Adaptive Systeme. Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff

Größe: px
Ab Seite anzeigen:

Download "Adaptive Systeme. Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff"

Transkript

1 Adaptive Systeme Evolutionäre Algorithmen: Überlebenskampf und Evolutionäre Strategien Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff

2 Überblick Einleitung Adaptive Filter Künstliche neuronale Netze Adaptive Vektorquantisierung Evolutionäre Algorithmen Genetische Algorithmen Prof. Dr. H.-G. Fehn und Prof. Dr. N. Wulff Adaptive Systeme 2

3 Frühe Pioniere Evolutionsstrategie I. Rechenberg, H.-P. Schwefel Evolutionäre Programmierung L.J. Fogel Genetische Algorithmen J.H. Holland Genetische Programmierung J.R. Koza Prof. Dr. H.-G. Fehn und Prof. Dr. N. Wulff Adaptive Systeme 3

4 Reelle Optimierungsprobleme Lokales Optimum Gegeben sei eine Funktion f : R N R. Der Vektor x o R N wird lokales Minimum genannt, wenn gilt: 0 : x R : x x o f x o f x Der Vektor x o R N wird lokales Maximum genannt, wenn gilt: 0 : x R : x x o f x o f x Ist x o R N ein lokales Minimum oder ein lokales Maximum, so wird x o ein lokales Optimum genannt. Prof. Dr. H.-G. Fehn und Prof. Dr. N. Wulff Adaptive Systeme 4

5 Reelle Optimierungsprobleme Beschränkte Optimierung Gegeben sei eine Funktion f : R N R. Optimiere f unter den M Nebenbedingungen g i x 0 mit 1 i M. Die Funktionen g i : R N R heißen Beschränkungen (constraint). An einem Punkt x R ist die Beschränkung erfüllt, wenn g i x 0, g i x =0 aktiv, wenn, g i x 0 inaktiv, wenn, g i x 0 verletzt, wenn. Prof. Dr. H.-G. Fehn und Prof. Dr. N. Wulff Adaptive Systeme 5

6 Evolutionäre Algorithmen Evolutionäre Algorithmen bilden in vereinfachter Form Mechanismen der biologischen Evolution und der Molekulargenetik nach, um adaptive Systeme zu realisieren oder Optimierungsprobleme zu lösen. Evolutionäre Algorithmen sind in der Regel stochastische Algorithmen. Für die Implementierung sind somit geeignete Zufallszahlengeneratoren (insbesondere für gleichverteilte und normalverteilte Zufallszahlen und Zufallsvektoren) erforderlich. Prof. Dr. H.-G. Fehn und Prof. Dr. N. Wulff Adaptive Systeme 6

7 N-dimensionale Normalverteilung Normalverteilte Zufallsvariablen (mittelwertfrei) Wahrscheinlichkeitsdichte einer normalverteilten Zufallsvariablen p( z)= 1 2π σ 2 exp ( z 2 ) 2σ 2 Verbundwahrscheinlichkeitsdichte eines N-dimensionalen normalverteilten Zufallsvektors: z 0 1 z z= 2 p z = 1 2 N exp 1 N 1 z n n=0 z N 1 Prof. Dr. H.-G. Fehn und Prof. Dr. N. Wulff Adaptive Systeme 7

8 Box-Muller-Methode Erzeugung einer normalverteilten Zufallsvariablen Aus den in dem Intervall [0,1] gleichverteilten Zufallszahlen u und v werden die beiden normalverteilten Zufallszahlen x und y mit dem Mittelwert 0 und der Varianz 2 = 1 erzeugt gemäß x= 2 log e 1 u cos 2 v und y= 2 log e 1 u sin 2 v Erzeugung einer (μ,σ 2 ) verteilten Zufallsvariablen Erzeuge x (0,1) normalverteilt, dann ist y = μ + σ x nach dieser Translation und Skalierung (μ,σ 2 ) normal/gauß-verteilt. Prof. Dr. H.-G. Fehn und Prof. Dr. N. Wulff Adaptive Systeme 8

9 N-dimensionale Normalverteilung Normalverteilte Zufallsvariablen (mittelwertfrei) Wahrscheinlichkeitsdichte einer zweidimensionalen normalverteilten Zufallsvariablen Prof. Dr. H.-G. Fehn und Prof. Dr. N. Wulff Adaptive Systeme 9

10 Grundidee Individuen werden durch ein n-dimensionales Tupel a R n charakterisiert. Eine Population Individuen zum Zeitpunkt t. P(t)={a 0 (t),a 1 (t),,a μ 1(t)} aus μ Als Maß für die Anpassung an die Umwelt wird den Individuen eine Fitness f (a k (t)) zugewiesen. Aus den Besten werden zufällig oder nach anderen Kriterien Eltern ausgewählt die Kinder zeugen. Die Tupel der Kinder entstehen durch zufällige und/oder geeignete Variationen der Elter(n) Tupel. Individuen haben eine gewisse Lebenszeit. Prof. Dr. H.-G. Fehn und Prof. Dr. N. Wulff Adaptive Systeme 10

11 Evolutionäre Algorithmen Pseudocode eines Evolutionären Algorithmus t=0 ; Initialisiere Population P(t)={a 0 (t ), a 1 (t),, a r 1 (t )}; Berechne Fitness f (a k (t)) von a k (t)für 0 k r 1; while end of adaptation true do for (k=0; k r 1 ; k++) Selektiere Eltern aus der Population P(t); Bilde Nachkommen a k (t+1); Berechne Fitness f (a k (t +1))von a k (t +1); Bilde neue Population P (t +1) passend zur Fitness end t ++ ; end Prof. Dr. H.-G. Fehn und Prof. Dr. N. Wulff Adaptive Systeme 11

12 Evolutionäre Algorithmen Mögliche Überlebens- und Vermehrungsstrategien: (1+1)-Evolutionsstrategie: Einer von Elter oder Kind (1+ )-Evolutionsstrategie: Einer von Elter oder λ Kindern (1, )-Evolutionsstrategie: Einer von λ Kindern ( + )-Evolutionsstrategie: μ von μ Elter und λ Kindern (, )-Evolutionsstrategie: μ von λ Kindern ( )-Evolutionsstrategie # ist '+' oder ',' ( )-Evolutionsstrategie: Eltern zeugen λ Kinder Selbstadaption der freien Parameter (welcher?) Prof. Dr. H.-G. Fehn und Prof. Dr. N. Wulff Adaptive Systeme 12

13 ( )-Evolutionsstrategie Bemerkungen: Bei μ=1 Strategien überlebt nur der jeweils Fitteste. In der '+' Variante kann sich dieser dominant in allen Populationen durchsetzen => Gefahr des Hängens in falschen lokalen Optima! Die (*, λ) Variante verhindert dies, birgt aber die Gefahr, das ein gefundes Optimum ausstirbt. Bei ρ=1 findet kein Austausch von Tupelmerkmalen verschiedener Eltern statt, sondern nur statistische Variation/Mutation, erst ρ > 1 erlaubt die sexuelle Rekombination von Erbinformationen. Prof. Dr. H.-G. Fehn und Prof. Dr. N. Wulff Adaptive Systeme 13

14 (1+1)-Evolutionsstrategie Ablauf: Initialisierung Ein N-dimensionaler Vektor x E 0 R N wird zufällig gewählt. Setze t=0. Mutation Der Elter x E t in der Generation t erzeugt einen Nachkommen x N t, der sich von dem Elter ein wenig unterscheidet. Selektion Die beiden Individuen x E t und x N t werden hinsichtlich ihrer Fitness f x E t und f x N t verglichen; das bessere wird als Elter der nächsten Generation t 1 verwendet. Prof. Dr. H.-G. Fehn und Prof. Dr. N. Wulff Adaptive Systeme 14

15 (1+1)-Evolutionsstrategie Eigenschaften: Die Größe der Population ist konstant. Ein Individuum besitzt prinzipiell eine unendliche lange Lebensdauer und kann unendlich viele Nachkommen erzeugen. Nur Mutationen treten auf. Die Umgebung und somit die Fitness sind konstant und ändern sich nicht mit der Zeit. Es werden keine Mechanismen der modernen synthetischen Evolutionstheorie wie Chromosomenmutationen, Rekombination, Diploidie, Dominanz und Rezessivität, Migration,... verwendet. Prof. Dr. H.-G. Fehn und Prof. Dr. N. Wulff Adaptive Systeme 15

16 (1+1)-Evolutionsstrategie Algorithmus Idee Erzeugung eines Nachkommens durch Mutation x N t = x E t z t mit dem mittelwertfreien und unkorrelierten normalverteilten Zufallsvektor z t mit der Varianz 2 Selektion x E t 1 ={ x N t, f x N t f x E t x E t, sonst x E t x N t Prof. Dr. H.-G. Fehn und Prof. Dr. N. Wulff Adaptive Systeme 16

17 (1+1)-Evolutionsstrategie Pseudocode der (1+1)-Strategie t=0 ; Initialisiere x E (0)=( x E,0 (0), x E,1 (0),, x E, N 1 (0)) T ; while end of adaptation true do Bilde Nachkomme x N (t)= x E (t)+ z (t)durch Addition eines normalverteilten Zufallsvektors z (t ); Selektiere x E (t +1)={ x N(t), f ( x N (t )) f ( x E (t)) x E (t ), sonst t ++ ; end ; Prof. Dr. H.-G. Fehn und Prof. Dr. N. Wulff Adaptive Systeme 17

18 Evolutionäre Algorithmen Während die Grundidee eines EA simpel und einfach zu programmieren ist, erfordert die Vorhersage seiner Eigenschaften ein gehöriges Maß an Statistik und Mathematik. Am einfachsten lässt sich das Verhalten des (1+1) Algorithmus bestimmen. Die zentralen Fragen sind 1. wie groß ist der Fortschritt der Entwicklung der Populationen in Richtung Optimum und 2. mit welcher Erfolgswahrscheinlichkeit passiert dies in Abhängigkeit von freien Parametern (welchen?). Prof. Dr. H.-G. Fehn und Prof. Dr. N. Wulff Adaptive Systeme 18

19 Evolutionäre Algorithmen Zwei Fitness Modelle: Kugelmodell N 1 f x = n=0 x n 2 Korridormodell x 2 x 1 x 0 f x =x 0 mit den Beschränkungen x i B für 1 i N 1 bzw. g i x = x i für 1 i N 1 x 2 x 0 x 1 Prof. Dr. H.-G. Fehn und Prof. Dr. N. Wulff Adaptive Systeme 19

20 Evolutionäre Algorithmen Lokaler Fortschritt Der lokale Fortschritt ist definiert als die mittlere Strecke, die in einer Generation in Richtung des Optimums x o zurückgelegt wird. x E x o x N Prof. Dr. H.-G. Fehn und Prof. Dr. N. Wulff Adaptive Systeme 20

21 Evolutionäre Algorithmen Die Erfolgswahrscheinlichkeit P Erfolg ist definiert als die relative Häufigkeit der erfolgreichen Mutationen. Anzahl erfolgreicher Mutationen P Erfolg = Gesamtzahl der Mutationen x E x o x N x N Prof. Dr. H.-G. Fehn und Prof. Dr. N. Wulff Adaptive Systeme 21

22 (1+1)-Evolutionsstrategie Berechnung des Fortschritts Erzeugung eines Nachkommen x N t = x E t z t Bedingte Wahrscheinlichkeitsdichte 1 p x N x E = 2 2N exp x N x E 2 2 = 1 2 N exp n=0 2 2 N 1 x N, n x E,n Prof. Dr. H.-G. Fehn und Prof. Dr. N. Wulff Adaptive Systeme 22

23 (1+1)-Evolutionsstrategie Fortschritt im Korridormodell Betrachte Korridormodell mit N = 2 f x = f x 0, x 1 =x 0 und x 1 B x 1 x E x N x 0 x E x N Prof. Dr. H.-G. Fehn und Prof. Dr. N. Wulff Adaptive Systeme 23

24 (1+1)-Evolutionsstrategie Fortschritt im Korridormodell Bedingte Wahrscheinlichkeitsdichte mit N = 2 p( x N x E )= p (x N,0, x N,1 x E,0, x E,1 ) = 1 2 π σ 2 exp ( ( x N,0 x E,0) 2 +( x N,1 x E,1 ) 2 ) 2σ 2 = 1 2 π σ exp ( ( x 2 N,0 x E,0) ) 2σ π σ exp ( (x x ) 2 ) N,1 E,1 2 σ 2 Prof. Dr. H.-G. Fehn und Prof. Dr. N. Wulff Adaptive Systeme 24

25 (1+1)-Evolutionsstrategie Fortschritt im Korridormodell Lokaler Fortschritt für Korridormodell mit N = 2 x E,0, x E,1 = x N,0 =x E,0 = 1 2 B x N,1 = B x N,0 =x E,0 x N,0 x E,0 p x N,0, x N,1 x E,0, x E,1 dx N,0 dx N,1 x N,0 x E,0 exp x N,0 x E, B x N,1 = B 2 2 exp x N,1 x E, dx N,0 dx N,1 Prof. Dr. H.-G. Fehn und Prof. Dr. N. Wulff Adaptive Systeme 25

26 (1+1)-Evolutionsstrategie Fortschritt im Korridormodell Lokaler Fortschritt für Korridormodell mit N = 2 x E,0, x E,1 = 2 0 = 2 1 e 2 d 1 = 1 2 B x E,1 / 2 B x E,1 / 2 B x E,1 / 2 B x E,1 / 2 e 2 d e 2 d = { erf B x E,1 2 erf B x E,1 2 } Fehlerfunktion erf x = 2 0 x e 2 d Prof. Dr. H.-G. Fehn und Prof. Dr. N. Wulff Adaptive Systeme 26

27 (1+1)-Evolutionsstrategie Fortschritt im Korridormodell Betrachte Korridormodell mit N = 2 f x = f x 0, x 1 =x 0 und x 1 B x 1 x 0 x E,0, x E,1 Prof. Dr. H.-G. Fehn und Prof. Dr. N. Wulff Adaptive Systeme 27

28 (1+1)-Evolutionsstrategie Fortschritt im Korridormodell Lokaler Fortschritt für Korridormodell mit N = 2 = 1 2B B x E,1 = B = 2 1 4B x E,0, x E,1 dx E,1 B x E,1 = B { erf B x E,1 2 erf B x E,1 2 } dx E,1 = 2 { erf 2 B 2 B 1 e2 B 2 / 2 } Prof. Dr. H.-G. Fehn und Prof. Dr. N. Wulff Adaptive Systeme 28

29 (1+1)-Evolutionsstrategie Fortschritt im Korridormodell Lokaler Fortschritt für Korridormodell mit N = 2 erf x 1 1 e x für x 1 x φ= σ 2π ( π σ ) für σ B B 2 Lokaler Fortschritt für Korridormodell mit beliebigem N φ= σ 2 π ( π σ B ) N 1 für σ B Prof. Dr. H.-G. Fehn und Prof. Dr. N. Wulff Adaptive Systeme 29

30 Übung Der lokale Fortschritt der (1+1)-Evolutionsstrategie beim Korridormodell ist gegeben durch die folgende Formel. = B N 1 Bestimmen Sie die bei der Mutation verwendete optimale Standardabweichung opt, die zu einem maximalen lokalen Fortschritt führt. für B Wie kann bei ermittelter Erfolgswahrscheinlichkeit P(t) die Standardabweichung σ adaptiv während des Algorithmus angepasst werden? Prof. Dr. H.-G. Fehn und Prof. Dr. N. Wulff Adaptive Systeme 30

Adaptive Systeme. Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff

Adaptive Systeme. Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Adaptive Systeme Evolutionäre Algorithmen Teil II Evolutionsfenster durch Mutation und sexuelle Rekombination Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Evolutionäre Algorithmen

Mehr

Computational Intelligence 1 / 28. Computational Intelligence Evolutionsstrategien 3 / 28

Computational Intelligence 1 / 28. Computational Intelligence Evolutionsstrategien 3 / 28 1 / 28 Gliederung 1 Evolutionsstrategien Selektion Rekombination Mutation Ablauf 2 Genetische Programmierung Repräsentation Genetische Operatoren Ablauf Überblick Evolutionsstrategien 3 / 28 Repräsentation

Mehr

10. Vorlesung Stochastische Optimierung

10. Vorlesung Stochastische Optimierung Soft Control (AT 3, RMA) 10. Vorlesung Stochastische Optimierung Genetische Algorithmen 10. Vorlesung im Aufbau der Vorlesung 1. Einführung Soft Control: Definition und Abgrenzung, Grundlagen "intelligenter"

Mehr

Genetische und Evolutionäre Algorithmen (Vol. 2)

Genetische und Evolutionäre Algorithmen (Vol. 2) Vortrag über Genetische und Evolutionäre Algorithmen (Vol. 2) von Adam El Sayed Auf und Kai Lienemann Gliederung: 4) Rückblick 5) Allgemeine Einführung 6) Genauere Beschreibung von Evolutionären Strategien

Mehr

Populationsbasierte Suche. Evolutionäre Algorithmen (1)

Populationsbasierte Suche. Evolutionäre Algorithmen (1) Populationsbasierte Suche Bisherige Meta-Heuristiken: Simulated Annealing Tabu Search Ausgehend von einer Lösung wird gesucht Populationsbasierte Heuristiken Suche erfolgt ausgehend von mehreren Lösungen

Mehr

Statistik I für Betriebswirte Vorlesung 4

Statistik I für Betriebswirte Vorlesung 4 Statistik I für Betriebswirte Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 25. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

1. Inhaltsverzeichnis

1. Inhaltsverzeichnis 1. Inhaltsverzeichnis Inhaltsverzeichnis 1. Einleitung 1.1. Darwins Evolutionstheorie 1.2. Darwins Evolutionstheorie als Inspiration für Evolutionäre Algorithmen 1.3. Die Unterschiede der verschiedenen

Mehr

Optimale Produktliniengestaltung mit Genetischen Algorithmen

Optimale Produktliniengestaltung mit Genetischen Algorithmen Optimale Produktliniengestaltung mit Genetischen Algorithmen 1 Einleitung 2 Produktlinienoptimierung 3 Genetische Algorithmen 4 Anwendung 5 Fazit Seite 1 Optimale Produktliniengestaltung mit Genetischen

Mehr

Synthese Eingebetteter Systeme. Übung 6

Synthese Eingebetteter Systeme. Übung 6 12 Synthese Eingebetteter Systeme Sommersemester 2011 Übung 6 Michael Engel Informatik 12 TU Dortmund 2011/07/15 Übung 6 Evolutionäre Algorithmen Simulated Annealing - 2 - Erklären Sie folgende Begriffe

Mehr

Bewertung von Optimierungs- und Zuverlässigkeitsalgorithmen für die virtuelle Produktauslegung

Bewertung von Optimierungs- und Zuverlässigkeitsalgorithmen für die virtuelle Produktauslegung Weimarer Optimierungs- und Stochastiktage 4.0 Bewertung von Optimierungs- und Zuverlässigkeitsalgorithmen für die virtuelle Produktauslegung Dr.-Ing. Andreas Plotzitza, PT/EST4 29. November 2007 1 Inhalt

Mehr

Proseminar Genetische und Evolutionäre Algorithmen Evolutionsstrategien

Proseminar Genetische und Evolutionäre Algorithmen Evolutionsstrategien Proseminar Genetische und Evolutionäre Algorithmen Evolutionsstrategien Michael Stahl 4. Juni 2002 Inhaltsverzeichnis 1 Überblick 2 2 Generischer ES-Algorithmus 2 2.1 Initialisierung....................................

Mehr

Evolutionsstrategien

Evolutionsstrategien Evolutionsstrategien zum Seminar Evolutionäre Algorithmen von Jana Schäfer INHALTVERZEICHNIS 1. Einführung... 3 2. Die Geschichte der Evolutionsstrategien...4 3. Grundlegendes... 6 3.1 Begriffe... 6 3.2

Mehr

Statistik I für Betriebswirte Vorlesung 3

Statistik I für Betriebswirte Vorlesung 3 Statistik I für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 15. April 2019 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 3 Version: 1. April

Mehr

Evolution und Algorithmen

Evolution und Algorithmen Kapitel 6 Spezialvorlesung Modul 10-202-2206 (Fortgeschrittene Methoden in der Bioinformatik) Jana Hertel Professur für Bioinformatik Institut für Informatik Universität Leipzig Machine learning in bioinformatics

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung SS 18: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung SS 18: Woche vom Übungsaufgaben 11. Übung SS 18: Woche vom 25. 6. 29. 6. 2016 Stochastik V: ZG; Momente von ZG; Zufallsvektoren Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/...

Mehr

Betriebliche Optimierung

Betriebliche Optimierung Betriebliche Optimierung Joachim Schauer Institut für Statistik und OR Uni Graz Joachim Schauer ( Institut für Statistik und OR Uni Graz Betriebliche ) Optimierung 1 / 19 1 Joachim Schauer ( Institut für

Mehr

Genetische Algorithmen

Genetische Algorithmen Genetische Algorithmen Prof. Dr. Ottmar Beucher Dezember 2001 Genetische Algorithmen 1 Optimierungsaufgaben Ein einfaches Beispiel Prinzipielle Formulierung Lösungsansätze Genetische Algorithmen Anwendungen

Mehr

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 23. Bemerkung Integralbegriffe für Funktionen f : R d R (i) Lebesgue-Integral (Vorlesung Analysis IV). Spezialfall: (ii) Uneigentliches Riemann-Integral

Mehr

Gegenbeispiele in der Wahrscheinlichkeitstheorie

Gegenbeispiele in der Wahrscheinlichkeitstheorie Gegenbeispiele in der Wahrscheinlichkeitstheorie Mathias Schaefer Universität Ulm 26. November 212 1 / 38 Übersicht 1 Normalverteilung Definition Eigenschaften Gegenbeispiele 2 Momentenproblem Definition

Mehr

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit 3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit Lernziele dieses Kapitels: Mehrdimensionale Zufallsvariablen (Zufallsvektoren) (Verteilung, Kenngrößen) Abhängigkeitsstrukturen Multivariate

Mehr

Stochastik-Praktikum

Stochastik-Praktikum Stochastik-Praktikum Zufallszahlen und Monte Carlo Peter Frentrup Humboldt-Universität zu Berlin 17. Oktober 2017 (Humboldt-Universität zu Berlin) Zufallszahlen und Monte Carlo 17. Oktober 2017 1 / 23

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Genetische Algorithmen. Uwe Reichel IPS, LMU München 8. Juli 2008

Genetische Algorithmen. Uwe Reichel IPS, LMU München 8. Juli 2008 Genetische Algorithmen Uwe Reichel IPS, LMU München reichelu@phonetik.uni-muenchen.de 8. Juli 2008 Inhalt Einführung Algorithmus Erweiterungen alternative Evolutions- und Lernmodelle Inhalt 1 Einführung

Mehr

Multivariate Verteilungen

Multivariate Verteilungen Multivariate Verteilungen Zufallsvektoren und Modellierung der Abhängigkeiten Ziel: Modellierung der Veränderungen der Risikofaktoren X n = (X n,1, X n,2,..., X n,d ) Annahme: X n,i und X n,j sind abhängig

Mehr

15.5 Stetige Zufallsvariablen

15.5 Stetige Zufallsvariablen 5.5 Stetige Zufallsvariablen Es gibt auch Zufallsvariable, bei denen jedes Elementarereignis die Wahrscheinlich keit hat. Beispiel: Lebensdauer eines radioaktiven Atoms Die Lebensdauer eines radioaktiven

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

1. Evolutionsstrategien. 2. Genetische Algorithmen. Evolutionsstrategie / Genetischer Algorithmus. Dr. Markus Olhofer markus.olhofer(at)honda-ri.

1. Evolutionsstrategien. 2. Genetische Algorithmen. Evolutionsstrategie / Genetischer Algorithmus. Dr. Markus Olhofer markus.olhofer(at)honda-ri. Evolutionsstrategie / Genetischer Algorithmus 1. Evolutionsstrategien 200 150 100 (kontinuierliche Parameter) 50 0 10 2. Genetische Algorithmen 5 0-5 -10-10 -5 0 5 10 (diskrete Parameter in kombinatorischen

Mehr

12. Vorlesung Stochastische Optimierung

12. Vorlesung Stochastische Optimierung Soft Control (AT 3, RMA) 12. Vorlesung Stochastische Optimierung Differential Evolution 12. Vorlesung im Aufbau der Vorlesung 1. Einführung Soft Control: Definition und Abgrenzung, Grundlagen "intelligenter"

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung SS 13: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung SS 13: Woche vom Übungsaufgaben 11. Übung SS 13: Woche vom 24. 6. 13-28. 6. 2013 Stochastik V: ZG Momente von ZG; Grenzverteilungssätze Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/

Mehr

Inhaltsverzeichnis. 4 Statistik Einleitung Wahrscheinlichkeit Verteilungen Grundbegriffe 98

Inhaltsverzeichnis. 4 Statistik Einleitung Wahrscheinlichkeit Verteilungen Grundbegriffe 98 Inhaltsverzeichnis 1 Datenbehandlung und Programmierung 11 1.1 Information 11 1.2 Codierung 13 1.3 Informationsübertragung 17 1.4 Analogsignale - Abtasttheorem 18 1.5 Repräsentation numerischer Daten 20

Mehr

InformatiCup 2009 EvolutionConsole

InformatiCup 2009 EvolutionConsole InformatiCup 2009 EvolutionConsole Wilhelm Büchner Hochschule 19. März 2010 1 1. Das Team Teammitglieder Ralf Defrancesco KION Information Services GmbH Systemadministrator Daniel Herken Scooter Attack

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/51 Biostatistik, Sommer 2017 Wahrscheinlichkeitstheorie: Verteilungen, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 8. Vorlesung: 09.06.2017 2/51 Inhalt 1 Verteilungen Normalverteilung Normalapproximation

Mehr

Stetige Verteilungen Rechteckverteilung

Stetige Verteilungen Rechteckverteilung Stetige Verteilungen Rechteckverteilung Die Längenabweichungen X produzierter Werkstücke von der Norm seien gleichmäßig verteilt zwischen a = mm und b = 4mm. Die Dichtefunktion lautet also f(x) = für a

Mehr

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38 Dynamische Systeme und Zeitreihenanalyse Multivariate Normalverteilung und ML Schätzung Kapitel 11 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Multivariate

Mehr

4.2 Moment und Varianz

4.2 Moment und Varianz 4.2 Moment und Varianz Def. 2.10 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: EX p

Mehr

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen David Geier und Sven Middelberg RWTH Aachen, Sommersemester 27 Inhaltsverzeichnis Information 2 Aufgabe 4 Aufgabe 2 6 4 Aufgabe

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Statistik für Ingenieure Vorlesung 3

Statistik für Ingenieure Vorlesung 3 Statistik für Ingenieure Vorlesung 3 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 14. November 2017 3. Zufallsgrößen 3.1 Zufallsgrößen und ihre Verteilung Häufig sind

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Stochastik Marco Boßle Jörg Hörner Marcel Thoms Mathematik Online Herbst 211 PV-Kurs HM 3 Stochastik 1-1 Zusammenfassung Wahrscheinlichkeitsraum (WR): Menge

Mehr

Wahrscheinlichkeitstheorie und Statistik

Wahrscheinlichkeitstheorie und Statistik Wahrscheinlichkeitstheorie und Statistik Definitionen und Sätze Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2018 2.5.2018 Diskrete Wahrscheinlichkeitsräume Diskreter

Mehr

EVOLUTION STRATEGIES DANIELA SCHACHERER SEMINAR: IST KÜNSTLICHE INTELLIGENZ GEFÄHRLICH? SOMMERSEMESTER 2017

EVOLUTION STRATEGIES DANIELA SCHACHERER SEMINAR: IST KÜNSTLICHE INTELLIGENZ GEFÄHRLICH? SOMMERSEMESTER 2017 EVOLUTION STRATEGIES DANIELA SCHACHERER SEMINAR: IST KÜNSTLICHE INTELLIGENZ GEFÄHRLICH? SOMMERSEMESTER 2017 Inhalt Einleitung und Überblick Evolutionsstrategien Grundkonzept Evolutionsstrategien als Alternative

Mehr

Erfolgversprechende Konfigurationen für Versuche mit Evolutionsstrategien anhand von ausgewählten Testfunktionen

Erfolgversprechende Konfigurationen für Versuche mit Evolutionsstrategien anhand von ausgewählten Testfunktionen Erfolgversprechende Konfigurationen für Versuche mit Evolutionsstrategien anhand von ausgewählten Testfunktionen Krischan Keitsch 3. Juni 214 Zusammenfassung Um ein Optimierungsproblem mit einer Evolutionsstrategie

Mehr

2. Evolution als Optimierungsprinzip

2. Evolution als Optimierungsprinzip 2. Evolution als Optimierungsprinzip Biologen betrachten Evolution als Mechanismus, der in der Natur Lösungen für spezielle Probleme erzeugt Prinzipien der biologischen Evolution werden zur Lösung von

Mehr

Genetische und Evolutionäre Algorithmen (Vol. 1)

Genetische und Evolutionäre Algorithmen (Vol. 1) Vortrag über Genetische und Evolutionäre Algorithmen (Vol. ) von Adam El Sayed Auf und Kai Lienemann Gliederung: ) Einführung 2) Grundkonzept 3) Genaue Beschreibung des Genetischen Algorithmus Lösungsrepräsentation

Mehr

Musterlösung der Klausur vom 29. Juli 2003

Musterlösung der Klausur vom 29. Juli 2003 Statistik für Bioinformatiker SoSe 2003 Rainer Spang Musterlösung der Klausur vom 29. Juli 2003 Aufgabe 1. 10 Definieren Sie die folgenden statistischen Begriffe in einem Satz oder in einer Formel: 1.

Mehr

Multivariate Verteilungen. Gerhard Tutz LMU München

Multivariate Verteilungen. Gerhard Tutz LMU München Multivariate Verteilungen Gerhard Tutz LMU München INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Multivariate Normalverteilung 3 Wishart Verteilung 7 3 Hotellings T Verteilung 11 4 Wilks Λ 14 INHALTSVERZEICHNIS

Mehr

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Mustererkennung Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Optimierung: Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen Optimierungsprobleme Optimierung Suche nach dem Maximum oder Minimum

Mehr

Stetige Standardverteilungen

Stetige Standardverteilungen Universität Basel Wirtschaftswissenschaftliches Zentrum Stetige Standardverteilungen Dr. Thomas Zehrt Inhalt: 1. Die stetige Gleichverteilung 2. Die Normalverteilung (a) Einstimmung (b) Standardisierung

Mehr

5 Erwartungswerte, Varianzen und Kovarianzen

5 Erwartungswerte, Varianzen und Kovarianzen 47 5 Erwartungswerte, Varianzen und Kovarianzen Zur Charakterisierung von Verteilungen unterscheidet man Lageparameter, wie z. B. Erwartungswert ( mittlerer Wert ) Modus (Maximum der Wahrscheinlichkeitsfunktion,

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 240/476 c Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 240/476 c Ernst W. Mayr 1.4.4 Laplace-Prinzip in kontinuierlichen Wahrscheinlichkeitsräumen Das folgende Beispiel zeigt, dass im kontinuierlichen Fall die Bedeutung von gleichwahrscheinlich nicht immer ganz klar sein muss. Bertrand

Mehr

Einführung in die Methoden der Künstlichen Intelligenz. Evolutionäre Algorithmen

Einführung in die Methoden der Künstlichen Intelligenz. Evolutionäre Algorithmen Einführung in die Methoden der Künstlichen Intelligenz Evolutionäre Algorithmen Dr. David Sabel WS 2012/13 Stand der Folien: 12. November 2012 Evolutionäre / Genetische Algorithmen Anwendungsbereich: Optimierung

Mehr

7.2 Moment und Varianz

7.2 Moment und Varianz 7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Theorie-Teil: Aufgaben 1-3: 30 Punkte Programmier-Teil: Aufgaben 4-9: 60 Punkte

Theorie-Teil: Aufgaben 1-3: 30 Punkte Programmier-Teil: Aufgaben 4-9: 60 Punkte Hochschule RheinMain WS 2018/19 Prof. Dr. D. Lehmann Probe-Klausur zur Vorlesung Ökonometrie Theorie-Teil: Aufgaben 1-3: 30 Punkte Programmier-Teil: Aufgaben 4-9: 60 Punkte (die eigentliche Klausur wird

Mehr

Adaptive Systeme. Sommersemester Prof. Dr. -Ing. Heinz-Georg Fehn. Prof. Dr. rer. nat. Nikolaus Wulff

Adaptive Systeme. Sommersemester Prof. Dr. -Ing. Heinz-Georg Fehn. Prof. Dr. rer. nat. Nikolaus Wulff Adaptive Systeme Sommersemester 2015 Prof. Dr. -Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Prof. Dr. H.-G. Fehn und Prof. Dr. N. Wulff 1 Adaptive Systeme Adaptives System: ein System, das

Mehr

1 Die stetige Gleichverteilung 2. 2 Die Exponentialverteilung 3. 3 Die Normalverteilung 5. 4 Die Testverteilungen Gauss-Vektoren 17

1 Die stetige Gleichverteilung 2. 2 Die Exponentialverteilung 3. 3 Die Normalverteilung 5. 4 Die Testverteilungen Gauss-Vektoren 17 Wirtschaftswissenschaftliches Zentrum 9 Universität Basel Mathematik 2 Dr. Thomas Zehrt Stetige Standardverteilungen Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt,

Mehr

Statistische Analyseverfahren Abschnitt 2: Zufallsvektoren und mehrdimensionale Verteilungen

Statistische Analyseverfahren Abschnitt 2: Zufallsvektoren und mehrdimensionale Verteilungen Statistische Analyseverfahren Abschnitt 2: Zufallsvektoren und mehrdimensionale Verteilungen Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Oktober 2018 Prof. Dr. Hans-Jörg

Mehr

f(x) = P (X = x) = 0, sonst heißt Poisson-verteilt mit Parameter (oder Rate) λ > 0, kurz X P o(λ). Es gilt x x! 1 Wahrscheinlichkeitsrechnung 212

f(x) = P (X = x) = 0, sonst heißt Poisson-verteilt mit Parameter (oder Rate) λ > 0, kurz X P o(λ). Es gilt x x! 1 Wahrscheinlichkeitsrechnung 212 1.6.2 Poisson Verteilung Eine weitere wichtige diskrete Verteilung ist die Poisson-Verteilung. Sie modelliert die Anzahl (eher seltener) Ereignisse in einem Zeitintervall (Unfälle, Todesfälle; Sozialkontakte,

Mehr

Fakultät Verkehrswissenschaften Friedrich List Professur für Ökonometrie und Statistik, insb. im Verkehrswesen. Statistik II

Fakultät Verkehrswissenschaften Friedrich List Professur für Ökonometrie und Statistik, insb. im Verkehrswesen. Statistik II Statistik II 1. Ergänzungen zur Wahrscheinlichkeitstheorie Fakultät Verkehrswissenschaften Friedrich List Professur für Ökonometrie und Statistik, insb. im Verkehrswesen Statistik II 1. Ergänzungen zur

Mehr

Anwendung genetischer Algorithmen zur Lösung des n Dame Problems und zur Optimierung von Autoprofilen

Anwendung genetischer Algorithmen zur Lösung des n Dame Problems und zur Optimierung von Autoprofilen Anwendung genetischer Algorithmen zur Lösung des n Dame Problems und zur Optimierung von Autoprofilen Jana Müller Seminar Das Virtuelle Labor Otto von Guericke Universität Magdeburg Gliederung 1. Motivation

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2.

Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2. Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2. Lineare Korrelation Annahme: var(x 1 ),var(x 2 ) (0, ). Der Koeffizient

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 5. Vorlesung Verteilungsfunktion (VF) Definition 9 Die Verteilungsfunktion (VF) einer Zufallsgröße X ist F : R R definiert als F (x) := P({ω Ω : X (ω) x}) = P( X x ) für jedes x R. Satz 9 - Eigenschaften

Mehr

Binomialverteilung. Häufigkeit, mit der Ereignis A bei n unabhängigen Versuchen eintritt. Träger von X : X = {0, 1, 2,..., n}.

Binomialverteilung. Häufigkeit, mit der Ereignis A bei n unabhängigen Versuchen eintritt. Träger von X : X = {0, 1, 2,..., n}. Binomialverteilung Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder nicht. X = Häufigkeit, mit

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 12. Übung SS 18: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 12. Übung SS 18: Woche vom Übungsaufgaben 12. Übung SS 18: Woche vom 2. 7. 6. 7. 2018 Stochastik VI: Zufallsvektoren; Funktionen von ZG Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/...

Mehr

Evolutionäre Strategien

Evolutionäre Strategien Evolutionäre Strategien Xun Zhao Inhaltsverzeichnis 1 Einleitung 2 1.1 Entwicklung 2 1.2 Eigenschaft 2 1.3 Anwendungen 2 2 ES-Theorie 3 2.1 ES-Zyklus 3 2.2 Mutation 4 2.3 Selektion 6 2.4 Rekombination

Mehr

Nachklausur Mathematik für Biologen WS 08/09

Nachklausur Mathematik für Biologen WS 08/09 Aufgabe 1: (5 Punkte) In einer diploiden Population beobachten wir die Ausprägung eines bestimmten Gens, das zwei Allele V und W annimmt. Somit besitzt jedes Individuum V V, V W oder W W als Genotyp. Die

Mehr

Stochastik Aufgaben zum Üben: Teil 2

Stochastik Aufgaben zum Üben: Teil 2 Prof. Dr. Z. Kabluchko Wintersemester 205/206 Hendrik Flasche Januar 206 Aufgabe Stochastik Aufgaben zum Üben: Teil 2 Es sei X eine Zufallsvariable mit Dichte f X (y) = cy 5 I y>. Bestimmen Sie c, P[2

Mehr

Mathematische Werkzeuge R. Neubecker, WS 2018 / 2019 Optimierung Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen

Mathematische Werkzeuge R. Neubecker, WS 2018 / 2019 Optimierung Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen Mustererkennung Mathematische Werkzeuge R. Neubecker, WS 018 / 019 Optimierung Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen 1 Optimierung Optimierungsprobleme Suche nach dem Maximum oder Minimum

Mehr

Evolutionäre Algorithmen

Evolutionäre Algorithmen Karsten Weicker Evolutionäre Algorithmen 2., überarbeitete und erweiterte Auflage m Teubner Inhaltsverzeichnis 1 Natürliche Evolution 1 1.1 Entwicklung der evolutionären Mechanismen 2 1.2 Evolutionsfaktoren

Mehr

Klausur zur Vorlesung Stochastik II

Klausur zur Vorlesung Stochastik II Institut für Mathematische Stochastik WS 003/004 Universität Karlsruhe 05. 04. 004 Prof. Dr. G. Last Klausur zur Vorlesung Stochastik II Dauer: 90 Minuten Name: Vorname: Matrikelnummer: Diese Klausur hat

Mehr

1. Grundbegri e der Stochastik

1. Grundbegri e der Stochastik . Grundbegri e der Stochastik Raum der Ereignisse. Die einelementigen Teilmengen f!g heißen auch Elementarereignisse. Das Ereignis A tritt ein, wenn ein! A eintritt. A ist ein geeignetes System von Teilmengen

Mehr

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := Definition 2.34. Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := x f(x)dx der Erwartungswert von X, sofern dieses Integral existiert. Entsprechend wird die Varianz V(X)

Mehr

Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ),

Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ), 2.5 Parameter einer Verteilung 2.5. Erwartungswert X eine Zufallsvariable, g : R R stetig. Der Erwartungswert E[g(X)] von g(x) ist definiert durch: E[g(X)] := k g(x k )w(x = x k ), falls X diskret ist

Mehr

1.5 Mehrdimensionale Verteilungen

1.5 Mehrdimensionale Verteilungen Poisson eine gute Näherung, da np = 0 und 500p = 5 00 = n. Wir erhalten somit als Näherung Exakte Rechnung ergibt P(2 X 0) = k=2 0 k=2 π (k) = 0,26424. 0 ( ) 00 P(2 X 0) = 0,0 k 0,99 00 k = 0,264238. k.4.2.4

Mehr

4. Gemeinsame Verteilung und Grenzwertsätze

4. Gemeinsame Verteilung und Grenzwertsätze 4. Gemeinsame Verteilung und Grenzwertsätze Häufig in der Praxis: Man muss mehrere (n) ZV en gleichzeitig betrachten (vgl. Statistik I, Kapitel 6) Zunächst Vereinfachung: Betrachte n = 2 Zufallsvariablen

Mehr

4. Gemeinsame Verteilung und Grenzwertsätze

4. Gemeinsame Verteilung und Grenzwertsätze 4. Gemeinsame Verteilung und Grenzwertsätze Häufig in der Praxis: Man muss mehrere (n) ZV en gleichzeitig betrachten (vgl. Statistik I, Kapitel 6) Zunächst Vereinfachung: Betrachte n = 2 Zufallsvariablen

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

6. Kontinuierliche Zufallsgrößen. Beispiel 1: Die Exponentialverteilungen Sei λ > 0. Setzen

6. Kontinuierliche Zufallsgrößen. Beispiel 1: Die Exponentialverteilungen Sei λ > 0. Setzen 6. Kontinuierliche Zufallsgrößen Definition: Eine Z. G. ξ ist absolut stetig mit (Wahrscheinlichkeits-) Dichte f : R R, wenn gilt: P ( a ξ < b ) = b a f(x) dx (a < b) allgem. Eigenschaften einer Dichte

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, 4. Mai 2017 Dr. Michael O. Distler

Mehr

Genetische Algorithmen

Genetische Algorithmen Genetische Algorithmen Von Valentina Hoppe und Jan Rörden Seminar: Künstliche Intelligenz II Dozent: Stephan Schwiebert Gliederung Biologische Evolution Genetischer Algorithmus Definition theoretischer

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

Eine Auswahl wichtiger Definitionen und Aussagen zur Vorlesung»Stochastik für Informatiker und Regelschullehrer«

Eine Auswahl wichtiger Definitionen und Aussagen zur Vorlesung»Stochastik für Informatiker und Regelschullehrer« Eine Auswahl wichtiger Definitionen und Aussagen zur Vorlesung»Stochastik für Informatiker und Regelschullehrer«Werner Linde WS 2008/09 Inhaltsverzeichnis 1 Wahrscheinlichkeiten 2 1.1 Wahrscheinlichkeitsräume...........................

Mehr

Algorithmen für schwierige Optimierungsprobleme Vorlesung für den Bereich Bachelor Informatik

Algorithmen für schwierige Optimierungsprobleme Vorlesung für den Bereich Bachelor Informatik Algorithmen für schwierige Optimierungsprobleme Vorlesung für den Bereich Bachelor Informatik Dozent: Prof. Dr. Henning Meyerhenke Paralleles Rechnen, Fakultät für Informatik 1 KIT Universität des Landes

Mehr

Nr. 4: Pseudo-Zufallszahlengeneratoren

Nr. 4: Pseudo-Zufallszahlengeneratoren Proseminar: Finanzmathematische Modelle und Simulationen Martin Dieckmann WS 09/0 Nr. 4: Pseudo-Zufallszahlengeneratoren Begriff Pseudo-Zufallszahl Zufallszahlen im Rechner entstehen letztlich immer durch

Mehr

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Dr. Michael O. Distler distler@kph.uni-mainz.de Mainz, 2. November 2009 Poisson-Verteilung Die Poisson-Verteilung ist gegeben durch: P(r) = µr e µ r! Der Mittelwert ist: r = µ Die Varianz ergibt sich aus

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 09.12.2011 1/58 Inhalt 1 2 Kenngrößen von Lagemaße 2/58 mit Dichte Normalverteilung

Mehr

Teil II Optimierung. Modellgestützte Analyse und Optimierung Kap. 5 Einführung Optimierung. Peter Buchholz 2006

Teil II Optimierung. Modellgestützte Analyse und Optimierung Kap. 5 Einführung Optimierung. Peter Buchholz 2006 Teil II Optimierung Gliederung 5 Einführung, Klassifizierung und Grundlagen 6 Lineare Optimierung 7 Nichtlineare Optimierung 8 Dynamische Optimierung (dieses Jahr nur recht kurz) (9 Stochastische Optimierungsmethoden

Mehr

Kapitel VII. Einige spezielle stetige Verteilungen

Kapitel VII. Einige spezielle stetige Verteilungen Kapitel VII Einige spezielle stetige Verteilungen D. 7.. (Normalverteilung) Eine stetige Zufallsgröße X sei als normalverteilt bezeichnet, wenn sie folgende Wahrscheinlichkeitsdichte besitzt: µ f ( ; µ,

Mehr

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme Binomialverteilung Wahrscheinlichkeitsfunktion Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder

Mehr

Klausur zum Fach Höhere Mathematik 2 für Elektrotechnik Zweiter Teil

Klausur zum Fach Höhere Mathematik 2 für Elektrotechnik Zweiter Teil (Name) (Vorname) (Matrikelnummer) Fachbereich Elektrotechnik und Informationstechnik Prof. Georg Hoever.7.7 Klausur zum Fach Höhere Mathematik für Elektrotechnik Zweiter Teil Bearbeitungszeit: 9 Minuten

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management für Betriebswirtschaft und internationales Management Sommersemester 2015 Prof. Dr. Stefan Etschberger Hochschule Augsburg Normalverteilung Eine Zufallsvariable X mit einer Dichtefunktion und σ > 0 heißt

Mehr

Genetische Algorithmen von der Evolution lernen

Genetische Algorithmen von der Evolution lernen Genetische Algorithmen von der Evolution lernen (c) Till Hänisch 2003, BA Heidenheim Literatur zusätzlich zum Lit. Verz. Nils J. Nilsson Artificial Intelligence Morgan Kaufmann, 1998 Ansatz Bisher: Problemlösung

Mehr

Zusatzmaterial zur Vorlesung Statistik II

Zusatzmaterial zur Vorlesung Statistik II Zusatzmaterial zur Vorlesung Statistik II Dr. Steffi Höse Professurvertretung für Ökonometrie und Statistik, KIT Wintersemester 2011/2012 (Fassung vom 15.11.2011, DVI- und PDF-Datei erzeugt am 15. November

Mehr

Multivariate Verteilungen und Copulas

Multivariate Verteilungen und Copulas Multivariate Verteilungen und Copulas Zufallsvektoren und Modellierung der Abhängigkeiten Ziel: Modellierung der Veränderungen der Risikofaktoren X n = (X n,1, X n,2,..., X n,d ) Annahme: X n,i und X n,j

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr