Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download ""

Transkript

1 ÎÓÖÖØÙÒ ÑØÖÐ ĐÙÖ Ò ËØÙÙÑ Ò Ò ĐÖÒ ÅØÑØ ÙÒ ÁÒÓÖÑØ Ò Ö ÍÒÚÖ ØĐØ ÄÔÞ ÀÖÙ Ò ÚÓÑ ËØÙÒÒ Ö ÙÐØĐØ ĐÙÖ ÅØÑØ ÙÒ ÁÒÓÖÑØ

2 ÏÖÙÑ Ò ÌÙØÓÖÙÑ ÅØÑØ ÁÒ ÐÐÒ ÚÓÒ ÙÒ ÖÖ ÙÐØĐØ ÒÓØÒÒ ËØÙÒĐÒÒ Ø ĐØÙÒ ÑØ ÑØÑØ Ò ËÚÖÐØÒ Ð ØÚÖ ØĐÒк ÀÒ Ë ÚÓÖ ÅØÑØ ÓÖ ÏÖØ Ø ÑØÑØ ÞÙ ØÙÖÒ ÛÖ Ë ÚÐÐØ ÒØ ĐÙÖÖ Ò Ö Ù ĐÙÖ Ò ÁÒÓÖÑعËØÙÙÑ Ö ÖÙÒÐÒ ÙØÙÒ Ö ÅØÑØ ÒØ ÙÒØÖ ĐØÞØ ÛÖÒº Ò ÖÓÖ ÌÐ Ö ÓÐØÓÖ Ò ÄÖÚÖÒ ØÐØÙÒÒ ĐÙÖ ÁÒÓÖÑØ ØÙÒØÒ Ñ ÖÙÒ ØÙÙÑ ĐØØ ÑØ ÑØÑØ Ò ÁÒ¹ ÐØÒº Ù Ò ÁÒÓÖÑعÒÛÒÙÒÒ ÛÖÒ Ë ÑØÑØ ÅØÓ¹ Ò ÙÒ ÒÑÙ ØÖ ÒÙØÞÒº Ò ÛØ ÎÓÖÙ ØÞÙÒ ĐÙÖ ÁÖÒ ÖÓÐ Ñ ËØÙÙÑ Ø Ð Ö ÖÖ Ò Ö ÑØÑØ Ò ÖÙÒÐÒº ÄÖ Ò ÖÖÙÒÒ Ö ÚÖÒÒÒ ÂÖ ÞØ ĐÙÖ Ò ËØÙ¹ ÙÑ Ò ÙÒ ÖÖ ÙÐØĐØ ÙÒÒÖÒ ÑØÑØ Ò ÎÓÖÒÒØÒ ÓÛÓÐ ÒØ ĐÙÖ Ò ËÙÐ ØÓ«ÒÙ Òµ ÒØ ÐÐÒ ËØÙÒÛÖÖÒ ÑÑÖ Ò Ù ÖÒÑ ÍÑÒ ÚÓÖÒÒ Òº ÍÑ ÞÙ ÚÖÑÒ Ò ËØÙÒØ ÛĐÖÒ ÐÙÒÒ ËØÙÙÑ ÒØ ÚÓÖ¹ ÒÒ ÖÙÒÐÒÛ Ò Ð ØĐÒ ÒÓÐÒ ÑÙ ÙÒ ÞÙ ĐØÞÐ Ð ØÙÒ Ò ÒÒ ĐÙÖÓÖÖØ ÓÖ ÑÓØÚÖØ ÛÖ ĐÙÖ Ò Ö ÙÐØĐØ ÒÙ Ò Ö¹ ÒÒ ËØÙÒØÒ Ò ÎÓÖÖØÙÒ ÙÖ ÒÓØÒº Ö ÃÙÖ ÛÖ ÚÓÖ ÒÒ ÏÒØÖ Ñ ØÖ ¼¼»¼¼ ØØØ ÒÒº ÁÒ Ñ ÌÙØÓÖÙÑ ÛÖ ÒÓ Ò ËØÓ«ÐÖØ Ö ÒØ Ñ Ä ØÙÒ ÙÖ ÝÑÒ ÙÑ ÒÐØ ÛÓÖÒ Øº Ø ĐÙÖ ÒÒ ËØÙÒØÒ Ø ÒÒ ÖÙÒÙÖ ÐÙ Ò ÅØÑØ Ò ÖÒ ÐØÞØÖ ÅØÑØÙÒØÖÖØ ÐĐÒÖ Ø ÞÙÖĐÙÐØ ÓÖ Ö Ò ÛÓÐÐÒ Ö ËØÙÙÑ ÖĐÙÒÐÚÓÖÖØØ ÞÙ ÒÒÒº Ø Ò ÚÓÐÐ ØĐÒ ÏÖÓÐÙÒ ÅØÑØÙÒØÖÖØ Ò Ö ËÙÐ ÓÒÖÒ ÛÖ ÔÞÐÐ ÑØÑØ Ï Ò ØÒ Ù ĐÙÖ ÐÐ ËØÙÒĐÒ Ò ÙÒ ÖÖ ÙÐØĐØ ÚÓÑ Ö ØÒ ËÑ ØÖ Ò ÙÙØ ÛÖº ÑØ Ë Ò ÎÓÖ ØÐÐÙÒ ÚÓÒ Ò ÚÓÖÙ ØÞØÒ ÅØÑØÒÒØÒ Ò Óѹ ÑÒ ÙÒ ÁÖ Ò Ï Ò Ø ØÒ ĐÓÒÒÒ ÛÖÒ Ñ ÒĐ ØÒ ÒØØ Ò ÙÒ ÚÖ ÒÒÒ ËÛÖØ Ö ÒÓØÒ Ë Ð ØĐÒ ÐĐÓ Ò ÓÐÐØÒº ÛÙÖÒ ÙÒ Ù ËØÓ«ØÒ ÛĐÐØ Ù Ñ ËØÙÙÑ ØĐÒ ÞÙÖĐÙÖ«Ò ÛÖÒ ÑÙ ÙÒ Ñ ÒĐÒÖ ÖÖÙÒ ÑĐ ÓØ ËÛÖ¹ ØÒ ÖØÒº ËÓÐÐØÒ Ë Ñ ËÐ ØØ Ø ÑÖÒ Ë ÈÖÓÐÑ Ñ ÎÖ ØĐÒÒ ÓÖ Ö ÄĐÓ ÙÒ Ö ÙÒ Ò Ø ÁÒÒ ÌÐÒÑ Ñ ÎÓÖÖØÙÒ ÙÖ ÞÙ ÑÔÐÒº Ù ÒÒ ÃÙÖ ĐÓÒÒÒ Ù ÏÙÒ Ù ÄĐÓ ÙÒÒ Ö ÙÒ ÔÖÓÒ ÛÖÒº ÀĐÙ ÛÖ Ö Ò ÚÓÖÖØÒÖ ÄØÖØÙÖ ĐÙÖ ÅØÑØÚÓÖÐ ÙÒÒ ØÐÐغ Ö Ø ÛÖ ÐÐÑÒĐÙÐØ ÞÙ ÒØÛÓÖØÒº ÒÑÐ Ø Ö ÀÓ ÙÐÐÖÖ Ò ÄØÖØÙÖÒÛ ÞÙ ÒÒ ÎÓÖÐ ÙÒÒ ÙÒ ÞÙÑ ÒÖÒ ÓÐÐØ Ö ËØÙÒØ ÛĐÖÒ Ö Ö ØÒ ÏÓÒ Ò ËÑ ØÖ Ò ÐÐÒ ÄØÖØÙÖ¹ ÒÛ Ò Ò Ö ÐÓØ Ò ÛÒ ÈÖÓÐ Ò ÙÒ ÖÙ ÒÒ ÛÐ ÄØÖØÙÖ Ò ÖÛÖØÙÒÒ ÖĐÙÐÐغ Ð Ö ÞÙÖ ÏÖÓÐÙÒ ËÙÐ ØÓ«Ù ËÙÐÐÖĐÙÖ ÙÒ Úغ ÞÙ Ü ØÖÒ ÙÒ ÑÑÐÙÒÒ ÚÖÛ Òº

3 ÏÖÓÐÙÒ ÙÒ ÞÙÑ ËØÙÒÒÒ ËÛÖÖ ÙÒ Ò ÑØ ÒÑ ÒÒÞÒغµ º ÊÒÖÐÒ º ÎÖÒÒ Ë ÓÐÒÒ Ù ÖĐÙ µ Ü Ü Ü Ü µ Ü Ü µ µ µ Ü Ü Ü Ü µ Ü Ý Üݵ µ µ Ô Ô µ µ ÏÖÙÑ ÑÙ ÙÒ ¼ ÚÓÖÙ ØÞØ ÛÖÒ ĐÙÖ ÛÐ ÏÖØ Ø Ö ÖÙ ÒØ ÒÖØ º ÅÒ Ë ÆÒÒÖ ÖØÓÒÐ Ô Ô µ Ô Ô µ Ô µ ÑØ ¼ Ô µ µ Ô Ô Ô Ô º ËÖÒ Ë ¼ Ð ÑÒÒ ÖÙº º ÌÐÖØ º ĐÙÖ ÛÐ ÔÓ ØÚÒ ÒØĐÙÖÐÒ ÐÒ Ø Ò ÒÞ Ð º Ë Ò Ð ÒÞ Ðº Ò Ë ÚÓÒ Ò ÙÖ ØÐÖÒ ÒÞÒ ÐÒ Ù Ñ ÁÒØÖÚÐÐ ¼¼¼ ¼¼¼µ ÑÒ ØÒ Ò ÙÖ ØÐÖ Øº

4 º Ñ ÆÙÖ Ø ÂÖ ÐÖÒØÒ ÙÒ ÒÒÒº ÁÑ ÄÙ ÔÖĐ Ñ ÑÒ Ù ÐØÖ Ö Òº ÉÙÖ ÙÑÑ ÑÒ ÚÖ ØÐÐ ÖÒÒ ÙÖØ Ö ÖØ ÑÒ ÐØÖº Æ ÒÖ ÏÐ ÖÛÖØ ÀÖÞÐÒ ÐĐÙÛÙÒ ÞÙÑ ÙØÒ ¹ ÙÖØ Øº Ï Ñ ÞÙ Ö Ø ØÐÐÙÒ ÙÒ Û ÐØ ÛÙÖ Ñ ºº º ÐÒ Ý ØÑ º ËØÐÐÒ Ë ÞÑÐÞÐ ¼ Ò Ò ÐÒ Ý ØÑÒ ÞÙ Ò Ò ÙÒ Öº º Ù ÛÐÖ Ø Ð ÒÙÒÖØ Ò Ö ØÐÐÙÒ Ö ÓÖÑ ¼ ÑØ ÏÖÙÑ Ø ¼ Ù ÐÓ Ò º ÁÑ ÐÒ Ý ØÑ ÞÙ ÛÐÖ ÐØ ÐÙÒ ¼¼ º º ÄÓ º ÁÒ Ö Ã ØÒ ÐÒ ÞÛ ÃÙÐÒ ÙÒ ÞÛÖ ÒÑÐ ÞÛ Û ÒÑÐ ÞÛ ÛÖÞ ÙÒ ÒÑÐ Ò Û ÙÒ Ò ÛÖÞº Ù Ò ÐÒ Ö Ã ØÒ ÛÖ Ö ÁÒÐØ ÒÒº Ð ÛÙÖÒ Ö Ó ÚÖØÙ Ø ØÞØ Ù ÒÖ Ö Ã ØÒ Ö ÖØ Ð Òغ ÒØ ÙÖ Ò Ò ÒÙÖ ÒÖ ÃÙÐ Ù ÒÙÖ ÒÖ Ã Ø ÛÐÖ Ð Ù ÛÐ Ã Ø ĐÓÖغ º ÅÒ ÒÒ ÞÙ ÒÖ Ù Ö ÆØÓÒ ÎÖÒÒÙÒµ ÒØ ÐÒº Ø ÒÙ ÒÒ ÛÖ ÛÒÒ ÒØ Ð Øº ÓÖÑÙÐÖÒ Ë ÞÙ Ö Ö ÓÐÒÒ Ù Ò Ö ÆØÓÒ ĐÙÖÔÖĐÙÒ Ë Ó Ù Ò ÛÖ Ò ÙÒ ÖĐÙÒÒ Ë Ö ÒØ ÙÒ µ µ ÐÐ ÈÖÑÞÐÒ Ò Öº µ Ü ¼ Ø ÑÒ ØÒ ÞÛ ÖÐÐ ÄĐÓ ÙÒÒº µ Ü µ Ü µ ¼ ØÞØ ĐÓ ØÒ ÞÛ ÖÐÐ ÄĐÓ ÙÒÒº ÃÓÑÒØÓÖ º ÏÒÒ Ö ÌÐÒÑÖ Ò ËØÙÖÒÖ ÒÙ Ò ÈÖØ ÑØ Ñ Ö ĐÙÖÒ ÌÐÒÑÖ ÔÐØ Ó ÛÖÒ Ò ÑØ ÈÖØÒ ÔÐغ ÏÚÐ ËÔÐÖ ÒÑÒ ØÐ º ÏÚÐ ÚÖ Ò ÅĐÓÐØÒ Ø Ö ÒØĐÙÖÐ ÐÒ Ù Ö ÅÒ ¼¼ ÓÒ ØÙÒ Ö ÊÒÓÐ Ù ÞÙÛĐÐÒ Ó

5 º µ ÐÐ ÐÒ Ò Ö Ù ÛÐ ÚÖ Ò Ò µ Ò Ð Ò Ö Ù ÛÐ ÑÖ ÙØÖØÒ Ö µ ËÙÑÑ Ö ÐÒ Ò Ö Ù ÛÐ Ö Ø Ò Ò º º Û Ò Ë ÐÙÒ Ò Ò ÐÙÒÒ º Ò Ë ÄĐÓ ÙÒ ÑÒÒ ÓÐÒÖ ÐÙÒÒ Ò µ Ü Ü Ü Ü µ Ü µ Ü Ü ¼ µ Ü Ö µü Ö ¼ º º ÛÐÒ ÏÖØÒ ÚÓÒ Ô Ø ÐÙÒ Ü ÔÜ ¼ ÄĐÓ ÙÒÒ Ü Ü ÛÐ ÒÙÒ Ü Ü ÖĐÙÐÐÒ º ØÑÑÒ Ë Ò Ö ÐÙÒ Ü Ü ¼ Ò ÈÖÑØÖ Ó «ÖÒÞ Ü Ü ÙÒ ÑÒ ØÒ Ò ÄĐÓ ÙÒ ÔÓ ØÚ Øº º ÄĐÓ Ò Ë ÓÐÒÒ ÐÙÒÒ µ µ Ü Ü µ Þ ¼ ¼¼ Ô Ô Ô Ü Ü Ü Ü¼ º ÍÒØÖ ÛÐÒ ÒÙÒÒ ĐÙÖ ÔÓ ØÚ ÖÐÐ Ð Ø ÐÙÒ Ü Ü ÐÓ ¼ÞÛ ÚÖ Ò ÖÐÐ ÄĐÓ ÙÒÒ º ØÑÑÒ Ë ÄĐÓ ÙÒÒ Ö ÐÙÒ Ó Üµ Ò Üµ ÍÒÐÙÒÒ º ÅÒ ØÑÑ ÅÒ ÐÐÖ ÖÐÐÒ Ü ĐÙÖ ÐØ µ Ü µ Ü µ Ü µ Ü µ Ü µ Ü µ Ü Ü ¼

6 µ Ü Ü Ü Ü ¼ µ Ü Ü ¼ µ Ü Ü µ Ü Ü µ Ü Ü µ Ü Ü Ðµ Ü Ü º º ØÑÑÒ Ë ÄĐÓ ÙÒ ÑÒÒ Ö ÓÐÒÒ ÍÒÐÙÒÒ µ Ü Ü µ Ó Ü Ò Ü º ÖÑØØÐÒ Ë ÄĐÓ ÙÒ ÑÒ Ö ÍÒÐÙÒ Ü Ü ¼ Ò ĐÒØ ÚÓÒ Ö ÒØÒØÚÒ Ð º µ Ü Ü º Û Ò Ë ÓÐÒ ÍÒÐÙÒÒ ĐÙÖ Ð ÔÓ ØÚ ÖÐÐ ÐÒ µ µ º Ü ÙÒ Ý Ò ÅÛÖØ ÑØ ÒÖ ÒÙØ ÚÓÒ ¼ ÞÛº ¼ ØÑÑØ Òº Ü º Ï ÒÒ ÑÒ ĐÙÖ ÒÙØ ÚÓÒ Ü Ý Ü Ý ÙÒ ÜÝ Ò ÐÙÒ Ý ØÑ º Ò Ë ÄĐÓ ÙÒ ÑÒÒ ÓÐÒ ÐÙÒ Ý ØÑ Ò µ Ü Ý Ü Ý µ Ü Ý Ü Ý Ò ĐÒØ ÚÓÒ º ĐÙÒ Ë ÞÙÖ ÐÙÒ Ü Ò ÞÛØ ÐÒÖ ÐÙÒ Ó ÒÞÙ ÒØ ØÒ ÐÙÒ Ý ØÑ ÙÒÐĐÓ Ö Øº º ÄĐÓ Ò Ë ÓÐÒÒ ÐÙÒ Ý ØÑ µ Ü Ý Þ Ü Ý Þ ¼ Ü Ý Þ µ ¼ Ô Ü Ô Ý µ Ô Ü Ô Ý Ü Ý Ü Ý

7 º ÈÓÐÝÒÓÑ º Ò Ë Ò ÕÙÖØ ÐÙÒ ÑØ Ò ÄĐÓ ÙÒÒ Ü ÙÒ Ü Òº º ÏÐ ÄĐÓ ÙÒÒ Ò ÓÐÒÒ ÕÙÖØ Ò ÐÙÒÒ µ Ý Ý µ Ü Ù ÚµÜ ÙÚ ¼ º ÏÐ ÈÓÐÝÒÓÑ ÖØØÒ Ö Ø ÆÙÐÐ ØÐÐÒ Ü Ü ¼ Ü ÙÒ ĐÙÖ Ü Ò ÙÒØÓÒ ÛÖØ Ý º ÅÒ ÛĐÐ ÃÓÆÞÒØÒ ÈÓÐÝÒÓÑ Üµ Ü ÖÜ Ó ÆÙÐÐ ØÐÐÒ Ü Ö ÙÒ Ü Øº º ĐÙÖ ÛÐÒ ÏÖØ ÚÓÒ Ø Ø ÈÓÐÝÒÓÑ Üµ Ü ØÜ ÖÐе ÆÙÐÐ ØÐÐÒ Ü Ü Ö ÒÙÒ Ü Ü ÒĐÙÒ º Ë Üµ Ñ µü Ñ Ñ µü Ñ µ Ñ Ø Ò Ð ÒÞ Ðµº ÙØÖÒ Ë ÒÞÐ Ö ÖÐÐÒ ÆÙÐй ØÐÐÒ ÚÓÒ Ò ĐÒØ ÚÓÒ Ñ ÖĐÙÒ Ë ÆÙÐÐ ØÐÐÒ Ð ÙÒع ÓÒ ÚÓÒ Ñ Ù ÙÒ ÑÒ Ë Ù Ò ĐÙÖ ÎÓÖÞÒ Ö ÆÙÐÐ ØÐÐÒº ÏÒÒ Ò ÐÐ ÆÙÐÐ ØÐÐÒ ÚÓÒ ÒÞÞÐ º¼ ÓÐÒ ÙÒ ÊÒ º ËÖÒ Ë ÑØ ÀÐ ËÙÑÑÒ ÝÑÓÐ È µ ¼ µ Ü Ü Ü Ü Ü Õ Õ Õ µ ¼ Õ ¼ º ÅÒ ÖÒ µ ¼¼ Ò µ Ò ÐÒ µ Ò µ

8 º ËÙÑÑ Ö Ö ØÒ Ö ÐÖ ÒÖ ÙÒÒÐÒ ÓÑØÖ Ò ÓÐ ØÖĐØ ÙÒ ËÙÑÑ ÐÐÖ ÐÖ Ö ÓÐ ØÖĐØ º ĐÙÖ ÛÐ ÒØĐÙÖÐÒ ÐÒ Ò ÐØ ÍÒÐÙÒ º Ò ÎÓÐÐ ØĐÒ ÁÒÙØÓÒ º ÅÒ Û µ ĐÙÖ Ð ÔÓ ØÚ ÐÒ Ò ÐØ µ µ Ò µ Ò µ µ Ò Ò µ Ò Ò Ò µ µ ÐÒÓÐ Ò µ Ò ÙÖ Ò Ò Ò ĐÙÖ Ò º Ò Ë ÙÖ ÁÒÙØÓÒ Ò Ñ ÊØØ Ö ÞÙÒ Ò Ñ Ò Ñ Ò Ñ º Û Ò Ë ĐÙÐØØ Ö ÐÙÒ Ò ¼ Ò Ò µ ÑØ Ò ÆÒ ¼ º ÙÒØÓÒÒ º Ò Ë ĐÙÖ ÙÒØÓÒ ÑØ Üµ Ñ Ü Ò Ñ Ò ÖÐÐ Ñ ¼µ ÐØ Ü µ Ü Ù Ü Ü ÓÐØ µ ÐРѼ Ü µ Ü µ ÐРѼ º ÖÑØØÐÒ Ë ÁÒØÖÚÐÐ Ù ÒÒ ÓÐÒÒ ĐÙÖ ÐÐ ÖÐÐÒ ÖÙÑÒØ Ü ÒÖØÒ ÙÒØÓÒÒ ÑÓÒÓØÓÒ Ò Ò ĐÒØ ÚÓÒ Ò ÈÖÑØÖÒ ÙÒ Ò Ë ÛÐ ÅÓÒÓØÓÒÚÖÐØÒ Ò µ ܵ Ü Ü µ ܵ Ò Ü µ ¼ ¼ º ÅÒ Ô Ò ÒØÓÒ Ö ÓÐÒÖ ÙÒØÓÒÒ Ò µ Ý Ó Ü µ Ý ÐÒ ØÒ Ü º ÅÒ ÞÞÖ ÖÔÒ ÓÐÒÖ ÙÒØÓÒÒ

9 µ Ý Ü Ü µ Ý Ü µ Ý Ü Ü º ÅÒ ØÑÑ Ò ÖĐÓØÒ ÏÖØ Ö ÙÒØÓÒ Ý Ó Ü Ó Üº º Ò Ë Ò ÔÐ ĐÙÖ Ò ÔÖÓ ÙÒØÓÒ ÑØ Ö ÈÖÓ Òº º ĐÙÖ Ò ÖÐÐ Ð Ü Ø Ü ÖĐÓØ ÒÞ Ð ÒØ ÖĐÓÖ Ø Ð Üº Ò Ë Üµ Ü Ü Ò ÔÖÓ ÙÒØÓÒ Øº ÏÐ ÈÖÓ Ø ÏÐ Ð Ø º º ÖÑØØÐÒ Ë Ò ÒÞÖØÓÒÐ ÙÒØÓÒ ÑØ Ý Üµ ĐÙÖ ÐØ µ ¼ µ ¼¼ ܵ ¼ ĐÙÖ ÐÐ Ü Á Ø ÙÖ ÒÒÒØÒ ÒÒ ÒÙØ ØÑÑØ ÄÓÖØÑÒ º Û Ò ÛÐÒ ÒÞÒ ÐÒ Ö ÙÒ Ö ÑÙ Ö ÜÔÓÒÒØ «Ò «ÐÒ º Û Ò ÛÐÒ ÒÞÒ ÐÒ Ö ÙÒ Ö ÑÙ ÒØÒØÚ ÐÒ µ µ ¼ º Ù ÛÐ ÍÒÐÙÒÒ ÞÛ Ò Ò ÜÔÓÒÒØÒ «ÙÒ ÒÒ ÑÒ Ð¹ Ò µ ««µ º ØÑÑÒ Ë ÏÖØ Ö ÓÐÒÒ ÄÓÖØÑÒ ÓÒ Ì ÒÖÒÖ µ ÐÓ µ ÐÓ ¼ Ô Ô µ ÐÓ Ô º Ò Ë ÅÒ ÐÐÖ Ü Ò Ö ÍÒÐÙÒ ÐÓ Ü ÒĐÙÒº

10 º ÏÒ Ë ÄÓÖØÑÒ ØÞ Ò µ Ö Ö ØÐÐÙÒ ÚÓÒ ÐÓ ÑØØÐ ÐÓ º µ Ö ÖÒÙÒ ÚÓÒ ÐÓ Ô Ô ÐÓ Ô Ô Ï Ø ĐÙÖ Ô ÚÓÖÙ ÞÙ ØÞÒ º Ò Ë Ù Ñ ÄÓÖØÑÒ ØÞ ÐÓ Üݵ ÐÓ Ü ÐÓ Ý ÓÐØ µ ÐÓ Ü Ý ÐÓ Ü ÐÓ Ý µ ÐÓ Ü Ô Ô ÐÓ Ü ĐÙÖ ÖØÓÒÐ Ô Ò Ü ÙÒ Ý Ð ÖÐÐ ÐÒ ÙÒ Ø Ò Ð ÞÙÐĐ º º ¼ ÙÒ º º ÒÐÝØ ÓÑØÖ º Ï ÐÙØØ ÐÙÒ Ö ÖÒ Ò Ö Ü¹Ý¹Ò ÙÖ Ò ÈÙÒØ µ Ø ÙÒ ÔÖÐÐÐ Ø ÞÙÖ ÖÒ ÑØ Ö ÐÙÒ Ý Ü º ÙØ Ø ÐÙÒ ÃÖ ÙÖ ÈÙÒØ µ µ ÙÒ µº º ÒÑ ÃÖ ÚÓÑ ÊÙ ÙÑ Ò ÈÙÒØ µ Ò Ð Ø Ö Ò ÖÒ Ò Ò ËØ ÔÖÐÐÐ ÞÙÖ Ü¹ غ Ï ÖÓ Ø Ö ÐĐÒÒÐØ Ö º ÏÓ ÐÒ ÅØØÐÔÙÒØ ÐÐÖ ÃÖ Ö Ò Ò Ò Ö Ö Ò Ò ÒÑ ÒÒ ÈÙÒØ ÖĐÙÖÒ º ÅÒ ØÑÑ ÅÒ ÐÐÖ ÈÙÒØ Ö Ò ÑØ Ò ÃÓÓÖÒØÒ Ü Ýµ ĐÙÖ ÐØ µ Ü Ý µ ÑÜ Ü Ýµ µ Ü Ý µ Ü Ý º Û º ÅÒ Þ ËÙÑÑ Ö ÖØØÒ ÈÓØÒÞÒ ÚÓÒ Ö ÙÒÒÖÓÐÒÒ ÒØĐÙÖÐÒ ÐÒ ÙÖ ØÐÖ Øº ¼

11 º Û Ò Ë ÓÐÒ Ù Ò ĐÙÖ ÒØĐÙÖÐ ÐÒ µ Ø ÌÐÖ ÚÓÒ Ò ĐÙÖ ÐÐ ÒØĐÙÖÐÒ ÐÒ Ò ¼º µ Ò Ò ÛÒÒ Ò ÆÒ º Â Ö ÓÐÒÒ Ù Ò Ø ÒØÛÖ ÛÖ ÓÖ Ð º Û Ò Ë ÛÖÒ ÙÒØÖ ÒÒ ÙÒ ÛÖÐÒ Ë Ð Ò Ù Ò ÙÖ Ò Ò Ò ÔÐ µ Ò Ò Ø ĐÙÖ ÒØĐÙÖÐ Ò Ò ÈÖÑÞк µ ĐÙÖ ÙÒØÓÒ ÑØ Üµ Ü ÙÒ Ð ÖÐÐ ÐÒ Ü Ü ÐØ ØØ Ü Ü µ Ü µ Ü µº µ  ÐÙÒ Ö ØÐØ Ü Ü ¼ ÑØ ÖÐÐÒ ÃÓÆÞÒØÒ ÙÒ ¼ Ø ÒÙ ÞÛ ÖÐÐ ÄĐÓ ÙÒÒº º Û Ò Ë ÒÖص Ð Ô ÖÖØÓÒРغ ÄØÞ ĐÍÖÖØÙÒ º ÂÙÐ ¼¼

ÖÓÒÐÝ ÒÙÒ ÎÖÖÒ ÞÙÖ ÈÁƹÖÒÙÒ ÙÒ ÈÁƹÈÖĐÙÙÒ ĐÙÖ ¹ÃÖØÒ ÖÓÒÐÝ ÒÙ ÈÁƹÎÖÖÒ ½ ÁÒÐØ ÚÖÞÒ ½ Ù ÑÑÒ ÙÒ Ö Ê ÙÐØØ ¾ ¾ ÒÙ ÎÖÖÒ ¾º½ ÈÁƹÒÖÖÙÒ º º º º º º º º º º º º º º º º º º º º º º º º º ¾º½º½ ÈÁƹÒÖÖÙÒ Ù ÃÖØÒÒÓÖÑØÓÒÒ

Mehr

ÃÔØÐ ÒÓÑÑÒ ¹ ÙÒ ËÙ ØØÙØÓÒ «Ø ËÐÙØÞݹÐÙÒ ÙÒ ËÐÙØ ÞµÝ ¼¹µ Ö ÏÐ ÎÓÖÞÒ Òººº Òкºº Þ Ð ß Ü Ü Ô Ô ßÞÐ ÃÖÙÞÔÖ «Ø ÞÛº ÒÒØ ÑÐ ĐÒÖÙÒÒ Þ Ð ß Ü Ü Ô Ô ÈÖ ĐÒÖÙÒ Ô ¼µØÞÛ «Ø º ĐÒÖÙÒ Ö ÖÐØÚÒ ÈÖ ËÙ ØØÙØÓÒ «Ø ¾º ĐÒÖÙÒ Ö

Mehr

= 27

= 27 Å ÌÀ Ê ÂÍÆ ÍÆ ÄÌ ¹ Ë ÊÁ ¹ ÇÃÌ»ÆÇÎ ¾¼½½ ½ ÎÓÖ ÙÐ ½ Ù ¹½½ ÁÒ ÂÙÐ Ë Ù Ö Ò Ø Ò Ö È Ö Ë Ù º Ë Ò ÑÑØ Ñ ÙÒ ÐÒ Ú Ö ÒÞ ÐÒ Ë Ù Ö Ù º Á Ø Ò ÞÙ ÑÑ Ò Ö Ò È Ö Ù ¹½¾ Û ÚÓÒ Ò Ð Ö Ò Ò Ú ÐÐ Ð º Ï Ð Ò ¾ À Ï Ò ÐÚÓ ÛÛÛº Ð

Mehr

= = = = =

= = = = = Å ÌÀ Ê ÂÍÆ ÍÆ ÄÌ ¹ Ë ÊÁ ¹ Â Æ» ¾¼½ ½ ÎÓÖ ÙÐ ½ Ù ¹½½ Ù Ñ Ð Ò Û Ö Ê Ð Ñ Ø Ñ Ö Û Ö ÓÖÑØ Ò Òº Ø ÐÐ Ù Ø ÐÐØ Ò ËØ Ò Ñ Ö ÚÓÖ Ò Òº µ Ï Ú Ð Ú Ö Ò ÓÑÑ Ò ÚÓÖ µ Ï Ð Ø Ñ Ù Ø Ò Ú ÖØÖ Ø Ò µ Ï Ð Ø Ù Ñ ÐØ Ò Ø Ò ¾ À Ï Ò

Mehr

15+9 = 24 8 = 41 6 = 44+4 = 45 5 = = = = = 26 7 = 13 6 = = 27+6 = = =

15+9 = 24 8 = 41 6 = 44+4 = 45 5 = = = = = 26 7 = 13 6 = = 27+6 = = = Å ÌÀ Ê ÂÍÆ ÍÆ ÄÌ ¹ Ë ÊÁ ¹ Ë ÈÌ»ÇÃÌ ¾¼½¾ ½ ÎÓÖ ÙÐ ½ Ù ¹½½ Ï Ú Ð Ö ÒÒ Ø Ù Ò Ö ÙÖ ÒØ Ò Ù ¹½¾ Ù Ô Ø Ö ÊØ ÐÖ Ø Ö ÙØ Å Ù Ò ÙÒ Ò Ã Ø Ö ÍÒ ÒÒ Ö Ò Ø Ù Û Ò Û ÐØ ÛÓ Ð Ò Ò Ò ÏÓ Òµ À ÒÛ ÙÒ Ò Û Ð Ò Ò Ð Ò Ò ÈÙÒ Ø ÙÒØ

Mehr

Ã Ô Ø Ð ¾ ØÙ ÐÐ Ö ËØ Ò ÙÒ Ì Ò ÒÞ Ò Ö Ã Þ¹ÁÒÒ ÒÖ ÙÑ ÖÛ ÙÒ ÁÒ ÐØ Ò ¾º½ ÅÓØ Ú Ø ÓÒ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾º¾ ÁÒÒ ÒÖ ÙÑ ÙØÞ Ñ Ã Þ¹ÁÒÒ ÒÖ ÙÑ º º º º º º º º º º º º º º

Mehr

Verteilte Systeme/Sicherheit im Internet

Verteilte Systeme/Sicherheit im Internet ruhr-universität bochum Lehrstuhl für Datenverarbeitung Prof. Dr.-Ing. Dr.E.h. Wolfgang Weber Verteilte Systeme/Sicherheit im Internet Intrusion Detection und Intrusion Response Systeme (IDS & IRS) Seminar

Mehr

Þ ÒÞÙÒØ Ö Ù ÙÒ Ò Ò Ö ÎÓÖ Ð Ò ÙÒ Î ÖØ Ù Ò ¹Å Ø Ó Ö ÙÓÖ ÒÙÒ ÔÖÓ Ð Ñ ÔÐÓÑ Ö Ø Ñ ÁÒ ÓÖÑ Ø Ò º Ò ÓÖѺ Ê Ò Ö À ÖÖÐ Ö ØÖ Ù Ö ÈÖÓ º Öº Ö Ò ÈÙÔÔ Ôк ÁÒ ÓÖѺ Ù Ä Ö ØÙ Ð Ö Ã Ò ØÐ ÁÒØ ÐÐ ÒÞ ÙÒ Ò Û Ò Ø ÁÒ ÓÖÑ Ø ÍÒ

Mehr

Ê Ê ÙÒ ÒØ ÖÖ Ý Ó ÁÒ Ô Ò ÒØ ÙØÓÖ ÖÒ Ö Ë Ñ Ø Å Øº ÆÖº ¾ à ÒÒÞº ½ ½ ÁÆÀ ÄÌËÎ Ê Á ÀÆÁË ÁÆÀ ÄÌËÎ Ê Á ÀÆÁË ÁÒ ÐØ Ú ÖÞ Ò ½ ÅÓØ Ú Ø ÓÒ ¾ Ì Ð Ò Ê ËÝ Ø Ñ ÖÖ Ý Å Ò Ñ ÒØ ËÓ ØÛ Ö Ê Ä Ú Ð º½ Ö «Ò Ø ÓÒ Ò ººººººººººººººººººººººººººººººº

Mehr

½ Ï ÐÐ ÓÑÑ Ò ÞÙÑ ËØÙ Ý Ù ÁÒ Ø ÐÐ Ø ÓÒ Ò ÓÒ ÙÖ Ø ÓÒ Á² ½µ ÖØ Þ ÖÙÒ º Ø Ö Ö Ø ÚÓÒ Ú Ö ÃÙÖ Ò ÞÙÑ Ë Ö Ä ÒÙÜ Ò ÆÍ ÖØ Ñ Ò ØÖ ØÓÖ Ä µº Ò Ö Ò Ö ÃÙÖ Ò ËÝ Ø Ñ Ñ Ò ØÖ Ø ÓÒ Ë ½µ Æ ØÛÓÖ Ò Æ Ì½µ ÙÒ Ë ÙÖ ¹ ØÝ Ë È½µº

Mehr

ÁÒ Ø ØÙØ ĐÙÖ ÁÒ ÓÖÑ Ø Ö Ì Ò Ò ÍÒ Ú Ö ØĐ Ø ÅĐÙÒ Ò À ÙÔØ Ñ Ò Ö Ñ ËÓÑÑ Ö Ñ Ø Ö ½ ÈÖÓ º Öº Àº º À Ö Ò Î ÖÞ Ò Ò Ø ÙÒ Ö ÒÛ Ò ÙÒ Ò Ñ Æ ØÞ¹ ÙÒ ËÝ Ø ÑÑ Ò Ñ ÒØ Ä È Ú Ä ØÛ Ø Ö ØÓÖÝ ÈÖÓØÓÓÐ Î Ö ÓÒ Ê Ö ÒØ Ò Ö Ë ÐÐÑ

Mehr

Ð ÀÐØ ÐÐ ØØÖ Ù Ñ ÐÒ ÄÚÐ ÙÒ ÔÖ ØÒ Ò Ò ÐØØÖÒº ÞÙ ÖÐÙ ÑÖ Ð ÒÒ ËÐ Ð Ò ÒÑ ÒÒÖÒ ÃÒÓØÒ ÞÙ ÔÖÒº ÀØ Ò ÒÒÖÖ ÃÒÓØÒ x ÒÙ m ÃÒÖ Ó ÒÐØØ x ÒÙ m ËРк ËÐ Ð Ò ÒÑ ÌÐÙÑ

Ð ÀÐØ ÐÐ ØØÖ Ù Ñ ÐÒ ÄÚÐ ÙÒ ÔÖ ØÒ Ò Ò ÐØØÖÒº ÞÙ ÖÐÙ ÑÖ Ð ÒÒ ËÐ Ð Ò ÒÑ ÒÒÖÒ ÃÒÓØÒ ÞÙ ÔÖÒº ÀØ Ò ÒÒÖÖ ÃÒÓØÒ x ÒÙ m ÃÒÖ Ó ÒÐØØ x ÒÙ m ËРк ËÐ Ð Ò ÒÑ ÌÐÙÑ º ËÙÚÖÖÒ º (a,b) ¹ ÙÑ º ÂÙÒ Ð ÀÐØ ÐÐ ØØÖ Ù Ñ ÐÒ ÄÚÐ ÙÒ ÔÖ ØÒ Ò Ò ÐØØÖÒº ÞÙ ÖÐÙ ÑÖ Ð ÒÒ ËÐ Ð Ò ÒÑ ÒÒÖÒ ÃÒÓØÒ ÞÙ ÔÖÒº ÀØ Ò ÒÒÖÖ ÃÒÓØÒ x ÒÙ m ÃÒÖ Ó ÒÐØØ x ÒÙ m ËРк ËÐ Ð Ò ÒÑ ÌÐÙÑ T i ÔÖØ Ò Ò ÐÐ ÐÒÖ Ð Ù

Mehr

(t M (x)) 1/k L(M) = A. µ(x) c. Prob µ [M( x,1 m ) χ A (x)] < 1 m. x 1

(t M (x)) 1/k L(M) = A. µ(x) c. Prob µ [M( x,1 m ) χ A (x)] < 1 m. x 1 T U M Á Æ Ë Ì Á Ì Í Ì Ê Á Æ Ç Ê Å Ì Á à ¼º ÏÓÖ ÓÔ Ö ÃÓÑÔÐ Ü ØØ Ø ÓÖ Ø Ò ØÖÙ ØÙÖ Ò ÙÒ Þ ÒØ Ð ÓÖ Ø Ñ Ò ÖÒ Ø Ïº Å ÝÖ ËÚ Ò ÃÓ Ù ÀÖ ºµ ÀÁ ÃÄÅÆÇ ÌÍŹÁ¼ ¼ ÅÖÞ ¾¼¼ Ì À Æ Á Ë À Í Æ Á Î Ê Ë Á Ì Ì Å Æ À Æ ÌÍŹÁÆ

Mehr

α : Σ γ Σ α γ : Σ α Σ γ

α : Σ γ Σ α γ : Σ α Σ γ Ë Ñ Ò Ö Ö Ø ØÖ Ø ÁÒØ ÖÔÖ Ø Ø ÓÒ Á È Ò ½¼º ÂÙÐ ¾¼¼ ÄÙ Û ¹Å Ü Ñ Ð Ò ¹ÍÒ Ú Ö ØØ Å Ò Ò ÁÒ Ø ØÙØ Ö ÁÒ ÓÖÑ Ø Ä Ö¹ ÙÒ ÓÖ ÙÒ Ò Ø Ì ÓÖ Ø ÁÒ ÓÖÑ Ø ØØ Ò Ò ØÖ ¹ ¼ Å Ò Ò Î Ö Ö ÓÞ ÒØ ØÖ Ù Ö Æ Þ Å ÝÐÓÚ ÈÖÓ º Å ÖØ Ò ÀÓ

Mehr

ÍÒ Ú Ö ØØ Ã ÖÐ ÖÙ ÌÀµ Ê Ù Ø ÙÒØ Ö Ù ÙÒ ÙÒ Æ ÒÓ ØÖÙ ØÙÖ ÖÙÒ Ñ Ø Ñ Ê Ø Ö Ö ØÑ ÖÓ ÓÔ ÜÔ Ö Ñ ÒØ ÙÒ Ð Ò ÐÝ Ò ÔÐÓÑ Ö Ø ÚÓÖ Ð Ø ÚÓÒ ËÚ Ò È ÙÐÙ ÁÒ Ø ØÙØ Ö Ò Û Ò Ø È Ý ÍÒ Ú Ö ØØ Ã ÖÐ ÖÙ ¼º ÆÓÚ Ñ Ö ½ Ö Ø ÙØ Ø Ö

Mehr

Ò Á Ò Ò ÃÓÐÐ Ò Ê Ò Ö Ë Ñ ÐÞ¹ ÖÙÒ Ê Ò Ö Ë Ñ Ø ÙÒ ÊÙ Ë Ñ Ö Ù ÖÓÖ ÒØÐ Ð Ö Ä Ø Ö ØÙÖ ÒÛ Ò Ö Ñ Ö Ò Ò Ö Ò Ù Ò ÞÙ Ñ Ö ÙÒÚ ÖØÖ ÙØ Ò Þ ÔÐ Ò Ò ÖÑ Ð Ø Òº

Ò Á Ò Ò ÃÓÐÐ Ò Ê Ò Ö Ë Ñ ÐÞ¹ ÖÙÒ Ê Ò Ö Ë Ñ Ø ÙÒ ÊÙ Ë Ñ Ö Ù ÖÓÖ ÒØÐ Ð Ö Ä Ø Ö ØÙÖ ÒÛ Ò Ö Ñ Ö Ò Ò Ö Ò Ù Ò ÞÙ Ñ Ö ÙÒÚ ÖØÖ ÙØ Ò Þ ÔÐ Ò Ò ÖÑ Ð Ø Òº Ö Å Ò Ò Ò Á Ò Ò ÃÓÐÐ Ò Ê Ò Ö Ë Ñ ÐÞ¹ ÖÙÒ Ê Ò Ö Ë Ñ Ø ÙÒ ÊÙ Ë Ñ Ö Ù ÖÓÖ ÒØÐ Ð Ö Ä Ø Ö ØÙÖ ÒÛ Ò Ö Ñ Ö Ò Ò Ö Ò Ù Ò ÞÙ Ñ Ö ÙÒÚ ÖØÖ ÙØ Ò Þ ÔÐ Ò Ò ÖÑ Ð Ø Òº ÁÒ ÐØ Ú ÖÞ Ò Ù Ò ÔÙÒ Ø ½ ½ ÖÔ ÖÐ ¹ Ø ½º½ Ö Û ÙÒ ÔÔ

Mehr

ÔÐÓÑ Ö Ø ÈÖÓ Ù Ø ÓÒ ÔÐ ÒÙÒ Ñ Ø À Ð ÚÓÒ ÅÙÐØ ÒØ Ò Ý Ø Ñ Ò Ë ÄĐÙ ÔÐÓÑ Ö Ø Ñ Ö ÁÒ ÓÖÑ Ø Ö ÍÒ Ú Ö ØĐ Ø ÓÖØÑÙÒ ½ º Ç ØÓ Ö ¾¼¼½ ØÖ Ù Ö ÈÖÓ º Öº Ã Ø Ö Ò ÅÓÖ Ôк ÁÒ ÓÖѺ ËØ Ò À Ù Ø Ò À ÖÑ Ø ØĐ Ø Ö Ø Ð Ø ØĐ Ò Ú

Mehr

ËÓÖØ ÖÔÖÓ Ð Ñ ËÙ ÔÖÓ Ð Ñ ÃÓÑÔÐ Ü ØØ Ö Ò Ï ÖÙÑ Ø ÒØ Ö ÒØ Ï ÖÙÑ Ø Û Ø Ì Ð Á Ò ÖÙÒ ÂÓ ÒÒ Ë ÐÙÑ Ö Ö ËÓÖØ Ö Ò ÙÒ ËÙ Ò ¾»½

ËÓÖØ ÖÔÖÓ Ð Ñ ËÙ ÔÖÓ Ð Ñ ÃÓÑÔÐ Ü ØØ Ö Ò Ï ÖÙÑ Ø ÒØ Ö ÒØ Ï ÖÙÑ Ø Û Ø Ì Ð Á Ò ÖÙÒ ÂÓ ÒÒ Ë ÐÙÑ Ö Ö ËÓÖØ Ö Ò ÙÒ ËÙ Ò ¾»½ ËÓÖØ Ö Ò ÙÒ ËÙ Ò ÎÓÖØÖ Ñ À ÙÔØ Ñ Ò Ö À ÐÐÓ Ï ÐØ ÂÓ ÒÒ Ë ÐÙÑ Ö Ö Ô Ð Ôº Ò ÓÖÑ Ø ºÙÒ ¹ ÖÐ Ò Òº Ö Ö ¹ Ð Ü Ò Ö¹ÍÒ Ú Ö ØØ ÖÐ Ò Ò»Æ ÖÒ Ö ½º Å ¾¼¼ ÂÓ ÒÒ Ë ÐÙÑ Ö Ö ËÓÖØ Ö Ò ÙÒ ËÙ Ò ½»½ ËÓÖØ ÖÔÖÓ Ð Ñ ËÙ ÔÖÓ Ð Ñ

Mehr

Peter Gienow Nr.11 Einfach heilen!

Peter Gienow Nr.11 Einfach heilen! Peter Gienow Nr.11 Einfach heilen! Reading excerpt Nr.11 Einfach heilen! of Peter Gienow Publisher: Irl Verlag http://www.narayana-verlag.com/b4091 In the Narayana webshop you can find all english books

Mehr

R ψ = {λ ψ, λ 0}. P ψ P H

R ψ = {λ ψ, λ 0}. P ψ P H Ã Ô Ø Ð Ç ÖÚ Ð Ù ØÒ ÙÒ ÍÒ Ø ÑÑØ Ø ÒØ Ò ÐÐ Ò Ö Ö ØØÐ Ò Ñ ÙÒ Ò ººº Ò Û Ö Ø ¹ Ø Ø Ö Ø Ö Ö È ¹ ÙÒ Ø ÓÒ ÙÒ Ñ Ø Ö Æ ØÙÖ ØÞ ººº Ò ËØ Ð Ö ØÞ Û Ò Ø Ò Ö Ò Â Ö ÙÒ ÖØ Ø ÑÑ Ò Û Ö ººº ÎÓÒ Ò Ñ Ï ÞÙÖ ÞÙ ØÖÙÑ Ò ÞÙÖ ÞÙÑ

Mehr

Ð ÖØ Ø ÓÒ Ò Ñ Ø ÚÓÒ Ò Æ ØÙÖÛ Ò ØÐ Ò ÙÐØØ Ò Ö ÍÒ Ú Ö¹ ØØ ÖÐ Ò Ò¹Æ ÖÒ Ö Ì Ö Ñ Ò Ð Ò ÈÖ ÙÒ ÎÓÖ ØÞ Ò Ö Ö ÈÖÓÑÓØ ÓÒ ÓÑÑ ÓÒ Ö Ø Ö Ø Ö Ø ØØ Ö Û Ø Ö Ø Ö Ø ØØ

Ð ÖØ Ø ÓÒ Ò Ñ Ø ÚÓÒ Ò Æ ØÙÖÛ Ò ØÐ Ò ÙÐØØ Ò Ö ÍÒ Ú Ö¹ ØØ ÖÐ Ò Ò¹Æ ÖÒ Ö Ì Ö Ñ Ò Ð Ò ÈÖ ÙÒ ÎÓÖ ØÞ Ò Ö Ö ÈÖÓÑÓØ ÓÒ ÓÑÑ ÓÒ Ö Ø Ö Ø Ö Ø ØØ Ö Û Ø Ö Ø Ö Ø ØØ Ò Ò Ø Ó ÍÒØ Ö Ù ÙÒ Ö Ð ØÖÓÒ Ò ÄÓ Ð ÖÙÒ Ò Ò Ö Ñ Ò ÓÒ Ð Ò À Ð Ð Ø Ö ØÖÙ ØÙÖ Ò Ñ Ø Ï ÐÛ Ö ÙÒ ÙÒ ÍÒÓÖ ÒÙÒ Ò Ò ØÙÖÛ Ò ØÐ Ò ÙÐØØ Ò Ö Ö Ö ¹ Ð Ü Ò Ö¹ÍÒ Ú Ö ØØ ÖÐ Ò Ò¹Æ ÖÒ Ö ÞÙÖ ÖÐ Ò ÙÒ Ó ØÓÖ Ö ÚÓÖ Ð Ø ÚÓÒ Å Ö

Mehr

ÞÙ ØÞÒ Øº Ö Ù ĐÓ ÙÒ ÚÓÒ ºµ ÒØ ºÄºÂÓÒ ÌÖÒ ÓÖÑØÓÒ ºµ Ü Ê Ø ¼ Å Ë ÐÖØ ÙÒ ºµ Ü Ü¼ Ü ¼ µø Ü Ü¼ µø ܼ Ü ¼ µø ÙÒ ÑØ Ò ºµ Ù ÄÒÞØÚÖÐØÒ ËÝ ØÑ ºµ Ü ÐÑ Ø Ü Ü ÐÑ Ø

ÞÙ ØÞÒ Øº Ö Ù ĐÓ ÙÒ ÚÓÒ ºµ ÒØ ºÄºÂÓÒ ÌÖÒ ÓÖÑØÓÒ ºµ Ü Ê Ø ¼ Å Ë ÐÖØ ÙÒ ºµ Ü Ü¼ Ü ¼ µø Ü Ü¼ µø ܼ Ü ¼ µø ÙÒ ÑØ Ò ºµ Ù ÄÒÞØÚÖÐØÒ ËÝ ØÑ ºµ Ü ÐÑ Ø Ü Ü ÐÑ Ø ÖÐØÙÒ Ö ÖØÒÚÐÐØ ÙÖ ÅÖØÓÒ ÒØÓÒÓ ËØÒÖ ÙÒ ÅÖØÒ Âº ÒÖ ØÖØ Ï ÒÚ ØØ Ø Ò ÙÒ Ó ÑÖØÓÒ ÓÒ Ø ÚÓÐÙØÓÒ Ó ÓÒ Ò ØÛÓ Ô ÐÚÒ Ò ÖÓÒ ÙÒÖ ÙÒØÒ ÓÒØÓÒ Û Ô Ø ØÓØÐ ÒÙÑÖ Ó ÒÚÙÐ ÓÒ ØÒغ ÁÒÚÙÐ ÑÖØ ÖÓÑ Ò Ö ÛØ ØØÖ ÐÚÒ ÓÒØÓÒ ØÓ Ò Ö

Mehr

Ø Ò Ö Ù Ò Â ÓÚ Ò Ò Ò ÀÒ Ò Ò Ï ØØÙÖÑ ÙÒ ÖÛ Ø Ò Û ÖÛ ÒØ Ö Ð Ò Óº Å Ö Ð Ù Ù Ö Û ÒÐ Ø Ò ÒÞ ÐÔ Ö ÓÒ Ö Ù Ò Â ÓÚ Ö Ð Ò Ò Ð ËØ ÐÐ Ø ÐÐØ ÙÒ Â ÓÚ ÓØ Ø Ò Ø Øº Å

Ø Ò Ö Ù Ò Â ÓÚ Ò Ò Ò ÀÒ Ò Ò Ï ØØÙÖÑ ÙÒ ÖÛ Ø Ò Û ÖÛ ÒØ Ö Ð Ò Óº Å Ö Ð Ù Ù Ö Û ÒÐ Ø Ò ÒÞ ÐÔ Ö ÓÒ Ö Ù Ò Â ÓÚ Ö Ð Ò Ò Ð ËØ ÐÐ Ø ÐÐØ ÙÒ Â ÓÚ ÓØ Ø Ò Ø Øº Å Å Ò ÂÙ Ò Ò Ù Ò Â ÓÚ Ò Ù Ø Ö Ò Ö Ø Ø Ø Ö Ö ÏÓ Ò Ö Ð Ö ÙÒ Û ÐØ Ò ÙÐ Ö ÜØÖ Ñ ÑÙ Ö Ò Ò¹ Ò Ò Ñ Ò Û Ö Ì Ö Ì Ò Ò Æ Ö Ø Ò Ò ÙÒ Ö Ò Ó Ö Ò Ö ØÙÒ Ð Òº Ò Ò Û Ö ÒÙÖ ÒÑ Ð Ò Ö Ò ÖÙÒ ÙÑ Ò ½½º Ë ÔØ Ñ Ö ¾¼¼½ Ó Ö Ö Ð Ë ØÙ

Mehr

arxiv:math/ v1 [math.ho] 29 Sep 2004 ǫ = 180 (α+β +γ) = C F.

arxiv:math/ v1 [math.ho] 29 Sep 2004 ǫ = 180 (α+β +γ) = C F. º º Ù³ ÈÖÞ ÓÒ Ñ ÙÒ Ò Ø ÖÖ ØÖ Ö Ö ÙÒ Ò ÖÐ ÙÒ Ò ÞÙÖ ÑÔ Ö Ò ÙÒ ÖÙÒ Ö ÓÑ ØÖ Ò Ò ½ ¾¼ Ö Â Ö Ò Ö Ö Ë ÓÐÞ ÏÙÔÔ ÖØ Ð ½ arxiv:math/0409578v1 [math.ho] 29 Sep 2004 Ù ÑÑ Ò ÙÒ ÁÒ Ø ØÓÖ Ð Ð Ø Ö ØÙÖ Ø Ö Ò Ò ÜØ Ò Ù ÓÒ

Mehr

Ò Ò Ò Ë ÖÒ ½ ¾ Ö ÁÒØ ÖÒ Ø¹ Šع Ö ÙÒ ÙÒ ÐØ ÒØÒÓÑÑ Ò Ò Ö Ñ ØÑ Ø Å Ø Ø ÙÒ ÒØ Ö ÖØ Ã ÒÖ ØÐ Òº ÀÖ Ù ÓÒÖ Ò ØÙ ÙÒ ÃÐ Ò ÙÒ º Þ Ø ÃÓÒ Ø Ò Ñ Ø Ö Ë ÙÐ ÚÓÖÞÙÙÒ Ò

Ò Ò Ò Ë ÖÒ ½ ¾ Ö ÁÒØ ÖÒ Ø¹ Šع Ö ÙÒ ÙÒ ÐØ ÒØÒÓÑÑ Ò Ò Ö Ñ ØÑ Ø Å Ø Ø ÙÒ ÒØ Ö ÖØ Ã ÒÖ ØÐ Òº ÀÖ Ù ÓÒÖ Ò ØÙ ÙÒ ÃÐ Ò ÙÒ º Þ Ø ÃÓÒ Ø Ò Ñ Ø Ö Ë ÙÐ ÚÓÖÞÙÙÒ Ò ÁÒÐØ Ö ÖÓ Ö ÙÒØ ÖÐÒ Ö ÖØ Ú ÓÑÑÓÒ ÙÒØ Ö ÐÒ Ò ÙÒÒ º¼ ÍÒ¹ Æ Ñ Ò Ò ÒÒÙÒ ¹ÏØ Ö ÙØ Ø Ò Ó Ø ÒÐÓ Ù ÓÑÑ ÖÞÐÐ ÆÙØÞÙÒ ÓÐÒÒ Ò ÙÒÒ ÑÐ Ø ÙÒØ Ö Ð ÍÖÖ Ò Û Ö À Ï ÒÐÚÓ Ò ÒÒغ ÇÒÐ Ò ¹ÅÒ Û Ö Ö Ä Þ ÒÞØ ÜØ Ú ÖÐ Ò Øº ÐØ ÖÒ Ø

Mehr

Ä ÖÓÒ ÅÐ ÄÓÖ ¼ º¼º¾¼¼¾ ÁÒÐØ ÚÖÞÒ ÒÐØÙÒ ¾ ÏÐÐÒÐØÖ ¾º ÅÜÛÐйÐÙÒÒ º º º º º º º º º º º º º º º º º º º º º º º ¾º¾ Ä ÙÒÒ Ö ÅÜÛÐйÐÙÒÒ Ö Ò ÐÐ Öع Ò ÏÐÐÒÐØÖ º º º º º º º º º º º º º º º º º º º º º º º ¾º

Mehr

Ò Ê Ö ÒØ ÃÓÖÖ Ö ÒØ ÈÖÓ º Öº Ñ º ÖØ ÅÙ Ö ÈÖÓ º Öº Ñ º Ã Ö Ø Ò Ë Ñ Ö ÈÖ Úº ÓÞº Öº Ñ º ËØ Ô Ò Ö Ò Ì Ö Ñ Ò Ð Ò ÈÖ ÙÒ ¾ º½½º¾¼¼

Ò Ê Ö ÒØ ÃÓÖÖ Ö ÒØ ÈÖÓ º Öº Ñ º ÖØ ÅÙ Ö ÈÖÓ º Öº Ñ º Ã Ö Ø Ò Ë Ñ Ö ÈÖ Úº ÓÞº Öº Ñ º ËØ Ô Ò Ö Ò Ì Ö Ñ Ò Ð Ò ÈÖ ÙÒ ¾ º½½º¾¼¼ Ù Ö Æ ÙÖÓ ÖÙÖ Ò ÃÐ Ò ÃÒ ÔÔ Ø Ö Ò Ò Ù Ó ÙÑ¹Ä Ò Ò Ö Ö ¹ ÍÒ Ú Ö ØØ Ð Ò ¹ Ö ÊÙ Ö¹ÍÒ Ú Ö ØØ Ó ÙÑ Ö ØÓÖ ÈÖÓ º Öº Ñ º º À Ö Ö Ê ØÖ ÖÙÒ ÚÓÒ ¹ÍÐØÖ Ðй ÙÒ Ì¹ Ø Ò Ö Ä Ò ÒÛ Ö Ð ÙÐ ÞÙÖ ÍÒØ Ö Ø ØÞÙÒ Ò Ú ÖØ Ö È Ð Ö Ù

Mehr

Ä Ä Óµ Ö Ò Ð Ö Ä Óµ Ö Ò Ù Ò Ù Ò Û ÖØ Ò Ù Ä ÙÒ Òº ÆÙÖ ÅÙØ Ù Û ÒÒ Ù Ò Å Ø Ò Ò Ø Ù Ò Ò Ó Ø ÐØ Ø Ù ÞÙÖ Ä ÙÒ Ò Ø ÙÒ Ò Ø Ò Å Ø ¹ËØÓ Ö Ë ÙÐ Ö Ù Øº Î ÐÑ Ö Û Ö

Ä Ä Óµ Ö Ò Ð Ö Ä Óµ Ö Ò Ù Ò Ù Ò Û ÖØ Ò Ù Ä ÙÒ Òº ÆÙÖ ÅÙØ Ù Û ÒÒ Ù Ò Å Ø Ò Ò Ø Ù Ò Ò Ó Ø ÐØ Ø Ù ÞÙÖ Ä ÙÒ Ò Ø ÙÒ Ò Ø Ò Å Ø ¹ËØÓ Ö Ë ÙÐ Ö Ù Øº Î ÐÑ Ö Û Ö Â Ö Ò ¼ À Ø ½¼¾ ÂÙÒ ¾¼½¼ Ò Ñ Ø Ñ Ø Ø Ö Ø Ö Ë Ð Ö ÒÒ Òµ ÙÒ Ä Ö Ö ÒÒ Òµ ½ ¼ Ö Ò Ø ÚÓÒ Å ÖØ Ò Å ØØÐ Ö Ö Ù Ò ÚÓÑ ÁÒ Ø ØÙØ Ö Å Ø Ñ Ø Ò Ö ÂÓ ÒÒ ÙØ Ò Ö ¹ÍÒ Ú Ö ØØ ÞÙ Å ÒÞ JG U JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Mehr

Î ÖÞ Ò Ö ÖÞÙÒ Ò ÔÛº Ô Ð Û Ôغ ÓÔØÖ Ò ÁÇÄ ÁÒØÖ Ó ÙÐ ÖÐ Ò Ä ËÁÃ Ä Ö Ò Ë ØÙ Ã Ö ØÓÑ Ð Ù ÑÑ Å ÐÐ Ñ Ø Ö µm Å ÖÓÑ Ø Ö ÈÊÃ È ÓØÓÖ Ö Ø Ú Ã Ö Ø ØÓÑ ÊÅË ÊÓÓØ Å

Î ÖÞ Ò Ö ÖÞÙÒ Ò ÔÛº Ô Ð Û Ôغ ÓÔØÖ Ò ÁÇÄ ÁÒØÖ Ó ÙÐ ÖÐ Ò Ä ËÁÃ Ä Ö Ò Ë ØÙ Ã Ö ØÓÑ Ð Ù ÑÑ Å ÐÐ Ñ Ø Ö µm Å ÖÓÑ Ø Ö ÈÊÃ È ÓØÓÖ Ö Ø Ú Ã Ö Ø ØÓÑ ÊÅË ÊÓÓØ Å Ò Ù ÚÓÒ È ÒÝÐ Ô Ö Ò ÙÒ ÌÖÓÔ Ñ Ù Ï ÐÐ Ò ÖÓÒØ ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ñ Ò Ö ÓØÓÖ Ñ Ò Öº Ñ ºµ ÚÓÖ Ð Ø Ñ Ê Ø Ö Å Þ Ò Ò ÙÐØØ Ö Ö Ö ¹Ë ÐÐ Ö¹ÍÒ Ú Ö ØØ Â Ò ÚÓÒ Ø Ò ÄÓÓ Ö ÓÖ Ò Ñ ¼¾º Ç ØÓ Ö ½ Ò Ç Ö Ù Ò ¾º ÔÖ Ð ¾¼¼ Î

Mehr

±0, 1m 2 m 3..m 53 2 e 10e 9..e

±0, 1m 2 m 3..m 53 2 e 10e 9..e Ê Ò Ò Ï ÖÙÑ Ð Ö Ö Ò Ò Ø Ó ÓÑÔÙØ Ö Ì ÐÒ Ñ Ö Ö Ø Ò Ö Ö ÒÒ Å Ò È ØÖ Å ÙØ Ò Ö ÊÓÞ È ØÖ ÃÐ ØÞ Ö ØÓÔ Ö Ë Ñ Ø ÊÓ ÖØ Ë ÐÑ ÒÒ Ò Ö ¹Ç Ö ÙÐ À ÒÖ ¹À ÖØÞ¹Ç Ö ÙÐ ÁÑÑ Ò٠йà ÒØ¹Ç Ö ÙÐ À Ö Ö¹Ç Ö ÙÐ Ò Ö ¹Ç Ö ÙÐ ÁÑÑ ÒÙ

Mehr

Ź Ö ÑÑ Ø ÑÓ ÐÐ ÖØ Ù Ö Á ÝÒØ Ø ÇÔ Ö Ø ÓÒ Ò Ð Ð Ñ ØØ Ð ØÖ Ø Ö ÑÓÖÔ Ó ÝÒØ Ø Ö Å Ö Ñ Ð ÙÒ Ø ÓÒ Ö Òº È ÓÒÓÐÓ ÙÒ Ö ØÖÖ Ð Ü Ð µ ÁÒ ÓÖÑ Ø ÓÒ Û Ö Ö Ø ÔØ Ò Ö Ë

Ź Ö ÑÑ Ø ÑÓ ÐÐ ÖØ Ù Ö Á ÝÒØ Ø ÇÔ Ö Ø ÓÒ Ò Ð Ð Ñ ØØ Ð ØÖ Ø Ö ÑÓÖÔ Ó ÝÒØ Ø Ö Å Ö Ñ Ð ÙÒ Ø ÓÒ Ö Òº È ÓÒÓÐÓ ÙÒ Ö ØÖÖ Ð Ü Ð µ ÁÒ ÓÖÑ Ø ÓÒ Û Ö Ö Ø ÔØ Ò Ö Ë ÈÓ Ø ÝÒØ Ø ÇÔ Ö Ø ÓÒ Ò Á È Ð ÔÔ Ï Ö ÍÒ Ú Ö ØØ Ä ÔÞ Ô Ð ÔÔºÛ ÖÙÒ ¹Ð ÔÞ º Ô Ð ÔÔÛ Öº ½ º ÔÖ Ð ¾¼½ ½» Ź Ö ÑÑ Ø ÑÓ ÐÐ ÖØ Ù Ö Á ÝÒØ Ø ÇÔ Ö Ø ÓÒ Ò Ð Ð Ñ ØØ Ð ØÖ Ø Ö ÑÓÖÔ Ó ÝÒØ Ø Ö Å Ö Ñ Ð ÙÒ Ø ÓÒ Ö Òº È ÓÒÓÐÓ

Mehr

Ò ĐÙ ÖÙÒ Ò ÒØÛ ÐÙÒ Ø Ò Ö ÁÒ ÓÖÑ Ø ÓÒ Ý Ø Ñ ÃÓÒÞ ÔØ Å Ø Ó Ò ÙÒ Ï Ö Þ Ù ÞÙÖ ÒØÛ ÐÙÒ ÒØ Ö ÖØ Ö ÁÒ ÓÖÑ Ø ÓÒ Ý Ø Ñ Ñ Ø Ò Ò ÍÑ Ð ß ÎÓÖÐ ÙÒ ÙÒØ ÖÐ Ò ß Öº Å ÖØ Ò Ò Ö ÙÒ Ó Ö ÁÒ Ø ØÙØ ĐÙÖ Ö ØÖ ÙÒ ¹ ÙØÓÑ Ø ÖÙÒ Å

Mehr

ÁÒ ÐØ Ú ÖÞ Ò ½ ÂÓ ÒÒ Ö ÌĐ Ù Ö ½ ¼ ½ º½ÂÓ ÒÒ Û Ö Æ ÖĐ Ö ½ º¾ Ö ÌÓ Ö º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ¼ º º º º º º

ÁÒ ÐØ Ú ÖÞ Ò ½ ÂÓ ÒÒ Ö ÌĐ Ù Ö ½ ¼ ½ º½ÂÓ ÒÒ Û Ö Æ ÖĐ Ö ½ º¾ Ö ÌÓ Ö º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ¼ º º º º º º ÍÖ ÒØ Ù ½ ¹ ÂÓ ÒÒ Ö ÌĐ Ù Ö Á ÁÁ ÁÁÁ ÁÎ ÒØÖ ÐÙÒ Ú Ö ÙÑ ÙÒ ËÙÔ ÖÙÒ Ú Ö Ò ÄÓ ÐÙÒ Ú Ö ÙÑ Ø ÍÖ ÒØ Ä Ò ÙÒ Ä Ö Ò Â Ù ÛÛÛºÙÖ ÒØ ºÓÖ ½ ÛÛÛºØÖÙØ ÓÓ ºÓÑ ¾ ½ ÁÒØ ÖÒ Ø ØØÔ»»ÛÛÛºÙÖ ÒØ ºÓÖ» º ¾ ÁÒØ ÖÒ Ø ØØÔ»»ÛÛÛºØÖÙØ

Mehr

ÖÖ Ö Ø ÚÓÒ ÓÑÔÙØ Ö Ý Ø Ñ Ò Ë Ö ÔØ ÞÙÑ Ë Ñ Ò Ö ËÓÑÑ Ö Ñ Ø Ö ½ À Ö Ù Ö Å Ò Ö Ã Ö Ö Ü Ð ÈÖĐ Ð Ò Ö ÁÒ ÓÖÑ Ø ÍÒ Ú Ö ØĐ Ø Ã Ö Ð ÙØ ÖÒ ¹ ¼ Ã Ö Ð ÙØ ÖÒ Ï Ø ÖÑ ÒÝ ÁÒ ÐØ Á Ø Ò ÙØÞ ½ Ø Ò ÙØÞ ß Ö ØÐ Ä ½º½ ÏÓ Ö ÓÑÑØ

Mehr

Å Ø Ò Ñ ÙÒ Ö Å Þ Ò Ò ÙÐØØ Ö ÍÒ Ú Ö ØØ Å Ò Ò Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº Ê Ö ÚÓÒ ÃÖ ¾º Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº ØÐ ÃÙÒÞ Å Ø Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº À Ò ¹È Ø Ö Ë Û

Å Ø Ò Ñ ÙÒ Ö Å Þ Ò Ò ÙÐØØ Ö ÍÒ Ú Ö ØØ Å Ò Ò Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº Ê Ö ÚÓÒ ÃÖ ¾º Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº ØÐ ÃÙÒÞ Å Ø Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº À Ò ¹È Ø Ö Ë Û Ù Ñ ÁÒ Ø ØÙØ Ö ËÓÞ Ð È ØÖ ÙÒ ÂÙ Ò Ñ Þ Ò Ö ÄÙ Û ¹Å Ü Ñ Ð Ò ¹ÍÒ Ú Ö ØØ Å Ò Ò ÎÓÖ Ø Ò ÃÓÑÑ Ö Ö Ä Ø Öµ ÈÖÓ º Öº Ê Ö ÚÓÒ ÃÖ Ê Ó ØÓÖ Ò Ö Ò Ð ÔÓ Ø ÍÒØ Ö Ð Ø ÒÓÖÑ Ð¹ ÙÒ Ö Û Ø Ò Ã Ò ÖÒ ÖØ Ø ÓÒ ÞÙÑ ÖÛ Ö Ó ØÓÖ Ö

Mehr

PTBS Belastung unterschiedlicher Populationen

PTBS Belastung unterschiedlicher Populationen Ù Ö È Ý ÓØÖ ÙÑ ØÓÐÓ ËØ Ø ÓÒ Ö ÃÐ Ò Ëغ ÁÖÑ Ò Ö Ò Ö ÖÙÒ Ö Ø Ä ÓÒ Ö ÃÖ ØÞ Ö Ö ÒÞ È ØÞ Ö È Ø Ö À ÒÞ È Ý ÓØÖ ÙÑ ØÓÐÓ ËØ Ø ÓÒ Ö ÃÐ Ò Ëغ ÁÖÑ Ò Ö ÈÖ Ò Ñ Ñ È Ý ÓØ Ö Ô ÓÖ ÙÒ Ö ÃÐ Ò ÙÒ ÈÓÐ Ð Ò Ö È Ý ØÖ ÙÒ È Ý ÓØ

Mehr

Ò Ì Ò Ú º ÓÖ Ò ØÓÖ Ë Ö Ø Ô Ð ÇÖ Ò ØÓÖ Ö Ë Ö Ø Ñ Ò Ñ Ò Ë Ö Ø Ñ Ò Ñ ÒØÔÖÓÞ Ë ÙÖ Øݵ ÈÓÐ È ¹ÅÓ ÐÐ ËØ Ò Ö ÙÒ ÆÓÖÑ Ò ÞÙ ÁÌ¹Ë Ö Ø Ë Ö Ø ÓÒÞ ÔØ Ä Ø Ö ØÙÖ ¾»

Ò Ì Ò Ú º ÓÖ Ò ØÓÖ Ë Ö Ø Ô Ð ÇÖ Ò ØÓÖ Ö Ë Ö Ø Ñ Ò Ñ Ò Ë Ö Ø Ñ Ò Ñ ÒØÔÖÓÞ Ë ÙÖ Øݵ ÈÓÐ È ¹ÅÓ ÐÐ ËØ Ò Ö ÙÒ ÆÓÖÑ Ò ÞÙ ÁÌ¹Ë Ö Ø Ë Ö Ø ÓÒÞ ÔØ Ä Ø Ö ØÙÖ ¾» ØÓ Ë ÙÖ ØÝ ÎÇ ÁÒØÖÓ ÙØ ÓÒ Ë Ö Ø»Ë Ö Ø Ñ Ò Ñ ÒØ ÇÖ Ò ØÓÖ ÁÒ Ù ØÖ Ð ËÓ ØÛ Ö ÁÆËÇ Ö Ê Ò Ö Ø ØÞØ ÙØÓÑ Ø ÓÒ ÙÐØØ Ö ÁÒ ÓÖÑ Ø Ì Ò ÍÒ Ú Ö ØØ Ï Ò ÁÒ Ø ØÙØ ÐÓÖ Ò Ò Ù Ö Ö ÒÞ Å Ö Ó Ö Ò Ì Ò Ú º ÓÖ Ò ØÓÖ Ë Ö Ø Ô Ð ÇÖ

Mehr

Ò ĐÙ ÖÙÒ Ò ÒØÛ ÐÙÒ Ø Ò Ö ÁÒ ÓÖÑ Ø ÓÒ Ý Ø Ñ ÃÓÒÞ ÔØ Å Ø Ó Ò ÙÒ Ï Ö Þ Ù ÞÙÖ ÒØÛ ÐÙÒ ÒØ Ö ÖØ Ö ÁÒ ÓÖÑ Ø ÓÒ Ý Ø Ñ Ñ Ø Ò Ò ÍÑ Ð ß ÎÓÖÐ ÙÒ ÙÒØ ÖÐ Ò ß Öº Å ÖØ Ò Ò Ö ÙÒ Ó Ö ÁÒ Ø ØÙØ ĐÙÖ Ö ØÖ ÙÒ ¹ ÙØÓÑ Ø ÖÙÒ Å

Mehr

ØÛ ÎØÓÒÐÝ ÐØÒ ÓÐÒÒ ÊÒÐÒ µ µ ¼ ¼ ¼ µ µ ¼ ¼ ¼ µ ¼ ¼ ¼ Û Ò ÐÐÑÒ Ú Úµ µ ÓÒ Øº µ ¼ Û µ µ ¼ ¼ ¼ ¼ ¼ ¼ ¼ µ ¼ ¼ ¼ µ ¼ ¼ ¼ µ ¼ ¼ ¼ ¼ ¼ ¼ ¼ Ø ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼

ØÛ ÎØÓÒÐÝ ÐØÒ ÓÐÒÒ ÊÒÐÒ µ µ ¼ ¼ ¼ µ µ ¼ ¼ ¼ µ ¼ ¼ ¼ Û Ò ÐÐÑÒ Ú Úµ µ ÓÒ Øº µ ¼ Û µ µ ¼ ¼ ¼ ¼ ¼ ¼ ¼ µ ¼ ¼ ¼ µ ¼ ¼ ¼ µ ¼ ¼ ¼ ¼ ¼ ¼ ¼ Ø ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ÀÐØÙÒ ÃÔÐ ØÞ Ù Ñ ÚØØÓÒ ØÞ Ò ÀÒ ÊÓØ ËØÒ ÒÙÔÔÒ Ã ÌÑÒØ ØÓÒÓÑ ÇÐÐ Ð ÎÐ µ º ØÛ ÎØÓÒÐÝ º ÒÒ Ò ÞÒØÐÒ ÃØÐÒ Ò Ò º ÐÒ ØÞ º ÑØÒ º Ò ÒØÞÐ ÒØ ÚØÓ º ÒØ Ò ÁÒÚÒØ º ÒÒ Ò ¹ÃØÐÒ Ò ÃÐ ÒØØ º ÜÞÒØÞØØ ÙÒ ÑØÒ º ØØ ØÞ ÚÓÒ ÃÔÐ

Mehr

ÁÈÄÇÅ Ê ÁÌ Î Ö Ð Ú Ö Ò Ö ÊÓØÓÖ ØÖÙ ØÙÖ Ò Ò Ô Þ Ø Ú Ò Ö ÑÓÑ ÒØ Ò ÓÖ Ù ĐÙ ÖØ Ñ ÁÒ Ø ØÙØ ĐÙÖ Ò Û Ò Ø Ð ØÖÓÒ ÙÒ ÉÙ ÒØ Ò Ð ØÖÓÒ Ö Ì Ò Ò ÍÒ Ú Ö ØĐ Ø Ï Ò ÙÒØ Ö ÒÐ ØÙÒ ÚÓÒ ÍÒ ÚºÈÖÓ º Ôк¹ÁÒ º ÖºØ Òº ÓÖ Ö ÙÖ Ôк¹ÁÒ

Mehr

x y x+y x+15 y 4 x+y 7

x y x+y x+15 y 4 x+y 7 Å ÌÀ Ê ÂÍÆ ÍÆ ÄÌ ¹ Ë ÊÁ ¼ ¹ Â Æ» ¾¼½ ½ ½ ÎÓÖ ÙÐ Ä ÙÒ ¼¹½½ Î ¾ Ï ¾ Ä ÙÒ ¼¹½¾ È Ö Ö Ö Ò ÓÖ Ò Ø Ò ÅÓÓÒ Ñ Ù ÊÓÑ Ó Ä Ë ÒØÓ ÄÓ Ä Ó Ð Ò Ø Ö Ø Ä ÙÒ ¼¹½ Ä ÙÒ ¼¹½ ¹¾ ¹ ¹½ ¹ Ä ÙÒ ¼¹½ Ò Ã Ò Öº Ë Ñ Ò ½ ¾ ÙÒ Ó Ò ØÖÓ

Mehr

Ð ÖÙÒ ½ ÁÒØ ÖÔÓÐ Ø ÓÒ ÔÓÐÝÒÓÑ Ð ËÔÐ Ò ¾ ÆÙÑ Ö ÁÒØ Ö Ø ÓÒ ÃÐ Æ ÛØÓÒ¹ ÓØ Ï Ø Ö ÉÙ Ö ØÙÖ ÓÖÑ ÐÒ ¾» ¾

Ð ÖÙÒ ½ ÁÒØ ÖÔÓÐ Ø ÓÒ ÔÓÐÝÒÓÑ Ð ËÔÐ Ò ¾ ÆÙÑ Ö ÁÒØ Ö Ø ÓÒ ÃÐ Æ ÛØÓÒ¹ ÓØ Ï Ø Ö ÉÙ Ö ØÙÖ ÓÖÑ ÐÒ ¾» ¾ ÁÒØ ÖÔÓÐ Ø ÓÒ ÒÙÑ Ö ÁÒØ Ö Ø ÓÒ º ÎÓÖÐ ÙÒ ½ ¼ ¼¼ ÆÙÑ Ö Å Ø Ó Ò Á º Ö Ò ÙÒ º À Ù Ò Ð ¾ º Å ¾¼½ ½» ¾ Ð ÖÙÒ ½ ÁÒØ ÖÔÓÐ Ø ÓÒ ÔÓÐÝÒÓÑ Ð ËÔÐ Ò ¾ ÆÙÑ Ö ÁÒØ Ö Ø ÓÒ ÃÐ Æ ÛØÓÒ¹ ÓØ Ï Ø Ö ÉÙ Ö ØÙÖ ÓÖÑ ÐÒ ¾» ¾ ÁÒØ ÖÔÓÐ

Mehr

ÁÒ ÐØ Ú ÖÞ Ò ½ Ò ÖÙÒ ½ ½º½ ÅÓØ Ú Ø ÓÒ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ½º¾ à ÖÞ Ø ¹Ï ¹ Ð ÓÖ Ø Ñ Ò º º

ÁÒ ÐØ Ú ÖÞ Ò ½ Ò ÖÙÒ ½ ½º½ ÅÓØ Ú Ø ÓÒ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ½º¾ à ÖÞ Ø ¹Ï ¹ Ð ÓÖ Ø Ñ Ò º º Ö ÒÙÒ ÖÞ Ø Ö È ÙÒØ Ö ØÙÒ ÚÓÒ Ú Ö ÓØ Ò Ã Ö ÐÐ Å ÐÐ Ö ËØÙ Ò Ö Ø Ñ ÁÒ Ø ØÙØ Ö Ì ÓÖ Ø ÁÒ ÓÖÑ Ø Ä Ö ØÙ Ð ÈÖÓ º Öº ÓÖÓØ Ï Ò Ö ÍÒ Ú Ö ØØ Ã ÖÐ ÖÙ ÙÐØØ Ö ÁÒ ÓÖÑ Ø ¾ º Ç ØÓ Ö ¾¼¼ ÁÒ ÐØ Ú ÖÞ Ò ½ Ò ÖÙÒ ½ ½º½ ÅÓØ Ú

Mehr

BS Registers/Home Network HLR/AuC

BS Registers/Home Network HLR/AuC Ë Ö Ø Ñ ÅÓ Ð ÓÑÑÙÒ Ø ÓÒ Ò ØÞ Ö º Ò Ö Ø ÓÒ ÍÅÌ˵ ÃÐ Ù ÚÓÒ Ö À Ý ¾¼¼¾¹¼ ¹¾ ÁÒ ÐØ Ú ÖÞ Ò ½ Ò ÖÙÒ ¾ ½º½ Ï ÖÙÑ Ö ÙÔØ Ë Ö Ø ÓÒÞ ÔØ ÑÓ Ð Ö ÃÓÑÑÙÒ ¹ Ø ÓÒ º º º º º º º º º º º º º º º º º º º º º º º º º º º º

Mehr

0 = 2x+2y 5 y = 4x+6

0 = 2x+2y 5 y = 4x+6 ÌÐ ÁÁ ÙÒÒ ÙÒ ½ ½º ÖÒ (((4/3+5/2) 6/5) 2/5) 5/2º 1 ¾º ÖÒ µ )) µ 1 ÙÒ µ (1 ( 2 2 ) ( 3 4 ( (2 3 ) 4 ) ( 3)º 4 º Î ÖÒ µ ( 4 xy + 3 yz )(4z xy 2 y ) µ x y z x 2 x + z y ÙÒ µ x º 1 1 1 x º Û 2 Ò Ö Ø ÓÒ Ð Ð

Mehr

Lehrstuhl und Institut für Strömungslehre

Lehrstuhl und Institut für Strömungslehre ÙÒ Ò ÞÙÑ È Ø ËØÖ ÑÙÒ Ð Ö Ö Ñ Ò Ò ÙÖÛ Ò ÙÒ Î Ö Ö Ò Ø Ò ½º Ù Ò Ð ØØ ËØÖ ÑÙÒ Ö ÀÝ ÖÓ Ø Ø Ù ½º½ ÙÒ Ù ËØÖ ÑÙÒ Ñ Ò Ù ¾º½º½µ º ½º½ ÃÖ Ø ÖÞ Ù ÙÑ ØÖ ÑÙÒ Ò ÃÖ Ø ÖÞ Ù Û Ö ÚÓÒ Ò Ö Ö ÙÒ Ö Ò È Ö ÐÐ Ð ØÖ ÑÙÒ Ö Û Ò Ø

Mehr

Ë ÑÑÐÙÒ ÙÒ ÆÙØÞÙÒ Ö Ö Ê ÓÙÖ Ò Ò Ï ØÚ Ö Ö Ò ØÞ Ò Å Ð Å Ý ÁÒ Ø ØÙØ ĐÙÖ ÁÒ ÓÖÑ Ø Ë ÑÑÐÙÒ ÙÒ ÆÙØÞÙÒ Ö Ö Ê ÓÙÖ Ò Ò Ï ØÚ Ö Ö Ò ØÞ Ò Å Ð Å Ý ÎÓÐÐ ØĐ Ò Ö ÖÙ Ö ÚÓÒ Ö ÙÐØĐ Ø ĐÙÖ ÁÒ ÓÖÑ Ø Ö Ì Ò Ò ÍÒ Ú Ö ØĐ Ø ÅĐÙÒ

Mehr

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG Å ÙÖ ØØÐ Ö ÃÓÒÞ ÔØÓÔØ Ñ ÖÙÒ ÙÒ ÒØÛ ÐÙÒ Ò Ö Ó ÒØ Ö ÖØ Ò Ä Ø ÖÔÐ ØØ ÔÐÓÑ Ö Ø À ¹ÃÁȹ½¼¹ KIRCHHOFF-INSTITUT FÜR PHYSIK ÙÐØÝ Ó È Ý Ò ØÖÓÒÓÑÝ ÍÒ Ú Ö ØÝ Ó À Ð Ö ÔÐÓÑ Ø

Mehr

ËÓÑÑ Ö Ñ Ø Ö ¾¼¼½ ÝÒ Ñ ËÝ Ø Ñ ¾ ÎÓÖÐ ÙÒ Ö ÔØ Ñ Ø ÄĐÓ ÙÒ Òµ Í Ó Ù Þ ÒØÖ Ð Ò ËÝ Ø Ñ Ö ÎÓÖÐ ÙÒ Å Ò Ð ÖÓØÑ Ò ÂÙÐ Ñ Ò ÙÒ ÒÞÙ Ø ÈÓ Ð³ Ò Ê Ñ Ø ÍÒÛÙ Ø ÁÆÀ ÄÌËÎ Ê Á ÀÆÁË ÁÒ ÐØ Ú ÖÞ Ò ÒÐ Ò Ä ÖÒÞ Ð Ú ½ ½ º ÔÖ Ð ¾¼¼½

Mehr

ËØ Ø Ø Ò ÐÝ ÚÓÒ Î Ö Ö Ø Ò ÙÒ ÅÓ ÐÐ ÖÙÒ ÚÓÒ Î Ö Ö Ù Ñ ØØ Ð Þ ÐÐÙÐ Ö Ö ÙØÓÑ Ø Ò ÎÓÑ Ö È Ý ß Ì ÒÓÐÓ Ö Ö Ö ¹Å Ö ØÓÖ¹ÍÒ Ú Ö ØĐ Ø Ù ÙÖ ÞÙÖ ÖÐ Ò ÙÒ Ñ Ò Ö Ò Ó ØÓÖ Ö Æ ØÙÖÛ Ò Ø Ò Ò Ñ Ø ÖØ Ø ÓÒ ÚÓÒ ÄÙØÞ Æ Ù ÖØ Ù

Mehr

ÊÓ ÖØ Â Ò Ä Ø Ò ÓÖ ÈÖÓ Ù Ø ÓÒ Ö Ø Ö È ÓØÓÒ Ò Ò ÙÐØÖ Ö Ð Ø Ú Ø Ò Ù Ù ËØ Ò Ñ ÈÀ ÆÁ ¹ ÜÔ Ö Ñ ÒØ ¾¼¼ ÜÔ Ö Ñ ÒØ ÐÐ È Ý ÈÖÓ Ù Ø ÓÒ Ö Ø Ö È ÓØÓÒ Ò Ò ÙÐØÖ Ö Ð Ø Ú Ø Ò Ù Ù ËØ Ò Ñ ÈÀ ÆÁ ¹ ÜÔ Ö Ñ ÒØ ÔÐÓÑ Ö Ø ÚÓÒ

Mehr

Ë Ö Ø ÒĐÙ ÖØÖ ÙÒ ĐÙ Ö ÁÒØ ÖÒ Ø Ñ ØØ Ð ÁÈË ËØÙ Ò Ö Ø ÎÓÖ Ð Ø ÚÓÒ Ì ÐÓ ÊÙ ÞÙÖ ÙØ ØÙÒ ÙÖ ÈÖÓ º Öº ÃÐ Ù ÖÙÒÒ Ø Ò ½ º Þ Ñ Ö ½ ÍÒ Ú Ö ØĐ Ø À Ñ ÙÖ Ö ÁÒ ÓÖÑ Ø Ö Ø Ö ÒÛ Ò ÙÒ Ò Ö ÁÒ ÓÖÑ Ø Ò Ø ¹ ÙÒ Æ ØÙÖÛ Ò Ø Ò ÁÒ

Mehr

ÁÒ ÐØ Ú ÖÞ Ò ½¾ ÂĐÙÒ Ð Ò Ö ½ ¼ ½¾ º½ Ë Þ ÒØ Â Ö ½¼ Òº Öºµ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ¼ ½¾ º¾ Ë Þ ÒØ Â Ö ½½ Òº Öºµ º º

ÁÒ ÐØ Ú ÖÞ Ò ½¾ ÂĐÙÒ Ð Ò Ö ½ ¼ ½¾ º½ Ë Þ ÒØ Â Ö ½¼ Òº Öºµ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ¼ ½¾ º¾ Ë Þ ÒØ Â Ö ½½ Òº Öºµ º º ÍÖ ÒØ Ù ½¾ ¹ ÂĐÙÒ Ð Ò Ö Á ÁÁ ÁÁÁ ÁÎ ÒØÖ ÐÙÒ Ú Ö ÙÑ ÙÒ ËÙÔ ÖÙÒ Ú Ö Ò ÄÓ ÐÙÒ Ú Ö ÙÑ Ø ÍÖ ÒØ Ä Ò ÙÒ Ä Ö Ò Â Ù ÛÛÛºÙÖ ÒØ ºÓÖ ½ ÛÛÛºØÖÙØ ÓÓ ºÓÑ ¾ ½ ÁÒØ ÖÒ Ø ØØÔ»»ÛÛÛºÙÖ ÒØ ºÓÖ» º ¾ ÁÒØ ÖÒ Ø ØØÔ»»ÛÛÛºØÖÙØ ÓÓ

Mehr

Ò Ù Ù Ò Ë ØÞÚ ÒØ Ð Ó Ò ÖÓ ÐÛ Ö ÙÒ µ ÙÒ ÃÓÐ ÒÚ Ò¹ Ø Ð Ñ Ø ÖÓ ÐÛ Ö ÙÒ µ B A B A ØØ ÙÒ Ö Ø ÙÖ Ñ Ò Ð ØÖÓÑ Ò Ø Ý Ö ÙÐ Ó Ö ÔÒ ÙÑ Ø ËØ ÐÐ Ò Ø Ò Ò Ö Ø ÙÖ Ý Ö

Ò Ù Ù Ò Ë ØÞÚ ÒØ Ð Ó Ò ÖÓ ÐÛ Ö ÙÒ µ ÙÒ ÃÓÐ ÒÚ Ò¹ Ø Ð Ñ Ø ÖÓ ÐÛ Ö ÙÒ µ B A B A ØØ ÙÒ Ö Ø ÙÖ Ñ Ò Ð ØÖÓÑ Ò Ø Ý Ö ÙÐ Ó Ö ÔÒ ÙÑ Ø ËØ ÐÐ Ò Ø Ò Ò Ö Ø ÙÖ Ý Ö ËÔ ÖÖÚ ÒØ Ð Ø ÑÑØ ÎÓÐÙÑ Ò ØÖÓÑÖ ØÙÒ ËÔ ÖÖ Òµ ÖÙ Ú ÒØ Ð Ø ÑÑØ Ð Ø ÖÙ Ñ ËÝ Ø Ñ Ö Ò¹ Å Ò ÖÒ Ù ÐØ Òµ Þ Ò ËØÖÓÑÚ ÒØ Ð Ø ÑÑØ ÎÓÐÙÑ Ò ØÖÓÑ Ñ ËÝ Ø Ñ ÖÓ ÐÒ Î ÒØ Ð Ä ØÙÒ Ù ÙÖ Ò Ù ÙÒ ÚÓÒ p ËØ Ù ÖÙÒ ÙÒ ËØÖ ÑÙÒ Ö ØÙÒ

Mehr

= S 11 + S 21S 12 r L 1 S 22 r L

= S 11 + S 21S 12 r L 1 S 22 r L ÈÖ Ø ÙÑ Ö ÀÓ Ö ÕÙ ÒÞØ Ò Ö ËØÙ ÒØ Ò Ö Ð ØÖÓØ Ò Ä Ò Ö Ö Ö Ù ÖÑ Ö Ë ¹Î Ö ØÖ Ö Î Ö ÓÒ ½º º Å ¾¼½¾ Ó ÙÐ Ò Ð ØÖÓØ Ò ÙÒ ÁÒ ÓÖÑ Ø ÓÒ Ø Ò Ä Ö Ø ÀÓ ¹ ÙÒ À Ø Ö ÕÙ ÒÞØ Ò ÈÖÓ º Öº¹ÁÒ º Àº À Ù ÖÑ ÒÒ ÁÆÀ ÄÌËÎ Ê Á ÀÆÁË

Mehr

Ò Ö Ø Ö ÙØ Ø Ö Û Ø Ö ÙØ Ø Ö Ì Ö Ñ Ò Ð Ò ÈÖ ÙÒ Ì Ö ÈÖÓÑÓØ ÓÒ ÈÖÓ ÓÖ Öº ƺ Ë Ñ ØÞ ÈÖÓ ÓÖ Öº Ϻ º Ë ØØ Ö ÈÖÓ ÓÖ Öº Àº Ö ¾ º¼ º ¾ º¼ º

Ò Ö Ø Ö ÙØ Ø Ö Û Ø Ö ÙØ Ø Ö Ì Ö Ñ Ò Ð Ò ÈÖ ÙÒ Ì Ö ÈÖÓÑÓØ ÓÒ ÈÖÓ ÓÖ Öº ƺ Ë Ñ ØÞ ÈÖÓ ÓÖ Öº Ϻ º Ë ØØ Ö ÈÖÓ ÓÖ Öº Àº Ö ¾ º¼ º ¾ º¼ º ËÌÊÇÆÇÅÁ ÆÙØÞÙÒ ØÖÓÒÓÑ Ö ÈÐ ØØ Ò Ö Ú ÁÒ Ù ÙÖ Ð ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ó ØÓÖ Ö Ö Æ ØÙÖÛ Ò Ø Ò Ñ Ö È Ý Ö Å Ø Ñ Ø Æ ØÙÖÛ Ò ØÐ Ò ÙÐØØ Ö Ï Ø Ð Ò Ï Ð ÐÑ ÍÒ Ú Ö ØØ Å Ò Ø Ö ÚÓÖ Ð Ø ÚÓÒ Ê Ò Ø Ù ÐÐ Ù ÓØØÖÓÔ ½ Ò Ö Ø

Mehr

1 Die Invariantentechnik. Algorithmen mit Intervallen. s = 0; i = 0; // i <= M while (i < M) { s = s + f(i); i = i + 1 ; // i <= M.

1 Die Invariantentechnik. Algorithmen mit Intervallen. s = 0; i = 0; // i <= M while (i < M) { s = s + f(i); i = i + 1 ; // i <= M. ĐÍ ÖÐ Ò Û Ö Ó ÈÖÓ Ö ÑÑ Ò Ò Ù ÖÙÒ Ò ÒĐÙ Ø Û Öº ÐØ ÙÒ ÒÓ Ë ÐÙ ÞÙ ÖÙÒ º Ë Û Ö ÒÙÖ ÒÒ ÆÙÒ 1 Die Invariantentechnik Algorithmen mit Intervallen Ò Û Ø Å Ø Ó ÞÙÑ Ö Ø ÐÐ Ò Ö ÒØ ÖØ ÓÖÖ Ø Ö ÈÖÓ Ö ÑÑ Ø ÁÒÚ Ö ÒØ ÒØ

Mehr

Ò ÖØ Ö ÑÙÐØ Ñ Ð ÒÛ Ò ÙÒ Ò Ö Ø Ã Ö Ð ÓÖÒÖ Ò ¼ Ø ØØ Ò Ö Ø Ö ÐºÒ Ø ¾ º Å ¾¼¼½ Ù ÑÑ Ò ÙÒ Ö Ø Ñ Ø Ò Ò Ö Ð Ö ÒÓÖÑ Ò ÓØ Ò ÑÙÐØ Ñ Ð Ò Ò ÖØ Ò Ò ÙÒ Ò ÒØ Ö ÒØ ÙÒ Ò Ù Ì ÒÓÐÓ Ò ÙÖ ÔÖ Ø ¹ Ì Ø Ò Ù Ö ÙÒØ Ö ÄÙÔ Ò Ñ Òº

Mehr

ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ ½¼ ½º½ ÎÓÖÛÓÖØ ÚÓÒ Ñ Ö º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½¼ ½º¾ ÎÓÖÛÓÖØ ÚÓÒ ÓÑ Ò ÕÙ º º º º º º º

ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ ½¼ ½º½ ÎÓÖÛÓÖØ ÚÓÒ Ñ Ö º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½¼ ½º¾ ÎÓÖÛÓÖØ ÚÓÒ ÓÑ Ò ÕÙ º º º º º º º ÎÓÖ Ö ØÙÒ Ö Î ÖØ ÙÒ ÔÖ ÙÒ Ã Ò ØÐ ÁÒØ ÐÐ ÒÞ Ï Ò Ö ÔÖ ÒØ Ø ÓÒ ÙÒ Ø Ò Ò Ò Ò Ö ÏÓÖØÑ ÒÒ Ò Ö ºÛÓÖØÑ ÒÒÖÛØ ¹ Òº µ Ö Ò Ù Ò ÎÓÖ Ö ØÙÒ Ò ÚÓÒ ÓÑ Ò ÕÙ ÐÑ Ý Ö ÓÑ Ò ÕÙ ºÞ ÐÑ Ý ÖÖÛØ ¹ Òº µ ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ ½¼ ½º½

Mehr

ÒØÛ ÐÙÒ ÚÓÒ Å ØÖ Ò Ö ÅĹ Ó ÙÑ ÒØ ÓÐÐ Ø ÓÒ Ò ÔÐÓÑ Ö Ø ÍÒ Ú Ö ØØ ÊÓ ØÓ Ö ÁÒ ÓÖÑ Ø ÚÓÖ Ð Ø ÚÓÒ ÓÖ Ò Ñ Ä Ö Ë Ò Ö ¾½º ÔÖ Ð ½ Ò ÊÓ ØÓ ØÖ Ù Ö ÈÖÓ º Öº Ò Ö À Ù Ö ÈÖÓ º Öº Ð Ñ Ò Ô Öº¹ÁÒ º Å ÃÐ ØØ ØÙÑ ¾ º Þ Ñ Ö

Mehr

ß Ð ¹ ÓÜ¹Ï ÖÚ ÖÛ Ò ÙÒ Î Ö ĐÙ Ö Ø ÚÓÒ Ú Ö Ò Ò Ö Ø ÒÙØÞ Ö ÃÐ Ò ÞÙÖ ÁÒ Ø ÒØ ÖÙÒ ÖĐ Ò Ø ÅĐÓ Ð Ø Ò ÞÙÖ ÒÔ ÙÒ Ö Ò Ö Ú ÖÛ Ò Ö ß Ï ÖÚ ÖÛ Ò ÙÒ ÚÓÒ ÃÓÑÔÓÒ ÒØ Ò Ò ÃÓÑÔÓÒ ÒØ Ò Ô Þ ÐÐ ËÛ¹Ì Ð Ò Ô Þ Î Ö ÐØ Ò Ù ¹ Û Ò

Mehr

Wirtschaftlichkeit und optimaler Betrieb von KWK-Anlagen unter den neuen energiewirtschaftlichen Rahmenbedingungen

Wirtschaftlichkeit und optimaler Betrieb von KWK-Anlagen unter den neuen energiewirtschaftlichen Rahmenbedingungen Wirtschaftlichkeit und optimaler Betrieb von KWK-Anlagen unter den neuen energiewirtschaftlichen Rahmenbedingungen Bearbeitet durch Lambert Schneider Berlin, März 2000 Geschäftsstelle Freiburg Büro Berlin

Mehr

½ ÍÆÀ ĐÆÁ ÊÁÆÁËË ÁÆ ÁËÃÊÌÆ ÏÀÊËÀÁÆÄÁÀÃÁÌËÅÇÄÄÆ Ù ÑÑÒ ÙÒ ÚÓÒ ØÑÖ ÈÖ ÇÐÒÙÖ ÒÒ ÓÒÖØÖ ÙÒ Ù ÚÖ ÒÒ ËÙÐĐÙÖÒ ÞÙÖ ËØÓ Ø ÛÖ ÈÖÓÐÑØ Ö Ü ØÒÞ ÙÒĐÒÖ ÖÒ ÓÐÒ Ò ÖØÒ ÏÖ Ò¹ ÐØ ÑÓÐÐÒ ÙØÖغ ÁÒ ÓÒÖ ÛÖ Ò Ò ÖØÒ ÅÓÐÐÒ ĐÙÐØ Ò ĐØÞÙÒ

Mehr

Ê Ñ Ò¹ËÔ ØÖÓ ÓÔ Ò Ò Ö Ñ Ò ÓÒ Ð Ò Ð ØÖÓÒ Ò Ý Ø Ñ Ò ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ó ØÓÖ Ö Ö È Ý Ö ÍÒ Ú Ö ØĐ Ø À Ñ ÙÖ ÚÓÖ Ð Ø ÚÓÒ Þ Ö ÍÐÖ Ù À Ñ ÙÖ À Ñ ÙÖ ¾¼¼¼ ÙØ Ø Ö Ö ÖØ Ø ÓÒ ÙØ Ø Ö Ö ÔÙØ Ø ÓÒ ØÙÑ Ö ÔÙØ Ø ÓÒ ËÔÖ Ö

Mehr

ÔÐÓÑ Ö Ø ÍÒ Ú Ö ØØ À Ñ ÙÖ Ö ÁÒ ÓÖÑ Ø Ö Ø Ö Æ ÒÛ Ò ÙÒ Ò Ö ÁÒ ÓÖÑ Ø Ò Ø ¹ ÙÒ Æ ØÙÖÛ Ò Ø Òµ Ò ÁÌ¹Ë Ö Ø ÓÒÞ ÔØ Ö Ò Û Ò ØÐ ÒÖ ØÙÒ Ñ Ô Ð Ö ÁÒ ÓÖÑ Ø Ö ÍÒ Ú Ö ØØ À Ñ ÙÖ Ì Ð ÁÁÁ ÖÐÙØ ÖÙÒ Ò Â Ò Æ ÓÒ Ö ØÖ ¾ ¾¾ ½

Mehr

¾¼¼

¾¼¼ Ù Ù ÙÖ Å Ø Ñ Ø Å Ø Ó Ò ÙÒ Ô Ð ËÓÑÑ Ö Ñ Ø Ö ¾¼¼ ÂÓ Ä Ý ÓÐ Ô ÖØÑ ÒØ Ö ËØ Ø Ø ÙÒ Å Ø Ñ Ø Ö Ï ÖØ Ø ÙÒ Ú Ö ØØ Ï Ò ½ º ÂÙÒ ¾¼¼ ¾¼¼ Josef.Leydold@wu-wien.ac.at ÙÒ Ø ÓÒ Ò Ò Ñ Ö Ö Ò Î Ö Ð Ò ½º Ò Ø ÆÙØÞ Ò ÙÒ Ø ÓÒ

Mehr

ÅÓØ Ú Ø ÓÒ ÅÓØ Ú Ø ÓÒ ØÞØ ÐÐ ÒÞ Ð Ñ ÒØ Ö Ù Ø Ò ÆÙÒ À Ö Û Ö Ò Ö ÖÙÒ Û Ø Ò ÙÖ Ö µ ÌÓÓÐ ÒÙØÞÙÒ ÚÓÒ ËØ Ò Ö ÓÑÔÓÒ ÒØ Ò Ù ÒÑ Ö Ñ Ö Ù ËÓ ØÛ Ö Ø

ÅÓØ Ú Ø ÓÒ ÅÓØ Ú Ø ÓÒ ØÞØ ÐÐ ÒÞ Ð Ñ ÒØ Ö Ù Ø Ò ÆÙÒ À Ö Û Ö Ò Ö ÖÙÒ Û Ø Ò ÙÖ Ö µ ÌÓÓÐ ÒÙØÞÙÒ ÚÓÒ ËØ Ò Ö ÓÑÔÓÒ ÒØ Ò Ù ÒÑ Ö Ñ Ö Ù ËÓ ØÛ Ö Ø ËÓ Ø ÁÈ ÈÖÓÞ ÓÖ Ò ÙÒ Ò ØØ ËÝ Ø Ñ Ò ÖÙÒ ÈÖ Ø ÙÑ È Ö ÐÐ Ð Ê Ò Ö Ö Ø ØÙÖ Ò Ñ Û Ø ÐÐÙÐ Ö ÙØÓÑ Ø Å Ö Ê Ò Ä Ö ØÙ Ð Ö ÁÒ ÓÖÑ Ø Ê Ò Ö Ö Ø ØÙÖµ Ö Ö ¹ Ð Ü Ò Ö¹ÍÒ Ú Ö ØØ ÖÐ Ò Ò¹Æ ÖÒ Ö ÏË ¾¼½¼»½½ ÅÓØ Ú Ø ÓÒ ÅÓØ Ú

Mehr

Ä ÓÔÓÐ ¹ Ö ÒÞ Ò ¹ÍÒ Ú Ö ØØ ÁÒÒ ÖÙ ÁÒ Ø ØÙØ Ö ÁÒ ÓÖÑ Ø Ø Ò Ò Ò ÙÒ ÁÒ ÓÖÑ Ø ÓÒ Ý Ø Ñ ËÓ Ð¹Å ÃÓÒÞ ÔØ Ò È Ö ÓÒ Ð¹ÁÒ ÓÖÑ Ø ÓÒ¹Å Ò Ñ ÒعËÝ Ø Ñ Ò ÐÓÖ¹ Ö Ø ØÖ ÙØ ÚÓÒ ÏÓÐ Ò Ð Ö Ú Ò ÖÐ ÁÒÒ ÖÙ ½ º ÂÙÒ ¾¼½¾ Ù ÑÑ

Mehr

t r+1 t ÓÖ : {P[1..q] 0 q m} {P[1..q] 0 q < m} { },

t r+1 t ÓÖ : {P[1..q] 0 q m} {P[1..q] 0 q < m} { }, Ã Ô Ø Ð Ì ÜØ Ð ÓÖ Ø Ñ Ò º½ º½º½ ÖÙÒ Ö ÈÖÓ Ð Ñ ÁÒ Ñ Ã Ô Ø Ð Ø ÙÑ ÈÖÓ Ð Ñ Ö Ì ÜØ Ù Ò Ðº Ô ØØ ÖÒ Ñ Ø Ò µº ÁÑ À ÒØ Ö ÖÙÒ Ø Ø ÑÑ Ö Ò ÐÔ Ø Σ Ñ Ø Σ 2 ÞÙÑ Ô Ð {0,1} ÒÖ ÐÔ Ø Ë ÁÁ ÐÔ Ø Ö ¾ Ë ÁÁ¹ Ù Ø Ò {0,1} 8 ÒÖ

Mehr

ÎÖ ÖÙÒ ÑØÑØ ÖÙÒÐÒ ÙÒ ÖĐÙÚÖ ÖÙÒ ØÒ ÔØ ÚÓÒ ÈÖÖÖ ÄÚ ¹ÌÖÒ Åº ÈÑ º Ø Àº¹Âº Û ÐÖ ½ ÒÐØÙÒ ÙÖ ÖÙÐÖÙÒ ÙØ Ò ÎÖ ÖÙÒ ÑÖØ Ò ÙØ Ò ÄÒ ¹ ÚÖ ÖÙÒ ÙÒØÖÒÑÒ ÒÞ ÒÙ ÖØÒ Ö ØÐØÙÒ ÖÖ ÈÖÓÙØ ÖÐØÒº ÙÖ ÒÙ ÑÒ ÓÒ Ö ÐÐØĐØ Ø ØÞØ ÑĐÓÐ ÔÞ

Mehr

ÎÓÒ Ö ÖÞ ÙÒ Û Ò ØÐ Ò ÙÐØØ Ö ÍÒ Ú Ö ØØ ÞÙ Ã ÐÒ Ò ÒÓѹ Ñ Ò ÖØ Ø ÓÒº Ö Ø Ö ÙØ Ø Ö À ÖÖ ÈÖÓ º Öº ÊÓÐ È Ð Ø Ö Û Ø Ö ÙØ Ø Ö À ÖÖ È Öº Ò Ö À Ø Ù Ò Ö ØØ Ö ÙØ

ÎÓÒ Ö ÖÞ ÙÒ Û Ò ØÐ Ò ÙÐØØ Ö ÍÒ Ú Ö ØØ ÞÙ Ã ÐÒ Ò ÒÓѹ Ñ Ò ÖØ Ø ÓÒº Ö Ø Ö ÙØ Ø Ö À ÖÖ ÈÖÓ º Öº ÊÓÐ È Ð Ø Ö Û Ø Ö ÙØ Ø Ö À ÖÖ È Öº Ò Ö À Ø Ù Ò Ö ØØ Ö ÙØ ÖÛ Ø ÖØ Å Ð Ø Ò Ö ÜÔ Ö Ñ ÒØ Ö Ò Ñ È Ý ÙÒØ ÖÖ Ø ÙÖ Ò Ò ØÞ Ò Ò Ù ÒØÛ ÐØ Ò Ò Ö Ù Ò Ò Ø ØÓÖ Ö Ê ÒØ Ò ØÖ Ð Ò ÁÒ Ù ÙÖ Ð ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ó ØÓÖ Ö Ö ÖÞ ÙÒ Û Ò ØÐ Ò ÙÐØØ Ö ÍÒ Ú Ö ØØ ÞÙ Ã ÐÒ ÚÓÖ Ð Ø ÚÓÒ ÖØ Ñ

Mehr

Ø ØØÐ Ö ÐÖÙÒ À ÖÑ Ø Ú Ö Ö ÚÓÖÐ Ò ÔÐÓÑ Ö Ø Ó Ò À Ð Ö ØØ Ö ÙÒ ÒÙÖ Ñ Ø Ò Ò Ò Ò ÉÙ ÐÐ Ò ÙÒ À Ð Ñ ØØ ÐÒ Ò ÖØ Ø º Ö Ø Ø Ò Ð Ö Ó Ö ÒÐ Ö ÓÖÑ ÒÓ Ò Ö ÈÖ ÙÒ Ö ÚÓ

Ø ØØÐ Ö ÐÖÙÒ À ÖÑ Ø Ú Ö Ö ÚÓÖÐ Ò ÔÐÓÑ Ö Ø Ó Ò À Ð Ö ØØ Ö ÙÒ ÒÙÖ Ñ Ø Ò Ò Ò Ò ÉÙ ÐÐ Ò ÙÒ À Ð Ñ ØØ ÐÒ Ò ÖØ Ø º Ö Ø Ø Ò Ð Ö Ó Ö ÒÐ Ö ÓÖÑ ÒÓ Ò Ö ÈÖ ÙÒ Ö ÚÓ Ö ÁÒ ÓÖÑ Ø Ø Ë Ö Ø Ò Ö ÁÒ ÓÖÑ Ø ÓÒ Ø Ò Ö ÙÒ Ó Ö¹ÁÒ Ø ØÙØ Ö Ë Ö ÁÒ ÓÖÑ Ø ÓÒ Ø ÒÓÐÓ ËÁÌ ÈÖÓ º Öº Ð Ù ÖØ Ì Ò ÍÒ Ú Ö ØØ ÖÑ Ø Ø ÔÐÓÑ Ö Ø Ë Ö ÐÙ ØÓÓØ ¹ÃÓÑÑÙÒ Ø ÓÒ Ò ¹ Ó¹ËÞ Ò Ö Ò ÂÙÐ Ò Ë ØØ ¾º ÅÖÞ ¾¼¼ ØÖ Ù Ö

Mehr

ÈÖÓº Öº ØÑÖ ÈÖ ÈÖÚØ ÃÖÒÒÚÖ ÖÙÒ ÈÃε ÏË ¾¼¼½»¼¾ Áº ÊØÐ ÙÒ ÚÖ ÖÙÒ ÑØÑØ ÖÙÒÐÒ Ö ÈÃÎ Áº½º ĐÕÙÚÐÒÞÔÖÒÞÔ Ö ÈÃÎ Áº¾º ÃÓÔ ĐÒ ÙÒ ËÒÔÖÓ Ð Áº º ÆØØÓÔÖĐÑ Áºº ÖÙØØÓÔÖĐÑ ÁÁº ØÖ ÒÔ ÙÒÒ ÁÁº½º ÐØÖÙÒ ÖĐÙ ØÐÐÙÒ ÁÁº¾º ØÒ

Mehr

Betriebssysteme (BTS)

Betriebssysteme (BTS) Ä ÙÒ ÞÞ Ò ÞÙÖ ÐÙ Ð Ù ÙÖ ØÖ Ý Ø Ñ Ì˵ º ÂÙÐ ¾¼½½ Æ Ñ ÎÓÖÒ Ñ Å ØÖ ÐÒÙÑÑ Ö ËØÙ Ò Ò À ÒÛ ÌÖ Ò Ë ÞÙ Ö Ø Ù ÐÐ Ò ÐØØ ÖÒ Ò Ð Ð Ð ØØ µ Á Ö Ò Æ Ñ Ò Á Ö Ò ÎÓÖÒ Ñ Ò ÙÒ Á Ö Å ØÖ ÐÒÙÑÑ Ö Òº Ä ÙÒ Ò Ó Ò Ò Ò ÒÒ Ò Ò Ø Û

Mehr

)XQGDPHQWDOH &3$ /DVHU QP 6WHXHUXQJ 'DWHQDXIQDKPH 9HU] JHUXQJV VWUH NH /R N,Q :HL OL KWN YHWWH KURPDWRU 3KRWRGLRGH )LOWHU,) =HUKD NHU 0RQR 3UREH

)XQGDPHQWDOH &3$ /DVHU QP 6WHXHUXQJ 'DWHQDXIQDKPH 9HU] JHUXQJV VWUH NH /R N,Q :HL OL KWN YHWWH KURPDWRU 3KRWRGLRGH )LOWHU,) =HUKD NHU 0RQR 3UREH Ã Ô Ø Ð ¾ ÜÔ Ö Ñ ÒØ ÐÐ Å Ø Ó Ò ¾º½ ÒÐ ØÙÒ ÖÓÑÓÔÖÓØ Ò Û Ò Ò Ø Ù Ö ÓÐÓ Ê Ø ÓÒ ÙÖ Ä Ø¹ ÓÖÔØ ÓÒ ÒÞÙØÖ Òº Ù Ñ ÖÙÒ Û Ö Ò Ä Ø ØÖ Ð ÞÙÖ ÒÖ ÙÒ ÈÖÓØ Ò ÙÒ ÞÙÑ ËØ ÖØ Ö Ê Ø ÓÒ Ò Ø Øº Ñ Ø Ú Ö ÙÒ Ò Ò ÖÙÒ Ð ØÖÓÒ Ò Ù Ø

Mehr

Ø ÑÑÙÒ Ö Ä Ò Ö ØØ ÙÒ Ò Ö Ù ÙÒ ÚÓÒ Ð Ð ÑÓ ÙÐ Ò Ñ Ð ØÖÓÑ Ò Ø Ò Ã ÐÓÖ Ñ Ø Ö Ñ ÇÅÈ Ë˹ ÜÔ Ö Ñ ÒØ ÔÐÓÑ Ö Ø ÚÓÒ ÓÑ Ó ¹Å Ö Ó ÓØ ÁÒ Ø ØÙØ Ö Ã ÖÒÔ Ý ÂÓ ÒÒ ÙØ Ò Ö ¹ÍÒ Ú Ö ØØ Å ÒÞ ¼º ÔÖ Ð ¾¼¼ ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ

Mehr

Stefan Michaelis E S. Lehrstuhl für Elektronische Systeme und Vermittlungstechnik. Lehrstuhl für Künstliche Intelligenz

Stefan Michaelis E S. Lehrstuhl für Elektronische Systeme und Vermittlungstechnik. Lehrstuhl für Künstliche Intelligenz ß ÔÐÓÑ Ö Ø ß Ì Ò Ò Ø Å Ò Ò ÞÙÖ Ò ÐÝ ÚÓÒ Ì Ð ÓÑÑÙÒ Ø ÓÒ Ò ØÞÛ Ö Ò Stefan Michaelis Þ Ñ Ö ¾¼¼¼ E S V Lehrstuhl für Künstliche Intelligenz Lehrstuhl für Elektronische Systeme und Vermittlungstechnik Prof.

Mehr

c 2 = a 2 + b 2 ab c 2 = h 2 + (a b 2 )2 = 3 4 b2 + a 2 ab b2 = a 2 + b 2 abº c 2 = a 2 + b 2 ab 2 h 2 = 1 2 b2 ÙÒ h = 2

c 2 = a 2 + b 2 ab c 2 = h 2 + (a b 2 )2 = 3 4 b2 + a 2 ab b2 = a 2 + b 2 abº c 2 = a 2 + b 2 ab 2 h 2 = 1 2 b2 ÙÒ h = 2 Â Ö Ò ¾ À Ø Ë ÔØ Ñ Ö ¾¼¼ Ò Ñ Ø Ñ Ø Ø Ö Ø Ö Ë Ð Ö ÒÒ Òµ ÙÒ Ä Ö Ö ÒÒ Òµ ½ ¼ Ö Ò Ø ÚÓÒ Å ÖØ Ò Å ØØÐ Ö ÒÛÖØ Ö Ù Ò ÚÓÑ ÁÒ Ø ØÙØ Ö Å Ø Ñ Ø Ò Ö ÂÓ ÒÒ ÙØ Ò Ö ¹ÍÒ Ú Ö ØØ ÞÙ Å ÒÞ Ä Ä Óµ Ö Ò Ð Ö Ä Óµ Ö Ò Ù Ò Ù Ò

Mehr

ÁÒ ØØÙØ ĐÙÖ ÍÑÛÐØÛ Ò ØÒ Ö ÀÓ ÙÐ ÎØ ÁÒØ ØÓÒ ÙÒ ÊÓÒ ØÖÙØÓÒ ÚÓÒ ĐÙÒ Ò ÄÙØÐÖÒ ÑØØÐ ÙÒ ÖÖ ÓÒ ØÖÒØ ÁÒÙÙÖÐ ÖØØÓÒ ÞÙÖ ÖÐÒÙÒ Ö ÓØÓÖ Ö ÆØÙÖÛ Ò ØÒ Öº ÖÖº Òغµ ÒÒÓÑÑÒ ÚÓÑ Ö ½ Ö ÀÓ ÙÐ ÎØ ÎÓÖÐØ Ñ ½º º ½ ÚÓÒ ÌÓÑ ÀÒÖ

Mehr

t r+1 t ÓÖ : {P[1..q] 0 q m} {P[1..q] 0 q < m} { },

t r+1 t ÓÖ : {P[1..q] 0 q m} {P[1..q] 0 q < m} { }, Ã Ô Ø Ð Ì ÜØ Ð ÓÖ Ø Ñ Ò º½ º½º½ ÖÙÒ Ö ÈÖÓ Ð Ñ ÁÒ Ñ Ã Ô Ø Ð Ø ÙÑ ÈÖÓ Ð Ñ Ö Ì ÜØ Ù Ò Ðº Ô ØØ ÖÒ Ñ Ø Ò µº ÁÑ À ÒØ Ö ÖÙÒ Ø Ø ÑÑ Ö Ò ÐÔ Ø Σ Ñ Ø Σ 2 ÞÙÑ Ô Ð {0,1} ÒÖ ÐÔ Ø {,,, Ì} ½ Ë ÁÁ Ò Ð Ö Ó Ñ Ø ½¾ Ò Ö ØÑ

Mehr

¾¾ Ö ÙÖ Ã Ô Ò Ù Ö¹ÁÒ Ø ØÙØ Ö ËÓÒÒ ÒÔ Ý Ë Ö Ø Ö Ø ÙÒ Î ÖÛ ÐØÙÒ º Ⱥ à ÑÑ Ö Íº ÊÝÒ ÖÞ Û Î ÖÛ ÐØÙÒ Ð ØÙÒ µ Àº ËØÖÓ º ÈÖ Ø Ò Ò Åº Ò Ù Ö ½º½¾ºµº Ì Ò È Ö ÓÒ

¾¾ Ö ÙÖ Ã Ô Ò Ù Ö¹ÁÒ Ø ØÙØ Ö ËÓÒÒ ÒÔ Ý Ë Ö Ø Ö Ø ÙÒ Î ÖÛ ÐØÙÒ º Ⱥ à ÑÑ Ö Íº ÊÝÒ ÖÞ Û Î ÖÛ ÐØÙÒ Ð ØÙÒ µ Àº ËØÖÓ º ÈÖ Ø Ò Ò Åº Ò Ù Ö ½º½¾ºµº Ì Ò È Ö ÓÒ Â Ö Ö Ø ¾¼¼ Å ØØ ÐÙÒ Ò Ö ØÖÓÒÓÑ Ò ÐÐ Ø ¾¼¼ µ ¾¾ ¾ ½ Ö ÙÖ º Öº Ã Ô Ò Ù Ö¹ÁÒ Ø ØÙØ Ö ËÓÒÒ ÒÔ Ý Ë Ò ØÖ ½¼ Ö ÙÖ Ì Ðº ¼ ½µ ½ ¹¼ Ü ¼ ½µ ½ ¹½½½ ¹Å Ð Ö ºÙÒ ¹ Ö ÙÖ º ÏÏÏ ØØÔ»»ÛÛÛº ºÙÒ ¹ Ö ÙÖ º Ù Ò Ø ÐÐ Ñ Ç ÖÚ ØÓÖ

Mehr

9 Dynamische Programmierung (Tabellierung)

9 Dynamische Programmierung (Tabellierung) 9 (Tabellierung) PrinzipºÊ ÙÖ ÓÒ ÒÑ Ø ĐÙ ÖÐ ÔÔ Ò ÒÌ Ð Ù ÒÛ Ö Ò 9.1 Grundlagen Ì ÐÐ ÖÙÒ Ö ÖÄĐÓ ÙÒ Ò Ù Û ÖØ Ø ÙÑÛ Ö ÓÐØ ÆÞ ÒØ Ö ÙÖ Ý Ø Ñ Ø ÙÖ Ð Ù Ò ÖÌ Ð Ù ÒÙÒ Ö ÒÙÒ ÒÞÙÚ ÖÑ Òº Ì ÐÐ Ò ĐÓÒÒ Ò Ø Ø Ø ÖÁÒ Ü Ö

Mehr

ÍÒÚÖ ØØ ÐÐ ÁÒØÖÒÖ ÖØ Ö ÌÒ Ò ÙÐØØ ØÐÙÒ ÁÒÓÖÑØÓÒ ØÒ ËÖÔØ ÞÙÖ ÎÓÖÐ ÙÒ ÌÒ ÁÒÓÖÑØ Á ÅÖÓ ÀÐÖØ ËÓÑÑÖ Ñ ØÖ ¾¼¼½ ËØÒ ½º ÔÖÐ ¾¼¼½µ Ê Ë ¼ ʳ Ê Ê Ë³ Ë Å ØÖ ¼ ʳ Ê Ê É Ë Ë³ É ËÐÚ ÍÒÚÖ ØØ ÐÐ ÈÓ Ø ½¼ ¼½ ½ ¼½ ÐÐ ÎÓÖÛÓÖØ

Mehr

ÙÐØĐ Ø ĐÙÖ È Ý ÙÒ ØÖÓÒÓÑ ÊÙÔÖ Øßà ÖÐ ßÍÒ Ú Ö ØĐ Ø À Ð Ö ÔÐÓÑ Ö Ø Ñ ËØÙ Ò Ò È Ý ÚÓÖ Ð Ø ÚÓÒ Ö Ø Ò Å Ö Ù ÄÙ Ó»ÊÙÑĐ Ò Ò ½ Æ ¹ÁÒ Ö ÖÓØ È ÓØÓÑ ØÖ ÚÓÒ ÉÙ Ö Ò Ñ Ø Þ ÔÐÓÑ Ö Ø ÛÙÖ ÚÓÒ Ö Ø Ò Å Ö Ù ĐÙ ÖØ Ò Ö Ä Ò

Mehr

ÔÐÓÑ Ö Ø Ú ÀÓÖÒ Ö ½ ÌÀ ÖÑ Ø Ø Ö ÁÒ ÓÖÑ Ø ØÖ Ù Ö ÈÖÓ º Ϻ À Ò ÔÐ ÁÒ ÓÖÑ Ø ÈÖÓ º ĺ ÈÓÒ Ö ØÞ ÈĐ Ó Öº ź À Ö À ÖÙÒ ÞĐÙ Ö ÁÒ ÓÖÑ Ø Á ß Ø Ò ÐÝ ĐÍ ÙÒ ØÖ ß ÒÖ ÙÒ Ò ÞÙÖ Æ Ù ÓÒÞ ÔØ ÓÒº Ú ÖĐÓ«ÒØÐ Ø Ð À ¹ Ö Ø Ö Ø

Mehr

Ê Ö ÒØ ÈÖÓ º Öº ÏÓÐ Ò ÖØÑ Ö ÃÓÖÖ Ö ÒØ ÈÖÓ º Öº Â Ò ÖÐØ Ì Ö ÈÖÓÑÓØ ÓÒ ½ º ¼ º ¾¼¼

Ê Ö ÒØ ÈÖÓ º Öº ÏÓÐ Ò ÖØÑ Ö ÃÓÖÖ Ö ÒØ ÈÖÓ º Öº Â Ò ÖÐØ Ì Ö ÈÖÓÑÓØ ÓÒ ½ º ¼ º ¾¼¼ ÍÐØÖ ÐØ Ø ÖÓÒÙ Ð Ö ¹ÅÓÐ Ð ÎÓÒ Ö ÙÐØØ Ö Å Ø Ñ Ø ÙÒ È Ý Ö ÓØØ Ö Ï Ð ÐÑ Ä Ò Þ ÍÒ Ú Ö ØØ À ÒÒÓÚ Ö ÞÙÖ ÖÐ Ò ÙÒ Ö Ó ØÓÖ Ö Æ ØÙÖÛ Ò Ø Ò ¹ Öº Ö Öº Ò Øº ¹ Ò Ñ Ø ÖØ Ø ÓÒ ÚÓÒ Ôк¹È Ý º Ì ÓÖ Ø Ò À ÒÒ Ò Ö ÓÖ Ò Ñ ¾

Mehr

Ë ÑÙÐ Ø Ú ÍÒØ Ö Ù ÙÒ À Ò ÓÚ Ö Î Ö ÐØ Ò ÚÓÒ ÅÓ Ð ÁÈ ÞÙ Đ ØÞÐ Ñ ÃÓÒØ ÜØØÖ Ò Ö ËØ Ò Ê Ò ÓÖ ÙÒ ¹ ÙÒ Ä Ö Ò Ø ÁÒ ÓÖÑ Ø ÎÁÁÁ ÈÖÓ º Öº Â Ò Ê Ò Ö ÓÑÑÙÒ Ø ÓÒ Å Ò ÐÐ Ù Ø ÓÒ Ë ÑÙÐ Ø Ú ÍÒØ Ö Ù ÙÒ À Ò ÓÚ Ö Î Ö ÐØ Ò

Mehr

f : N R a 1 = = 2 a 2 = = 1 a 3 = = 6 a 4 = = 13 a 5 = = 22

f : N R a 1 = = 2 a 2 = = 1 a 3 = = 6 a 4 = = 13 a 5 = = 22 Å Ø Ñ Ø º Ë Ñ Ø Ö ÁÆÀ ÄÌËÎ Ê Á ÀÆÁË ½ ÁÒ ÐØ Ú ÖÞ Ò ½ ÓÐ Ò Ä ½º½ Ö Ö Ö ÓÐ ½Ä º º º º º º º º º º º º º º º º º º º º º º º º º ½º¾ ÜÔÐ Þ Ø ÙÒ Ö ÙÖ Ú Ö ÙÒ ÚÓÒ ÓÐ Ò Ä º º º º º º º º º ½º ËÙÑÑ Ò¹ ÙÒ ÈÖÓ Ù

Mehr

ÈÓØ Ñ ØÖÓÔ Ý Ð ÁÒ Ø ØÙØ ½ È Ö ÓÒ Ð ÙÒ Ù Ø ØØÙÒ ½º½ È Ö ÓÒ Ð Ø Ò ÚÓÑ ½º½¾º¾¼¼½ Ï Ò ØÐ Ö ÎÓÖ Ø Ò ÈÖÓ º Öº ÃÐ Ù º ËØÖ Ñ Ö Ñ Ò ØÖ Ø Ú Ö ÎÓÖ Ø Ò È Ø Ö º ËØ

ÈÓØ Ñ ØÖÓÔ Ý Ð ÁÒ Ø ØÙØ ½ È Ö ÓÒ Ð ÙÒ Ù Ø ØØÙÒ ½º½ È Ö ÓÒ Ð Ø Ò ÚÓÑ ½º½¾º¾¼¼½ Ï Ò ØÐ Ö ÎÓÖ Ø Ò ÈÖÓ º Öº ÃÐ Ù º ËØÖ Ñ Ö Ñ Ò ØÖ Ø Ú Ö ÎÓÖ Ø Ò È Ø Ö º ËØ Â Ö Ö Ø ¾¼¼½ Å ØØ ÐÙÒ Ò Ö ØÖÓÒÓÑ Ò ÐÐ Ø ¾¼¼¾µ ½ ÈÓØ Ñ ØÖÓÔ Ý Ð ÁÒ Ø ØÙØ ÈÓØ Ñ ¼ ÐÐ Ñ Ò ËØ ÖÒÛ ÖØ Ð Ö Ò Ö ËØ ÖÒÛ ÖØ ½ ¹½ ¾ ÈÓØ Ñ Ì Ð ÓÒ ¼ ½µ ¼ Ì Ð Ü ¼ ½µ ¾ ¹Å Ð Ö ØÓÖ Ôº ÁÒØ ÖÒ Ø ØØÔ»»ÛÛÛº Ôº Ù Ò Ø ÐÐ Ò

Mehr

Spaltung. Fusion. E/M [MeV/amu] 2 H. 1 10 100 Massenzahl M. 62 Ni 3 H 1 H

Spaltung. Fusion. E/M [MeV/amu] 2 H. 1 10 100 Massenzahl M. 62 Ni 3 H 1 H ÈÐ Ñ Ô Ý ÙÒ Ù ÓÒ ÓÖ ÙÒ Ì Ð ÁÁ Ù ÓÒ ÓÖ ÙÒ ÚÓÒ Ê ÐÔ ÙÜ ÍÒ Ú Ö ØĐ Ø Ù ÙÖ ËË ¾¼¼¾ Ë Ö ÔØ ÖØ Ù Ñ ÎÓÖÐ ÙÒ Ö ÔØ ÚÓÒ À ÖÖÒ À ÖØÑÙØ Ó Ñ ĐÙÖ Ò Ö ÙÒ Ð ÍÒØ Ö ØĐÙØÞÙÒ ÑĐÓ Ø Ñ Ù Ñ Ï Ò Òº Ã Ô Ø Ð Ø À ÖÖ ÊÙ ÓÐ Æ Ù ÞÙÖ

Mehr

ÃÓÒÞÔØÓÒ Ò ÙØ Ò ØÒÒÜ ĐÙÖ ÓÖ ÙÒ ÞÛ Çµ ÀÖÑÒÒ ĐÓÔÔÐ ÀÒÖ ËĐÙØÞ Ù ÓÒ ÔÔÖ ÆÖº ½¾ ÃÙÖÞ ÙÒ ĐÙÖ ÏÓÖÐÏÏ ØÙÐÐ ÎÖ ÓÒ ÂÒÙÖ ½ ÊĐÙÖÒ ØØ Ò ÓÐÒ Ö ÁÒ ØØÙØ ĐÙÖ ÒØ ÙÒ ØÓÖ ÙÒ ÍÒØÖÒÑÒ ÓÖ ÙÒ ÍÒÚÖ ØĐØ ÃÖÐ ÖÙ ÌÀµ ÈÓ Ø ¼ ½¾ ÃÖÐ

Mehr

Superharte, unterschiedlich gradierte PVD-Kohlenstoffschichten mit und ohne Zusätze von Titan und Silizium

Superharte, unterschiedlich gradierte PVD-Kohlenstoffschichten mit und ohne Zusätze von Titan und Silizium Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Wissenschaftliche Berichte FZKA 6740 Superharte, unterschiedlich gradierte PVD-Kohlenstoffschichten mit und ohne Zusätze von Titan und Silizium

Mehr

Strategische Standortplanung in Reverse-Logistik-Netzwerken - Eine empirische und modellgestützte Analyse

Strategische Standortplanung in Reverse-Logistik-Netzwerken - Eine empirische und modellgestützte Analyse Sven Mühlthaler Strategische Standortplanung in Reverse-Logistik-Netzwerken - Eine empirische und modellgestützte Analyse Dargestellt für die Amaturenaufarbeitung kassel university press Die vorliegende

Mehr

ÁÒ Ø Ú ÖÞ Ò ½ Ò ÖÙÒ ½ ¾ Å ÒÞ Ö ÌÖ Ø Ùѹ ¹ ÜÔ Ö Ñ ÒØ ¾º½ ÌÖ Ø Ùѹ ¹ËÔ ØÖÙÑ º º º º º º º º º º º º º º º º º º º º º º º º º ¾º¾ ÜÔ Ö Ñ ÒØ Ò Å ÒÞ º º º º º º º º º º º º º º º º º º º º º º º º ½½ ¾º¾º½

Mehr

ÖÕÙÒÞÚÖÚÖÙÒ Ò ¹ËÒÐ Ö ß Ò ÍÎ¹Ä Ö Ý ØÑ ¾ ÒÑ Ö ½ ˹ È ÄÒ Ò ÉÙ ÐÖ ÔÐÓÑÖØ ÚÓÒ ÅÖØÒ Ë ÁÒ ØØÙØ ĐÙÖ ÈÝ ÂÓÒÒ ÙØÒÖ¹ÍÒÚÖ ØĐØ ÅÒÞ ÅÒÞ Ò ¾º ÙÙ Ø ¾¼¼ ½º ÙØØÖ ÈÖÓº Öº ÂÓÒ ÏÐÞ ¾º ÙØØÖ ÁÒÐØ ÚÖÞÒ ½ ÒÐØÙÒ ½ ¾ ÌÓÖ Ö ÖÕÙÒÞÚÖÓÔÔÐÙÒ

Mehr

½º ÒÐ ØÙÒ ¾º Î Ö Ð Ò Ð Ø ÓÒ Ð Ò Ö Ö Ê Ö ÓÒ º ÍÒ Ú Ö Ø ÒÓÒÔ Ö Ñ ØÖ Ê Ö ÓÒ º Ø ÒØÖ Ò ÓÖÑ Ø ÓÒ º ÊÓ Ù Ø Ë ØÞÙÒ º Ø Ú Ñ Ô Ö Ñ ØÖ Ê Ö ÓÒ ½

½º ÒÐ ØÙÒ ¾º Î Ö Ð Ò Ð Ø ÓÒ Ð Ò Ö Ö Ê Ö ÓÒ º ÍÒ Ú Ö Ø ÒÓÒÔ Ö Ñ ØÖ Ê Ö ÓÒ º Ø ÒØÖ Ò ÓÖÑ Ø ÓÒ º ÊÓ Ù Ø Ë ØÞÙÒ º Ø Ú Ñ Ô Ö Ñ ØÖ Ê Ö ÓÒ ½ ÆÓÒÔ Ö Ñ ØÖ Ê Ö ÓÒ ÙÒØ Ö Î ÖÛ Ò ÙÒ Ý Ò Ö Î Ö Ð Ò Ð Ø ÓÒ ¹ źËÑ Ø ² ʺÃÓ Ò ¹ ½º ÒÐ ØÙÒ ¾º Î Ö Ð Ò Ð Ø ÓÒ Ð Ò Ö Ö Ê Ö ÓÒ º ÍÒ Ú Ö Ø ÒÓÒÔ Ö Ñ ØÖ Ê Ö ÓÒ º Ø ÒØÖ Ò ÓÖÑ Ø ÓÒ º ÊÓ Ù Ø Ë ØÞÙÒ º Ø Ú Ñ Ô Ö Ñ ØÖ

Mehr

Ò Ö Ò Ð Ò Ö º Ä Ð ØÖÓÒ ÐÙÒ Ñ ØØ Ð Ñ ÁÒØ ÖÒ Ø ĐÍ Ö Ø ÙÒ Û ÖØÙÒ ØÙ ÐÐ Ö Î Ö Ö Ò ÙÒØ Ö ÖĐÙ Ø ÙÒ ÚÓÒ ÃÖ Ø Ö Ò Ö Ë Ö Ø ÙÒ ÙÒ Ø ÓÒ Ð ØĐ Ø ËØÙ Ò Ö Ø ÎÓÖ Ð Ø ÞÙÖ ÙØ ØÙÒ ÙÖ Ã Ø Ö Ò Ë Ö Þ Ñ Ö ½ ÍÆÁÎ ÊËÁÌ Đ Ì À Å

Mehr

ÁÈÄÇÅ Ê ÁÌ Â ¹Ï Ðع ÒÒ Ñ Ò Ö ÄÓ ÔÖÓ Ö ÑÑ ÖÙÒ Ð È Ö Ñ ÞÙÖ Ï Ò Ú Ö Ö ØÙÒ Ö Ë Ñ ÒØ Ï ÚÓÒ ÌÓ Å ØÞÒ Ö Ò Ö Ø Ñ ½º Ë ÔØ Ñ Ö ¾¼¼ Ñ ÁÒ Ø ØÙØ Ö Ò Û Ò Ø ÁÒ ÓÖÑ Ø ÙÒ ÓÖÑ Ð Ö ÙÒ Ú Ö Ö Ò Ö ÍÒ Ú Ö ØØ Ã ÖÐ ÖÙ ÌÀµ Ê Ö

Mehr

Å ØØ ÐÙÒ Ò Ö ØÖÓÒÓÑ Ò ÐÐ Ø ¾¼¼¼µ ½¼ ¾ Ì Ò Ò ÁÒ Ø ØÙØ Ö ØÖÓÒÓÑ ÙÒ ØÖÓÔ Ý Áº Ø ÐÙÒ ØÖÓÒÓÑ Ï Ð Ù Ö ËØÖ ¾¼ Ì Ò Ò Ì Ðº ¼ ¼ ½µ¾ ¹ ¾ Ü ¼ ¼ ½µ¾ ¹ ¹Å Ð Æ Ò Ñ Ø

Å ØØ ÐÙÒ Ò Ö ØÖÓÒÓÑ Ò ÐÐ Ø ¾¼¼¼µ ½¼ ¾ Ì Ò Ò ÁÒ Ø ØÙØ Ö ØÖÓÒÓÑ ÙÒ ØÖÓÔ Ý Áº Ø ÐÙÒ ØÖÓÒÓÑ Ï Ð Ù Ö ËØÖ ¾¼ Ì Ò Ò Ì Ðº ¼ ¼ ½µ¾ ¹ ¾ Ü ¼ ¼ ½µ¾ ¹ ¹Å Ð Æ Ò Ñ Ø Å ØØ ÐÙÒ Ò Ö ØÖÓÒÓÑ Ò ÐÐ Ø ¾¼¼¼µ ¼ Ì Ò Ò ÍÒ Ú Ö ØØ Ì Ò Ò ÁÒ Ø ØÙØ Ö ØÖÓÒÓÑ ÙÒ ØÖÓÔ Ý ¼ ÐÐ Ñ Ò ÁÒ Ø ØÙØ Ö ØÖÓÒÓÑ ÙÒ ØÖÓÔ Ý ÛÙÖ Ñ º  ÒÙ Ö ½ Ö Ò Ø ÙÖ Ù ÑÑ ÒÐ ÙÒ Ö Ö Ò ÒÖ ØÙÒ Ò ØÖÓÒÓÑ ÁÒ Ø ØÙØ Ä Ö¹ ÙÒ ÓÖ¹

Mehr

ÙÐØØ ÁÒ Ò ÙÖ Û Ò Ø Ò ÙÒ ÁÒ ÓÖÑ Ø ÔÐÓÑ Ö Ø Ö Ì Ñ ÃÓÒ ÓÐ ÖÙÒ Ò Á̹ËÝ Ø Ñ ÞÙÖ ÍÒØ Ö Ø ØÞÙÒ ÐÐ ÖØ Ö Ö Ö ËÓ ØÛ Ö Ò ØÐ ØÙÒ Ò ÚÓÖ Ð Ø ÙÖ ÌÓÖ Ø Ò ÁÖÐÒ Ö ¾¼¼ ÌÓÖ Ø Ò ÁÖÐÒ Ö ÓÑ Ö Ø Ö ÖÚ Ï Ö Ø ÙÒØ Ö Ö Ö Ø Ú ÓÑÑÓÒ

Mehr