR mit dim A n, E : (p 0,..., p n ) ein KS auf A, und sei α AEnd(A). Wir wollen die Fixpunkte von α bestimmen. Mit anderen Worten, wir wollen die Koordinaten (bzgl. E) der Punkte q A bestimmen für die α(q) q. Sei zunächst q A ein beliebiger Punkt mir Koordinaten x 1,..., x n, d.h. p 0 q n i1 x ip 0 p i. Seien ferner y 1,..., y n die Koordinaten von α(q): p 0 α(q) n i1 y ( ) T S ip 0 p i. Sei ferner ME E(α) AM n (K) die zu α gehörende Darstellungsmatrix bzgl. E. Sei X : x 1. x n und Y : y 1. y n. Nach gilt dann: Y T X + S. Dies lässt sich auch als Matrizenmultiplikation ausdrücken: ( ) ( ) ( ) Y T S X 1 1 (auch hier muss man die Koordinatenvektoren X, Y um eine 1 erweitern, damit die Multiplikation funktioniert). Damit gilt für q A mit Koordinatenvektor X: q ist Fixpunkt T X + S X (T I n )X S X ist Lösung des LGS (T I n S). Für endlich-dimensionale ARs liefert dieses Argument zusammen mit einen neuen Beweis, dass Fix(α) ein AUR ist. 5

6 Außerdem folgt aus der Theorie der LGS (insbesondere und 2.5.8): Falls α einen Fixpunkt hat, d.h. falls das LGS (T I n S) eine Lösung hat, so gilt: dim Fix(α) n Rang(T I n ). 6

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

Lineare Algebra I Zusammenfassung

Lineare Algebra I Zusammenfassung Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition

Mehr

Lineare Abbildungen. i=0 c ix i n. K n K m

Lineare Abbildungen. i=0 c ix i n. K n K m Kapitel 4 Lineare Abbildungen In diesem Abschnitt lernen Sie erstmals eine Klasse von strukturerhaltenden Abbildungen kennen. Diese Konzept ist von zentraler Bedeutung in der Algebra. Grob gesagt geht

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 2014/2015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 10 Abgabetermin: Freitag, 16.01.2015, 11 Uhr Auf diesem

Mehr

Kapitel 2: Mathematische Grundlagen

Kapitel 2: Mathematische Grundlagen [ Computeranimation ] Kapitel 2: Mathematische Grundlagen Prof. Dr. Stefan M. Grünvogel stefan.gruenvogel@fh-koeln.de Institut für Medien- und Phototechnik Fachhochschule Köln 2. Mathematische Grundlagen

Mehr

Euklidische und unitäre Vektorräume

Euklidische und unitäre Vektorräume Kapitel 7 Euklidische und unitäre Vektorräume In diesem Abschnitt ist der Körper K stets R oder C. 7.1 Definitionen, Orthonormalbasen Definition 7.1.1 Sei K = R oder C, und sei V ein K-Vektorraum. Ein

Mehr

6 Affine Abbildungen Bei der Definition affiner Abbildungen gehen wir von der linearen Algebra aus und kommen aus guten Gründen erst danach zum

6 Affine Abbildungen Bei der Definition affiner Abbildungen gehen wir von der linearen Algebra aus und kommen aus guten Gründen erst danach zum Kapitel II Lineare Algebra und analytische Geometrie 6 Affine Abbildungen Bei der Definition affiner Abbildungen gehen wir von der linearen Algebra aus und kommen aus guten Gründen erst danach zum geometrischen

Mehr

Lineare Abbildungen und Darstellungsmatrizen

Lineare Abbildungen und Darstellungsmatrizen KAPITEL 4 Lineare Abbildungen und Darstellungsmatrizen 1. Lineare Abbildungen Definition 4.1 (Lineare Abbildungen). Seien V und W zwei Vektorräume über den selben Körper K. Eine Abbildung f : V W heißt

Mehr

Definition 7.1. Der Coxeter Graph zu W ist der ungerichtete gewichtete Graph Γ W = (V, E), mit Eckenmenge V und Kantenmenge E, gegeben durch V = und

Definition 7.1. Der Coxeter Graph zu W ist der ungerichtete gewichtete Graph Γ W = (V, E), mit Eckenmenge V und Kantenmenge E, gegeben durch V = und 7. Coxeter Graphen Um die endlichen Spiegelungsgruppen zu klassifizieren, wollen wir ihnen nun Graphen zuordnen, die die Gruppen bis auf Isomorphie eindeutig bestimmen. Im Folgenden sei wie vorher Π Φ

Mehr

Stichwortliste zur Vorlesung. Lineare Algebra II. Gabriela Weitze-Schmithüsen. Saarbrücken, Sommersemester 2016

Stichwortliste zur Vorlesung. Lineare Algebra II. Gabriela Weitze-Schmithüsen. Saarbrücken, Sommersemester 2016 Stichwortliste zur Vorlesung Lineare Algebra II Gabriela Weitze-Schmithüsen Saarbrücken, Sommersemester 2016 Kapitel I Jordansche Normalform Ziel: Wir möchten Matrizen bis aus Ähnlichkeit klassifizieren.

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

2 Die Dimension eines Vektorraums

2 Die Dimension eines Vektorraums 2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1

Mehr

1.4 Homomorphismen und Isomorphismen

1.4 Homomorphismen und Isomorphismen Algebra I 9. April 2008 c Rudolf Scharlau, 2002 2008 28 1.4 Homomorphismen und Isomorphismen Definition 1.4.1 Es seien (G, ) und (H, ) zwei Gruppen. Eine Abbildung ϕ : G H heißt (Gruppen-)Homomorphismus,

Mehr

6 Hauptachsentransformation

6 Hauptachsentransformation 6 Hauptachsentransformation A Diagonalisierung symmetrischer Matrizen (6.1) Satz: Sei A M(n n, R) symmetrisch. Dann gibt es eine orthogonale n n-matrix U mit U t AU = D Diagonalmatrix Es folgt: Die Spalten

Mehr

Drehung um einen Punkt um Winkel α.

Drehung um einen Punkt um Winkel α. Drehung um einen Punkt um Winkel α. Sei A R 2 und α R. Drehung um A um Winkel α ist eine Abbildung D A (α) : R 2 R 2 welche wie folgt definiert ist: D A (α) = T A D 0 (α) T ( A), wobei die Abbildung D

Mehr

Erweiterte Koordinaten

Erweiterte Koordinaten Erweiterte Koordinaten Sei K n ein n dimensionaler affiner Raum Die erweiterten Koordinaten des Punktes x x n K n sind x x n Kn+ (Das ist für alle K sinnvoll, weil in jedem Körper K wohldefiniert ist In

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzungen zur Vorlesung: Hinweis:

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:

Mehr

Inhaltsverzeichnis INHALTSVERZEICHNIS 1

Inhaltsverzeichnis INHALTSVERZEICHNIS 1 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Die Parabel 2 1.1 Definition................................ 2 1.2 Bemerkung............................... 3 1.3 Tangenten................................ 3 1.4

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Sommersemester 2010 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax = b

Mehr

Kapitel III. Lineare Abbildungen

Kapitel III. Lineare Abbildungen Kapitel III. Lineare Abbildungen Beispiele: 1 Lineare Abbildungen a) Seien c 1,..., c n K vorgegeben. Betrachte die Funktion F (x 1,..., x n ) = c 1 x 1 + c 2 x 2 +... + c n x n in den Variablen x 1,...,

Mehr

8 Die Riemannsche Zahlenkugel

8 Die Riemannsche Zahlenkugel 8 Die Riemannsche Zahlenkugel Wir untersuchen zunächst Geraden- und Kreisgleichungen in der komplexen Ebene C = R 2. Geradengleichungen Die Parameterdarstellung einer Geraden durch zwei Punkte z 1 z 2

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 206 Lineare Algebra und analytische Geometrie II Vorlesung 33 Das Kreuzprodukt Eine Besonderheit im R 3 ist das sogenannte Kreuzprodukt, das zu zwei gegebenen Vektoren

Mehr

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht Seite 1 Definitionen affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht ähnliche Matrizen Matrizen, die das gleiche charakteristische Polynom haben

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 29.11.2013 Alexander Lytchak 1 / 13 Wiederholung Der Rang einer linearen Abbildung ist gleich dem Spaltenrang der darstellenden

Mehr

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen Orthonormalisierung Wie schon im Falle V = R n erwähnt, erhalten wir durch ein Skalarprodukt eine zugehörige Norm (Länge) eines Vektors und in weiterer Folge eine Metrik (Abstand zwischen zwei Vektoren).

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof Dr H Brenner Osnabrück WS 205/206 Lineare Algebra und analytische Geometrie I Vorlesung 9 Basiswechsel Wir wissen bereits, dass in einem endlichdimensionalen Vektorraum je zwei Basen die gleiche Länge

Mehr

Erinnerung/Zusammenfassung zu Abbildungsmatrizen

Erinnerung/Zusammenfassung zu Abbildungsmatrizen Erinnerung/Zusammenfassung zu Abbildungsmatrizen Thomas Coutandin (cthomas@student.ethz.ch) 7. November 2 Abbildungsmatrizen Im Folgenden betrachten wir stets endlich dimensionale K-Vektorräume (K irgend

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

Lineare Abbildungen. Es seien V und W Vektorräume über einem Körper K. Eine Abbildung f : V W heißt linear oder Homomorphismus, falls. d.h.

Lineare Abbildungen. Es seien V und W Vektorräume über einem Körper K. Eine Abbildung f : V W heißt linear oder Homomorphismus, falls. d.h. Lineare Abbildungen Es seien V und W Vektorräume über einem Körper K. Eine Abbildung f : V W heißt linear oder Homomorphismus, falls (1) u, v V : f( u + v) = f( u) + f( v). (2) v V α K : f(α v) = αf( v).

Mehr

1 Eingebettete Untermannigfaltigkeiten des R d

1 Eingebettete Untermannigfaltigkeiten des R d $Id: unter.tex,v 1.2 2014/04/14 13:19:35 hk Exp hk $ 1 Eingebettete Untermannigfaltigkeiten des R d In diesem einleitenden Paragraphen wollen wir Untermannigfaltigkeiten des R d studieren, diese sind die

Mehr

9 Vektorräume mit Skalarprodukt

9 Vektorräume mit Skalarprodukt 9 Skalarprodukt Pink: Lineare Algebra 2014/15 Seite 79 9 Vektorräume mit Skalarprodukt 9.1 Normierte Körper Sei K ein Körper. Definition: Eine Norm auf K ist eine Abbildung : K R 0, x x mit den folgenden

Mehr

Kap 5: Rang, Koordinatentransformationen

Kap 5: Rang, Koordinatentransformationen Kap 5: Rang, Koordinatentransformationen Sei F : V W eine lineare Abbildung. Dann ist der Rang von F erklärt durch: rang F =dim ImF. Stets gilt rang F dimv, und ist dimv

Mehr

Affine Geometrie (Einfachere, konstruktive Version)

Affine Geometrie (Einfachere, konstruktive Version) Affine Geometrie (Einfachere, konstruktive Version) Def. Affiner Raum der Dimension n über Körper K ist nach Definition K n. Bemerkung. Man könnte Theorie von affinen Raumen auch axiomatisch aufbauen mit

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

1 Rechnen mit 2 2 Matrizen

1 Rechnen mit 2 2 Matrizen 1 Rechnen mit 2 2 Matrizen 11 Produkt Wir berechnen das allgemeine Produkt von A = Für das Produkt gilt AB = a11 a 12 a 21 a 22 a11 b 11 + a 12 b 21 a 11 b 12 + a 12 b 22 a 21 b 11 + a 22 b 21 a 21 b 12

Mehr

Einführung in die Mathematik für Informatiker

Einführung in die Mathematik für Informatiker Einführung in die Mathematik für Informatiker Prof. Dr. www.math.tu-dresden.de/ baumann 12.12.2016 9. Vorlesung Eigenschaften linearer Abbildungen Beschreibung linearer Abbildungen durch Matrizen... Eigenschaften

Mehr

Symmetrien. Transformationen. Affine und euklidische Räume

Symmetrien. Transformationen. Affine und euklidische Räume Symmetrien Transformationen Der Gruppenbegriff entwickelte sich aus dem Begriff der Transformationsgruppe. In dieser Form tauchen auch die meisten Gruppen in der Mathematik, Physik, Chemie, Kristallographie,

Mehr

1 0 1, V 3 = M, und λ A = λa

1 0 1, V 3 = M, und λ A = λa Aufgabe 57. Magische Quadrate Eine reelle 3 3-Matrix A = a 11 a 12 a 13 a 21 a 22 a 23 heißt magisches Quadrat, falls alle Zeilensummen, alle Spaltensummen und die beiden Diagonalsummen a 11 + a 22 + a

Mehr

Musterlösung Klausur zur Linearen Algebra II

Musterlösung Klausur zur Linearen Algebra II Musterlösung Klausur zur Linearen Algebra II Samstag 8. Juli 6 -Uhr. a) Sei f : V W k-linear. Denieren Sie V und f : W V. b) Die Gruppe G operiere auf der Menge M. Denieren Sie die Bahn und die Isotropiegruppe

Mehr

Proseminar: Primzahlen 1. Vortrag Der erweiterte euklidische Algorithmus

Proseminar: Primzahlen 1. Vortrag Der erweiterte euklidische Algorithmus Proseminar: Primzahlen 1. Vortrag Der erweiterte euklidische Algorithmus Max Zoller 14. April 8 1 Der klassische euklidische Algorithmus Beispiel: ggt 15, 56? 15 = 1 56 + 49 56 = 1 49 + 7 49 = 7 7 + =

Mehr

Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger

Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger Stefan Lell 2. Juli 2 Aufgabe. Sei t Q und A t = t 4t + 2 2t + 2 t t 2t 2t Mat 3Q a Bestimmen Sie die Eigenwerte von A t in Abhängigkeit

Mehr

Computer-Graphik I Baryzentrische Koordinaten

Computer-Graphik I Baryzentrische Koordinaten /7/ lausthal omputer-raphik I Zachmann lausthal University, ermany zach@intu-clausthalde Def: affin unabhängig n n dadurch eg: k+ Punkte Pi R, 0 i k, kseien k Vektoren vi definiert: vi : Pi P0, i,, k Die

Mehr

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w =

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w = 1 v Die Länge Def. Sei (V,, ) ein Euklidscher Vektorraum. Für jeden Vektor v V heißt die Zahl v,v die Länge von v und wird v bezeichnet. Bemerkung. Die Länge des Vektors ist wohldefiniert, da nach Definition

Mehr

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

2.2 Kern und Bild; Basiswechsel

2.2 Kern und Bild; Basiswechsel 22 Kern und Bild; Basiswechsel 22 Kern und Bild; Basiswechsel 35 Jede lineare Abbildung definiert charakteristische Unterräume, sowohl im Ausgangsraum als auch im Bildraum 22 Satz Sei L: V W eine lineare

Mehr

Vortrag 11: Der Satz von Mordell-Weil

Vortrag 11: Der Satz von Mordell-Weil Vortrag 11: Der Satz von Mordell-Weil Max Daniel 30. Januar 2013 Inhaltsverzeichnis 1 Höhenfunktionen auf elliptischen Kurven 2 2 Ausblick 7 Einleitung Sei E/K eine über einem Zahlkörper K definierte elliptische

Mehr

2 Einführung in die lineare Algebra

2 Einführung in die lineare Algebra 2 Einführung in die lineare Algebra 2. Vektorräume und ihre Unterräume Definition 2... Sei K ein Körper. Ein Vektorraum über K (oder K-Vektorraum) ist eine Menge V mit einer Addition genannten Verknüpfung

Mehr

Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl.

Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl. Unterräume und Lineare Hülle 59 3. Unterräume und Lineare Hülle Definition.1 Eine Teilmenge U eines R-Vektorraums V heißt von V, wenn gilt: Unterraum (U 1) 0 U. (U ) U + U U, d.h. x, y U x + y U. (U )

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 014/015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 7 Abgabetermin: Freitag, 05.1.014, 11 Uhr Aufgabe 7.1 (Vektorräume

Mehr

Affine und projektive Räume

Affine und projektive Räume Affine und projektive Räume W. Kühnel Literatur hierzu: G.Fischer, Analytische Geometrie, 7. Aufl., Vieweg 2001 Zur Motivation: Wenn man in einem Vektorraum die Elemente nicht als Vektoren, sondern als

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Sesqui- und Bilinearformen

Sesqui- und Bilinearformen Kapitel 8 Sesqui- und Bilinearformen 8.1 Sesquilinearformen Definition 8.1.1 Sei V ein reeller oder komplexer K-Vektorraum (also K = R oder C). Eine Abbildung f : V V K heißt eine Sesquilinearform wenn

Mehr

Vorkurs Mathematik B

Vorkurs Mathematik B Vorkurs Mathematik B Dr. Thorsten Camps Fakultät für Mathematik TU Dortmund 20. September 2011 Definition (R n ) Wir definieren: 1 Der R 2 sei die Menge aller Punkte in der Ebene. Jeder Punkt wird in ein

Mehr

1 Euklidische und unitäre Vektorräume

1 Euklidische und unitäre Vektorräume 1 Euklidische und unitäre Vektorräume In diesem Abschnitt betrachten wir reelle und komplexe Vektorräume mit Skalarprodukt. Dieses erlaubt uns die Länge eines Vektors zu definieren und (im Fall eines reellen

Mehr

3.8. Lineare Abbildungen.

3.8. Lineare Abbildungen. 38 Lineare Abbildungen 38 Lineare Abbildungen 38 Definition Es seien V und W Vektorräume über K Eine Abbildung α : V W heißt linear, wenn für alle Vektoren u, v V und alle Skalare k K gilt: α(u + v α(u

Mehr

Vorkurs Mathematik Abbildungen

Vorkurs Mathematik Abbildungen Vorkurs Mathematik Abbildungen Philip Bell 19. September 2016 Diese Arbeit beruht im Wesentlichen auf dem Vortrag Relationen, Partitionen und Abbildungen von Fabian Grünig aus den vorangehenden Jahren.

Mehr

Lineare Abhängigkeit

Lineare Abhängigkeit Lineare Abhängigkeit Vorbemerkung. Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung I X, i x i. I heißt dabei Indexmenge. Man verwendet dabei oft die Schreibweise (x i ) oder (x

Mehr

ALGEBRAISCHE VARIETÄTEN. gute Funktionen auf den offenen Mengen von V definieren. Dabei orientieren wir uns an folgenden Gegebenheiten: (1) Die

ALGEBRAISCHE VARIETÄTEN. gute Funktionen auf den offenen Mengen von V definieren. Dabei orientieren wir uns an folgenden Gegebenheiten: (1) Die ALGEBRAISCHE VARIETÄTEN MARCO WEHNER UND MAXIMILIAN KREMER 1. Strukturgarben Sei V k n. Wir wollen nur gute Funktionen auf den offenen Mengen von V definieren. Dabei orientieren wir uns an folgenden Gegebenheiten:

Mehr

Proseminar Lineare Algebra II, SS 11. Blatt

Proseminar Lineare Algebra II, SS 11. Blatt Blatt 1 1. Berechnen Sie die Determinante der Matrix 0 0 4 1 2 5 1 7 1 2 0 3 1 3 0 α. 2. Stellen Sie folgende Matrix als Produkt von Elementarmatrizen dar: 1 3 1 4 2 5 1 3 0 4 3 1. 3 1 5 2 3. Seien n 2

Mehr

x y f : R 2 R 3, Es gilt: Bild f = y : wobei x,y R Kern f = 0 (wird auf der nächsten Folie besprochen)

x y f : R 2 R 3, Es gilt: Bild f = y : wobei x,y R Kern f = 0 (wird auf der nächsten Folie besprochen) Def Wiederholung Sei f : V U eine lineare Abbildung Das Bild von f ist die folgende Teilmenge von U: Bild f = {u U so dass es gibt ein Element v V mit f (v) = u} (Andere Bezeichnung: f (V) wird in Analysis-Vorlesung

Mehr

Spezialfall: Die Gleichung ax = b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a = a 1 gelöst werden:

Spezialfall: Die Gleichung ax = b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a = a 1 gelöst werden: Inverse Matritzen Spezialfall: Die Gleichung ax b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a a 1 gelöst werden: ax b x b a a 1 b. Verallgemeinerung auf Ax b mit einer n nmatrix A: Wenn es

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls

Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls Kriterien für Invertierbarkeit einer Matrix Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls (i) für jede Basis, die Bildvektoren auch eine Basis, bilden; (intuitiv

Mehr

Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen

Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen Kapitel III Stetige Funktionen 14 Stetigkeit und Rechenregeln für stetige Funktionen 15 Hauptsätze über stetige Funktionen 16 Konvergenz von Funktionen 17 Logarithmus und allgemeine Potenz C 1 14 Stetigkeit

Mehr

1 Angeordnete Körper. 1.1 Anordnungen und Positivbereiche

1 Angeordnete Körper. 1.1 Anordnungen und Positivbereiche 1 1 Angeordnete Körper 1.1 Anordnungen und Positivbereiche Definition 1.1. Eine zweistellige Relation auf einer Menge heißt partielle Ordnung, falls für alle Elemente a, b, c der Menge gilt: (i) a a (ii)

Mehr

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau,

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau, Algebra I 9. April 2008 c Rudolf Scharlau, 2002 2008 18 1.3 Gruppen Der Begriff der Gruppe ordnet sich in gewisser Weise dem allgemeineren Konzept der Verknüpfung (auf einer Menge) unter. So ist zum Beispiel

Mehr

Lineare Algebra II 6. Übungsblatt

Lineare Algebra II 6. Übungsblatt Lineare Algebra II 6 Übungsblatt Fachbereich Mathematik SS 2011 Prof Dr Kollross 18/19 Mai 2011 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minimalpolynom) Bestimmen Sie das Minimalpolynom der

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG KLAUSUR ZUR LINEAREN ALGEBRA I Wiederholungsprüfung MUSTERLÖSUNG. April 2008 Name: Studiengang: Aufgabe 2 3 4 5 6 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter

Mehr

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale Kapitel I Reelle Zahlen 1 Axiomatische Charakterisierung der reellen Zahlen R 2 Angeordnete Körper 3 Die natürlichen, die ganzen und die rationalen Zahlen 4 Das Vollständigkeitsaxiom und irrationale Zahlen

Mehr

Lösungsskizzen zur Klausur

Lösungsskizzen zur Klausur sskizzen zur Klausur Mathematik II Sommersemester 4 Aufgabe Es seien die folgenden Vektoren des R 4 gegeben: b = b = b 3 = b 4 = (a) Prüfen Sie ob die Vektoren b b 4 linear unabhängig sind bestimmen Sie

Mehr

4 Lineare Algebra (Teil 2): Quadratische Matrizen

4 Lineare Algebra (Teil 2): Quadratische Matrizen 4 Lineare Algebra (Teil : Quadratische Matrizen Def.: Eine (n n-matrix, die also ebensoviele Zeilen wie Spalten hat, heißt quadratisch. Hat sie außerdem den Rang n, sind also ihre n Spalten linear unabhängig,

Mehr

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Saskia Klaus 07.10.016 1 Motivation In den ersten beiden Vorträgen des Vorkurses haben wir gesehen, wie man aus schon bekannten Wahrheiten

Mehr

Diagonalisieren. Nikolai Nowaczyk Lars Wallenborn

Diagonalisieren. Nikolai Nowaczyk  Lars Wallenborn Diagonalisieren Nikolai Nowaczyk http://mathniknode/ Lars Wallenborn http://wwwwallenbornnet/ 16-18 März 01 Inhaltsverzeichnis 1 Matrizen 1 11 Einschub: Invertierbarkeit

Mehr

Geometrische Objekte im 3-dimensionalen affinen Raum oder,... wie nützlich ist ein zugehöriger Vektorraum der Verschiebungen

Geometrische Objekte im 3-dimensionalen affinen Raum oder,... wie nützlich ist ein zugehöriger Vektorraum der Verschiebungen Geometrische Objekte im -dimensionalen affinen Raum Bekanntlich versteht man unter geometrischen Objekten Punktmengen, auf die man die üblichen Mengenoperationen wie z.b.: Schnittmenge bilden: - aussagenlogisch:

Mehr

Komplexe Zahlen und konforme Abbildungen

Komplexe Zahlen und konforme Abbildungen Kapitel 1 Komplexe Zahlen und konforme Abbildungen 1.0 Geometrie der komplexen Zahlen Die Menge C der komplexen Zahlen, lässt sich mithilfe der bijektiven Abbildung C := {x + iy : x,y R}, C z = x + iy

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

Lösungen - Serie 2 zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie

Lösungen - Serie 2 zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie Lösungen - Serie zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie Aufgabe : Berechnen Sie für die folgenden Elemente x in einer Körpererweiterung L K die Norm Nm L K (x) und die Spur T r

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Christian Serpé Universität Münster 14. September 2011 Christian Serpé (Universität Münster) 14. September 2011 1 / 56 Gliederung 1 Motivation Beispiele Allgemeines Vorgehen 2 Der Vektorraum R n 3 Lineare

Mehr

Definition Sei V ein Vektorraum, und seien v 1,..., v n V. Dann heißt eine Linearkombination. n λ i = 1. mit. v = v i λ i.

Definition Sei V ein Vektorraum, und seien v 1,..., v n V. Dann heißt eine Linearkombination. n λ i = 1. mit. v = v i λ i. Kapitel Geometrie Sei V ein Vektorraum, z.b. V = R 3. Wenn wir uns für geometrische Eigenschaften von R 3 interessieren, so stört manchmal die Ausnahmerolle des Nullvektors, die es ja in V gibt. Beispielsweise

Mehr

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe Kapitel 4 Euklidische Ringe und die Jordansche Normalform 4.1 Euklidische Ringe Die Ringe der ganzen Zahlen, Z, sowie Polynomringe über Körpern, K[X], wobei K ein Körper ist, haben die folgenden Gemeinsamheiten:

Mehr

Das Banach-Tarski-Paradox

Das Banach-Tarski-Paradox Das Banach-Tarski-Paradox Thomas Neukirchner Nicht-messbare Mengen verdeutlichen auf eindrucksvolle Weise, dass es keinen additiven - geschweige denn σ-additiven Volumenbegriff auf der Potenzmenge P(R

Mehr

y = A(x) y + b(x). (1) y = A(x) y (2)

y = A(x) y + b(x). (1) y = A(x) y (2) 73 5.2 Lineare Systeme Sei weiterhin IK = C oder IK = IR. Seien = I IR ein offenes Intervall, x 0 I, y 0 IK n, A: I IK n n und b: I IK n stetige matrix- bzw vektorwertige Funktionen. Wir betrachten komplexe

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 25 J ai décidé d être heureux parce que c est bon pour la santé Voltaire Trigonalisierbare Abbildungen

Mehr

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge ÜBUNGSBLATT 0 LÖSUNGEN MAT/MAT3 ANALYSIS II FRÜHJAHRSSEMESTER 0 PROF DR CAMILLO DE LELLIS Aufgabe Finden Sie für folgende Funktionen jene Punkte im Bildraum, in welchen sie sich lokal umkehren lassen,

Mehr

Fakultät für Informatik Universität Magdeburg Jürgen Dassow. Vorbemerkungen

Fakultät für Informatik Universität Magdeburg Jürgen Dassow. Vorbemerkungen Vorbemerkungen if (x > y) z = x; else z = y; Wenn es blaue Tiger regnet, dann fressen alle Kirschbäume schwarze Tomaten. q(1) = 1, q(i) = q(i 1) + 2i 1 für i 2 Welchen Wert hat q(6)? 24 ist durch 2 teilbar.

Mehr

Ein Fundamentalbereich der Modulgruppe. 1 Erzeugende

Ein Fundamentalbereich der Modulgruppe. 1 Erzeugende Ein Fundamentalbereich der Modulgruppe Vortrag zum Seminar zur Funktionentheorie,.04.009 Kerstin Küpper Im Vortrag wird die Modulgruppe und ihre Erzeuger untersucht und ein exakter Fundamentalbeich der

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010 Aufgabensammlung aus Mathematik 2 UMIT, SS 2, Version vom 7. Mai 2 I Aufgabe I Teschl / K 3 Zerlegen Sie die Zahl 8 N in ihre Primfaktoren. Aufgabe II Teschl / K 3 Gegeben sind die natürliche Zahl 7 und

Mehr

Vorlesung 4. Tilman Bauer. 13. September Wir befassen uns in dieser Vorlesung noch einmal mit Mengen.

Vorlesung 4. Tilman Bauer. 13. September Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Vorlesung 4 Universität Münster 13. September 2007 1 Kartesische Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Seien M und N zwei Mengen. Dann bezeichnen wir mit M N das (kartesische) Produkt

Mehr

Grundsätzliches Rechnen mit Matrizen Anwendungen. Matrizenrechnung. Fakultät Grundlagen. Juli 2015

Grundsätzliches Rechnen mit Matrizen Anwendungen. Matrizenrechnung. Fakultät Grundlagen. Juli 2015 Matrizenrechnung Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Matrizenrechnung Übersicht Grundsätzliches 1 Grundsätzliches Matrixbegriff Rechenregeln Spezielle Matrizen 2 Matrizenrechnung Determinanten

Mehr

Algebraische Kurven - Vorlesung 5. Homogene Komponenten

Algebraische Kurven - Vorlesung 5. Homogene Komponenten Algebraische Kurven - Vorlesung 5 Homogene Komponenten Definition 1. Sei S ein kommutativer Ring und R = S[X 1,...,X n ] der Polynomring über R in n Variablen. Dann heißt zu einem Monom G = X ν = X ν 1

Mehr

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω 5. Hilberträume Definition 5.1. Sei H ein komplexer Vektorraum. Eine Abbildung, : H H C heißt Skalarprodukt (oder inneres Produkt) auf H, wenn für alle x, y, z H, α C 1) x, x 0 und x, x = 0 x = 0; ) x,

Mehr

Lineare Algebra. I. Vektorräume. U. Stammbach. Professor an der ETH-Zürich

Lineare Algebra. I. Vektorräume. U. Stammbach. Professor an der ETH-Zürich Lineare Algebra U Stammbach Professor an der ETH-Zürich I Vektorräume Kapitel I Vektorräume 1 I1 Lineare Gleichungssysteme 1 I2 Beispiele von Vektorräumen 7 I3 Definition eines Vektorraumes 8 I4 Linearkombinationen,

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

Anhang A. Etwas affine Geometrie. A.1 Die affine Hülle

Anhang A. Etwas affine Geometrie. A.1 Die affine Hülle Anhang A Etwas affine Geometrie In diesem Anhang stellen wir die wichtigsten Grundbegriffe aus der affinen Geometrie zusammen, soweit sie eben für uns von Nutzen sind. Für weiterführende Ergebnisse sei

Mehr

Kap 1: VEKTORRÄUME. (c) (λµ) v = λ (µ v) (b) λ (v + w) = (λ v) + (λ w) (d) 1 v = v

Kap 1: VEKTORRÄUME. (c) (λµ) v = λ (µ v) (b) λ (v + w) = (λ v) + (λ w) (d) 1 v = v Kap 1: VEKTORRÄUME Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung ϕ : I X, i ϕ(i) = x i, wobei die Menge I in diesem Zusammenhang auch Indexmenge genannt wird. Man schreibt vereinfacht

Mehr

Gleitspiegelung und Verkettungen von Spiegelung und Parallelverschiebung

Gleitspiegelung und Verkettungen von Spiegelung und Parallelverschiebung Gleitspiegelung und Verkettungen von Spiegelung und Parallelverschiebung Def. Eine Gleitspiegelung ist eine Spiegelung an einer Geraden (Spiegelachse) verknüpft mit einer Translation parallel zu dieser

Mehr