Übersicht. Künstliche Intelligenz: 18. Lernen aus Beobachtungen Frank Puppe 1

Größe: px
Ab Seite anzeigen:

Download "Übersicht. Künstliche Intelligenz: 18. Lernen aus Beobachtungen Frank Puppe 1"

Transkript

1 Übersicht I Künstliche Intelligenz II Problemlösen III Wissen und Schlußfolgern IV Logisch Handeln V Unsicheres Wissen und Schließen VI Lernen 18. Lernen aus Beobachtungen 19. Wissen beim Lernen 20. Statistische Lernmethoden 21. Verstärkungslernen VII Kommunizieren, Wahrnehmen und Handeln Künstliche Intelligenz: 18. Lernen aus Beobachtungen Frank Puppe 1

2 Allgemeines Modell lernender Agenten Künstliche Intelligenz: 18. Lernen aus Beobachtungen Frank Puppe 2

3 Lernende Agenten (1) Lernende Agenten können ihr zukünftiges Verhalten verbessern. Komponenten eines lernenden Agenten: Verhaltenskomponente (bisheriger Problemlöser) Lernkomponente (Verbesserung der Verhaltenskomponente) - Wissenserwerb - Beschleunigung des Verhaltens Kritikkomponente (Bewertung des Verhaltens) Problemgenerator (Exploration) Die Lernkomponente hängt von folgenden Aspekte ab: Art der zu verbessernden Verhaltenskomponente Wissensrepräsentation der Komponenten (erfordern jeweils angepasste Lernverfahren) Verfügbares Feedback Hintergrundwissen (notwendig für fast alles Lernen) Alles Lernen kann als das Lernen der Repräsentation einer Funktion betrachtet werden. Künstliche Intelligenz: 18. Lernen aus Beobachtungen Frank Puppe 3

4 Lernende Agenten (2) Arten der zu verbessernden Verhaltenskomponente: Direkte Abbildung von Zustandsbedingungen auf Aktionen Herleitung von Eigenschaften der Welt aus Sensorinformationen Informationen wie sich die Welt verändert Informationen über Auswirkungen möglicher Aktionen des Agenten Nützlichkeitsinformationen über die Attraktivität von Situationen Informationen über Nützlichkeit von Aktionen in bestimmten Situationen Ziele, die nützliche Situationsklassen beschreiben Verfügbares Feedback: Geführtes Lernen (Supervised learning) Verstärkungslernen (reinforcement learning) Ungeführtes Lernen (unsupervised learning) Wissensrepräsentation: Lineare gewichtete Polynome für Nützlichkeitsfunktionen Aussagen- oder prädikatenlogische Sätze Probabilistische Beschreibungen Künstliche Intelligenz: 18. Lernen aus Beobachtungen Frank Puppe 4

5 Induktives Lernen Gegeben: Ausgabewerte einer Funktion für bestimmte Eingaben, d.h. Beispiele der Art: (x, f(x)). Oft neben positiven auch negative Beispiele. Gesucht: Eine Funktion h (Hypothese), die die Funktion f approximiert. Hauptproblem: Generalisierung Wie aus verschiedenen Hypothesen auswählen (Beispiel a und b)? Ockham's razor: Bevorzuge einfache Hypothesen! Aber wie Einfachheit definieren? Wie für nicht-deterministische Funktionen den unvermeidlichen Kompromiss zwischen Komplexität der Hypothese Grad der Datenüberdeckung finden (Beispiel c)? Wie Apriori-Annahmen über Hypothesenraum formulieren (Beispiel d) Vorwissen erforderlich (Gefahr von Vorurteilen!) Wie stark den Hypothesenraum einschränken (meist sehr stark)? Vereinfachung des Lernen Vereinfachung der Nutzung des gelernten Wissens Künstliche Intelligenz: 18. Lernen aus Beobachtungen Frank Puppe 5

6 Auswirkungen verschiedener Annahmen Künstliche Intelligenz: 18. Lernen aus Beobachtungen Frank Puppe 6

7 Konsequenzen Für Auswahl der besten Hypothese Präferenzannahmen (bias) nötig! Kompromiss zwischen Ausdrucksstärke der zugrundeliegenden Wissensrepräsentation und Effizienz des Lernverfahrens unvermeidbar! Inkrementelle Lernverfahren zur kontinuierlichen Integration neuer Beispiele in große Fallsammlung mit akzeptablem Aufwand vorteilhaft! Beliebtes Verfahren zum Lernen aus Beispielen: Lernen von Entscheidungsbäumen (eingeschränkte Repräsentation, effizientes Verfahren, aber nicht-inkrementell) diskrete Attribute (bei kontinuierlichen Attributen: Regression) Für Menschen einfach zu verstehen Künstliche Intelligenz: 18. Lernen aus Beobachtungen Frank Puppe 7

8 Lernen von Entscheidungsbäumen (1) Input: Objekt oder Situation mit einer Menge von Eigenschaften Output: Ja/Nein-Entscheidung Entscheidungsbäume repräsentieren daher Boolsche Funktionen. Satz: Die meisten Boolschen Funktionen wie z.b. Parity- oder Mehrheitsfunktionen lassen sich schlecht, d.h. mit großen Entscheidungsbäumen, und nur wenige gut, d.h. mit kleinen Entscheidungsbäumen, repräsentieren. Begründung: 1. Eine Funktion benötigt im allgemeinen 2 n bits zu ihrer Repräsentation. n 2. Da es insgesamt 2 2 verschiedene Funktionen gibt (d.h. bei n=6 ca. 2*10 19 verschiedene Funktionen), benötigt man geniale Lernalgorithmen, um eine konsistente Hypothese in einem solchen doppelt exponentiellen Suchraum zu finden. Künstliche Intelligenz: 18. Lernen aus Beobachtungen Frank Puppe 8

9 Lernen von Entscheidungsbäumen (2) Wenn es mehrere konsistente Hypothesen zu einer Trainingsmenge von positiven und negativen Beispielen gibt, dann wird nach Ockham's razor die kompakteste Hypothese, d.h. der kleinste Entscheidungsbaum, bevorzugt Eine wenig kompakte Hypothese wäre es, alle Beispiele auswendig zu lernen. Während das Finden des kleinsten Entscheidungsbaumes exponentiellen Aufwand erfordert, gibt es einen guten "Greedy"- Algorithmus, der meist einen ziemlich kleinen Entscheidungsbaum liefert. Künstliche Intelligenz: 18. Lernen aus Beobachtungen Frank Puppe 9

10 Beispiel: Restaurant-Domäne: Variablen Mögliche Hypothese: Unmöglicher Ausdruck: Künstliche Intelligenz: 18. Lernen aus Beobachtungen Frank Puppe 10

11 Korrekte Hypothese Künstliche Intelligenz: 18. Lernen aus Beobachtungen Frank Puppe 11

12 12 Trainingsbeispiele Künstliche Intelligenz: 18. Lernen aus Beobachtungen Frank Puppe 12

13 Informeller Algorithmus für Entscheidungsbäume Die Grundidee besteht darin, immer das Attribut zu wählen, das den größten Informationsgewinn bringt, d.h. das die Fallmenge so in Untergruppen aufspaltet, dass in den Untergruppen möglichst nur positive oder nur negative Beispiele sind. Jede Untergruppe wird rekursiv durch Auswahl des für sie informativsten Attributes wieder in Untergruppen aufgespaltet, wobei 4 Fälle entstehen können: 1. Wenn alle Beispiele in einer Gruppe positiv oder alle negativ sind, dann terminiere mit der Antwort positiv oder negativ. 2. Wenn in einer Gruppe keine Beispiele enthalten sind, dann terminiere mit einer Default-Antwort, die sich aus der Mehrheit der Obergruppe ergibt. 3. Wenn in einer Gruppe sowohl positive als auch negative Beispiele enthalten sind, und es gibt noch unverbrauchte Attribute, dann wähle das beste Attribut und fahre rekursiv fort. 4. Wenn in einer Gruppe sowohl positive als auch negative Beispiele enthalten sind, und es gibt keine unverbrauchten Attribute mehr, dann sind die Beispiele inkonsistent. Terminiere mit einer Mehrheitsentscheidung oder einer probabilistischen Regel. Künstliche Intelligenz: 18. Lernen aus Beobachtungen Frank Puppe 13

14 Mögliche Knoten im Entscheidungsbaum (a) Aufteilen nach Restaurant-Typ bringt keine Unterscheidung zwischen positiven und negativen Beispielen (b) Aufteilen nach Gästen (Patrons) ist wesentlich besser. Hunger ist ein guter zweiter Test Künstliche Intelligenz: 18. Lernen aus Beobachtungen Frank Puppe 14

15 Entscheidungsbaum-Lernalgorithmus Künstliche Intelligenz: 18. Lernen aus Beobachtungen Frank Puppe 15

16 Gelernter Entscheidungsbaum zu den 12 Beispielen Künstliche Intelligenz: 18. Lernen aus Beobachtungen Frank Puppe 16

17 Informationstheorie Zur Auswahl des besten Attributes kann man informationstheoretisches Wissen benutzen. Entropie: Informationsmaß für die Anzahl der notwendigen bits (Ja/nein-Fragen) um Sicherheit zu bekommen: I = - Σ p i log 2 p i wobei p i die Häufigkeit der i-ten Klasse ist, entsprechend den i Werten des Attributes. Beispiel: Münze werfen: I(1/2, 1/2) = -1/2 log 2 1/2-1/2 log 2 1/2 = 1/2 + 1/2 = 1 Künstliche Intelligenz: 18. Lernen aus Beobachtungen Frank Puppe 17

18 Informationsgewinn Künstliche Intelligenz: 18. Lernen aus Beobachtungen Frank Puppe 18

19 Bewertung der Leistung von Lernalgorithmen Zum Überprüfen müssen Testfälle gewählt werden, die bei der Entwicklung des Algorithmus (bzw. bei der Einstellung seiner Parameter) keine Rolle gespielt haben dürfen. Allerdings ist das in Praxis zu schwierig, sollte aber approximiert und vor allem dokumentiert werden. 1. Sammle Beispiele 2. Teile Beispiele in Trainings- und Testmenge 3. Wende Lernalgorithmus für Trainingsmenge an, generiere Hypothese h 4. Evaluiere h mit Testmenge: Prozentsatz korrekt gelöster Fälle 5. Wiederhole Schritte 1-4 mit unterschiedlichen großen und zufällig gewählten Trainingsmengen Künstliche Intelligenz: 18. Lernen aus Beobachtungen Frank Puppe 19

20 Lernkurve für Entscheidungsbäume Künstliche Intelligenz: 18. Lernen aus Beobachtungen Frank Puppe 20

21 Rauschen und Überanpassung Rauschen (noise) bedeutet, dass Beispiele falsche Daten oder Bewertungen enthalten, z.b. 2 gleiche Fälle mit unter-schiedlichen Bewertungen. Wenn es irrelevante Attribute gibt (Farbe der Münze, Wochentag des Werfens, usw.), dann kann der Entscheidungsbaum-Algorithmus diese zur weiteren Differenzierung nutzen (Überanpassung; overfitting). Wie kann man das verhindern? Pruning: Man berechnet, wie wahrscheinlich die Aufteilung eines Attributes durch Zufall zustande gekommen sein kann: nur wenn dies sehr unwahrscheinlich ist, dann ist das Attribut ein sinnvoller Entscheidungsknoten, ansonsten wird es eliminiert - Chi-Quadrat-Test (bei 2 x 2 Werten) oder verallgemeinerte Kontingenztests. Cross-Validation: Wie gut kann Hypothese neue Daten bewerten? - Reservierung eines Teils (1 / k) der Trainingsdaten für Validierung Künstliche Intelligenz: 18. Lernen aus Beobachtungen Frank Puppe 21

22 Chi-Quadrat-Test Nullhypothese: das Attribut ist irrelevant, d.h. es teilt die Fallmenge zufällig in positive und negative Beispiele auf Die Stärke der Abweichung von zufälliger Verteilung dient als Bewertungsgrundlage. Ihre statistische Auswertung hängt auch von der Fallzahl ab. Künstliche Intelligenz: 18. Lernen aus Beobachtungen Frank Puppe 22

23 Cross Validation Der Lernalgorithmus verwendet nicht alle Trainingsdaten, sondern nutzt einen Teil zur Validierung Dieser Teil sollte sehr klein sein, weil sonst das Lernen beeinträchtigt wird K-fold Cross Validation es werden k Experimente gemacht, bei denen jeweils 1 / k der Trainingsdaten zur Validierung dienen. Typische Werte für k sind 5 oder 10, aber auch n, d.h. es wird pro Experiment nur mit einem Fall validiert (leave-oneout-cross-validation) Anschließend muss mit anderen Fällen (echten Testdaten) getestet werden Künstliche Intelligenz: 18. Lernen aus Beobachtungen Frank Puppe 23

24 Weitere Probleme Unvollständige Daten: Was tun, wenn in einem Fall manche Attribute unbekannt sind? Problem entsteht sowohl beim Lernen als auch beim späteren Klassifizieren. Schätzen der unbekannten Attribute Attribute mit sehr vielen Werten: Diese werden von dem Entropiemaß zur Auswahl des informativsten Attributes ungerechtfertigter Weise bevorzugt (im Extrem z.b. Restaurantname). Wie kann man das vermeiden? Ähnliche Techniken wie beim Pruning Kontinuierliche Attribute: Wie wertet man sie aus? Algorithmen zur Intervallbildung Kontinuierliches Ergebnis: Regressions-Baum Künstliche Intelligenz: 18. Lernen aus Beobachtungen Frank Puppe 24

25 Ensemble Lernen Idee: Statt einer Hypothese eine Menge (Ensemble) von Hypothesen generieren und diese per Mehrheit abstimmen lassen. funktioniert um so besser, je unabhängiger die Fehler bei der Generierung der Hypothesen sind. erhöht auch die Ausdrucksstärke des Hypothesenraums Verbreiteste Technik: Boosting Künstliche Intelligenz: 18. Lernen aus Beobachtungen Frank Puppe 25

26 Boosting Jedes Beispiel hat ein Gewicht > 0 (z.b. entspricht ein Gewicht von 2 der Dublizierung des Beispiels) Vorgehen: Erste Hypothese wird mit normalen Gewichten gelernt. Ab der zweiten Hypothese werden iterativ jeweils die Gewichte der falsch klassifizierten Beispiele erhöht, der richtig klassifizierten entsprechend verringert h Künstliche Intelligenz: 18. Lernen aus Beobachtungen Frank Puppe 26

27 Beispiel für Boosting mit Restaurant-Daten Ursprünglicher Hypothesenraum: statt Entscheidungsbäume "Entscheidungsstümpfe", d.h. Bäume mit nur einem Attribut Boosting mit 5 Hypothesen und 100 Trainingsfällen (a) Boosting mit steigender Anzahl von Hypothesen (b) Künstliche Intelligenz: 18. Lernen aus Beobachtungen Frank Puppe 27

28 Grundsätzliche Überlegungen zum Lernen Warum funktioniert Lernen aus Beispielen? Die Test- und die Trainingsmenge müssen aus derselben Grundgesamtheit mit gleicher Wahrscheinlichkeitsverteilung stammen. Wie verhindert man, daß der Lernalgorithmus nur die Beispiele auswendig lernt? Durch Beschränkung der Ausdrucksstärke der dem Lernverfahren zugrundeliegenden Wissensrepräsentation. Künstliche Intelligenz: 18. Lernen aus Beobachtungen Frank Puppe 28

29 Wieviele Trainingsbeispiele braucht man? Sei X die Menge aller möglichen Beispiele. Sei D die Verteilung aus der die Trainingsbeispiele stammen. Sei m die Zahl der Trainingsbeispiele. n Sei H die Menge der möglichen Hypothesen (2 2, bei n Attributen) Sei f die wahre Funktion (in H enthalten) und h eine beliebige Hypothese error (h) = P (h(x) f(x) / x aus D) h ist annährend korrekt, falls error (h) ε(kleine Konstante) Aufteilung des Hypothesenraums in gute (im ε-ball um f) und schlechte Hypothesen (H bad ) Künstliche Intelligenz: 18. Lernen aus Beobachtungen Frank Puppe 29

30 PAC-Lernen (Probably Approximately Correct) Eine schlechte Hypothese h b aus H bad kann trotzdem mit den ersten m Beispielen konsistent sein: P(h b ist m-konsistent) (1- ε) m P(H bad enthält konsistente Hypothese) H bad (1- ε) m H (1- ε) m Das soll kleiner sein als ein kleine Wahrscheinlichkeit δ: H (1- ε) m δ m 1/ε (ln 1/δ + ln H ), d.h. wenn ein Lernverfahren eine Hypothese liefert, die mit so vielen Beispielen konsistent ist, dann ist es annährend korrekt (probably approximately correct). Da der Hypothesenraum doppelt exponentiell ist, braucht man 2 n Beispiele. Jedoch gibt es nicht mehr als 2 n Beispiele. Annährende Korrektheit ist nicht zu erreichen. Dilemma: Falls lernbare Funktionen nicht beschränkt sind, kann nichts gelernt werden, falls doch, kann wahre Hypothese ausgeschlossen sein. Lösungen: 1. Einfachste konsistente Hypothese finden (zu schwierig). 2. Sich auf lernbare Teilmengen der Boolschen Funktionen beschränken! Künstliche Intelligenz: 18. Lernen aus Beobachtungen Frank Puppe 30

31 Lernen von Entscheidungslisten (Regeln) Suche eine Regel, die aus einer Konjunktion von max. k Attributen besteht und die möglichst viele positive und keine negativen Beispiele (oder umgekehrt) abdeckt und wiederhole die Prozedur mit den nicht-klassifizierten Beispielen, bis alle positiven Beispiele überdeckt sind. Das Ergebnis ist eine Menge von Regeln in disjunktiver Normalform. Die Beschränkung auf k Literale zwingt den Algorithmus zu Generalisierungen (je stärker, je kleiner k ist), beschränkt aber auch seine Lernfähigkeit. Anzahl der Beispiele N, die nach PAC-Lernen bei max k Attributen pro Regeln und n Attributen insgesamt erforderlich sind, um eine vorgegebene Fehlerwahrscheinlichkeit zu unterschreiten: N 1/ε (ln 1/δ + O(n k log 2 (n k ))) Künstliche Intelligenz: 18. Lernen aus Beobachtungen Frank Puppe 31

32 Vergleich Entscheidungslisten vs. Entscheidungsbäume Künstliche Intelligenz: 18. Lernen aus Beobachtungen Frank Puppe 32

Übersicht. Allgemeines Modell lernender Agenten. Lernende Agenten (1) Lernende Agenten (2)

Übersicht. Allgemeines Modell lernender Agenten. Lernende Agenten (1) Lernende Agenten (2) Übersicht Allgemeines Modell lernender Agenten I Künstliche Intelligenz II Problemlösen III Wissen und Schlußfolgern IV Logisch Handeln V Unsicheres Wissen und Schließen VI Lernen 18. Lernen aus Beobachtungen

Mehr

Moderne Methoden der KI: Maschinelles Lernen

Moderne Methoden der KI: Maschinelles Lernen Moderne Methoden der KI: Maschinelles Lernen Prof. Dr.Hans-Dieter Burkhard Vorlesung Entscheidungsbäume Darstellung durch Regeln ID3 / C4.5 Bevorzugung kleiner Hypothesen Overfitting Entscheidungsbäume

Mehr

3. Entscheidungsbäume. Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002)

3. Entscheidungsbäume. Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002) 3. Entscheidungsbäume Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002) (aus Wilhelm 2001) Beispiel: (aus Böhm 2003) Wann sind Entscheidungsbäume

Mehr

2. Lernen von Entscheidungsbäumen

2. Lernen von Entscheidungsbäumen 2. Lernen von Entscheidungsbäumen Entscheidungsbäume 2. Lernen von Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch Attribut/Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse

Mehr

Bayes sches Lernen: Übersicht

Bayes sches Lernen: Übersicht Bayes sches Lernen: Übersicht Bayes sches Theorem MAP, ML Hypothesen MAP Lernen Minimum Description Length Principle Bayes sche Klassifikation Naive Bayes Lernalgorithmus Teil 5: Naive Bayes + IBL (V.

Mehr

Künstliche Intelligenz Maschinelles Lernen

Künstliche Intelligenz Maschinelles Lernen Künstliche Intelligenz Maschinelles Lernen Stephan Schwiebert Sommersemester 2009 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Maschinelles Lernen Überwachtes Lernen

Mehr

Lernalgorithmen SoSe 2008 in Trier. Henning Fernau Universität Trier

Lernalgorithmen SoSe 2008 in Trier. Henning Fernau Universität Trier Lernalgorithmen SoSe 2008 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Lernalgorithmen Gesamtübersicht 0. Einführung 1. Identifikation (aus positiven Beispielen) 2. Zur Identifikation

Mehr

Konzepte der AI: Maschinelles Lernen

Konzepte der AI: Maschinelles Lernen Konzepte der AI: Maschinelles Lernen Nysret Musliu, Wolfgang Slany Abteilung für Datenbanken und Artificial Intelligence Institut für Informationssysteme, TU-Wien Übersicht Was ist Lernen? Wozu maschinelles

Mehr

Seminar Künstliche Intelligenz WS 2013/14 Grundlagen des Maschinellen Lernens

Seminar Künstliche Intelligenz WS 2013/14 Grundlagen des Maschinellen Lernens Seminar Künstliche Intelligenz WS 2013/14 Grundlagen des Maschinellen Lernens Martin Hacker Richard Schaller Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg 19.12.2013 Allgemeine Problemstellung

Mehr

Lernalgorithmen SoSe 2008 in Trier. Henning Fernau Universität Trier

Lernalgorithmen SoSe 2008 in Trier. Henning Fernau Universität Trier Lernalgorithmen SoSe 2008 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Lernalgorithmen Gesamtübersicht 0. Einführung 1. Identifikation (aus positiven Beispielen) 2. Zur Identifikation

Mehr

Einführung in die Methoden der Künstlichen Intelligenz. Maschinelles Lernen

Einführung in die Methoden der Künstlichen Intelligenz. Maschinelles Lernen Einführung in die Methoden der Künstlichen Intelligenz Maschinelles Lernen Dr. David Sabel WS 2012/13 Stand der Folien: 14. Februar 2013 Einführung Direkte Programmierung eines intelligenten Agenten nicht

Mehr

Reinforcement Learning

Reinforcement Learning Reinforcement Learning 1. Allgemein Reinforcement Learning 2. Neuronales Netz als Bewertungsfunktion 3. Neuronales Netz als Reinforcement Learning Nils-Olaf Bösch 1 Allgemein Reinforcement Learning Unterschied

Mehr

4. Lernen von Entscheidungsbäumen. Klassifikation mit Entscheidungsbäumen. Entscheidungsbaum

4. Lernen von Entscheidungsbäumen. Klassifikation mit Entscheidungsbäumen. Entscheidungsbaum 4. Lernen von Entscheidungsbäumen Klassifikation mit Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch /Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse zugeordnet werden.

Mehr

x 2 x 1 x 3 5.1 Lernen mit Entscheidungsbäumen

x 2 x 1 x 3 5.1 Lernen mit Entscheidungsbäumen 5.1 Lernen mit Entscheidungsbäumen Falls zum Beispiel A = {gelb, rot, blau} R 2 und B = {0, 1}, so definiert der folgende Entscheidungsbaum eine Hypothese H : A B (wobei der Attributvektor aus A mit x

Mehr

Projekt Maschinelles Lernen WS 06/07

Projekt Maschinelles Lernen WS 06/07 Projekt Maschinelles Lernen WS 06/07 1. Auswahl der Daten 2. Evaluierung 3. Noise und Pruning 4. Regel-Lernen 5. ROC-Kurven 6. Pre-Processing 7. Entdecken von Assoziationsregeln 8. Ensemble-Lernen 9. Wettbewerb

Mehr

Vorlesung Wissensentdeckung

Vorlesung Wissensentdeckung Gliederung Vorlesung Wissensentdeckung Additive Modelle Katharina Morik, Weihs 1 Merkmalsauswahl Gütemaße und Fehlerabschätzung.6.015 1 von 33 von 33 Ausgangspunkt: Funktionsapproximation Aufteilen der

Mehr

Übersicht. 20. Verstärkungslernen

Übersicht. 20. Verstärkungslernen Übersicht I Künstliche Intelligenz II Problemlösen III Wissen und Schlußfolgern IV Logisch Handeln V Unsicheres Wissen und Schließen VI Lernen 18. Lernen aus Beobachtungen 19. Lernen in neuronalen & Bayes

Mehr

Seminarvortrag zum Thema maschinelles Lernen I - Entscheidungsbäume. von Lars-Peter Meyer. im Seminar Methoden wissensbasierter Systeme

Seminarvortrag zum Thema maschinelles Lernen I - Entscheidungsbäume. von Lars-Peter Meyer. im Seminar Methoden wissensbasierter Systeme Seminarvortrag zum Thema maschinelles Lernen I - Entscheidungsbäume von Lars-Peter Meyer im Seminar Methoden wissensbasierter Systeme bei Prof. Brewka im WS 2007/08 Übersicht Überblick maschinelles Lernen

Mehr

Maschinelles Lernen Entscheidungsbäume

Maschinelles Lernen Entscheidungsbäume Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Maschinelles Lernen Entscheidungsbäume Paul Prasse Entscheidungsbäume Eine von vielen Anwendungen: Kreditrisiken Kredit - Sicherheiten

Mehr

1. Lernen von Konzepten

1. Lernen von Konzepten 1. Lernen von Konzepten Definition des Lernens 1. Lernen von Konzepten Lernziele: Definitionen des maschinellen Lernens kennen, Klassifikationen des maschinellen Lernens kennen, Das Prinzip des induktiven

Mehr

Data Mining - Wiederholung

Data Mining - Wiederholung Data Mining - Wiederholung Norbert Fuhr 9. Juni 2008 Problemstellungen Problemstellungen Daten vs. Information Def. Data Mining Arten von strukturellen Beschreibungen Regeln (Klassifikation, Assoziations-)

Mehr

Probabilistische Primzahltests

Probabilistische Primzahltests 23.01.2006 Motivation und Überblick Grundsätzliches Vorgehen Motivation und Überblick Als Primzahltest bezeichnet man ein mathematisches Verfahren, mit dem ermittelt wird, ob eine gegebene Zahl eine Primzahl

Mehr

Lernen von Entscheidungsbäumen. Volker Tresp Summer 2014

Lernen von Entscheidungsbäumen. Volker Tresp Summer 2014 Lernen von Entscheidungsbäumen Volker Tresp Summer 2014 1 Anforderungen an Methoden zum Datamining Schnelle Verarbeitung großer Datenmengen Leichter Umgang mit hochdimensionalen Daten Das Lernergebnis

Mehr

Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining

Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining Gliederung 1. Einführung 2. Grundlagen Data Mining Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining 3. Ausgewählte Methoden des Data

Mehr

Computational Intelligence 1 / 20. Computational Intelligence Künstliche Neuronale Netze Perzeptron 3 / 20

Computational Intelligence 1 / 20. Computational Intelligence Künstliche Neuronale Netze Perzeptron 3 / 20 Gliederung / Künstliche Neuronale Netze Perzeptron Einschränkungen Netze von Perzeptonen Perzeptron-Lernen Perzeptron Künstliche Neuronale Netze Perzeptron 3 / Der Psychologe und Informatiker Frank Rosenblatt

Mehr

Mathematische Grundlagen III

Mathematische Grundlagen III Mathematische Grundlagen III Maschinelles Lernen II: Klassifikation mit Entscheidungsbäumen Vera Demberg Universität des Saarlandes 12. Juli 2012 Vera Demberg (UdS) Mathe III 12. Juli 2012 1 / 38 Einleitung

Mehr

Einfacher Problemlösungsagent. Übersicht. Begriffsdefinitionen für Einfach-Probleme

Einfacher Problemlösungsagent. Übersicht. Begriffsdefinitionen für Einfach-Probleme Übersicht I Künstliche Intelligenz II Problemlösen 3. Problemlösen durch Suche 4. Informierte Suchmethoden 5. Constraint-Probleme 6. Spiele III Wissen und Schlußfolgern IV Logisch Handeln V Unsicheres

Mehr

2.4 Hypothesentests Grundprinzipien statistischer Hypothesentests. Hypothese:

2.4 Hypothesentests Grundprinzipien statistischer Hypothesentests. Hypothese: 2.4.1 Grundprinzipien statistischer Hypothesentests Hypothese: Behauptung einer Tatsache, deren Überprüfung noch aussteht (Leutner in: Endruweit, Trommsdorff: Wörterbuch der Soziologie, 1989). Statistischer

Mehr

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe Kapitel 4 Statistische Tests 4.1 Grundbegriffe Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe X 1,..., X n. Wir wollen nun die Beobachtung der X 1,...,

Mehr

Gliederung. 1. KI im Allgemeinen und in dieser Vorlesung 2. Heuristische Suche 3. Logik und Inferenz 4. Wissensrepräsentation 5.

Gliederung. 1. KI im Allgemeinen und in dieser Vorlesung 2. Heuristische Suche 3. Logik und Inferenz 4. Wissensrepräsentation 5. Gliederung 1. KI im Allgemeinen und in dieser Vorlesung 2. Heuristische Suche 3. Logik und Inferenz 4. Wissensrepräsentation 5. Handlungsplanung 1. Überblick 6. Lernen 7. Sprachverarbeitung 8. Umgebungswahrnehmung

Mehr

3. Das Reinforcement Lernproblem

3. Das Reinforcement Lernproblem 3. Das Reinforcement Lernproblem 1. Agierender Agent in der Umgebung 2. Discounted Rewards 3. Markov Eigenschaft des Zustandssignals 4. Markov sche Entscheidung 5. Werte-Funktionen und Bellman sche Optimalität

Mehr

Textmining Klassifikation von Texten Teil 2: Im Vektorraummodell

Textmining Klassifikation von Texten Teil 2: Im Vektorraummodell Textmining Klassifikation von Texten Teil 2: Im Vektorraummodell Dept. Informatik 8 (Künstliche Intelligenz) Friedrich-Alexander-Universität Erlangen-Nürnberg (Informatik 8) Klassifikation von Texten Teil

Mehr

Data Mining Anwendungen und Techniken

Data Mining Anwendungen und Techniken Data Mining Anwendungen und Techniken Knut Hinkelmann DFKI GmbH Entdecken von Wissen in banken Wissen Unternehmen sammeln ungeheure mengen enthalten wettbewerbsrelevantes Wissen Ziel: Entdecken dieses

Mehr

Einsatz von Reinforcement Learning in der Modellfahrzeugnavigation

Einsatz von Reinforcement Learning in der Modellfahrzeugnavigation Einsatz von Reinforcement Learning in der Modellfahrzeugnavigation von Manuel Trittel Informatik HAW Hamburg Vortrag im Rahmen der Veranstaltung AW1 im Masterstudiengang, 02.12.2008 der Anwendung Themeneinordnung

Mehr

Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen

Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen Induktive Statistik Prof. Dr. W.-D. Heller

Mehr

Mathe III. Garance PARIS. Mathematische Grundlagen III. Evaluation. 16. Juli /25

Mathe III. Garance PARIS. Mathematische Grundlagen III. Evaluation. 16. Juli /25 Mathematische Grundlagen III Evaluation 16 Juli 2011 1/25 Training Set und Test Set Ein fairer Test gibt an, wie gut das Modell im Einsatz ist Resubstitution: Evaluation auf den Trainingsdaten Resubstitution

Mehr

3. Lernen mit Vorwissen

3. Lernen mit Vorwissen 3. Lernen mit Vorwissen Wissen beim Lernen 3. Lernen mit Vorwissen Sei Beschreibungen die Konjunktion aller Beispiele der Trainingsmenge und Klassifizierungen die Konjunktion aller Beispielklassifizierungen.

Mehr

Kapitel 5: Ensemble Techniken

Kapitel 5: Ensemble Techniken Ludwig Maximilians Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Skript zur Vorlesung Knowledge Discovery in Databases II im Sommersemester 2009 Kapitel 5:

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Stochastische Lernalgorithmen

Stochastische Lernalgorithmen Stochastische Lernalgorithmen Gerhard Jäger 14. Mai 2003 Das Maximum-Entropy-Prinzip Der Entropiebegriff Entropie: Chaos, Unordung, Nicht-Vorhersagbarkeit,... Begriff kommt ursprünglich aus der Physik:

Mehr

Vorlesung Maschinelles Lernen

Vorlesung Maschinelles Lernen Vorlesung Maschinelles Lernen Additive Modelle Katharina Morik Informatik LS 8 Technische Universität Dortmund 7.1.2014 1 von 34 Gliederung 1 Merkmalsauswahl Gütemaße und Fehlerabschätzung 2 von 34 Ausgangspunkt:

Mehr

Hypothesen: Fehler 1. und 2. Art, Power eines statistischen Tests

Hypothesen: Fehler 1. und 2. Art, Power eines statistischen Tests ue biostatistik: hypothesen, fehler 1. und. art, power 1/8 h. lettner / physik Hypothesen: Fehler 1. und. Art, Power eines statistischen Tests Die äußerst wichtige Tabelle über die Zusammenhänge zwischen

Mehr

Beurteilende Statistik

Beurteilende Statistik Beurteilende Statistik Wahrscheinlichkeitsrechnung und Beurteilende Statistik was ist der Unterschied zwischen den beiden Bereichen? In der Wahrscheinlichkeitstheorie werden aus gegebenen Wahrscheinlichkeiten

Mehr

12. Maschinelles Lernen

12. Maschinelles Lernen 12. Maschinelles Lernen Maschinelles Lernen dient der Herbeiführung vn Veränderungen im System, die adaptiv sind in dem Sinne, daß sie es dem System ermöglichen, dieselbe der eine ähnliche Aufgabe beim

Mehr

Modellbasierte Diagnosesysteme

Modellbasierte Diagnosesysteme Modellbasierte Diagnosesysteme Diagnose: Identifikation eines vorliegenden Fehlers (Krankheit) auf der Basis von Beobachtungen (Symptomen) und Hintergrundwissen über das System 2 Arten von Diagnosesystemen:

Mehr

Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten

Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 4.1 4. Statistische Entscheidungsverfahren Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten Beispiel:

Mehr

Übersicht. 9. Schließen in der Prädikatenlogik 1. Stufe

Übersicht. 9. Schließen in der Prädikatenlogik 1. Stufe Übersicht I Künstliche Intelligenz II Problemlösen III Wissen und Schlußfolgern 6. Logisch schließende Agenten 7. Prädikatenlogik 1. Stufe 8. Entwicklung einer Wissensbasis 9. Schließen in der Prädikatenlogik

Mehr

3. Lernen von Entscheidungsbäumen

3. Lernen von Entscheidungsbäumen 3. Lernen von Entscheidungsbäumen Entscheidungsbäume 3. Lernen von Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch Attribut/Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse

Mehr

Kapitel VIII - Tests zum Niveau α

Kapitel VIII - Tests zum Niveau α Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel VIII - Tests zum Niveau α Induktive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh Testsituationen

Mehr

Diskrete Strukturen Kapitel 1: Einleitung

Diskrete Strukturen Kapitel 1: Einleitung WS 2015/16 Diskrete Strukturen Kapitel 1: Einleitung Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 1 24.2.214 Grundlagen zum Hypothesentest Einführung: Wer Entscheidungen zu treffen hat, weiß oft erst im nachhinein ob seine Entscheidung richtig war. Die Unsicherheit

Mehr

Vorlesung. Machine Learning - Entscheidungsbäume

Vorlesung. Machine Learning - Entscheidungsbäume Vorlesung Machine Learning - Entscheidungsbäume Vorlesung Machine Learning - Entscheidungsbäume http://de.wikipedia.org/wiki/datei:deu_tutorial_-_hochladen_von_bildern_neu%2bcommons.svg http://www.rulequest.com/personal/

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Clusteranalyse. Tobias Scheffer Thomas Vanck

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Clusteranalyse. Tobias Scheffer Thomas Vanck Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Clusteranalyse Tobias Scheffer Thomas Vanck Überblick Problemstellung/Motivation Deterministischer Ansatz: K-Means Probabilistischer

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Entscheidungsbäume

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Entscheidungsbäume Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Entscheidungsbäume Christoph Sawade/Niels Landwehr Jules Rasetaharison, Tobias Scheffer Entscheidungsbäume Eine von vielen Anwendungen:

Mehr

Künstliche Intelligenz Unsicherheit. Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln

Künstliche Intelligenz Unsicherheit. Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Künstliche Intelligenz Unsicherheit Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Rückblick Agent in der Wumpuswelt konnte Entscheidungen

Mehr

Hannah Wester Juan Jose Gonzalez

Hannah Wester Juan Jose Gonzalez Neuronale Netze Supervised Learning Proseminar Kognitive Robotik (SS12) Hannah Wester Juan Jose Gonzalez Kurze Einführung Warum braucht man Neuronale Netze und insbesondere Supervised Learning? Das Perzeptron

Mehr

THEMA: "STATISTIK IN DER PRAXIS TESTEN IST BESSER ALS VERMUTEN" TORSTEN SCHOLZ

THEMA: STATISTIK IN DER PRAXIS TESTEN IST BESSER ALS VERMUTEN TORSTEN SCHOLZ WEBINAR@LUNCHTIME THEMA: "STATISTIK IN DER PRAXIS TESTEN IST BESSER ALS VERMUTEN" TORSTEN SCHOLZ EINLEITENDES BEISPIEL SAT: Standardisierter Test, der von Studienplatzbewerbern an amerikanischen Unis gefordert

Mehr

Programmiertechnik II

Programmiertechnik II Analyse von Algorithmen Algorithmenentwurf Algorithmen sind oft Teil einer größeren Anwendung operieren auf Daten der Anwendung, sollen aber unabhängig von konkreten Typen sein Darstellung der Algorithmen

Mehr

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining.

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining. Motivation Themenblock: Klassifikation Praktikum: Data Warehousing und Data Mining Ziel Item hat mehrere Attribute Anhand von n Attributen wird (n+)-tes vorhergesagt. Zusätzliches Attribut erst später

Mehr

6. Bayes-Klassifikation. (Schukat-Talamazzini 2002)

6. Bayes-Klassifikation. (Schukat-Talamazzini 2002) 6. Bayes-Klassifikation (Schukat-Talamazzini 2002) (Böhm 2003) (Klawonn 2004) Der Satz von Bayes: Beweis: Klassifikation mittels des Satzes von Bayes (Klawonn 2004) Allgemeine Definition: Davon zu unterscheiden

Mehr

Signalverarbeitung 2. Volker Stahl - 1 -

Signalverarbeitung 2. Volker Stahl - 1 - - 1 - Überblick Bessere Modelle, die nicht nur den Mittelwert von Referenzvektoren sondern auch deren Varianz berücksichtigen Weniger Fehlklassifikationen Mahalanobis Abstand Besseres Abstandsmaß basierend

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Boltzmann Maschine David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2014 Übersicht Boltzmann Maschine Neuronale Netzwerke Die Boltzmann Maschine Gibbs

Mehr

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent

Mehr

1.8 Kolmogorov-Smirnov-Test auf Normalverteilung

1.8 Kolmogorov-Smirnov-Test auf Normalverteilung 1.8 Kolmogorov-Smirnov-Test auf Normalverteilung Der Kolmogorov-Smirnov-Test ist einer der klassischen Tests zum Überprüfen von Verteilungsvoraussetzungen. Der Test vergleicht die Abweichungen der empirischen

Mehr

Kapitel ML:IV (Fortsetzung)

Kapitel ML:IV (Fortsetzung) Kapitel ML:IV (Fortsetzung) IV. Statistische Lernverfahren Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen ML:IV-18 Statistical Learning c STEIN 2005-2011 Satz 3 (Bayes)

Mehr

Ersetzbarkeitstheorem

Ersetzbarkeitstheorem Ersetzbarkeitstheorem Die Abgeschlossenheit läßt sich auch folgendermaßen formulieren: Ersetzbarkeitstheorem Seien F und G Formeln mit F G. SeienH und H Formeln, so daß H aus H hervorgeht, indem ein Vorkommen

Mehr

Analyse von Querschnittsdaten. Signifikanztests I Basics

Analyse von Querschnittsdaten. Signifikanztests I Basics Analyse von Querschnittsdaten Signifikanztests I Basics Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Generalisierung kategoriale Variablen Datum 13.10.2004 20.10.2004 27.10.2004

Mehr

Zufallszahlen in AntBrain

Zufallszahlen in AntBrain Zufallszahlen SEP 291 Zufallszahlen in AntBrain Spezifikation, Teil II: Zum Beispiel könnte ein Objekt vom Typ Match die Spielfelder nach jeweils 1000 Spielrunden speichern; bei einer Anfrage nach den

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Dynamische Programmierung Einführung Ablaufkoordination von Montagebändern Längste gemeinsame Teilsequenz Optimale

Mehr

Seminar Text- und Datamining Datamining-Grundlagen

Seminar Text- und Datamining Datamining-Grundlagen Seminar Text- und Datamining Datamining-Grundlagen Martin Hacker Richard Schaller Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg 23.05.2013 Gliederung 1 Klassifikationsprobleme 2 Evaluation

Mehr

Unabhängigkeit KAPITEL 4

Unabhängigkeit KAPITEL 4 KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht

Mehr

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007 Mathematik IV für Maschinenbau und Informatik Stochastik Universität Rostock, Institut für Mathematik Sommersemester 007 Prof. Dr. F. Liese Dipl.-Math. M. Helwich Serie Termin: 9. Juni 007 Aufgabe 3 Punkte

Mehr

Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität

Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität Datenstrukturen und Algorithmen Christian Sohler FG Algorithmen & Komplexität 1 Clustering: Partitioniere Objektmenge in Gruppen(Cluster), so dass sich Objekte in einer Gruppe ähnlich sind und Objekte

Mehr

WEKA A Machine Learning Interface for Data Mining

WEKA A Machine Learning Interface for Data Mining WEKA A Machine Learning Interface for Data Mining Frank Eibe, Mark Hall, Geoffrey Holmes, Richard Kirkby, Bernhard Pfahringer, Ian H. Witten Reinhard Klaus Losse Künstliche Intelligenz II WS 2009/2010

Mehr

Einführung in die Induktive Statistik: Testen von Hypothesen

Einführung in die Induktive Statistik: Testen von Hypothesen Einführung in die Induktive Statistik: Testen von Hypothesen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Testen: Einführung und Konzepte

Mehr

Personalisierung. Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung. Data Mining.

Personalisierung. Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung. Data Mining. Personalisierung Personalisierung Thomas Mandl Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung Klassifikation Die Nutzer werden in vorab bestimmte Klassen/Nutzerprofilen

Mehr

Neuronale Netze. Anna Wallner. 15. Mai 2007

Neuronale Netze. Anna Wallner. 15. Mai 2007 5. Mai 2007 Inhalt : Motivation Grundlagen Beispiel: XOR Netze mit einer verdeckten Schicht Anpassung des Netzes mit Backpropagation Probleme Beispiel: Klassifikation handgeschriebener Ziffern Rekurrente

Mehr

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke Vorlesungsplan 17.10. Einleitung 24.10. Ein- und Ausgabe 31.10. Reformationstag, Einfache Regeln 7.11. Naïve Bayes, Entscheidungsbäume 14.11. Entscheidungsregeln, Assoziationsregeln 21.11. Lineare Modelle,

Mehr

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp Datenanalyse (PHY31) Herbstsemester 015 Olaf Steinkamp 36-J- olafs@physik.uzh.ch 044 63 55763 Einführung, Messunsicherheiten, Darstellung von Messdaten Grundbegriffe der Wahrscheinlichkeitsrechnung und

Mehr

Maschinelles Lernen. Moderne Methoden der KI: Maschinelles Lernen. Definitionen: Was ist Lernen? Definitionen: Was ist Lernen? 1.

Maschinelles Lernen. Moderne Methoden der KI: Maschinelles Lernen. Definitionen: Was ist Lernen? Definitionen: Was ist Lernen? 1. Moderne Methoden der KI: Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung Sommer-Semester 2007 1. Einführung: Definitionen Grundbegriffe Lernsysteme Lernen: Grundbegriffe Lernsysteme Konzept-Lernen Entscheidungsbäume

Mehr

Verfeinerungen des Bayesianischen Nash Gleichgewichts

Verfeinerungen des Bayesianischen Nash Gleichgewichts Spieltheorie Sommersemester 007 Verfeinerungen des Bayesianischen Nash Gleichgewichts Das Bayesianische Nash Gleichgewicht für Spiele mit unvollständiger Information ist das Analogon zum Nash Gleichgewicht

Mehr

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell Kapitel 8 Einfache Regression Josef Leydold c 2006 Mathematische Methoden VIII Einfache Regression 1 / 21 Lernziele Lineares Regressionsmodell Anpassen des linearen Regressionsmodells, OLS Eigenschaften

Mehr

Maschinelles Lernen: Symbolische Ansätze

Maschinelles Lernen: Symbolische Ansätze Maschinelles Lernen: Symbolische Ansätze Wintersemester 2008/2009 Musterlösung für das 3. Übungsblatt Aufgabe 1: Version Space, Generalisierung und Spezialisierung Gegeben sei folgende Hierarchie von Begriffen:

Mehr

Neuronale Netze (Konnektionismus) Einführung in die KI. Beispiel-Aufgabe: Schrifterkennung. Biologisches Vorbild. Neuronale Netze.

Neuronale Netze (Konnektionismus) Einführung in die KI. Beispiel-Aufgabe: Schrifterkennung. Biologisches Vorbild. Neuronale Netze. Einführung in die KI Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung (Konnektionismus) sind biologisch motiviert können diskrete, reell-wertige und Vektor-wertige Funktionen berechnen Informationsspeicherung

Mehr

kontextfreie Grammatiken Theoretische Informatik kontextfreie Grammatiken kontextfreie Grammatiken Rainer Schrader 14. Juli 2009 Gliederung

kontextfreie Grammatiken Theoretische Informatik kontextfreie Grammatiken kontextfreie Grammatiken Rainer Schrader 14. Juli 2009 Gliederung Theoretische Informatik Rainer Schrader Zentrum für Angewandte Informatik Köln 14. Juli 2009 1 / 40 2 / 40 Beispiele: Aus den bisher gemachten Überlegungen ergibt sich: aus der Chomsky-Hierarchie bleiben

Mehr

Kapitel LF: I. Beispiele für Lernaufgaben. Beispiele für Lernaufgaben. LF: I Introduction c STEIN

Kapitel LF: I. Beispiele für Lernaufgaben. Beispiele für Lernaufgaben. LF: I Introduction c STEIN Kapitel LF: I I. Einführung in das Maschinelle Lernen Bemerkungen: Dieses Kapitel orientiert sich an dem Buch Machine Learning von Tom Mitchell. http://www.cs.cmu.edu/ tom/mlbook.html 1 Autoeinkaufsberater?

Mehr

Schließende Statistik

Schließende Statistik Schließende Statistik Die schließende Statistik befasst sich mit dem Rückschluss von einer Stichprobe auf die Grundgesamtheit (Population). Die Stichprobe muss repräsentativ für die Grundgesamtheit sein.

Mehr

Semestralklausur zur Vorlesung. Web Mining. Prof. J. Fürnkranz Technische Universität Darmstadt Sommersemester 2004 Termin: 22. 7.

Semestralklausur zur Vorlesung. Web Mining. Prof. J. Fürnkranz Technische Universität Darmstadt Sommersemester 2004 Termin: 22. 7. Semestralklausur zur Vorlesung Web Mining Prof. J. Fürnkranz Technische Universität Darmstadt Sommersemester 2004 Termin: 22. 7. 2004 Name: Vorname: Matrikelnummer: Fachrichtung: Punkte: (1).... (2)....

Mehr

Streaming Data: Das Modell

Streaming Data: Das Modell Streaming Data: Das Modell Berechnungen, bei fortlaufend einströmenden Daten (x t t 0), sind in Echtzeit zu erbringen. Beispiele sind: - Verkehrsmessungen im Internet, - Datenanalyse in der Abwehr einer

Mehr

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Wichtige Tatsachen und Formeln zur Vorlesung Mathematische Grundlagen für das Physikstudium 3 Franz Embacher http://homepage.univie.ac.at/franz.embacher/

Mehr

Grundprinzipien des Bayes schen Lernens und Der naive Bayes-Klassifikator im Vergleich zum Maximum-Likelihood-Klassifikator von Andreas Schätzle

Grundprinzipien des Bayes schen Lernens und Der naive Bayes-Klassifikator im Vergleich zum Maximum-Likelihood-Klassifikator von Andreas Schätzle Grundprinzipien des Bayes schen Lernens und Der naive Bayes-Klassifikator im Vergleich zum Maximum-Likelihood-Klassifikator von Andreas Schätzle Inhalt Bayes'sches Lernen Eigenschaften von Bayes'schen

Mehr

Lösungen zu den Hausaufgaben zur Analysis II

Lösungen zu den Hausaufgaben zur Analysis II Christian Fenske Lösungen zu den Hausaufgaben zur Analysis II Blatt 6 1. Seien 0 < b < a und (a) M = {(x, y, z) R 3 x 2 + y 4 + z 4 = 1}. (b) M = {(x, y, z) R 3 x 3 + y 3 + z 3 = 3}. (c) M = {((a+b sin

Mehr

P (A B) P (B) = P ({3}) P ({1, 3, 5}) = 1 3.

P (A B) P (B) = P ({3}) P ({1, 3, 5}) = 1 3. 2 Wahrscheinlichkeitstheorie Beispiel. Wie wahrscheinlich ist es, eine Zwei oder eine Drei gewürfelt zu haben, wenn wir schon wissen, dass wir eine ungerade Zahl gewürfelt haben? Dann ist Ereignis A das

Mehr

Clusteranalyse: Gauß sche Mischmodelle

Clusteranalyse: Gauß sche Mischmodelle Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Clusteranalyse: Gauß sche Mischmodelle iels Landwehr Überblick Problemstellung/Motivation Deterministischer Ansatz: K-Means Probabilistischer

Mehr

3. Das Prüfen von Hypothesen. Hypothese?! Stichprobe Signifikanztests in der Wirtschaft

3. Das Prüfen von Hypothesen. Hypothese?! Stichprobe Signifikanztests in der Wirtschaft 3. Das Prüfen von Hypothesen Hypothese?! Stichprobe 3.1. Signifikanztests in der Wirtschaft Prüfung, ob eine (theoretische) Hypothese über die Verteilung eines Merkmals X und ihre Parameter mit einer (empirischen)

Mehr

Schriftlicher Test Teilklausur 2

Schriftlicher Test Teilklausur 2 Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Künstliche Intelligenz: Grundlagen und Anwendungen Wintersemester 2009 / 2010 Albayrak, Fricke (AOT) Opper, Ruttor (KI) Schriftlicher

Mehr

Ablaufschema beim Testen

Ablaufschema beim Testen Ablaufschema beim Testen Schritt 1 Schritt 2 Schritt 3 Schritt 4 Schritt 5 Schritt 6 Schritt 7 Schritt 8 Schritt 9 Starten Sie die : Flashanimation ' Animation Ablaufschema Testen ' siehe Online-Version

Mehr

Einführung in die Maximum Likelihood Methodik

Einführung in die Maximum Likelihood Methodik in die Maximum Likelihood Methodik Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Gliederung 1 2 3 4 2 / 31 Maximum Likelihood

Mehr

Einführung: Bayessches Lernen. Dipl.-Inform. Martin Lösch. martin.loesch@kit.edu (0721) 608 45944. Dipl.-Inform. Martin Lösch

Einführung: Bayessches Lernen. Dipl.-Inform. Martin Lösch. martin.loesch@kit.edu (0721) 608 45944. Dipl.-Inform. Martin Lösch Einführung: martin.loesch@kit.edu (0721) 608 45944 Übersicht Motivation & Hintergrund Naiver Bayes-Klassifikator Bayessche Netze EM-Algorithmus 2 Was ist eigentlich? MOTIVATION & HINTERGRUND 3 Warum Lernen

Mehr