Physik I Einführung in die Physik Mechanik

Größe: px
Ab Seite anzeigen:

Download "Physik I Einführung in die Physik Mechanik"

Transkript

1 Physik I Einführung in die Physik Mechanik Winter 15/16, Prof. Thomas Müller, IEKP, KIT Aufgabenblatt ; Übung am 11.November (Mittwoch) 1. Sportwagen (a) Jeder Summand muss die Einheit m s haben, daher E 1 = m s und E = m s (b) Zeit- Weg Gesetz: s(t 1 ) = t 1 t v(t) = t 1 t.96(te t E 1 ) = [.96(1t E t E 1)] t1 t mit t = und t 1 = 5 s(5s) = m Allgemein: s(t) =.96(1t m s t m s ) Mit der Bedingung s() = folgt die additive Konstante ist gleich. (c) Der Test endet, wenn das Fahrzeug wieder die Geschwindigkeit erreicht hat. Dies ist zu demjenigen Zeitpunkt t der Fall, für den gilt: v(t) = und t (t = gleich Startzeitpunkt). v(t) = 1t m s t m s = t = oder t = s t = s s(s) =.96(1(s) m s (s) m s ) = 18m (d) Beschleunigung a(t) = v(t) =.96( m s t m s ) a(5s) = v(t) =.96( m s t m s ) = 9.6 m s. Bungee Jumper (a) Unter der Annahme dass sich der Bungee Jumper nur fallen lässt und nicht abspringt (d. h. v t= = m s ), kann man die Formel s = 1 g t verwenden und nach t auflösen: s t = g = 1 m 9.81 m = 4.5 s s (b) Hierfür müssen wir zunächst die Geschwindigkeit berechnen, die der Bungee Jumper nach 1m freiem Fall hat: v = v + g t = m s m s 4.5 s = 44.4 m s = v a Standard: mit s end = a t + v t + s und v end = at + v und s s = s = 15m ergibt sich t = v end v a s = (v end v ) a + v(v end v ) a (mit V end = ) s = v v a a = v s Zahlen eingesezt: a = (44.4 m s ) 15 m = 65.5 m s Das Minuszeichen gibt an, dass die Beschleunigung entgegengesetzt der Fallrichtung wirkt. Anders herum: man nimmt eine Beschleunigung von an und beachtet später das Vorzeichen:s = a t ; v = at t = v a s = a v a jetzt muss aber das Vorzeichen beachtet werden. Ganz trivial: was vorher in 1m beschleunigt wurde, wird jetzt in 15m abgebremst a = 1 15 g = 65, 4 m s : ist sogar am Besten, da hier keine Rundungsfehler enstehen, welche quadratische weitergeführt werden. 1

2 . Hollywoodstunt (Oder: Für die weitere Berechnung eignet sich die Formel v = v + a x, wobei v = m s die Endgeschwindigkeit, v = 44.4 m s die Anfangsgeschwindigkeit und x = 15 m der Bremsweg ist: a = v v x = (44.4 m s ) 15 m = 65.5 m s Das Minuszeichen gibt an, dass die Beschleunigung entgegengesetzt der Fallrichtung wirkt.) (a) Als erstes muss man die Geschwindigkeitsangabe in eine brauchbare Einheit (SI) umrechnen: v = 15 km h 1 m = 15 6 s = m s Bei der Berechnung der Flugbahn des Autos kann man von zwei getrennten Bewegungen ausgehen: In der horizontalen Richtung führt das Auto eine Bewegung mit konstanter Geschwindigkeit aus (v,x = m s ), während es in der vertikalen Richtung eine gleichmässige Beschleunigung aus der Ruhelage (v,y = m s ) erfährt. Um den Aufprallpunkt zu bestimmen, muss man zunächst die Falldauer berechnen, die sich aus dem vertikalen freien Fall ergibt: t fall = y g = 8 m 9.81 m s = 4.4 s Nun kann man berechnen, wie weit sich das Auto in dieser Zeit in der vertikalen Richtung von den Klippen entfernt hat: x = v,x t fall = m s 4.4 s = m Das Auto landet also m von den Klippen entfernt auf dem 8 m tiefer gelegenen Pazifik. (b) Der Schall pflanzt sich auf dem direkten Weg zwischen Aufschlagspunkt und den Beobachtern fort. Dabei legt er die Diagonale zwischen diesen beiden Punkten zurück: d = x + y = (168.5 m) + (8 m) = m Hierbei wird folgende Zeit benötigt 4. Bahnkurve der Fliege t = d = m v schall m =.6 s s (a) Überlagert werden eine Kreisbewegung in xy Ebene [x(t) +y(t) = r = const,für r 1 = r ] mit einer gleichmäßig beschleunigten (a = g 4.5 m s ) Bewegung in (-z) Richtung. Die Bahnkurve beschreibt eine Spirale, die immer steiler wird, um die z Achse. (b) t g =.1ms 1.5ms =.4s ωt g = 1s 1.4s =.4

3 Ortsbahn der Fliege, Achtung z-achse ist gestreckt um den Beschleunigungseffekt besser zu zeigen. (g anstatt g/4) r cos ωt s(t) = r sin ωt 1 g v(t) = ṡ(t) = rω sin ωt rω cos ωt g 4 t a(t) = v(t) = s(t) = ; v(t g ) = rω cos ωt rω sin ωt g 4 ; a(t g ) =, 4 m s, 1 m s, 1 m s, 1 m s, 4 m s, 5 m s (c) v(t) = v(t) = (rω) + ( g 4 t) v(t g ) =, m s a(t) = a(t) = (rω ) + ( g 4 ) a(t g ) = 6, 6 m s a T (t) = d v g = t 16 (rω) +( g 4 t) a T (t g ) = 1, 77 m s (d) Logische Überlegung: Kreis: r=konstant; φ linear, z bleibt gleich! Rechnung: r = (r cos ωt) + (r sin ωt) = r cos ωt + sin ωt = r φ(t) = arctan r sin ωt r cos ωt = arctan tan ωt = ωt z(t) = z(t) = 1 g (e) Für r 1 r ergibt sich eine Ellipse, r ist dann nicht mehr konstant, auch nicht bei den Zylinderkoordinaten. (f) Aufgabe (a) bis (e) in Zylinderkoordinaten! Optional!!!! Gleiche Bahnkurve Logische Überlegung: Kreis: r=konstant; φ linear, z bleibt gleich! Rechnung: r = (r cos ωt) + (r sin ωt) = r cos ωt + sin ωt = r φ(t) = arctan r sin ωt r cos ωt = arctan tan ωt = ωt

4 z(t) = z(t) = 1 g ṙ = dr = ; φ(t) = d(φ(t)) = ω; z(t) = d(z(t)) = g 4 t r = d r = ; φ(t) = d (φ(t)) = ; z(t) = d (z(t)) = g 4 r(t) = r; φ(t) = ω t; z(t) = 1 g Durch die Transformation in Zylinderkoordinaten wird die Phi-Komponente, sie versteckt sich in der r-komponente. (Siehe Bild, und Merziger- Wirth: Repetitorium der Höheren Mathematik) u r = r(t), u φ =, u z = z(t) s(t) = u r u φ u z mit den Einheitsvektoren: e r = cos φ sin φ e r = d e φ = d = r(t) z(t), e φ = cos φ(t) sin φ(t) sin φ(t) cos φ(t) = r 1 g sin φ cos φ und e z = sin φ = cos φ = cos φ(t) sin φ(t) 1 mit φ (Kettenregel) = φ e φ, = φ e r Die z Komponente ist komplett unabhängig von den Polarkoordinaten zu behandeln, deshalb kümmern wir uns im Folgenden nur um r und φ, und führen z später wieder hinzu. Jeder Vektor u ist als Linearkombination darstellbar: Orthogonale Basis s-vektor im Bild ist s als dargestellt. u = u r e r + u φ e φ (insbesondere z.b. Vektor vom Ursprung zum bestimmten Punkt (Fliege)) s = r e r + e φ Wegen s = s(t) sind r, φ Funktionen von t. mit s = r e r folgt mit der Produktregel: s = ṙ e r + r e r = ṙ e r + r ( φ e φ. ) In Polarkoordinaten also: s ṙ = r φ nochmaliges Differenzieren gibt s = r e r + ṙ e r + ṙ φ e φ + r φ e φ + r φ e φ = r e r + ṙ φ e φ + ṙ φ e φ + r φ e φ r φ e r 4

5 = ( r r φ ) e r + (r φ + ṙ φ) e φ Die Polarkoordinaten von s sind s = ( r r φ r φ + ṙ φ ) Geschwindigkeit Nun das Ganze in vollen Zylinderkoordinaten: ṙ s = r φ ż s sind s r r φ = r φ + ṙ φ z Eingesetzt: Geschwindigkeit: s = rω ; v = s = v(t) = (rω) + ( g g 4 t 4 t) ; v(t g ) =, m s Beschleunigung: s = rω g 4 ; a = s = a(t) = (rω ) + ( g 4 ) a(t g ) = 6, 6 m s a T (t) = d v = a T (t g ) = 1, 77 m s g t 16 (rω) +( g 4 t) (Benutzt man einfach das Linienelement funktioniert die Sache noch bis zur Geschwindigkeit, bricht jedoch bei der Beschleunigung zusammen, bzw. funktioniert auch, wenn man das Linienelement konsequent auch mit den Einheitsvektoren ableitet, der Rechenweg ist ähnlich wie oben Linienelement: d s = dρ e ρ + ρdφ e φ + dz e z 5

6 s(t) = r(t) φ(t) z(t) = r ωt 1 g = dr er + rdφ e φ Ableitung nach t: d s Hier kommt ein r zur φ-komponente. v(t) = ṡ(t) = r ω g 4 t v = (r ω) + g 16 t m s + dz ez v(t g ) =, m s a(t) = v(t) = s(t) = g 4 a(t) = a(t g ) = g 4 =, 5 m s a T (t) = d v g = t a T (t g ) = 1, 77 m s 16 (r ω) +( g 4 t) Lexikon: Zylinderkoordinatensystem Das Zylinderkoordinatensystem ist eine Mischung aus kartesischen und Polarkoordinaten im dreidimensionalen Raum. Zylinderkoordinaten sind die Projektion des Ortsvektors r auf die z Achse und die Polarkoordinaten (ρ, ϕ) in der zur z Achse senkrechten Ebene, also die Länge ρ des Lotes auf die z Achse und der Winkel, den dieses Lot mit der positiven x Achse bildet. x = ρ cos φ y = ρ sin φ z = z } ρ = x + y φ = arctan y x z = z Linienelement: d r = dρ e ρ + ρdφ e φ + dz e z Volumenelement: dv = ρdρdφdz Anmerkungen: Anstelle von ρ wird meistens r benutzt! Die reinen Transformationen gelten nur für s(t). Für die Geschwindigkeit muss das Linienelement beachtet werden. Zylinderkoordinaten!!! Stubenfliege (Große S., Gemeine S.), v. a. in menschl. Siedlungen weltweit verbreitete, etwa 1 cm lange Echte Fliege; Körper vorwiegend grau mit vier dunklen Längsstreifen auf der Rückenseite des Thorax; als Krankheitsüberträger 6

7 gefährl. Insekt, dessen Weibchen jährl. bis zu Eier an zerfallenden organ. Substanzen ablegt, wo sich auch die Larven entwickeln. (c) Meyers Lexikonverlag. Sehr Gemeine Stubenfliege Übungsleiter: Frank Hartmann, IEKP, CN, KIT Tel.: ; Mobil - immer Tel.: ; ab und zu Frank.Hartmann@kit.edu www-ekp.physik.uni-karlsruhe.de/ hartmann/mechanik.htm 7

Betrachtet man einen starren Körper so stellt man insgesamt sechs Freiheitsgrade der Bewegung

Betrachtet man einen starren Körper so stellt man insgesamt sechs Freiheitsgrade der Bewegung Die Mechanik besteht aus drei Teilgebieten: Kinetik: Bewegungsvorgänge (Translation, Rotation) Statik: Zusammensetzung und Gleichgewicht von Kräften Dynamik: Kräfte als Ursache von Bewegungen Die Mechanik

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Punkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf einem

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Prof. Dr. Wandinger 1. Kinematik des Punktes TM 3 1.2-1 2. Räumliche Bewegung Wenn die Bahn des Punkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort

Mehr

Theoretische Physik I Mechanik Blatt 1

Theoretische Physik I Mechanik Blatt 1 PD Dr. S. Mertens S. Falkner, S. Mingramm Theoretische Physik I Mechanik Blatt 1 WS 27/28 8. 1. 27 1. Parabelbahn. Ein Punkt bewege sich auf der Kurve, die durch die Gleichung y 2 = 4ax + 4a 2 a > beschrieben

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Wenn die Bahn des Massenpunkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort im Raum zu bestimmen. Es muss ein Ortsvektor angegeben werden. Prof.

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 2, Montag nachmittag Differentiation und Integration von Vektorfunktionen Der Ortsvektor: Man kann

Mehr

Kapitel 1. Kinematik des Punktes

Kapitel 1. Kinematik des Punktes Kapitel 1 Kinematik des Punktes 1 2 Kinematik Die Lage eines Punkte P im Raum wird durch den Ortsvektor r(t) beschrieben. Aus der Verschiebung dr des Punktes P in eine Nachbarlage während der Zeit dt folgt

Mehr

Experimentalphysik 1

Experimentalphysik 1 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 16/17 Lösung 1 Ronja Berg (ronja.berg@tum.de) Katharina Scheidt (katharina.scheidt@tum.de) Aufgabe 1: Superposition

Mehr

1.4 Krummlinige Koordinaten I

1.4 Krummlinige Koordinaten I 15 1.4 Krummlinige Koordinaten I (A) Motivation zur Definition verschiedener Koordinatensysteme Oft ist es sinnvoll und zweckmäßig Koordinatensysteme zu verwenden, die sich an der Geometrie und/oder Symmetrie

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Prof. Dr. Wandinger 1. Kinematik des Punktes TM 3 1.2-1 2. Räumliche Bewegung Wenn die Bahn des Punkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort

Mehr

VHS Floridsdorf elopa Manfred Gurtner Was ist der Differentialquotient in der Physik?

VHS Floridsdorf elopa Manfred Gurtner Was ist der Differentialquotient in der Physik? Was ist der Differentialquotient in der Physik? Ein Auto fährt auf der A1 von Wien nach Salzburg. Wir können diese Fahrt durch eine Funktion Y(T) beschreiben, die zu jedem Zeitpunkt T (Stunden oder Sekunden)

Mehr

2. Vorlesung Wintersemester

2. Vorlesung Wintersemester 2. Vorlesung Wintersemester 1 Mechanik von Punktteilchen Ein Punktteilchen ist eine Abstraktion. In der Natur gibt es zwar Elementarteilchen (Elektronen, Neutrinos, usw.), von denen bisher keine Ausdehnung

Mehr

Technische Mechanik 3

Technische Mechanik 3 Technische Mechanik 3 2. Kinematik eines Massenpunktes 2.1. Grundbegriffe, kartesische Koordinaten 2.2. Geradlinige Bewegung 2.3. Ebene Bewegung, Polarkoordinaten 2.4. räumliche Bewegung, natürliche Koordinaten

Mehr

Blatt 1. Kinematik- Lösungsvorschlag

Blatt 1. Kinematik- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 011 Blatt 1. Kinematik- Lösungsvorschlag Aufgabe 1.1. Schraubenlinie Die

Mehr

1. Eindimensionale Bewegung

1. Eindimensionale Bewegung 1. Eindimensionale Bewegung Die Gesamtheit aller Orte, die ein Punkt während seiner Bewegung einnimmt, wird als Bahnkurve oder Bahn bezeichnet. Bei einer eindimensionalen Bewegung bewegt sich der Punkt

Mehr

Kapitel 2. Kinematik des Massenpunktes. 2.1 Einleitung. 2.2 Massenpunkt. 2.3 Ortsvektor

Kapitel 2. Kinematik des Massenpunktes. 2.1 Einleitung. 2.2 Massenpunkt. 2.3 Ortsvektor Kapitel 2 Kinematik des Massenpunktes 2.1 Einleitung In diesem Kapitel behandeln wir die Bewegung von einem oder mehreren Körpern im Raum. Wir unterscheiden dabei zwischen Kinematik und Dynamik. Die Kinematik

Mehr

1. Eindimensionale Bewegung

1. Eindimensionale Bewegung 1. Eindimensionale Bewegung Die Gesamtheit aller Orte, die ein Punkt während seiner Bewegung einnimmt, wird als Bahnkurve oder Bahn bezeichnet. Bei einer eindimensionalen Bewegung bewegt sich der Punkt

Mehr

I. Mechanik. Die Lehre von den Bewegungen und den Kräften. I.1 Kinematik Die Lehre von den Bewegungen. Physik für Mediziner 1

I. Mechanik. Die Lehre von den Bewegungen und den Kräften. I.1 Kinematik Die Lehre von den Bewegungen. Physik für Mediziner 1 I. Mechanik Die Lehre von den Bewegungen und den Kräften I.1 Kinematik Die Lehre von den Bewegungen Physik für Mediziner 1 Mechanik I: Bewegung in einer Dimension Idealisierung: Massenpunkt ( Punktmasse)

Mehr

1 Die drei Bewegungsgleichungen

1 Die drei Bewegungsgleichungen 1 Die drei Bewegungsgleichungen Unbeschleunigte Bewegung, a = 0: Hier gibt es nur eine Formel, nämlich die für den Weg, s. (i) s = s 0 + v t s ist der zurückgelegte Weg, s 0 der Ort, an dem sich der Körper

Mehr

Brückenkurs Physik SS11. V-Prof. Oda Becker

Brückenkurs Physik SS11. V-Prof. Oda Becker Brückenkurs Physik SS11 V-Prof. Oda Becker Überblick Mechanik 1. Kinematik (Translation) 2. Dynamik 3. Arbeit 4. Energie 5. Impuls 6. Optik SS11, BECKER, Brückenkurs Physik 2 Beispiel Morgens um 6 Uhr

Mehr

Lösung III Veröentlicht:

Lösung III Veröentlicht: 1 Projektil Bewegung Lösung Ein Ball wird von dem Dach eines Gebäudes von 80 m mit einem Winkel von 80 zur Horizontalen und mit einer Anfangsgeschwindigkeit von 40 m/ s getreten. Sei diese Anfangsposition

Mehr

Lösung II Veröffentlicht:

Lösung II Veröffentlicht: 1 Momentane Bewegung I Die Position eines Teilchens auf der x-achse, ist gegeben durch x = 3m 30(m/s)t + 2(m/s 3 )t 3, wobei x in Metern und t in Sekunden angeben wird (a) Die Position des Teilchens bei

Mehr

Fallender Stein auf rotierender Erde

Fallender Stein auf rotierender Erde Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 4 vom 13.05.13 Abgabe: 27. Mai Aufgabe 16 4 Punkte allender Stein auf rotierender Erde Wir lassen einen Stein der Masse m in einen

Mehr

Krummlinige Koordinaten

Krummlinige Koordinaten Krummlinige Koordinaten Einige Koordinatensysteme im R 3 haben wir bereits kennengelernt : x, x 2, x 3... kartesische Koordinaten r, φ, x 3... Zylinderkoordinaten r, φ, ϑ... Kugelkoordinaten Sind andere

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Massenpunkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf

Mehr

Kinematik des Massenpunktes

Kinematik des Massenpunktes Technische Mechanik II Kinematik des Massenpunktes Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes Eindimensionale

Mehr

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus

Mehr

1.2 Räumliche Bewegung. Aufgaben

1.2 Räumliche Bewegung. Aufgaben Technische Mechanik 3 1.2-1 Prof. Dr. Wandinger Aufgabe 1 1.2 Räumliche Bewegung Aufgaben Ein Flugzeug fliegt mit der Geschwindigkeit v F gegenüber der Luft einen angezeigten Kurs von 30. Der Wind weht

Mehr

Übungen zu Theoretischer Mechanik (T1)

Übungen zu Theoretischer Mechanik (T1) Arnold Sommerfeld Center Ludwig Maximilians Universität München Prof. Dr. Viatcheslav Mukhanov Sommersemester 08 Übungen zu Theoretischer Mechanik T Übungsblatt 8, Besprechung ab 04.06.08 Aufgabe 8. Lineare

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 Ferienkurs Experimentalphysik 1 Julian Seyfried Wintersemester 2014/2015 1 Seite 2 Inhaltsverzeichnis 1 Klassische Mechanik des Massenpunktes 3 1.1 Gleichförmig beschleunigte Bewegungen................

Mehr

Experimentalphysik I: Mechanik

Experimentalphysik I: Mechanik Ferienkurs Experimentalphysik I: Mechanik Wintersemester 15/16 Übung 1 - Lösung Technische Universität München 1 Fakultät für Physik 1 Stein fällt in Brunnen Ein Stein fällt in einen Brunnen. Seine Anfangsgeschwindigkeit

Mehr

c) y = ln( 2x + 5) d) y = 2) Verwandeln Sie die gegebene implizite Funktion in die explizite Form y(x):

c) y = ln( 2x + 5) d) y = 2) Verwandeln Sie die gegebene implizite Funktion in die explizite Form y(x): Übungen zur Einführung in die Physikalischen Rechenmethoden I (Mathematische Grundlagen für das Physikstudium I) WS /, 6 VO+UE Univ. Prof. Dr. Christoph Dellago ) Finden Sie die Umkehrung von folgenden

Mehr

(no title) Ingo Blechschmidt. 13. Juni 2005

(no title) Ingo Blechschmidt. 13. Juni 2005 (no title) Ingo Blechschmidt 13. Juni 2005 Inhaltsverzeichnis 0.1 Tests............................. 1 0.1.1 1. Extemporale aus der Mathematik...... 1 0.1.2 Formelsammlung zur 1. Schulaufgabe..... 2 0.1.3

Mehr

Lösung II Veröentlicht:

Lösung II Veröentlicht: 1 Momentane Bewegung I Die Position eines Teilchens auf der x-achse ist gegeben durch x = 6m 60(m/s)t + 4(m/s 2 )t 2, wobei x in Metern t in Sekunden ist (a) Wo ist das Teilchen zur Zeit t= 0 s? (2 Punkte)

Mehr

31. Kurven in Ebene und Raum

31. Kurven in Ebene und Raum 31. Kurven in Ebene und Raum Für ebene Kurven (also Kurven im R gibt es mehrere Darstellungsmöglichkeiten: implizite Darstellung : F (x, y = explizite Darstellung : y = f(x oder x = g(y Parameterdarstellung

Mehr

Nachklausur 2003 Physik I (Mechanik)

Nachklausur 2003 Physik I (Mechanik) Institut für Experimentelle Kernphysik WS2003, 8-10-03, 10 00 13 00 Nachklausur 2003 Physik I (Mechanik) Priv. Dozent Dr. M. Erdmann, Dr. G. Barker Name/Vorname : Matrikelnummer : Fachsemester : Übungsgruppe

Mehr

PW2 Grundlagen Vertiefung. Kinematik und Stoÿprozesse Version

PW2 Grundlagen Vertiefung. Kinematik und Stoÿprozesse Version PW2 Grundlagen Vertiefung Kinematik und Stoÿprozesse Version 2007-09-03 Inhaltsverzeichnis 1 Vertiefende Grundlagen zu den Experimenten mit dem Luftkissentisch 1 1.1 Begrie.....................................

Mehr

Mathematische Einführung

Mathematische Einführung Lehrstuhl für Technische Elektrophysik Technische Universität München Übungen zu "Elektrizitätslehre" (Prof. Wachutka) Mathematische Einführung Die vorliegende Einführung in die Mathematik zur Vorlesung

Mehr

Theoretische Mechanik

Theoretische Mechanik Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 008 Theoretische Mechanik 4. Übung Lösungen 4. Spezielle Kraftgesetze Lösen Sie die

Mehr

Klassische Theoretische Physik I WS 2013/ Wegintegrale ( = 50 Punkte)

Klassische Theoretische Physik I WS 2013/ Wegintegrale ( = 50 Punkte) Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 213/214 Prof. Dr. J. Schmalian Blatt 2 Dr. P. P. Orth Abgabe und Besprechung 8.11.213 1. Wegintegrale 1 +

Mehr

Physik I Musterlösung 2

Physik I Musterlösung 2 Physik I Musterlösung 2 FS 08 Prof. R. Hahnloser Aufgabe 2.1 Flugzeug im Wind Ein Flugzeug fliegt nach Norden und zwar so dass es sich zu jedem Zeitpunkt genau über einer Autobahn befindet welche in Richtung

Mehr

Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3

Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3 Differenziation und Integration von Vektorfunktionen Der Ortsvektor: Man kann einen Punkt P im Raum eindeutig durch die

Mehr

2. Kinematik. Inhalt. 2. Kinematik

2. Kinematik. Inhalt. 2. Kinematik 2. Kinematik Inhalt 2. Kinematik 2.1 Modell Punktmasse 2.2 Mittlere Geschwindigkeit (1-dimensional) 2.3 Momentane Geschwindigkeit (1-dimensional) 2.4 Beschleunigung (1-dimensional) 2.5 Bahnkurve 2.6 Bewegung

Mehr

Winter 2015/2016, Prof. Thomas Müller, IEKP, KIT. Aufgabenblatt 8; Übung am 16.Dezember (Mittwoch)

Winter 2015/2016, Prof. Thomas Müller, IEKP, KIT. Aufgabenblatt 8; Übung am 16.Dezember (Mittwoch) Winter 15/16, Prof. Thomas Müller, IEKP, KIT Aufgabenblatt 8; Übung am 16.Dezember (Mittwoch) 1. Kettenkarussel Auf dem Jahrmarkt sind die Shuttles der Attraktion Shuttle in die Unendlichkeit an 4 m langen

Mehr

Übungen zu Experimentalphysik 1 für MSE

Übungen zu Experimentalphysik 1 für MSE Physik-Department LS für Funktionelle Materialien WS 2017/18 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Dr. Neelima Paul, Sebastian Grott, Lucas Kreuzer,

Mehr

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik Karlsruher Institut für Technologie Institut für Analysis Priv.-Doz. Dr. P. C. Kunstmann Dipl.-Math. Sebastian Schwarz SS 6.4.6 Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Mehr

Physik 1 Zusammenfassung

Physik 1 Zusammenfassung Physik 1 Zusammenfassung Lukas Wilhelm 31. August 009 Inhaltsverzeichnis 1 Grundlagen 3 1.1 Mathe...................................... 3 1.1.1 Einheiten................................ 3 1. Trigonometrie..................................

Mehr

Probeklausur Modul P1a: Einführung in die Klassische Mechanik und Wärmelehre 8. Januar 2010

Probeklausur Modul P1a: Einführung in die Klassische Mechanik und Wärmelehre 8. Januar 2010 WS 2009/2010 Probeklausur Modul P1a: Einführung in die Klassische Mechanik und Wärmelehre 8. Januar 2010 Nachname, Vorname... Matrikel-Nr.:... Studiengang:... Aufgabe 1 2 3 4 5 6 7 8 9 Summe maximale 5

Mehr

ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang

ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang ETH Zürich Musterlösungen asisprüfung Sommer 14 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang 1. a I. I n 1 1 e r dr e r 1 e 1. 1 r n e r dr r n e r 1 n r n 1 e r dr e ni n 1, für n 1. b Wegen der

Mehr

Grundlagen der Physik 1 Lösung zu Übungsblatt 2

Grundlagen der Physik 1 Lösung zu Übungsblatt 2 Grundlagen der Physik Lösung zu Übungsblatt 2 Daniel Weiss 23. Oktober 29 Aufgabe Angaben: v F = 4 km h α = 58 β = 95 v W = 54 km h Abbildung : Skizze zu Aufgabe a Wie aus Abbildung leicht ersichtlich

Mehr

Zylinderkoordinaten 1 E1. Ma 2 Lubov Vassilevskaya

Zylinderkoordinaten 1 E1. Ma 2 Lubov Vassilevskaya Zylinderkoordinaten E E E3 Berechnung in beliebigen krummlinigen Koordinaten Die Koordinaten sind durch die Beziehungen definiert: x x u, v, w, y y u, v, w, z z u, v, w Für sie sollen stetige partielle

Mehr

Übungen zu Physik I für Naturwissenschaftler Serie 1 Musterlösungen

Übungen zu Physik I für Naturwissenschaftler Serie 1 Musterlösungen Übungen zu Physik I für Naturwissenschaftler Serie 1 Musterlösungen Denys Sutter, 25. September 217 Allgemeine Fragen 1. Dimensionsanalyse ist eine nützliche Methoe sich avon zu überzeugen, ass eine physikalische

Mehr

Tutorium Physik 1. Kinematik, Dynamik

Tutorium Physik 1. Kinematik, Dynamik 1 Tutorium Physik 1. Kinematik, Dynamik WS 15/16 1.Semester BSc. Oec. und BSc. CH 56 KINEMATIK, DYNAMIK (II) 2.16 Bungee-Sprung von der Brücke: Aufgabe (***) 57 Beim Sprung von der Europabrücke wird nach

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 213 Übung 1 - Lösung Technische Universität München 1 Fakultät für Physik 1 Relaxation Geben Sie die Lösung der Differentialgleichung für die Relaxation

Mehr

Solutions I Publication:

Solutions I Publication: WS 215/16 Solutions I Publication: 28.1.15 1 Vektor I 4 2 Ein Objekt A befindet sich bei a = 5. Das zweite Objekt B befindet sich bei b = 4. 2 3 (a) Die Entfernung von Objekt A zum Ursprung ist die Länge

Mehr

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ. Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2017 Vorlesung 1 (mit freundlicher Genehmigung von Merlin Mitschek und Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis

Mehr

PN1 - Physik 1 für Chemiker und Biologen Prof. J. Lipfert

PN1 - Physik 1 für Chemiker und Biologen Prof. J. Lipfert PN1 - Physik 1 für Chemiker und Biologen Prof. J. Lipfert WS 2018/19 Übungsblatt 4 Lösung Übungsblatt 4 Lösung Aufgabe 1 Bungee-Jump revisited. Weil es einigen Menschen so gut gefällt von der Europabrücke

Mehr

1.2 Räumliche Bewegung. Aufgaben

1.2 Räumliche Bewegung. Aufgaben Technische Mechanik 3 1.-1 Prof. Dr. Wandinger Aufgabe 1 1. Räumliche Bewegung Aufgaben Ein Flugzeug fliegt mit der Geschwindigkeit v F gegenüber der Luft einen angezeigten Kurs von 30. Der Wind weht mit

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 213 Übung 2 - Lösung Technische Universität München 1 Fakultät für Physik 1 Schräger Wurf Ein Massepunkt der Masse m werde mit der Anfangsgeschwindigkeit

Mehr

2. Kinematik. Inhalt. 2. Kinematik

2. Kinematik. Inhalt. 2. Kinematik 2. Kinematik Inhalt 2. Kinematik 2.1 Grundsätzliche Bewegungsarten 2.2 Modell Punktmasse 2.3 Mittlere Geschwindigkeit (1-dimensional) 2.4 Momentane Geschwindigkeit (1-dimensional) 2.5 Beschleunigung (1-dimensional)

Mehr

Bewegung und Skelettmechanik

Bewegung und Skelettmechanik Bewegung und Skelettmechanik Inst.f.Med.Physik & Biostatistik Grundlagen der Medizinischen Physik 1 Bezugssysteme Unsere Zeit Inst.f.Med.Physik & Biostatistik Grundlagen der Medizinischen Physik 2 Bezugssysteme

Mehr

E1 Mechanik Lösungen zu Übungsblatt 2

E1 Mechanik Lösungen zu Übungsblatt 2 Ludwig Maimilians Universität München Fakultät für Physik E1 Mechanik en u Übungsblatt 2 WS 214 / 215 Prof. Dr. Hermann Gaub Aufgabe 1 Drehbewegung einer Schleifscheibe Es werde die Schleifscheibe (der

Mehr

Übungsblatt 9. a) Wie groß ist der Impuls des Autos vor und nach der Kollision und wie groß ist die durchschnittliche Kraft, die auf das Auto wirkt?

Übungsblatt 9. a) Wie groß ist der Impuls des Autos vor und nach der Kollision und wie groß ist die durchschnittliche Kraft, die auf das Auto wirkt? Aufgabe 32: Impuls Bei einem Crash-Test kollidiert ein Auto der Masse 2000Kg mit einer Wand. Die Anfangsund Endgeschwindigkeit des Autos sind jeweils v 0 = (-20m/s) e x und v f = (6m/s) e x. Die Kollision

Mehr

Übung zu Mechanik 3 Seite 7

Übung zu Mechanik 3 Seite 7 Übung zu Mechanik 3 Seite 7 Aufgabe 7 Gegeben ist der skizzierte Brückenträger aus geschweißten Flachstählen. Er wird im ungünstigsten Lastfall durch die Schnittgrößen max N 1, max Q 3 und max M 2 beansprucht.

Mehr

2. Kinematik. Inhalt. 2. Kinematik

2. Kinematik. Inhalt. 2. Kinematik 2. Kinematik Inhalt 2. Kinematik 2.1 Arten der Bewegung 2.2 Mittlere Geschwindigkeit (1-dimensional) 2.3 Momentane Geschwindigkeit (1-dimensional) 2.4 Beschleunigung (1-dimensional) 2.5 Bahnkurve 2.6 Bewegung

Mehr

Physik A3. 2. Mechanik

Physik A3. 2. Mechanik Physik A3 Prof. Dieter Suter WS 02 / 03 2. Mechanik 2.1 Kinematik 2.1.1 Grundbegriffe Die Mechanik ist der klassischste Teil der Physik, sie umfasst diejenigen Aspekte die schon am längsten untersucht

Mehr

Kapitel 4. Mehrfachintegrale. 4.1 Erinnerung an Integrationsrechnung. Geg.: Funktion f : I R, I R ein Intervall, zunächst: f(x) > 0 x I.

Kapitel 4. Mehrfachintegrale. 4.1 Erinnerung an Integrationsrechnung. Geg.: Funktion f : I R, I R ein Intervall, zunächst: f(x) > 0 x I. Kapitel 4 Mehrfachintegrale 4.1 Erinnerung an Integrationsrechnung 4.1.1 estimmtes Integral als Fläche Geg.: Funktion f : I R, I R ein Intervall, zunächst: f(x) > 0 x I. Ges.: Fläche F zwischen dem Graphen

Mehr

Theoretische Physik 1 (Mechanik) Aufgabenblatt 3 Lösung

Theoretische Physik 1 (Mechanik) Aufgabenblatt 3 Lösung Technische Universität München Fakultät für Physik Ferienkurs Theoretische Physik 1 (Mechanik) SS 218 Aufgabenblatt 3 Lösung Daniel Sick Maximilian Ries 1 Drehimpuls und Energie im Kraftfeld Für welche

Mehr

VHS Floridsdorf elopa Manfred Gurtner Was ist der Differentialquotient in der Physik?

VHS Floridsdorf elopa Manfred Gurtner Was ist der Differentialquotient in der Physik? Was ist der Differentialquotient in der Physik? Ein Auto fährt auf der A1 von Wien nach Salzburg. Wir können diese Fahrt durch eine Funktion s(t) beschreiben, die zu jedem Zeitpunkt t (Stunden oder Sekunden)

Mehr

Übungen zu Experimentalphysik 1 für MSE

Übungen zu Experimentalphysik 1 für MSE Physik-Department LS für Funktionelle Materialien WS 2014/15 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Daniel Moseguí González, Pascal Neibecker, Nitin

Mehr

2. Kinematik. 2.1 Modell Punktmasse

2. Kinematik. 2.1 Modell Punktmasse 2. Kinematik 2.1 Modell Punktmasse 2.22 Mittlere Geschwindigkeit (1-dimensional) 2.3 Momentane Geschwindigkeit (1-dimensional) 2.4 Beschleunigung (1-dimensional) 2.5 Bahnkurve 2.6 Bewegung in 3 Dimensionen

Mehr

2 Kinematik eines Massenpunkts in 2D und 3D

2 Kinematik eines Massenpunkts in 2D und 3D 2 Kinematik eines Massenpunkts in 2D und 3D Wir wollen die räumliche Bewegung eines Massenpunkts (Fliege im Zimmer, geworfener Stein, Planet im Sonnensystem, Stern in einem dichten Sternhaufen, etc.) mathematisch

Mehr

Brückenkurs Höhere Mathematik

Brückenkurs Höhere Mathematik Vorkurse der Hochschule Aalen Brückenkurs Höhere Mathematik Aufgabensammlung März 209 Das Grundlagenzentrum (GLZ) wird aus Mitteln des Bundesministeriums für Bildung und Forschung (BMBF) unter dem Förderkennzeichen

Mehr

1 Vorlesungen: und Vektor Rechnung: 1.Teil

1 Vorlesungen: und Vektor Rechnung: 1.Teil 1 Vorlesungen: 4.10.005 und 31.10.005 Vektor Rechnung: 1.Teil Einige in der Physik auftretende Messgrößen sind durch eine einzige Zahl bestimmt: Temperatur T K Dichte kg/m 3 Leistung P Watt = J/s = kg

Mehr

Test 2 Musterlösung. Name, Nummer: Datum: 17. Juni 2017

Test 2 Musterlösung. Name, Nummer: Datum: 17. Juni 2017 Test 2 Musterlösung Brückenkurs Physik donat.adams@fhnw.ch www.adams-science.org Name, Nummer: Datum: 17. Juni 2017 1. Citroën 2CV C5H817 Ein elektrifizierter Döschwo (Citroën 2CV) überholt mit 202.73

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 1 - Lösung Technische Universität München 1 Fakultät für Physik 1 Kreisbewegung Ein Massepunkt bewege sich auf einer Kreisbahn mit der konstanten Geschwindigkeit

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdepartment E13 WS 2011/12 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2016 Vorlesung 1 (mit freundlicher Genehmigung von Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 1 Mathematische

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06 Übungen zu: Theoretische Physik I klassische Mechanik W 13 Tobias Spranger - Prof. Tom Kirchner WS 005/06 http://www.pt.tu-clausthal.de/qd/teaching.html. Dezember 005 Übungsblatt 7 Lösungsvorschlag 4 Aufgaben,

Mehr

I.6.3 Kepler-Problem. V ( x ) = G Nm 1 m 2. (I.91a) mit dem Potential. . (I.91b)

I.6.3 Kepler-Problem. V ( x ) = G Nm 1 m 2. (I.91a) mit dem Potential. . (I.91b) 38 Newton sche Mechanik I.6.3 Kepler-Problem Die Newton sche Gravitationskraft zwischen zwei Massenpunkten mit Massen m 1, m 2 ist eine konservative Zentralkraft, gegeben durch mit dem Potential F ( x

Mehr

Mathematische Kurven sind uns aus den verschiedensten Zusammenhängen vertraut. Wir stellen hier kurz die wichtigsten Begriffe zusammen.

Mathematische Kurven sind uns aus den verschiedensten Zusammenhängen vertraut. Wir stellen hier kurz die wichtigsten Begriffe zusammen. 10.1. Ebene Kurven Mathematische Kurven sind uns aus den verschiedensten Zusammenhängen vertraut. Wir stellen hier kurz die wichtigsten Begriffe zusammen. Parameterdarstellungen einer Kurve sind stetige

Mehr

KOMPETENZHEFT ZU STAMMFUNKTIONEN

KOMPETENZHEFT ZU STAMMFUNKTIONEN KOMPETENZHEFT ZU STAMMFUNKTIONEN 1. Aufgabenstellungen Aufgabe 1.1. Finde eine Funktion F (x), die F (x) = f(x) erfüllt. a) f(x) = 5 x 2 2 x + 8 e) f(x) = 1 + x x 2 b) f(x) = 1 x4 10 f) f(x) = e x + 2

Mehr

Kapitel 1 PUNKTMECHANIK LERNZIELE INHALT. Körper. Masse

Kapitel 1 PUNKTMECHANIK LERNZIELE INHALT. Körper. Masse Kapitel 1 PUNKTMECHANIK LERNZIELE Definition der physikalischen Begriffe Körper, Masse, Ort, Geschwindigkeit, Beschleunigung, Kraft. Newtons Axiome Die Benutzung eines Bezugssystems / Koordinatensystems.

Mehr

Bewegung des Körpers im Gravitationsfeld der Erde

Bewegung des Körpers im Gravitationsfeld der Erde Bewegung des Körpers im Gravitationsfeld der Erde Galileo Galilei - Fallversuche V 0 = 0 1564-1642 V 1 V 2 Hammer and Feather Quelle: Youtube Freier Fall Ein fallender Körper wird durch die Gravitation

Mehr

Klassische und Relativistische Mechanik

Klassische und Relativistische Mechanik Klassische und Relativistische Mechanik Othmar Marti 31. 10. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik

Mehr

1. Grundlagen der ebenen Kinematik

1. Grundlagen der ebenen Kinematik Lage: Die Lage eines starren Körpers in der Ebene ist durch die Angabe von zwei Punkten A und P eindeutig festgelegt. Die Lage eines beliebigen Punktes P wird durch Polarkoordinaten bezüglich des Bezugspunktes

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13 Prof. C. Greiner, Dr. H. van Hees Sommersemester 014 Übungen zur Theoretischen Physik Lösungen zu Blatt 13 Aufgabe 51: Massenpunkt auf Kugel (a) Als generalisierte Koordinaten bieten sich Standard-Kugelkoordinaten

Mehr

einer Raumkurve, wobei t als Zeitparameter interpretiert wird. w( t ) beschreibt also den kinematischen Kurvendurchlauf (κ ι ν ε µ α = Bewegung).

einer Raumkurve, wobei t als Zeitparameter interpretiert wird. w( t ) beschreibt also den kinematischen Kurvendurchlauf (κ ι ν ε µ α = Bewegung). 10.4. Raumkurven Kinematik Wir betrachten eine zweimal differenzierbare Parameterdarstellung w( t) x( t ) y( t ) z( t ) einer Raumkurve, wobei t als Zeitparameter interpretiert wird. w( t ) beschreibt

Mehr

Vorkurs Mathematik für Ingenieur Innen WS 2018/2019 Übung 8

Vorkurs Mathematik für Ingenieur Innen WS 2018/2019 Übung 8 Prof. Dr. J. Pannek Dynamics in Logistics Vorkurs Mathematik für Ingenieur Innen WS 8/9 Übung 8 Aufgabe : Integration a) Berechnen Sie die folgenden Integrale: i) 4x + ) dx ii) 8 3 x dx iii) 3 x3 ) dx

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Fakultät für Physik Wintersemester 2016/17 Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Dr. Andreas K. Hüttel Blatt 4 / 9.11.2016 1. May the force... Drei Leute A, B, C ziehen

Mehr

ein geeignetes Koordinatensystem zu verwenden.

ein geeignetes Koordinatensystem zu verwenden. 1.13 Koordinatensysteme (Anwendungen) Man ist immer bemüht, für die mathematische Beschreibung einer wissenschaftlichen Aufgabe ( Chemie, Biologie,Physik ) ein geeignetes Koordinatensystem zu verwenden.

Mehr