(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu"

Transkript

1 Herleitung der oppenecker-formel (Wiederholung) Für ein System ẋ Ax + Bu (B habe Höchstrang) wird eine Zustandsregelung u x angesetzt. Der geschlossene egelkreis gehorcht der Zustands-Dgl. ẋ (A B)x. Die egelungseigenwerte seien paarweise verschieden und fallen nicht mit den Streckeneigenwerten zusammen. Dann gilt für die Eigenwerte λ i und Eigenvektoren v i des geschlossenen egelkreises (Definitionsgleichung) Lässt sich umstellen zu (λ i I A+B)v i. (λ i I A)v i Bv i. Mit der Definition der Parametervektoren (offensichtlich eine Projektion der egelungseigenvektoren über die ückführmatrix in den Eingangsraum ) p i : v i wird die rechte Seite Bp i. Unter der Annahme, dass eine (stabile) egelung gefunden wurde, existiert und die Matrix auf der linken Seite ist invertierbar, da λ i nicht mit einem Streckeneigenwert λ j zusammenfällt. Dann lässt sich jeder egelungseigenvektor als v i (A λ i I) Bp i darstellen. Der egelungseigenvektor hängt also von der Wahl von λ i und p i ab. Nutzt man nun diese Größen als Entwurfsparameter der Mehrgrößenregelung, dann kann aus [p p... p n [v v... v n die ückführmatrix [p p... p n [v v... v n bestimmt werden. Einsetzen der Bestimmungsgleichungen für v i liefert die oppenecker-formel [p... p n [ (A λ I) Bp... (A λ n I) Bp n. Die Parametervektoren p i werden beliebig gewählt, mit der Einschränkung, dass sich linear unabhängige egelungseigenvektoren v i ergeben müssen. Bedeutung der Parametervektoren (egelungs-)eigenvektoren geben die ichtungen im Zustandsraum an, in denen die der System-Dgl. sich bewegt, und zwar mit einer Dynamik, die durch die (egelungs-)eigenwerte beschrieben wird. Die ist zu jedem Zeitpunkt t eine Linearkombination der egelungseigenvektoren. x(t) ξ k (t)v k [v k... v n ξ(t) Dabei sind ξ k (t) die Zustände in Modal-/Diagonalkoordinaten. Multiplikation von links mit der eglermatrix liefert x(t) ξ k (t)v k u(t) k ξ k (t)p k [p... p n ξ(t) k Moderne Methoden der egelungstechnik -

2 Das egelgesetz ist somit die ückführung der einzelnen Moden ξ k (t) über die ückführmatrix P [p... p n! Daher auch Vollständige Modale Synthese. Aufgabe. a) Invarianz der eglermatrix unter Skalierung der Parametervektoren P : [p... p n, V : [v... v n Mit p i v i und P V folgt Skalierung p i k i p i, i,...,n PV P [p k... p n k n [p... p n k... PK. k n Eigenvektoren v i (A λ i I) Bp i, somit auch Damit ist Ṽ K V und somit ṽ i k i v i, i,...,n Ṽ V K PṼ PKK V PV. b) Invarianz der Parametervektoren unter regulärer Zustandstransformation x Tz egelgesetz ẋ Ax+Bu Tż ATz +Bu ż T} {{ AT} z +T} {{ B} u à B u x Tz z, T Eigenvektoren der egelung in z-koordinaten (Eigenwerte invariant ggü. Zustandstrafo) (λ i I Ã+ B )ṽ i (λ i I T AT +T BT)ṽ i T von links (λ i T AT +BT)ṽ i (λ i I A+B)Tṽ i } {{ } v i Def.-Gl. für EW/EV in x-koord. Damit gilt v i Tṽ i (natürlich analog zur allgemeinen Transformationsvorschrift x Tz). Definition der Parametervektoren Ṽ T V p i ṽ i p i TT v i v i p i Die Parametervektoren für das System in z-koordinaten sind gleich denen in x-koordinaten. Sie spannen ja den Eingangsraum auf, der nicht transformiert wird! Wie vorher gezeigt, gilt u Pξ Moderne Methoden der egelungstechnik -

3 mit ξ den Modalkoordinaten (diese ergeben sich durch x V ξ bzw. z Ṽ ξ sowohl aus x- als auch aus z-koordinaten). Es ergeben sich zwar unterschiedliche eglermatrizen und. Diese führen aber auch unterschiedliche Zustandsvektoren zurück! Eine schöne Interpretation ergibt sich, wenn gleich viele Eingänge und Zustände vorhanden sind und die Parametervektoren Einheitsvektoren sind, so dass P I. Dann wird die Bewegung jeder Mode ξ k des geregelten Systems auf einen Eingang u k abgebildet, und man erkennt z.b. die unterschiedlich schnellen Eigenwerte im Stellgrößenverlauf. Aufgabe. a) Vorgegebene egelungseigenwerte λ /,λ,λ Stellgröße nur u, d.h. a A b () Steuerungsraum also eindimensional, somit Parameter- Vektoren Skalare. (Es ist ja nur eine ichtung im Eingangsraum vorhanden und der Betrag der Parametervektoren spielt keine olle.) Wähle z.b. p p p mit r T [r r r [p p p [v v v v i (A λ i I) bp i (A λ i I) b Berechnung der zugehörigen egelungseigenvektoren. / (A λ I) b / / / / / b v / / (A λ I) b / / b v / / / 6/7 4/7 /7 6/7 (A λ I) b / / b 4/7 /7 6/7 4/7 v / /7 6/7 /7 /7 6/7 V [v v v 4/7 /7 Eigenvektoren linear unabhängig, die Wahl der Parametervektoren war also in Ordnung. /6 / /6 [p p p V [ /4 /4 /4 [ / 7/ 7/ 7/ Moderne Methoden der egelungstechnik -

4 b) Zustandsregelung des -Tank-Systems: Forderung der alleinigen ückführung von x : [ r. r Damit: [ p p P p p [ r r [ v v v v [ r v r v r v r v. D. h. beide Parametervektoren sollen linear abhängig sein. Da der Betrag keine olle spielt, können wir sie gleich wählen. Offen ist nur, welche ichtung sie haben müssen, um die Forderung umsetzen zu können. Wir legen fest: p p Damit ergeben sich die beiden egelungseigenvektoren [ c. [ [ v (A λ I) 5 Bp [ [ 8 [ 8 c 8 c 9 5 c 9 +5c [ [ v (A λ I) Bp [ [ 4 [ 4 c 4 c c +c Da wir gleiche Parametervektoren gewählt haben, muss gelten: v v : 9 ( +5c)! ( +c) +5c +c 8c c Einsetzen: [ [ [ 6 9 [ 6,5 9 6,5 9,5 9, ,5 ( 4) [ [ 5 [ 9 5 6,5 [ 4 6 Berechnung der Inversen einer Matrix auf zwei verschiedene Weisen: a) Gauß-Jordan: elementare Zeilenoperationen: Y X? Moderne Methoden der egelungstechnik -4

5 Z+Z Z Z Z Z ( ) Z ( ) X Z+Z Z Z b) Kofaktor-Methode: [X ij detx X ji, X ji ( ) j+i D ji Das Element der i-ten Zeile und j-ten Spalte von X ergibt sich aus X ji und der Determinante von X. X ji wiederum ergibt sich aus der Unterdeterminante, von X, die sich durch Streichen der j-ten Zeile und i-ten Spalte ergibt (Achtung: olle von Zeilen und Spalten vertauscht!). Gesucht: Y X detx ( ) 4 8 X, X ( ) 4, X 4, X ( ) 4, X, X ( ), X 4, X ( ), X 4. X X X X 4 4 X X X 8 detx 4 X X X 4 4 Aufgabe.: siehe Aufgabe.m? Moderne Methoden der egelungstechnik -5

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

Charakteristikenmethode im Beispiel

Charakteristikenmethode im Beispiel Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

7 Die Determinante einer Matrix

7 Die Determinante einer Matrix 7 Die Determinante einer Matrix ( ) a11 a Die Determinante einer 2 2 Matrix A = 12 ist erklärt als a 21 a 22 det A := a 11 a 22 a 12 a 21 Es ist S 2 = { id, τ}, τ = (1, 2) und sign (id) = 1, sign (τ) =

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5) Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff

Mehr

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung Kapitel 2: Matrizen 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung 2.1 Matrizen M = n = 3 m = 3 n = m quadratisch M ij : Eintrag von M in i-ter

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

4 Lineare Algebra (Teil 2): Quadratische Matrizen

4 Lineare Algebra (Teil 2): Quadratische Matrizen 4 Lineare Algebra (Teil : Quadratische Matrizen Def.: Eine (n n-matrix, die also ebensoviele Zeilen wie Spalten hat, heißt quadratisch. Hat sie außerdem den Rang n, sind also ihre n Spalten linear unabhängig,

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1)

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1) 34 Determinanten In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N Wenn (mit einem n > 1) a 11 a 12 a 1n a 21 a 22 a 2n A =, (1)

Mehr

Vektorräume und Rang einer Matrix

Vektorräume und Rang einer Matrix Universität Basel Wirtschaftswissenschaftliches Zentrum Vektorräume und Rang einer Matrix Dr. Thomas Zehrt Inhalt:. Lineare Unabhängigkeit 2. Vektorräume und Basen 3. Basen von R n 4. Der Rang und Rangbestimmung

Mehr

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 ) Aufgabe 65. Ganz schön span(n)end. Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 aus Aufgabe P 6: M = v =, v =, v =, v 4 =, v 5 =, v 6 = Welche der folgenden Aussagen sind wahr? span(v,

Mehr

Prüfung Lineare Algebra Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr?

Prüfung Lineare Algebra Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr? 1. Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr? A. Wenn n = 3 ist, sind mindestens zwei der drei Euler-Winkel einer Drehung kleiner oder gleich π. B. Wenn n = 2

Mehr

Lösungen Serie 2. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler 1 0 1? 0 1 1

Lösungen Serie 2. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler 1 0 1? 0 1 1 D-MAVT Lineare Algebra II FS 8 Prof. Dr. N. Hungerbühler Lösungen Serie. Welche der folgenden Vektoren sind Eigenvektoren der Matrix? (a) (,, ). Ein Vektor v ist Eigenvektor von A :=, falls Av ein skalares

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

4 Vorlesung: 21.11. 2005 Matrix und Determinante

4 Vorlesung: 21.11. 2005 Matrix und Determinante 4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

Rang einer Matrix. 1-E1 Ma 1 Lubov Vassilevskaya

Rang einer Matrix. 1-E1 Ma 1 Lubov Vassilevskaya Rang einer Matrix 1-E1 Ma 1 Lubov Vassilevskaya Unterdeterminante einer nichtquadratischen Matrix M ist eine nichtquadratische 2,3-Matrix: M = 6 2 3 0 5 7 Durch Streichen einer der drei Spalten kann man

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Eigenwerte und Eigenvektoren. asiswechsel.2 Eigenwertgleichung 2.3 Diagonalisierbarkeit 5.4 Trigonalisierung 8.5 Zusatzmaterial 8 Aufgaben 9

Mehr

A Matrix-Algebra. A.1 Definition und elementare Operationen

A Matrix-Algebra. A.1 Definition und elementare Operationen A Matrix-Algebra In diesem Anhang geben wir eine kompakte Einführung in die Matrizenrechnung bzw Matrix-Algebra Eine leicht lesbare Einführung mit sehr vielen Beispielen bietet die Einführung in die Moderne

Mehr

Erinnerung/Zusammenfassung zu Abbildungsmatrizen

Erinnerung/Zusammenfassung zu Abbildungsmatrizen Erinnerung/Zusammenfassung zu Abbildungsmatrizen Thomas Coutandin (cthomas@student.ethz.ch) 7. November 2 Abbildungsmatrizen Im Folgenden betrachten wir stets endlich dimensionale K-Vektorräume (K irgend

Mehr

1.9 Eigenwerte und Eigenvektoren

1.9 Eigenwerte und Eigenvektoren .9. EIGENWERTE UND EIGENVEKTOREN 0.9 Eigenwerte und Eigenvektoren Alles in diesem Abschnitt bezieht sich auf quadratische reelle oder komplexe n n-matrizen. Statt E n (n n-einheitsmatrix) wird kurz E geschrieben..

Mehr

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 12

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 12 Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 12 Die Lösungshinweise dienen

Mehr

I) MATRIZEN. 1) Speichern geometrischer Daten: Punkte, Vektoren. j - te Variable (Spalte), j = 1,2,3,..., n

I) MATRIZEN. 1) Speichern geometrischer Daten: Punkte, Vektoren. j - te Variable (Spalte), j = 1,2,3,..., n I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen y1 = a11x1+ a12x2 + a13x3 y2 = a21x1+ a22x2 + a23x3... Koeffizienten a ij i - te Gleichung (Zeile), i

Mehr

Aufgabe 1. Sei A Mat(n n, R) mit Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n ).

Aufgabe 1. Sei A Mat(n n, R) mit Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n ). Aufgabe Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(3A E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A 3E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Bild(A

Mehr

Proseminar Lineare Algebra SS10

Proseminar Lineare Algebra SS10 Proseminar Lineare Algebra SS1 Normalform von Matrizen Jordansche Normalform Philip Bauermeister Heinrich-Heine-Universität Betreuung Prof. Dr. Oleg Bogopolski 2 1 Matrizen linearer Abbildungen 1.1 Definition

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg Gliederung 8 Projektive Invarianz und das kanonische Kamerapaar Kanonisches Kamerapaar aus gegebener Fundamentalmatrix Freiheitsgrade

Mehr

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist. Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

Entwurf robuster Regelungen

Entwurf robuster Regelungen Entwurf robuster Regelungen Kai Müller Hochschule Bremerhaven Institut für Automatisierungs- und Elektrotechnik z P v K Juni 25 76 5 OPTIMALE ZUSTANDSREGELUNG 5 Optimale Zustandsregelung Ein optimaler

Mehr

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor)

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor) Matrizenrechnung. Matrizen Matrizen sind bereits im Kapitel Lineare Gleichungssysteme aufgetreten. Unter einer (m n) -Matrix A verstehen wir ein rechteckiges Zahlenschema mit m Zeilen und n Spalten. Der.

Mehr

GF(2 2 ) Beispiel eines Erweiterungskörpers (1)

GF(2 2 ) Beispiel eines Erweiterungskörpers (1) GF(2 2 ) Beispiel eines Erweiterungskörpers (1) Im Kapitel 2.1 wurde bereits gezeigt, dass die endliche Zahlenmenge {0, 1, 2, 3} q = 4 nicht die Eigenschaften eines Galoisfeldes GF(4) erfüllt. Vielmehr

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Systemtheorie

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Systemtheorie Institut für Elektrotechnik und Informationstechnik Aufgabensammlung zur Systemtheorie Prof. Dr. techn. F. Gausch Dipl.-Ing. C. Balewski Dipl.-Ing. R. Besrat 05.04.2013 Übungsaufgaben zur Systemtheorie

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof Dr Erich Walter Farkas Kapitel 7: Lineare Algebra 73 Ergänzungen Prof Dr Erich Walter Farkas Mathematik I+II, 73 Ergänzungen 1 / 17 1 Reguläre Matrizen Prof Dr

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

(b) In der zweiten Vorlesung vom wurde die Matrix-Exponentialfunktion exp(x) =

(b) In der zweiten Vorlesung vom wurde die Matrix-Exponentialfunktion exp(x) = Priv-Doz G Reißig, Dipl-Math A Weber Universität der Bundeswehr München Institut für Steuer- und Regelungstechnik RT-5 Email: AWeber@unibwde Mehrgrößenregelungssysteme, HT 22 Übung 2 - ösung Aufgabe a

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

Zusammenfassung und Beispiellösungen. zur Linearen Algebra

Zusammenfassung und Beispiellösungen. zur Linearen Algebra Zusammenfassung und Beispiellösungen zur Linearen Algebra Inhaltsverzeichnis TI Taschenrechner Funktionen für Matrizen... n*m Matrix... Diagonal und Dreiecksmatrix... Transponierte der Matrix A (AT)...

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Universität Basel Wirtschaftswissenschaftliches Zentrum Vektoren und Matrizen Dr. Thomas Zehrt Inhalt: 1. Vektoren (a) Einführung (b) Linearkombinationen (c) Länge eines Vektors (d) Skalarprodukt (e) Geraden

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

6 Hauptachsentransformation

6 Hauptachsentransformation 6 Hauptachsentransformation A Diagonalisierung symmetrischer Matrizen (6.1) Satz: Sei A M(n n, R) symmetrisch. Dann gibt es eine orthogonale n n-matrix U mit U t AU = D Diagonalmatrix Es folgt: Die Spalten

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

3 Der Hamming-Code. Hamming-Codes

3 Der Hamming-Code. Hamming-Codes 3 Der Hamming-Code Hamming-Codes Ein binärer Code C heißt ein Hamming-Code Ha s, wenn seine Kontrollmatrix H als Spalten alle Elemente in Z 2 s je einmal hat. Die Parameter eines n-k-hamming-codes sind:

Mehr

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten Einheitsmatrix Die quadratische Einheitsmatrix I n M n,n ist definiert durch I n = 1 0 0 0 1 0 0 0 1 (Auf der Hauptdiagonalen stehen Einsen, außerhalb Nullen Durch Ausmultiplizieren sieht man I n A = A

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

Ökonometrische Analyse

Ökonometrische Analyse Institut für Statistik und Ökonometrie, Freie Universität Berlin Ökonometrische Analyse Dieter Nautz, Gunda-Alexandra Detmers Rechenregeln für Matrizen Notation und Matrixeigenschaften: Eine Matrix A der

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V

Mehr

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume

Mehr

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben:

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben: Korrelationsmatrix Bisher wurden nur statistische Bindungen zwischen zwei (skalaren) Zufallsgrößen betrachtet. Für den allgemeineren Fall einer Zufallsgröße mit N Dimensionen bietet sich zweckmäßiger Weise

Mehr

Die Treppennormalform

Die Treppennormalform Die Treppennormalform Lineare Algebra I Kapitel 5 9 Mai 22 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 4-6 Webseite: wwwmathtu-berlinde/ holtz Email: holtz@mathtu-berlinde Assistent: Sadegh

Mehr

3 Determinanten, Eigenwerte, Normalformen

3 Determinanten, Eigenwerte, Normalformen Determinanten, Eigenwerte, Normalformen.1 Determinanten Beispiel. Betrachte folgendes Parallelogramm in der Ebene R 2 : y (a + c, b + d) (c, d) (a, b) x Man rechnet leicht nach, dass die Fläche F dieses

Mehr

36 2 Lineare Algebra

36 2 Lineare Algebra 6 Lineare Algebra Quadratische Matrizen a a n sei jetzt n m, A, a ij R, i, j,, n a n a nn Definition Eine quadratische Matrix A heißt invertierbar genau dann, wenn es eine quadratische Matrix B gibt, so

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 12

Technische Universität München Zentrum Mathematik. Übungsblatt 12 Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 12 Hausaufgaben Aufgabe 12.1 Sei f : R 3 R 3 gegeben durch f(x) :=

Mehr

Kap 5: Rang, Koordinatentransformationen

Kap 5: Rang, Koordinatentransformationen Kap 5: Rang, Koordinatentransformationen Sei F : V W eine lineare Abbildung. Dann ist der Rang von F erklärt durch: rang F =dim ImF. Stets gilt rang F dimv, und ist dimv

Mehr

Lineare Algebra 2013 Lösungen für Test und Zusatzfragen

Lineare Algebra 2013 Lösungen für Test und Zusatzfragen Lineare Algebra 3 Lösungen für Test und Zusatzfragen Test Multiple Choice. Seien Für die Lösung x x x x 3 A, b des Systems Ax b gilt x 3 5 x 3 x 3 3 x 3 / Mit elementaren Zeilenoperationen erhalten wir

Mehr

Leitfaden Lineare Algebra: Determinanten

Leitfaden Lineare Algebra: Determinanten Leitfaden Lineare Algebra: Determinanten Die symmetrische Gruppe S n. Eine Permutation σ der Menge S ist eine bijektive Abbildung σ : S S. Ist S eine endliche Menge, so reicht es zu verlangen, dass σ injektiv

Mehr

1 Matrizenrechnung zweiter Teil

1 Matrizenrechnung zweiter Teil MLAN1 1 Literatur: K. Nipp/D. Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4. Auflage, 1998, oder neuer. 1 Matrizenrechnung zweiter Teil 1.1 Transponieren einer Matrix Wir betrachten

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

mit "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor"

mit Skalarprodukt aus i-tem Zeilenvektor und j-tem Spaltenvektor Zusammenfassung Matrizen Transponierte: Addition: mit Skalare Multiplikation: Matrixmultiplikation: m x p m x n n x p mit ES "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor" "Determinante"

Mehr

Zusatztutorium, 25.01.2013

Zusatztutorium, 25.01.2013 Zusatztutorium, 25.01.2013 David Müßig muessig[at]mi.fu-berlin.de http://page.mi.fu-berlin.de/def/tutorium/ WiSe 12/13 1 Der Homomorphiesatz Der Homomorphiesatz scheint für viele eine Art rotes Tuch zu

Mehr

Berechnung der Determinante

Berechnung der Determinante Berechnung der Determinante Verhalten der Determinante unter elementaren Zeilenoperationen: Das Vertauschen zweier Zeilen/Spalten der Matrix A ändert nur das Vorzeichen der Determinante, d.h: i, j {1,...,

Mehr

Mathematik III für Ingenieure

Mathematik III für Ingenieure Mathematik III für Ingenieure im Bachelor-Studiengang Maschinenbau Vorlesung Wintersemester 21/211 B. Schuster aktualisert am 27. Januar 211 Inhalt I. Eigenwerte und Eigenvektoren 1 1. Komplexe Matrizen

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

9. Übung zur Linearen Algebra II -

9. Übung zur Linearen Algebra II - 9. Übung zur Linearen Algebra II - en Kommentare an Hannes.Klarner@Fu-Berlin.de FU Berlin. SS 00. Aufgabe 33 (i) Beweise oder widerlege: In einem euklidischen VR gilt x + y = x + y x y (Satz von Pythagoras).

Mehr

2.5 Smith-Normalform für Matrizen über Euklidischen Ringen

2.5 Smith-Normalform für Matrizen über Euklidischen Ringen 2.5. SMITH-NORMALFORM FÜR MATRIZEN ÜBER EUKLIDISCHEN RINGEN73 2.5 Smith-Normalform für Matrizen über Euklidischen Ringen Bemerkung 2.74. Sei K ein Körper und A K n m, b K n 1. Das lineare Gleichungssystem

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

und Unterdeterminante

und Unterdeterminante Zusammenfassung: Determinanten Definition: Entwicklungssätze: mit und Unterdeterminante (streiche Zeile i & Spalte j v. A, bilde dann die Determinante) Eigenschaften v. Determinanten: Multilinearität,

Mehr

und Unterdeterminante

und Unterdeterminante Zusammenfassung: Determinanten Definition: Entwicklungssätze: mit und Unterdeterminante (streiche Zeile i & Spalte j v. A, bilde dann die Determinante) Eigenschaften v. Determinanten: Multilinearität,

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Rekursionen (Teschl/Teschl 8.1-8.2)

Rekursionen (Teschl/Teschl 8.1-8.2) Rekursionen (Teschl/Teschl 8.1-8.2) Eine Rekursion kter Ordnung für k N ist eine Folge x 1, x 2, x 3,... deniert durch eine Rekursionsvorschrift x n = f n (x n 1,..., x n k ) für n > k, d. h. jedes Folgenglied

Mehr

Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls

Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls Kriterien für Invertierbarkeit einer Matrix Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls (i) für jede Basis, die Bildvektoren auch eine Basis, bilden; (intuitiv

Mehr

Probeklausur - eine Lösung

Probeklausur - eine Lösung Probeklausur - eine Lösung Aufgabe 1 Sei p eine Primzahl, n N, q = p n und F q der Körper mit q Elementen. Sei G = GL 2 (F q ). a) Bestimmen Sie #G. 1 x b) Zeigen Sie, dass P = { : x F 1 q } eine p-sylowgruppe

Mehr

Z = 60! 29!31! 1,1 1017.

Z = 60! 29!31! 1,1 1017. Aufgabe : Eine Hochzeitsgesellschaft besteht aus 60 Personen. a Wieviele verschiedene Möglichkeiten für Sitzordnungen gibt es? b Nehmen Sie nun an, dass 9 Gäste aus dem Familien- und Freundeskreis der

Mehr

Spezielle Matrixformen

Spezielle Matrixformen Definition B57 (Transposition) Eine einfache aber wichtige Operation auf Matrizen ist die Transposition, die aus einer (m n) Matrix A eine (n m) Matrix B = A T macht Hierbei gilt β i j = α j i, so daß

Mehr

13. Lineare Algebra und Koordinatenwechsel.

13. Lineare Algebra und Koordinatenwechsel. 3. Lineare Algebra und Koordinatenwechsel. In dieser Vorlesung behandeln wir die Vorzüge von Koordinatenwechseln. Insbesondere werden wir über geeignete Koordinatenwechsle zu einer Klassifikation der lineare

Mehr

5.2 Rechnen mit Matrizen

5.2 Rechnen mit Matrizen 52 Rechnen mit Matrizen 52 Rechnen mit Matrizen 95 Für Matrizen desselben Typs ist eine Addition erklärt, und zwar durch Addition jeweils entsprechender Einträge Sind genauer A = (a ij ) und B = (b ij

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 5 Aufgabe 5.1 Kommutierende Matrizen In der Vorlesung und vergangenen

Mehr

Satz 25 A sei eine (n n)-matrix über K

Satz 25 A sei eine (n n)-matrix über K Satz 25 Satz 25 A sei eine (n n)-matrix über K Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

Determinanten - II. Falls n = 1, gibt es offenbar nur die identische Permutation, und für eine 1 1 Matrix A = (a) gilt det A = a.

Determinanten - II. Falls n = 1, gibt es offenbar nur die identische Permutation, und für eine 1 1 Matrix A = (a) gilt det A = a. Determinanten - II. Berechnung von Determinanten Wir erinnern, dass für A M(n n; K) gilt : det A = σ S n signσ a σ() a 2σ(2)...a nσ(n). Falls n =, gibt es offenbar nur die identische Permutation, und für

Mehr

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

4 Affine Koordinatensysteme

4 Affine Koordinatensysteme 4 Affine Koordinatensysteme Sei X φ ein affiner Raum und seien p,, p r X Definition: Nach ( c ist der Durchschnitt aller affinen Unterräume Z X, welche die Menge {p,,p r } umfassen, selbst ein affiner

Mehr

A = ( a 1,..., a n ) ii) Zwei Matrizen sind gleich, wenn die Einträge an den gleichen Positionen übereinstimmen. so heißt die n n Matrix

A = ( a 1,..., a n ) ii) Zwei Matrizen sind gleich, wenn die Einträge an den gleichen Positionen übereinstimmen. so heißt die n n Matrix Matrizen Definition: i Eine m n Matrix A ist ein rechteckiges Schema aus Zahlen, mit m Zeilen und n Spalten: a a 2 a n a 2 a 22 a 2n a m a m2 a mn Die Spaltenvektoren dieser Matrix seien mit a,, a n bezeichnet

Mehr