TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann"

Transkript

1 TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann Blatt Nr. 11 Übung zur Vorlesung Einsatz und Realisierung von Datenbanksystemen im SoSe15 Moritz Kaufmann Hausaufgabe 1 - Machbarkeit von Hauptspeicherdatenbanken Berechnen Sie, wie groß ein Data Warehouse für ein Handelsunternehmen wie Zalando oder Amazon.com wäre, wenn die Bestelldaten der letzten 3 Jahre enthalten sind. Versuchen sie ihre Schätzung basierend auf öffentlichen Daten wie Umsatz o.ä. durchzuführen. Siehe Übungsbuch. Hausaufgabe 2 HyPer schafft Transaktionen pro Sekunde. Pro Transaktion werden 120 Byte in die Log geschrieben. Berechnen Sie den benötigten Durchsatz zum Schreiben der Log. Die Datenbank läuft für einen Monat und stürzt dann ab. Es wurde kein Snapshot erstellt. Berechnen Sie die Recoveryzeit. Gehen Sie davon aus, dass die Recovery durch die Festplatte limitiert ist (100 Mbyte / s). Wieviel Log Einträge werden pro Sekunde recovert? Durchsatz = * 120 = = 13,7 MBytes/s. LogEinträge = *60*60*2*30= LogGröße = LogEinträge*120 = 33 TB RecoveryZeit =,1 Tage RecoveryDurchsatz = 7313 tx / s. Hausaufgabe 3 Wie ändert sich die Bedeutung des Redo-Log und Undo-Log in Hauptspeicherdatenbanken im Vergleich zu klassischen Datenbanken? Wo werden sie gespeichert? Da die Daten nicht mehr auf der Festplatte gespeichert werden, müssen sie (falls es keine Snapshots gibt) bei einem Neustart komplett auf Basis des Redo-Logs wiederhergestellt werden. Da nie die Daten einer nicht comitteten Transaktion auf der Platte landen wird die Undo-Log nur benötigt um im Fall eines Abort die à nderungen der Transaktion zurückzusetzen. Außerdem reicht es aus die Redo Log Daten erst beim Commit zu schreiben. Aus diesem Grund sind die Daten der Undo-Log nur zur Laufzeit der Transaktion notwendig und müssen nicht auf die Festplatte geschrieben werden. Während der Wiederherstellung der Datenbank können dann einfach alle Redo Log Einträge wiederhergestellt werden. Hausaufgabe In traditionellen Datenbanksystemen sind die Festplatte und der Buffermanager oft der Hauptgrund für Performanceengpässe. Wie ändert sich dies in Hauptspeicherdatenbanken, wo sind die neuen Flaschenhälse? Unterscheiden Sie auch zwischen Analytischen und Transaktionalen Workloads. 1

2 Der Unterschied zwischen traditionellen Datenbanksystemen und Hauptspeicherdatenbanke ist, dass wir in der Speicherhierarchie ein paar Stufen nach oben gehen. Hauptspeicher ist teurer, aber gleichzeitig auch schneller und hat eine geringere Latenz. Genauso wichtig ist aber auch, dass die Daten nun alle in einem Adressraum liegen. Bei der Nutzung von Festplatten muss das Datenbanksystem explizit die Daten von der Festplatte in den Speicher laden. Beim Hauptspeicher ist der Wechsel zwisch RAM, L3 und L1 Cache transparent für das System. Das heißt ein Buffermanager wird nicht mehr benötigt. Auch wenn der Wechsel zwischen den verschiedenen Hauptspeicherhierarchien für das System nicht explizit sichtbar ist, so ist es doch in der Performance bemerkbar. Der Latenzunterschied zwischen RAM und L3 ist ähnlich groß wie zwischen Festplatten und RAM. Die Datenbank muss nun so strukturiert werden, dass möglichst viele Operationen auf Daten in den schnelleren Speicherschichten ausgeführt werden. Ein weiterer neuerer Flaschenhals sind die Lockingverfahren. Im Vergleich zu einfachen Operationen wie Lesen, Schreiben, Addition, etc. ist ein Lock zu erstellen viel teurer. Viele Hauptspeichersystem versuchen daher Locks zu vermeiden. Ein Problem, dass hauptsächlich nur Transaktionale Workloads betrifft ist, dass beim Ändern von Daten die Änderung immer noch persistiert werden muss (Logging). Es reicht nicht aus, die Daten nur im Hauptspeicher zu halten, da diese dann nach einem Systemabsturz verloren wären. Das Schreiben auf Festplatte ist selbst mit SSDs noch wesentlich teurer als Änderungen im Hauptspeicher vorzunehmen. Auch ein Problem in Transaktionale Workloads ist die Annahme der Anfragen. Transaktionale Anfragen sind typischerweiße sehr schnell. Ein einzelner Rechner kann sehr einfach mehrere Hunderttausend Anfragen verarbeiten. Hier ist die Netzwerklatenz auch wesentlich größer als die Verarbeitungszeit der Anfragen. Daher kann ein einzelner Client die Datenbank garnicht auslasten wenn er jede Anfrage einzeln abschickt. Gruppenaufgabe 5 - Lösung während der Übung Sie sollen für ein Versandhaus die Datenbank für ein Hauptspeicherdatenbanksystem optimieren. In dem System sind die Daten der letzten drei Jahre gespeichert. Das Schema der verschiedenen Relation ist unten beschrieben.wählen sie jeweils eine Repräsentation der Daten für die Relationen (z.b. Spalten- oder Zeilenorientert), so dass zur Beantwortung der unten beschriebenen Anfragen möglichst wenig Daten in den CPU-Cache geladen werden müssen. Es existieren Indexe auf VerkaufsId in Verkauf, (KundenId, VerkaufsId) in KundenKäufe und KundenId in Kunde. Es können aber keine neuen Indexe definiert werden. Text wird direkt innerhalb der jeweiligen Spalte / Zeile gespeichert. Relationen Verkauf VerkaufsId ( byte), Datum (16 byte), Uhrzeit (16 byte), IP (16 byte), Betrag (16 byte), Versandart ( byte), Kommentar ( byte) KundenKäufe KundenId ( byte), VerkaufsId ( byte) Kunde KundenId ( byte), Anrede( byte), Vorname( byte), Nachname( byte), Einstufung( Byte), Anschrift(256 byte), Land(6 byte), (16 Byte), Facebook(32 byte), GPlus(32 Byte), WerbungsFrequenz( byte) Anfragen mit Ausführungshäufigkeit: 2

3 x select * from Verkauf where Datum > %d ::date and Datum < %d ::date + interval 1 month; x select * from Verkauf; x select count(*) from KundenKäufe group by KundenId; x select Anrede, Vorname, Nachname, Einstufung, , WerbungsFrequenz from Kunde where KundenId = %id ; Würden Sie ihre Entscheidung ändern, wenn zusätzlich noch die folgenden Anfragen ausgeführt werden müssten? x insert into Verkauf VALUES (...); x insert into KundenKäufe VALUES (...); x insert into Kunde VALUES (...); Zur Lösung der Aufgabe berechnen wir für jeden Anfragetyp die Auswertungskosten als Anzahl der Cachelines die in den CPU-Cache geladen werden müssen. Der allgemeine Ansatz dabei ist, für jeden Anfragetyp zu analysieren wie die Anfrage vom Datenbanksystem ausgeführt werden kann (z.b. muss die ganze Tabelle betrachtet werden oder kann ein Index genutzt werden?). Für diese Ausführungspläne müssen dann die Kosten der verschiedenen Datenorganisationsmöglichkeiten berechnet werden. Verkaufs Relation Diese Relation betreffen drei Anfragen. Die Anfragen 1 und 2 und die Insert Anfrage 1. Eine Tupel benötigt 12 byte Speicherplatz, somit 2 Cachelines. 1. Anfrage: Keiner der existierenden Indexe hilft, um die where Bedingung auszuwerten. Daher müssen alle Einträge in der Tabelle überprüft werden (Tablescan). Die Selektivität 1 des Prädikats kann mit AnzahlMonateinDatenbank = 1 abeschätzt werden. Row store Zur Auswertung des Prädikats muss für jedes Tupel die Cacheline mit der Datumsinformation geladen werden. Für alle zutreffenden Tupel müssen zur Ausgabe auch die restlichen Felder und somit auch die zweite Cacheline geladen werden. Daraus ergibt sich folgende Formel ( V = Größe der Verkaufsrelation). Kosten = V + V = V 37 Column store Zur Auswertung des where Prädikats reicht es nur die Datumsspalte zu laden und nur wenn dieses erfüllt ist die restlichen Prädikate. Durch das Spaltenlayout liegen Datumseinträge innerhalb einer Cacheline. Da die Werte sequentiell analysiert werden können, kann mit einer Cacheline das where Prädikat von Tupeln überprüft werden. Beim nachladen der anderen Spalten (6) bei zutreffenden Datumswerte entsteht jedes mal ein Cachemiss. + V 6 V 15 Kosten = V = 2. Anfrage: Hier wird jeweils die gesamte Tabelle gelesen. Row store Kosten = V 2 Column store Da die Daten sequentiell ohne Einschränkung gelesen werden, können jeweils immer alle Daten aus den Cachelines genutzt werden. Kosten = V + V + V + V + V + V V + 6 = V 2 3

4 1. Insert Anfrage: Row store Kosten = 2 Column store Zum Einfügen muss für jede Spalte die entsprechende Cacheline geladen werden. Kosten = 7 Wenn die Insertanfragen ignoriert werden, wäre ein Column store die optimale Datenstruktur. Zur Abschätzung mit Berücksichtigung der Inserts müssen die Kosten aller Anfragen mit der Ausführungshäuftigkeit gewichtet werden. Row store Kosten = Column store Kosten = V V V V Ab V > ist der Column store auch dann noch die Beste Wahl. KundenKäufe Diese Relation betreffen Anfragetyp 3 und Insert Anfragetyp Anfrage: Der Index kann hier nicht genutzt werden, da wir nur auf KundenID aggregieren. Das heißt die Datenbank muss wieder alle Werte überprüfen. Row store Es können Werte pro Cacheline geladen werden. Kosten = KK Column store Hier reicht es nur die KundenId Spalte zu laden. Kosten = KK 2. Insert Anfrage: Row store Kosten = 1 Column store Kosten = 2 Bei der Analyse unter Berücksichtigung der Insert Anfrage ergeben sich folgende Kosten: Row store Kosten = 100 KK Column store Kosten = 100 KK Bei weniger als 00 Werten in KundenKäufe ist ein Row store besser, bei mehr ein Column store. Kunde Diese Relation wird in Anfragetyp und Insert Anfrage 3 genutzt.. Anfragetyp: Hier können wir den Index auf KundenId nutzen und müssen somit nur für diese Zeile alle Werte laden. Row Store Hier müssen wir für jeden Datensatz die Cachelines laden, deren Daten wir benötigen. Dies sind 3. Bonus: Die Kosten für den Rowstore lässt sich durch umordnen der Spalten innerhalb jeder Zeile auf 1 Cacheline reduzieren. Kosten = 3

5 Column Store Basierend auf der Annahme, dass der Cache leer, verursacht jede Spalte einen Cache-Miss. Kosten = 6 3. Insert Anfrage Row Store Kosten = 7 Column Store Hier muss berücksichtigt werden, dass zum Einfügen der Anschrift Cachelines angefasst werden. Kosten = 10 + Optimales Layout ist für diese Tabelle ein Rowstore. 5

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. Übung zur Vorlesung Einsatz und Realisierung von Datenbanksystemen im SoSe17 Maximilian E. Schüle (schuele@in.tum.de)

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. Blatt Nr. 07 Übung zur Vorlesung Einsatz und Realisierung von Datenbanksystemen im SoSe16 Moritz Kaufmann

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann Blatt Nr. 10 Übung zur Vorlesung Einsatz und Realisierung von Datenbanksystemen im SoSe15 Moritz Kaufmann (moritz.kaufmann@tum.de)

Mehr

1 Transaktionen in SQL. 2 Was ist eine Transaktion. 3 Eigenschaften einer Transaktion. PostgreSQL

1 Transaktionen in SQL. 2 Was ist eine Transaktion. 3 Eigenschaften einer Transaktion. PostgreSQL 1 Transaktionen in SQL Um Daten in einer SQL-Datenbank konsistent zu halten, gibt es einerseits die Möglichkeit der Normalisierung, andererseits sog. Transaktionen. 2 Was ist eine Transaktion Eine Transaktion

Mehr

Datenbanksysteme 2 Frühjahr-/Sommersemester 2014 28. Mai 2014

Datenbanksysteme 2 Frühjahr-/Sommersemester 2014 28. Mai 2014 Lehrstuhl für Praktische Informatik III Prof. Dr. Guido Moerkotte Email: moer@db.informatik.uni-mannheim.de Marius Eich Email: marius.eich@uni-mannheim.de Datenbanksysteme 2 8. Übungsblatt Frühjahr-/Sommersemester

Mehr

Mengenvergleiche: Alle Konten außer das, mit dem größten Saldo.

Mengenvergleiche: Alle Konten außer das, mit dem größten Saldo. Mengenvergleiche: Mehr Möglichkeiten als der in-operator bietet der θany und der θall-operator, also der Vergleich mit irgendeinem oder jedem Tupel der Unteranfrage. Alle Konten außer das, mit dem größten

Mehr

Universität Duisburg-Essen Informationssysteme Prof. Dr.-Ing. N. Fuhr. Praktikum Datenbanken / DB2 Woche 8: Trigger, SQL-PL

Universität Duisburg-Essen Informationssysteme Prof. Dr.-Ing. N. Fuhr. Praktikum Datenbanken / DB2 Woche 8: Trigger, SQL-PL Betreuer: Sascha Kriewel, Tobias Tuttas Raum: LF 230 Bearbeitung: 26., 27. und 29. Juni 2006 Datum Team (Account) Vorbereitung Präsenz Aktuelle Informationen, Ansprechpartner und Material unter: http://www.is.inf.uni-due.de/courses/dbp_ss07/index.html

Mehr

Wiederherstellung (Recovery)

Wiederherstellung (Recovery) Fragestellungen Aufgaben der Komponenten für das Recovery: Sicherstellung der Dauerhaftigkeit der gespeicherten Daten, d.h. Daten, die in einer Transaktion einmal bestätigt wurden (commit), bleiben auch

Mehr

Übungen zur Vorlesung. Datenbanken I

Übungen zur Vorlesung. Datenbanken I Prof. Dr. S. Böttcher Adelhard Türling Übungen zur Vorlesung Datenbanken I WS 2002/2003 Blatt 6 Aufgabe 1: In der Vorlesung haben Sie für die Einbringstrategie Update in Place die Vorgehensweisen steal,

Mehr

Datumsangaben, enthält mindestens Jahr, Monat, Tag

Datumsangaben, enthält mindestens Jahr, Monat, Tag Datenbanken mit SQL Informatik - Sprenger Häufig wird mit Tabellenkalkulationen gearbeitet, obwohl der Einsatz von Datenbanken sinnvoller ist. Tabellenkalkulationen wie Microsoft Excel oder LibreOffice

Mehr

Views in SQL. 2 Anlegen und Verwenden von Views 2

Views in SQL. 2 Anlegen und Verwenden von Views 2 Views in SQL Holger Jakobs bibjah@bg.bib.de, holger@jakobs.com 2010-07-15 Inhaltsverzeichnis 1 Wozu dienen Views? 1 2 Anlegen und Verwenden von Views 2 3 Schreibfähigkeit von Views 3 3.1 Views schreibfähig

Mehr

OPERATIONEN AUF EINER DATENBANK

OPERATIONEN AUF EINER DATENBANK Einführung 1 OPERATIONEN AUF EINER DATENBANK Ein Benutzer stellt eine Anfrage: Die Benutzer einer Datenbank können meist sowohl interaktiv als auch über Anwendungen Anfragen an eine Datenbank stellen:

Mehr

Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5

Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5 Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5 Aufgabe 1: Projektion Datenbanksysteme I π A1,...,A n (π B1,...,B

Mehr

DBS: Administration und Implementierung Klausur

DBS: Administration und Implementierung Klausur Prof. Dr. Stefan Brass 12.06.2001 Institut für Informatik Universität Gießen Hinweise DBS: Administration und Implementierung Klausur Die Bearbeitungszeit ist 1 Stunde, 30 Minuten (von 8 30 bis 10 00 ).

Mehr

Datenbanken: Datenintegrität. www.informatikzentrale.de

Datenbanken: Datenintegrität. www.informatikzentrale.de Datenbanken: Datenintegrität Definition "Datenkonsistenz" "in der Datenbankorganisation (...) die Korrektheit der gespeicherten Daten im Sinn einer widerspruchsfreien und vollständigen Abbildung der relevanten

Mehr

Datensicherung. Beschreibung der Datensicherung

Datensicherung. Beschreibung der Datensicherung Datensicherung Mit dem Datensicherungsprogramm können Sie Ihre persönlichen Daten problemlos Sichern. Es ist möglich eine komplette Datensicherung durchzuführen, aber auch nur die neuen und geänderten

Mehr

Erweiterung der CRM-Datenbank für den Umgang mit Excel-Mappen. Automatisches Ausfüllen von MS-Excel-Vorlagen mit Daten aus organice

Erweiterung der CRM-Datenbank für den Umgang mit Excel-Mappen. Automatisches Ausfüllen von MS-Excel-Vorlagen mit Daten aus organice organice-excel-add-in 1 Erweiterung der CRM-Datenbank für den Umgang mit Excel-Mappen. Automatisches Ausfüllen von MS-Excel-Vorlagen mit Daten aus organice (Ein stichwortartiger Entwurf ) Systemvoraussetzungen:

Mehr

SQL: statische Integrität

SQL: statische Integrität SQL: statische Integrität.1 SQL: statische Integrität Im allgemeinen sind nur solche Instanzen einer Datenbank erlaubt, deren Relationen die der Datenbank bekannten Integritätsbedingungen erfüllen. Integritätsbedingungen

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann Blatt Nr. 12 Übung zur Vorlesung Einsatz und Realisierung von Datenbanksystemen im SoSe15 Moritz Kaufmann (moritz.kaufmann@tum.de)

Mehr

Unterabfragen (Subqueries)

Unterabfragen (Subqueries) Unterabfragen (Subqueries) Die kürzeste Formulierung ist folgende: SELECT Felderliste FROM Tabelle1 WHERE Tabelle1.Feldname Operator (SELECT Feldname FROM Tabelle2 WHERE Bedingung); wobei Tabelle1 und

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. Übung zur Vorlesung Einsatz und Realisierung von Datenbanksystemen im SoSe14 Moritz Kaufmann (moritz.kaufmann@tum.de)

Mehr

Eine völlig andere Form Abfragen zu erstellen ist, sie mit Hilfe der Datenbankabfragesprache SQL zu gestalten.

Eine völlig andere Form Abfragen zu erstellen ist, sie mit Hilfe der Datenbankabfragesprache SQL zu gestalten. Einführung SQL 2010 Niko Becker Mit unseren Übungen zu ACCESS können Sie Aufbau und Struktur einer relationalen Datenbank kennenlernen. Wir zeigen Ihnen wie Sie Tabellen, Formulare und Berichte erstellen

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. Blatt Nr. 7 Übung zur Vorlesung Grundlagen: Datenbanken im WS13/14 Henrik Mühe (muehe@in.tum.de) http://www-db.in.tum.de/teaching/ws1314/dbsys/exercises/

Mehr

Informatik 12 Datenbanken SQL-Einführung

Informatik 12 Datenbanken SQL-Einführung Informatik 12 Datenbanken SQL-Einführung Gierhardt Vorbemerkungen Bisher haben wir Datenbanken nur über einzelne Tabellen kennen gelernt. Stehen mehrere Tabellen in gewissen Beziehungen zur Beschreibung

Mehr

TAV Übung 3. Übung 3: Verteilte Datenhaltung

TAV Übung 3. Übung 3: Verteilte Datenhaltung Übung 3: Verteilte Datenhaltung 1. Serialisierung Konstruieren Sie Historien aus drei Transaktionen T1, T2 und T3, die folgende Merkmale aufweisen: 1. Die serielle Reihenfolge ist T1 vor T2 vor T3. 2.

Mehr

Erstellen von Formbriefen, Adressetiketten und Briefumschlägen ohne Serienbrief-Assistenten

Erstellen von Formbriefen, Adressetiketten und Briefumschlägen ohne Serienbrief-Assistenten Erstellen von Formbriefen, Adressetiketten und Briefumschlägen ohne Serienbrief-Assistenten Das Verfahren läuft in folgenden Schritten ab: Erstellen der Datenquelle Erstellen eines Textdokuments Einfügen

Mehr

! DBMS organisiert die Daten so, dass minimal viele Plattenzugriffe nötig sind.

! DBMS organisiert die Daten so, dass minimal viele Plattenzugriffe nötig sind. Unterschiede von DBMS und files Speichern von Daten! DBMS unterstützt viele Benutzer, die gleichzeitig auf dieselben Daten zugreifen concurrency control.! DBMS speichert mehr Daten als in den Hauptspeicher

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. Blatt r. 2 Hausaufgabe Übung zur Vorlesung Grundlagen: Datenbanken im WS3/4 Henrik Mühe (muehe@in.tum.de)

Mehr

Registrierungsanleitung Informatik-Biber

Registrierungsanleitung Informatik-Biber Registrierungsanleitung Informatik-Biber Sehr geehrte Lehrkraft, wir freuen uns sehr, dass Sie mit Ihren Schülerinnen und Schülern am Informatik-Biber teilnehmen möchten. Für jede Schule, die beim Informatik-Biber

Mehr

Serienbrief erstellen

Serienbrief erstellen Serienbrief erstellen Mit einem perfekt vorbereiteten Serienbrief können Sie viel Zeit sparen. In unserem Beispiel lesen wir die Daten für unseren Serienbrief aus einer Excel Tabelle aus. Die Tabelle hat

Mehr

Probeklausur Grundlagen der Datenbanksysteme II

Probeklausur Grundlagen der Datenbanksysteme II Prof. Dott.-Ing. Roberto V. Zicari Datenbanken und Informationssysteme Institut für Informatik Fachbereich Informatik und Mathematik Probeklausur Grundlagen der Datenbanksysteme II Frau: Herr: Vorname:

Mehr

Datenbanken: Backup und Recovery

Datenbanken: Backup und Recovery Der Prozess der Wiederherstellung der Daten einer Datenbank nach einem Fehler im laufenden Betrieb in einen konsistenten, möglichst verlustfreien Zustand heißt Recovery. Beteiligt an diesem Recovery sind

Mehr

Klausur Datenbanken Wintersemester 2004/2005 Prof. Dr. Wolfgang May 10. Februar 2004, 11-13 Uhr Bearbeitungszeit: 90 Minuten

Klausur Datenbanken Wintersemester 2004/2005 Prof. Dr. Wolfgang May 10. Februar 2004, 11-13 Uhr Bearbeitungszeit: 90 Minuten Klausur Datenbanken Wintersemester 2004/2005 Prof. Dr. Wolfgang May 10. Februar 2004, 11-13 Uhr Bearbeitungszeit: 90 Minuten Vorname: Nachname: Matrikelnummer: Bei der Klausur sind keine Hilfsmittel (Skripten,

Mehr

Hochschule Karlsruhe Technik und Wirtschaft- 10.7.2013. Anhänge: Fakultät für Informatik und Wirtschaftsinformatik SS 2013 Prof. Schmidt.

Hochschule Karlsruhe Technik und Wirtschaft- 10.7.2013. Anhänge: Fakultät für Informatik und Wirtschaftsinformatik SS 2013 Prof. Schmidt. Fakultät für Informatik und Wirtschaftsinformatik SS 2013 Datenbanken und Informationssysteme II Szenario: Projektverwaltung. Es gibt Projekte, Projektleiter, Mitarbeiter und ihre Zuordnung zu Projekten.

Mehr

Einführung in Datenbanksysteme. H. Wünsch 01.2001

Einführung in Datenbanksysteme. H. Wünsch 01.2001 Einführung in Datenbanksysteme H. Wünsch 01.2001 H. Wünsch 01/2001 Einführung Datenbanken 2 Was sind Datenbanken? Datenbanken sind Systeme zur Beschreibung, Speicherung und Wiedergewinnung von Datenmengen.

Mehr

2.5.2 Primärschlüssel

2.5.2 Primärschlüssel Relationale Datenbanken 0110 01101110 01110 0110 0110 0110 01101 011 01110 0110 010 011011011 0110 01111010 01101 011011 0110 01 01110 011011101 01101 0110 010 010 0110 011011101 0101 0110 010 010 01 01101110

Mehr

MySQL Installation. AnPr

MySQL Installation. AnPr Name Klasse Datum 1 Allgemeiner Aufbau Relationale Datenbank Management Systeme (RDBMS) werden im Regelfall als Service installiert. Der Zugriff kann über mehrere Kanäle durchgeführt werden, wobei im Regelfall

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. Blatt Nr. 2 Übung zur Vorlesung Grundlagen: Datenbanken im WS3/4 Henrik Mühe (muehe@in.tum.de) http://www-db.in.tum.de/teaching/ws34/dbsys/exercises/

Mehr

Transaktionsverwaltung

Transaktionsverwaltung Transaktionsverwaltung VU Datenbanksysteme vom 21.10. 2015 Reinhard Pichler Arbeitsbereich Datenbanken und Artificial Intelligence Institut für Informationssysteme Technische Universität Wien Transaktionsverwaltung

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. Blatt Nr. 10 Übung zur Vorlesung Grundlagen: Datenbanken im WS16/17 Harald Lang, Linnea Passing (gdb@in.tum.de)

Mehr

7. Übung - Datenbanken

7. Übung - Datenbanken 7. Übung - Datenbanken Informatik I für Verkehrsingenieure Aufgaben inkl. Beispiellösungen 1. Aufgabe: DBS a Was ist die Kernaufgabe von Datenbanksystemen? b Beschreiben Sie kurz die Abstraktionsebenen

Mehr

Integritätsbedingungen / Normalformen- Beispiel: Kontoführung

Integritätsbedingungen / Normalformen- Beispiel: Kontoführung Technische Universität München WS 2003/04, Fakultät für Informatik Datenbanksysteme I Prof. R. Bayer, Ph.D. Lösungsblatt 8 Dipl.-Inform. Michael Bauer Dr. Gabi Höfling 12.01. 2004 Integritätsbedingungen

Mehr

Datenbanken: Architektur & Komponenten 3-Ebenen-Architektur

Datenbanken: Architektur & Komponenten 3-Ebenen-Architektur Datenbanken: Architektur & Komponenten 3-Ebenen-Architektur Moderne Datenbanksysteme sind nach der 3-Ebenen-Architektur gebaut: Anwendung 1 Web-Anwendung Anwendung 2 Java-Programm... Anwendung n Applikation

Mehr

Datenbanksysteme II SS 2010. Übungsblatt 9: Wiederholung

Datenbanksysteme II SS 2010. Übungsblatt 9: Wiederholung Ludwig-Maximilians-Universität München München, 02.07.2010 Department Institut für Informatik PD Dr. Peer Kröger Andreas Züfle Datenbanksysteme II SS 2010 Übungsblatt 9: Wiederholung Besprechung: 20.07.2010

Mehr

1 Referentielle Aktionen

1 Referentielle Aktionen 1 Referentielle Aktionen Betrachten Sie das folgende Datenbankschema: Person(Vorname, Nachname, DOB, Wohnort, Lieblingsfilm Film.IMDb-ID, Videothek Videothek.VID) Film(IMDb-ID, Titel, (ProduzentVN, ProduzentNN)

Mehr

1 Einführung Ziele der Vorlesung Die Idee Lernkarte Selbsttest-Frage 3 Literaturhinweise 3

1 Einführung Ziele der Vorlesung Die Idee Lernkarte Selbsttest-Frage 3 Literaturhinweise 3 1 Einführung 1 1.1 Ziele der Vorlesung 1 1.2 Die Idee 1 1.3 Lernkarte 2 1.4 Selbsttest-Frage 3 Literaturhinweise 3 Teilt Die Zukunft von Enterprise-Computing 5 2 Neue Anforderungen an Enterprise Computing

Mehr

Inhaltsverzeichnis. BüroWARE Systemanforderungen ab Version 5.31. Generelle Anforderungen SoftENGINE BüroWARE SQL / Pervasive. 2

Inhaltsverzeichnis. BüroWARE Systemanforderungen ab Version 5.31. Generelle Anforderungen SoftENGINE BüroWARE SQL / Pervasive. 2 Inhaltsverzeichnis Generelle Anforderungen SoftENGINE BüroWARE SQL / Pervasive. 2 1. Terminal-Server-Betrieb (SQL)... 3 1.1. Server 3 1.1.1. Terminalserver... 3 1.1.2. Datenbankserver (bei einer Datenbankgröße

Mehr

HANA. TOBA-Team Dresden 19.05.2012

HANA. TOBA-Team Dresden 19.05.2012 HANA TOBA-Team Dresden 19.05.2012 Kunde droht mit Auftrag! Ein großer Discounter schickt Anfrage: Bis wann und zu welchem Preis können Sie 30.000 Stück liefern? Die Hektik beginnt! Bis wann Welche und

Mehr

In diesem Abschnitt wollen wir uns mit der Architektur von Datenbank Managements Systemen beschäftigen.

In diesem Abschnitt wollen wir uns mit der Architektur von Datenbank Managements Systemen beschäftigen. 1 In diesem Abschnitt wollen wir uns mit der Architektur von Datenbank Managements Systemen beschäftigen. Zunächst stellt sich die Frage: Warum soll ich mich mit der Architektur eines DBMS beschäftigen?

Mehr

Workstations. Server. Recovery Log. Database. SQL Queries. Query Processing Object Mgmt. Transaction Mgmt. Buffer Mgmt. I/O Layer

Workstations. Server. Recovery Log. Database. SQL Queries. Query Processing Object Mgmt. Transaction Mgmt. Buffer Mgmt. I/O Layer Client-Server Architekturen: Query Shipping Grundprinzip 1. Client schickt Anfrage zum Server 2. Server schickt Ergebnisse der Anfrage zuruck Workstations Application Interface Layer SQL Queries Query

Mehr

Datenbank-Administration im WS 2012/13 - Einführung in Projekt 3 - Prof. Dr. Klaus Küspert Dipl.-Math. Katharina Büchse Dipl.-Inf.

Datenbank-Administration im WS 2012/13 - Einführung in Projekt 3 - Prof. Dr. Klaus Küspert Dipl.-Math. Katharina Büchse Dipl.-Inf. Datenbank-Administration im WS 2012/13 - Einführung in Projekt 3 - Prof. Dr. Klaus Küspert Dipl.-Math. Katharina Büchse Dipl.-Inf. Andreas Göbel Friedrich-Schiller-Universität Jena Lehrstuhl für Datenbanken

Mehr

EINFACHES HAUSHALT- KASSABUCH

EINFACHES HAUSHALT- KASSABUCH EINFACHES HAUSHALT- KASSABUCH Arbeiten mit Excel Wir erstellen ein einfaches Kassabuch zur Führung einer Haushalts- oder Portokasse Roland Liebing, im November 2012 Eine einfache Haushalt-Buchhaltung (Kassabuch)

Mehr

XAMPP-Systeme. Teil 3: My SQL. PGP II/05 MySQL

XAMPP-Systeme. Teil 3: My SQL. PGP II/05 MySQL XAMPP-Systeme Teil 3: My SQL Daten Eine Wesenseigenschaft von Menschen ist es, Informationen, in welcher Form sie auch immer auftreten, zu ordnen, zu klassifizieren und in strukturierter Form abzulegen.

Mehr

SEPA-Anleitung zum Release 3.09

SEPA-Anleitung zum Release 3.09 Hier folgt nun eine kurze Information was sich mit dem neuen Release 3.08 zum Thema SEPA alles ändert. Bitte diese Anleitung sorgfältig lesen, damit bei der Umsetzung keine Fragen aufkommen. Bitte vor

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann Blatt Nr. 9 Übung zur Vorlesung Grundlagen: Datenbanken im WS4/5 Harald Lang (harald.lang@in.tum.de) http://www-db.in.tum.de/teaching/ws45/grundlagen/

Mehr

Datenbanksysteme I. Klausur zum Praktikum. Mehrere Professoren prüfen mit genau einem Beisitzer genau einen Studenten.

Datenbanksysteme I. Klausur zum Praktikum. Mehrere Professoren prüfen mit genau einem Beisitzer genau einen Studenten. Lehrstuhl für Datenbanken und Informationssysteme Wintersemester 1999/2000 Universität Augsburg, Institut für Informatik 25. Februar 2000 Prof. Dr. Werner Kießling A. Leubner, M. Wagner Datenbanksysteme

Mehr

In diesem Thema lernen wir die Grundlagen der Datenbanken kennen und werden diese lernen einzusetzen. Access. Die Grundlagen der Datenbanken.

In diesem Thema lernen wir die Grundlagen der Datenbanken kennen und werden diese lernen einzusetzen. Access. Die Grundlagen der Datenbanken. In diesem Thema lernen wir die Grundlagen der Datenbanken kennen und werden diese lernen einzusetzen. Access Die Grundlagen der Datenbanken kurspc15 Inhaltsverzeichnis Access... Fehler! Textmarke nicht

Mehr

1.1 Das Ziel: Basisdaten strukturiert darzustellen

1.1 Das Ziel: Basisdaten strukturiert darzustellen MS Excel 203 Kompakt PivotTabellen. Das Ziel: Basisdaten strukturiert darzustellen Jeden Tag erhalten wir umfangreiche Informationen. Aber trotzdem haben wir oft das Gefühl, Entscheidungen noch nicht treffen

Mehr

Fachbericht zum Thema: Anforderungen an ein Datenbanksystem

Fachbericht zum Thema: Anforderungen an ein Datenbanksystem Fachbericht zum Thema: Anforderungen an ein Datenbanksystem von André Franken 1 Inhaltsverzeichnis 1 Inhaltsverzeichnis 1 2 Einführung 2 2.1 Gründe für den Einsatz von DB-Systemen 2 2.2 Definition: Datenbank

Mehr

Datenbanken Unit 9: OLAP, OLTP und objektrelationale Datenbanken

Datenbanken Unit 9: OLAP, OLTP und objektrelationale Datenbanken Datenbanken Unit 9: OLAP, OLTP und objektrelationale Datenbanken 31. V. 2016 Outline 1 Organisatorisches 2 SQL 3 OLTP, OLAP, SAP, and Data Warehouse OLTP and OLAP SAP 4 Objekt-relationale Datenbanken Beispiel

Mehr

Fachhochschule Kaiserslautern Labor Datenbanken mit MySQL SS2006 Versuch 1

Fachhochschule Kaiserslautern Labor Datenbanken mit MySQL SS2006 Versuch 1 Fachhochschule Kaiserslautern Fachbereiche Elektrotechnik/Informationstechnik und Maschinenbau Labor Datenbanken Versuch 1 : Die Grundlagen von MySQL ------------------------------------------------------------------------------------------------------------

Mehr

Datenbanken II Speicherung und Verarbeitung großer Objekte (Large Objects [LOBs])

Datenbanken II Speicherung und Verarbeitung großer Objekte (Large Objects [LOBs]) Datenbanken II Speicherung und Verarbeitung großer Objekte (Large Objects [LOBs]) Hochschule für Technik, Wirtschaft und Kultur Leipzig 06.06.2008 Datenbanken II,Speicherung und Verarbeitung großer Objekte

Mehr

Transaktionsverwaltung

Transaktionsverwaltung Transaktionsverwaltung Commit Eigenschaften von Transaktionen (ACID) Transaktionen in SQL Kapitel 9 1 Transaktionsverwaltung Beispiel einer typischen Transaktion in einer Bankanwendung: 1. Lese den Kontostand

Mehr

5.3 Datenänderung/-zugriff mit SQL (DML)

5.3 Datenänderung/-zugriff mit SQL (DML) 5.3 Datenänderung/-zugriff mit SQL (DML) Hinweis: - DML-Anweisungen sind mengenorientiert - Mit einer Anweisungen kann mehr als ein Tupel eingefügt, geändert, gelöscht oder gelesen werden Benutzungs- und

Mehr

7.4 Analyse anhand der SQL-Trace. 7.3.5 Vorabanalyse mit dem Code Inspector

7.4 Analyse anhand der SQL-Trace. 7.3.5 Vorabanalyse mit dem Code Inspector 7.4 Analyse anhand der SQL-Trace 337 7.3.5 Vorabanalyse mit dem Code Inspector Der Code Inspector (SCI) wurde in den vorangegangenen Kapiteln immer wieder erwähnt. Er stellt ein paar nützliche Prüfungen

Mehr

Aufbau Datenbanksysteme

Aufbau Datenbanksysteme Aufbau Datenbanksysteme Lehrveranstaltung Datenbanktechnologien Prof. Dr. Ingo Claßen Prof. Dr. Martin Kempa Hochschule für Technik und Wirtschaft Berlin Speichersystem c Ingo Claßen, Martin Kempa Softwarearchitektur

Mehr

Vorlesung Suchmaschinen Semesterklausur Wintersemester 2013/14

Vorlesung Suchmaschinen Semesterklausur Wintersemester 2013/14 Universität Augsburg, Institut für Informatik Wintersemester 2013/14 Prof. Dr. W. Kießling 10. Oktober 2013 F. Wenzel, D. Köppl Suchmaschinen Vorlesung Suchmaschinen Semesterklausur Wintersemester 2013/14

Mehr

MySQL 101 Wie man einen MySQL-Server am besten absichert

MySQL 101 Wie man einen MySQL-Server am besten absichert MySQL 101 Wie man einen MySQL-Server am besten absichert Simon Bailey simon.bailey@uibk.ac.at Version 1.1 23. Februar 2003 Change History 21. Jänner 2003: Version 1.0 23. Februar 2002: Version 1.1 Diverse

Mehr

Vorlesung Informatik II

Vorlesung Informatik II Vorlesung Informatik II Universität Augsburg Wintersemester 2011/2012 Prof. Dr. Bernhard Bauer Folien von: Prof. Dr. Robert Lorenz Lehrprofessur für Informatik 08. Exkurs: Datenbanken 1 Motivation Datenbanksysteme

Mehr

SQL structured query language

SQL structured query language Umfangreiche Datenmengen werden üblicherweise in relationalen Datenbank-Systemen (RDBMS) gespeichert Logische Struktur der Datenbank wird mittels Entity/Realtionship-Diagrammen dargestellt structured query

Mehr

Es geht also im die SQL Data Manipulation Language.

Es geht also im die SQL Data Manipulation Language. 1 In diesem Abschnitt wollen wir uns mit den SQL Befehlen beschäftigen, mit denen wir Inhalte in Tabellen ( Zeilen) einfügen nach Tabelleninhalten suchen die Inhalte ändern und ggf. auch löschen können.

Mehr

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER INHALTSVERZEICHNIS 1. Datenbanken 2. SQL 1.1 Sinn und Zweck 1.2 Definition 1.3 Modelle 1.4 Relationales Datenbankmodell 2.1 Definition 2.2 Befehle 3.

Mehr

3. Das Relationale Datenmodell

3. Das Relationale Datenmodell 3. Das Relationale Datenmodell Das Relationale Datenmodell geht zurück auf Codd (1970): E. F. Codd: A Relational Model of Data for Large Shared Data Banks. Comm. of the ACM 13(6): 377-387(1970) DBMS wie

Mehr

CVR Seniorentreff vom 04. und 05.02.03 Serienbriefe/Seriendruck. Serienbriefe / Seriendruck

CVR Seniorentreff vom 04. und 05.02.03 Serienbriefe/Seriendruck. Serienbriefe / Seriendruck Serienbriefe / Seriendruck Mit Hilfe des Seriendruck-Managers lassen sich Serienbriefe, Adressetiketten, oder Briefumschläge relativ einfach erstellen. Der Seriendruck-Manager hilft dabei, die Adressdaten

Mehr

Dokumentation von Ük Modul 302

Dokumentation von Ük Modul 302 Dokumentation von Ük Modul 302 Von Nicolas Kull Seite 1/ Inhaltsverzeichnis Dokumentation von Ük Modul 302... 1 Inhaltsverzeichnis... 2 Abbildungsverzeichnis... 3 Typographie (Layout)... 4 Schrift... 4

Mehr

MdtTax Programm. Programm Dokumentation. Datenbank Schnittstelle. Das Hauptmenü. Die Bedienung des Programms geht über das Hauptmenü.

MdtTax Programm. Programm Dokumentation. Datenbank Schnittstelle. Das Hauptmenü. Die Bedienung des Programms geht über das Hauptmenü. Programm Die Bedienung des Programms geht über das Hauptmenü. Datenbank Schnittstelle Die Datenbank wir über die Datenbank- Schnittstelle von Office angesprochen. Von Office 2000-2003 gab es die Datenbank

Mehr

Transaktionen Recovery Isolationslevel. Datenbanksysteme. Transaktionen. Burkhardt Renz. Fachbereich MNI Technische Hochschule Mittelhessen

Transaktionen Recovery Isolationslevel. Datenbanksysteme. Transaktionen. Burkhardt Renz. Fachbereich MNI Technische Hochschule Mittelhessen Transaktionen Fachbereich MNI Technische Hochschule Mittelhessen Sommersemester 2015 Motivation ACID-Eigenschaften Übersicht Transaktionen Motivation ACID-Eigenschaften Ursachen für Logging und Backup

Mehr

Grundlagen von SQL. Informatik 2, FS18. Dr. Hermann Lehner (Material von Dr. Markus Dahinden) Departement Informatik, ETH Zürich

Grundlagen von SQL. Informatik 2, FS18. Dr. Hermann Lehner (Material von Dr. Markus Dahinden) Departement Informatik, ETH Zürich Grundlagen von SQL Informatik 2, FS18 Dr. Hermann Lehner (Material von Dr. Markus Dahinden) Departement Informatik, ETH Zürich Markus Dahinden 13.05.18 1 Grundlagen von SQL (Structured Query Language)

Mehr

Kurs. Teil 7 UNDO-Management. Universität Hannover. Agenda. Einführung. Nutzung RBS Oracle 9i Einführung Performance Tuning.

Kurs. Teil 7 UNDO-Management. Universität Hannover. Agenda. Einführung. Nutzung RBS Oracle 9i Einführung Performance Tuning. Kurs Oracle 9i Performance Tuning Teil 7 UNDO-Management Timo Meyer Wintersemester 2005 / 2006 Seite 1 von 23 Seite 1 von 23 1. 2. Nutzung des Rollback Segments 3. 4. 5. Größe von UNDO- TBS berechnen 6.

Mehr

Hauptspeicher- Datenbanksysteme. Hardware-Entwicklungen Column- versus Row-Store...

Hauptspeicher- Datenbanksysteme. Hardware-Entwicklungen Column- versus Row-Store... Hauptspeicher- Datenbanksysteme Hardware-Entwicklungen Column- versus Row-Store... Hauptspeicher-Datenbanksysteme Disk is Tape, Tape is dead Jim Gray Die Zeit ist reif für ein Re-engineering der Datenbanksysteme

Mehr

SQL Tutorial. SQL - Tutorial SS 06. Hubert Baumgartner. INSO - Industrial Software

SQL Tutorial. SQL - Tutorial SS 06. Hubert Baumgartner. INSO - Industrial Software SQL Tutorial SQL - Tutorial SS 06 Hubert Baumgartner INSO - Industrial Software Institut für Rechnergestützte Automation Fakultät für Informatik Technische Universität Wien Inhalt des Tutorials 1 2 3 4

Mehr

Datenbanken Kapitel 2

Datenbanken Kapitel 2 Datenbanken Kapitel 2 1 Eine existierende Datenbank öffnen Eine Datenbank, die mit Microsoft Access erschaffen wurde, kann mit dem gleichen Programm auch wieder geladen werden: Die einfachste Methode ist,

Mehr

Tag 4 Inhaltsverzeichnis

Tag 4 Inhaltsverzeichnis Tag 4 Inhaltsverzeichnis Normalformen Problem Formen (1-4) Weitere Formen Transaktionen Synchronisationsprobleme Überblick Autocommit Locking Savepoints Isolation levels Übungen RDB 4-1 Normalformen Problematik

Mehr

3 Query Language (QL) Einfachste Abfrage Ordnen Gruppieren... 7

3 Query Language (QL) Einfachste Abfrage Ordnen Gruppieren... 7 1 Data Definition Language (DDL)... 2 1.1 Tabellen erstellen... 2 1.1.1 Datentyp...... 2 1.1.2 Zusätze.... 2 1.2 Tabellen löschen... 2 1.3 Tabellen ändern (Spalten hinzufügen)... 2 1.4 Tabellen ändern

Mehr

Übungen zu Datenbanksysteme

Übungen zu Datenbanksysteme Institut für Informatik Universität Osnabrück, 19.05.2009 Prof. Dr. Oliver Vornberger http://www-lehre.inf.uos.de/ dbs Dipl.-Math. Patrick Fox Abgabe bis 02.06.2009, 12:00 Uhr Übungen zu Datenbanksysteme

Mehr

... Kontrolldatei administrieren

... Kontrolldatei administrieren 6... Kontrolldatei administrieren Lektion 6: Kontrolldatei administrieren Ziele Ziele Nach dieser Lektion sollten Sie Folgendes können: Arbeiten mit der Kontrolldatei erklären Inhalt der Kontrolldatei

Mehr

Datenbanken Unit 9: OLAP, OLTP und objektrelationale Datenbanken

Datenbanken Unit 9: OLAP, OLTP und objektrelationale Datenbanken Datenbanken Unit 9: OLAP, OLTP und objektrelationale Datenbanken 17. V. 2017 Outline 1 Organisatorisches 2 SQL 3 OLTP, OLAP, SAP, and Data Warehouse OLTP and OLAP SAP 4 Objekt-relationale Datenbanken Beispiel

Mehr

Oracle 9i Einführung Performance Tuning

Oracle 9i Einführung Performance Tuning Kurs Oracle 9i Einführung Performance Tuning Teil 3 Der Optimizer Timo Meyer Wintersemester 2005 / 2006 Seite 1 von 16 Seite 1 von 16 1. auf Tabellen 2. 3. Optimizer 4. Optimizer RBO 5. Optimizer CBO 6.

Mehr

OP-LOG www.op-log.de

OP-LOG www.op-log.de Verwendung von Microsoft SQL Server, Seite 1/18 OP-LOG www.op-log.de Anleitung: Verwendung von Microsoft SQL Server 2005 Stand Mai 2010 1 Ich-lese-keine-Anleitungen 'Verwendung von Microsoft SQL Server

Mehr

Handbuch ECDL 2003 Basic Modul 5: Datenbank Grundlagen von relationalen Datenbanken

Handbuch ECDL 2003 Basic Modul 5: Datenbank Grundlagen von relationalen Datenbanken Handbuch ECDL 2003 Basic Modul 5: Datenbank Grundlagen von relationalen Datenbanken Dateiname: ecdl5_01_00_documentation_standard.doc Speicherdatum: 14.02.2005 ECDL 2003 Basic Modul 5 Datenbank - Grundlagen

Mehr

Kapitel 3: Datenbanksysteme

Kapitel 3: Datenbanksysteme LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Skript zur Vorlesung: Einführung in die Informatik: Systeme und Anwendungen Sommersemester 2015 Kapitel 3: Datenbanksysteme Vorlesung:

Mehr

Übungsblatt 6 Lösungsvorschläge

Übungsblatt 6 Lösungsvorschläge Prof. Dr. T. Härder Fachbereich Informatik Arbeitsgruppe Datenbanken und Informationssysteme Universität Kaiserslautern Übungsblatt 6 Lösungsvorschläge für die freiwillige Übung Unterlagen zur Vorlesung:

Mehr

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar Qt-Seminar Dienstag, 10.2.2009 SQL ist......die Abkürzung für Structured Query Language (früher sequel für Structured English Query Language )...ein ISO und ANSI Standard (aktuell SQL:2008)...eine Befehls-

Mehr

HOCHSCHULE KONSTANZ TECHNIK, WIRTSCHAFT UND GESTALTUNG. Das Luzifer-Rätsel. Prof. Dr. Hartmut Plesske Wintersemester 2008/09. von.

HOCHSCHULE KONSTANZ TECHNIK, WIRTSCHAFT UND GESTALTUNG. Das Luzifer-Rätsel. Prof. Dr. Hartmut Plesske Wintersemester 2008/09. von. HOCHSCHULE KONSTANZ TECHNIK, WIRTSCHAFT UND GESTALTUNG Fakultät Informatik Das Luzifer-Rätsel Prof. Dr. Hartmut Plesske Wintersemester 2008/09 von Max Nagl nagl@fh-konstanz.de Inhaltsverzeichnis Inhaltsverzeichnis

Mehr

Fachbereich Informatik Praktikum 1

Fachbereich Informatik Praktikum 1 Hochschule Darmstadt DATA WAREHOUSE SS2015 Fachbereich Informatik Praktikum 1 Prof. Dr. S. Karczewski Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 14.April.2015 1. Kurzbeschreibung In diesem Praktikum geht

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. Blatt Nr. 10 Übung zur Vorlesung Grundlagen: Datenbanken im WS15/16 Harald Lang, Linnea Passing (gdb@in.tum.de)

Mehr

How-To : Nachtragen von Tagesdiagrammen auf der Solarlog Homepage

How-To : Nachtragen von Tagesdiagrammen auf der Solarlog Homepage How-To : Nachtragen von Tagesdiagrammen auf der Solarlog Homepage Von Zeit zu Zeit erweitern neue Funktionen die Ausstattungsmerkmale des SolarLog. Wenn ein neues Firmewareupdate heraus kommt, werden plötzlich

Mehr

Architektur und Implementierung von Apache Derby

Architektur und Implementierung von Apache Derby Architektur und Implementierung von Apache Derby Das Zugriffssystem Carsten Kleinmann, Michael Schmidt TH Mittelhessen, MNI, Informatik 16. Januar 2012 Carsten Kleinmann, Michael Schmidt Architektur und

Mehr

Recovery- und Buffermanager

Recovery- und Buffermanager Recovery- und Buffermanager Gesamtübersicht der Komponenten beim Zusammenspiel des lokalen Recovery Manager und des Datenbank Buffer Manager: persistenter Log Main memory Lokaler Recovery Manager (LRM)

Mehr